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Abstract. In this paper, we design a novel one-way trapdoor function,
and then propose a new multivariate public key cryptosystem called
TOT, which can be used for encryption, signature and authentication.
Through analysis, we declare that TOT is secure, because it can resist
current known algebraic attacks if its parameters are properly chosen.
Some practical implementations for TOT are also given, and whose secu-
rity level is at least 290. The comparison shows that TOT is more secure
than HFE, HFEv and Quartz (when n ≥ 81 and DHFE ≥ 129, HFE is
still secure), and it can reach almost the same speed of computing the
secret map by C∗ and Sflashv2 (even though C∗ was broken, its high
speed has been affirmed).
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1 Introduction

Since Shor [1] [2] proposed the polynomial-time algorithms for prime factor-
ization and discrete logarithms on a quantum computer, researchers had been
devoting to studying public key cryptosystems that can resist quantum com-
puter attacks to replace the traditional public key cryptosystems, such as RSA,
ECC, etc.. The system that is immune to quantum computer attacks goes by
the name of Post Quantum Cryptography (PQC) [3]. Multivariate Public Key
Cryptosystem (MPKC) [4] [5] [6] is a branch of PQC.

MPKC is based on the observation that solving a system of Multivariate
Quadratic polynomial equations over a finite field is an NP-complete problem
[7]. This problem is also known as MQ problem. In other words, the security of
a MPKCs relies on the intractability of the MQ problem.

In the 1980s, the development of MPKCs was great, but many of them were
broken. Matsumoto and Imai [8] presented C∗ scheme (or called MI) with a
special type of trapdoor. However, it was broken by Patarin’s algebraic attack
via linearization equations [9]. Surprisingly, Patarin lately applied the idea of
the linearization equation attack on C∗ to construct an Oil-Vinegar signature
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scheme (OV) [10]. The basic OV signature scheme was broken by Kipnis et al.
in 1999, and they presented a modified scheme called Unbalanced Oil-Vinegar
scheme (UOV) [11]. So far, UOV is secure from the structural point of view. In
2005, Ding and Schmidt introduced a multi-layer unbalanced Oil-Vinegar con-
struction called Rainbow signature scheme [12]. Rainbow is still secure currently
with parameters properly choosen. Moreover, C∗ cryptosystem can be general-
ized by the Plus method, the Minus method, and the Perturbed method. There
are thus many variants of C∗, such as Sflash [13] [14], Flash [15], C∗+ [16],
C∗± [16], PMI [17], and PMI+ [18]. It is worth mentioning that Paterin ful-
ly generalized C∗ cryptosystem and eventually invented Hidden Field Equation
cryptosystem (HFE) [19] in 1996. Researchers also utilized the Plus method, the
Minus method, and the Perturbed method to generate many variants of HFE,
for example HFE− [19], HFE± [19], IPHFE [20] and HFEv [20] [11]. HFEv is a
combination of the basic HFE with the idea of Oil-Vinegar. In succession, many
variants of HFEv also came out, such as Quartz [21].

On the other hand, Triangular Scheme (TS) family is a different and special
kind of construction in MPKC. In 1999, Moh [22] proposed Tame Transformation
Method (TTM) cryptosystem which belongs to TS family. Unfortunately, it was
attacked by Goubin and Courtois [23] in 2000. It is interesting that they also
formulated a new family of cryptosystems called Triangular-Plus-Minus (TPM)
to let their attack in a more general way. Both TTM and TPM can be attacked
by the MinRank method [23]. Later, new TTM schemes were introduced in [24].
However, Ding and Schmidt [25] pointed out that they are insecure. Besides,
Tame Transformation Signature (TTS) of the TS family also experienced the
same rough process [26] [27] [28]. In a nutshell, MPKCs are always heuristic.

MPKCs now mainly consist of some basic schemes and their variants, and
are divided into five categories [4] [5] [6]: C∗ family, HFE family, UOV family,
TS family and Others. Thus it is obvious that the trapdoors of MPKCs are
limited, and they have also been greatly challenged. Therefore, it is impatient
to strengthen the security of the original systems, or to seek new basic one-way
trapdoor functions to construct multivariate cryptosystems. The latter is more
important because it can enrich the field of multivariate public key cryptography.

In this paper, we design a novel trapdoor, and then propose a new multi-
variate public key cryptosystem called TOT based on this trapdoor, which can
be used for encryption, signature and authentication. We analyze the security of
TOT, and claim that it can resist current known algebraic attacks if parameters
are properly chosen. Moreover, because our designed trapdoor has some spe-
cial properties, we can quickly compute the secret map, namely the decryption
process or the signing process, of TOT. From the aspects of both security and
efficiency, we compare TOT with other multivariate schemes including encryp-
tion and signature schemes. Then we can learn that the security level of TOT
is higher than that of HFE, HFEv and Quartz if properly choosing t, where t is
the time in the trapdoor function referred in Section 3. The computation speed
of the secret map of TOT is as fast as C∗ or Sflashv2. In addition, TOT can
generate a practical signature with a length of 128 bits like Quartz. We believe
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that our proposed TOT is a novel, secure, and fast cryptosystem, and is a better
choice among MPKCs in terms of both security and efficiency.

Organization. The rest of this paper is organized as follows. In Section 2, we
introduce some notations and concepts on the multivariate public key cryptosys-
tems. In Section 3, we design a novel one-way trapdoor function, and propose
a multivariate cryptosystem named TOT. We analyze the security of TOT by
methods of current known algebraic attacks in Section 4, and assess its security
level. In Section 5, we evaluate the performance of TOT, and present the com-
putation complexity and some practical parameters. In Section 6, we compare
TOT with other multivariate schemes including HFE, HFEv, PMI+, Sflashv2,
Quartz, UOV and Rainbow. Finally, we summarize the paper in Section 7.

2 Preliminary

2.1 Notation

Throughout this paper, we will use the following notations. Let F be a finite
field of cardinality q and characteristic p, where p is a prime number and q = pk

(k ∈ N). We take f(x) ∈ F [x] to be any irreducible polynomial of degree n
(∈ N), then define the field E = F [x]/(f(x)) as an extension of degree n of F .
Obviously E is isomorphic to Fqn , and has qn elements. We then let ϕ : E → Fn

be the standard F -linear isomorphism between E and Fn given by

ϕ(a0 + a1x+ ...+ an−1x
n−1) = (a0, a1, ..., an−1).

The subfield F of E is embedded in Fn in the standard way:

ϕ(a) = (a, 0, ..., 0), ∀a ∈ F.

Moreover, in a (bipolar) multivariate public key cryptosystem we also let
n ∈ N be the number of variables, m ∈ N be the number of equations. Note that
n may be equal to m.

The public key is given by a map P : Fn → Fm,

P (x1, ..., xn) = (p1, ..., pm),

where each pi (i ∈ N, 1 ≤ i ≤ m) is a polynomial in F [x1, ..., xn].
We build a map P : Fn → Fm, which is defined by

P (x1, ..., xn) = (p1, ..., pm),

where each pi (i ∈ N, 1 ≤ i ≤ m) is a polynomial in F [x1, ..., xn]. We will know
that P is a map of the intermediary structure in multivariate cryptosystem.

Let S(x1, ..., xn) = (x1, ..., xn) be a randomly chosen invertible affine trans-
formation from Fn to Fn, and T (y1, ..., ym) = (y1, ..., ym) be also a randomly
chosen invertible affine transformation from Fm to Fm. These affine bijections
can be represented in a basis by polynomials of total degree 1 and with coeffi-
cients of the polynomials in F .



4 Wuqiang Shen, Shaohua Tang

2.2 Some Concepts on MPKC

Multivariate public key cryptosystem can also be based on the problem of solving
any nonlinear system of multivariate polynomial equations over a finite field.
However, from the perspectives of both security and efficiency we usually choose
polynomial equations of total degree two to construct multivariate public key
schemes. MPKC schemes thus also go by the name of Multivariate Quadratic
(MQ) schemes [6].

From a structural point of view, this system of equations must be embedded
into a special trapdoor which can make it possible to solve this system efficiently
[6] [7]. Hence we can distinguish difference multivariate cryptosystems from their
basic trapdoors. Generally, a multivariate public key cryptographic system con-
sists of a trapdoor (S, P , T ) and a public key map P , where the trapdoor (S, P , T )
is embedded into the system of equations P , namely P = T ◦P ◦S(x1, ..., xn). S
and T are secret keys, and the map P may or may not be part of the secret key
depending on its precise nature. In addition, we call the map P as “the central
map”, P as “the public map”, and P−1 as “the secret map”. Obviously, we must
need the knowledge of the basic trapdoor to compute the secret map P−1, or
equivalently “inverting” the public map P .

3 The Proposed Multivariate Cryptosystem

Notations are the same as ones described in Section 2.

3.1 A Novel One-Way Trapdoor Function

We design a new one-way trapdoor function in this sub-section, which is used
to construct the new multivariate public key cryptosystem TOT.

We first define a function g over the extension field E (with cardinality qn)
by

g(X) =

d∑
i=1

(X − hi), (1)

where hi ∈ E and d = deg(g(X)).
Next, we define another function G over the filed E by

G(X) = g(X)t, (2)

where t ∈ Zqn is the time of g, and gcd(t, qn−1) = 1. If v is an inverse of t, then

t · v ≡ 1 mod (qn − 1).

Moreover, we denote the degree of G by D = deg(G(X)). The function G is our
expected one-way trapdoor function.

Obviously, for a given specific value Y ′ ∈ E, we can solve the equation
G(X) = Y ′ in unknown X through the following two steps.
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(1) We compute the Modular Exponentiation (Y ′)v mod (qn−1), and denote
the result by Y ′′. This step can be performed by the square-and-multiply method.
Note that the square-and-multiply method can be enhanced, or we can use more
efficient methods of [13] and [14] to compute the Modular Exponentiation.

(2) We solve the equation g(X) = Y ′′ in unknown X by the probabilistic
Berlekamp algorithm [29] [30] [31] [32].

The solving process of this equation G(X) = Y ′ is based on the following
observation:

G(X) = Y ′

⇒ g(X)t = Y ′

⇒ g(X)t·v = Y ′v

⇒ g(X) = Y ′v

⇒ X = g−1(Y ′v).

This observation is a well-done job. We can utilize it to establish a cryptosystem
with basic secure trapdoor. In the following sub-sections, we are going to describe
our proposed multivariate public key cryptosystem in detail.

3.2 TOT for Encryption

We let n = m, then P and P are maps from Fn to Fn. Let S and T be two
affine transformations in Fn. Moreover, let

P (x1, ..., xn) = ϕ ◦G ◦ ϕ−1(x1, ..., xn),

and
P (x1, ..., xn) = T ◦ P ◦ S(x1, ..., xn).

The TOT public key cryptosystem is based on the field F of characteristic p.
Public Key:
The public key includes the following information.

1) The field F , which contains its additive and multiplicative structure.
2) The map P , which contains p1, ..., pn satisfying

p1(x1, ..., xn), ..., pn(x1, ..., xn) ∈ F [x1, ..., xn].

Private Key:
The private key includes the following information.

1) The parameters hi, d, t and their resultant functions g and G.
2) Two invertible affine transformations S and T .

Encryption:
Given a plaintext (x′1, ..., x

′
n), we evaluate the map P with (x′1, ..., x

′
n), and

denote its result by (y′1, ..., y
′
n). That is

y′i = pi(x
′
1, ..., x

′
n), for i = 1, ..., n.
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Then the corresponding ciphertext is (y′1, ..., y
′
n).

Decryption:
Given the ciphertext (y′1, ..., y

′
n), the process of decryption includes the fol-

lowing steps.

(1) Compute (y1, ..., yn) by

(y1, ..., yn) = T−1(y′1, ..., y
′
n).

(2) Obtain Y by computing

Y = ϕ−1(y1, ..., yn).

(3) Calculate the inverse of t, namely find v such that

t · v ≡ mod(qn − 1).

Apply the resulted v to Y , and we get Ŷ by

Ŷ = Y
v
.

(4) Compute the set X̂, whose element X̂i (1 ≤ i ≤ d) is the root of the function

g for the given value Ŷ . That is

g(X̂i) = Ŷ .

Note that Steps (3) and (4) are equivalent to computing the functionG−1(Y ).

(5) For each element X̂i ∈ X̂, we compute

(x′i1, ..., x
′
in) = S−1 ◦ ϕ(X̂i).

If i = 1, then the solution (x′11, ..., x
′
1n) is our expected plaintext. Otherwise,

we need apply some techniques, such as Hash Functions and Plus Method, to
detect the expected plaintext.

3.3 TOT for Signature or Authentication

TOT can be used for signature, where the public key and the private key are the
same as Section 3.2. For a given message M = (y′1, ..., y

′
n) to be signed, the signer

first calculates Y = ϕ−1 ◦ T−1(y′1, ..., y
′
n), then computes the set X̂ like Steps

(3) and (4) of the decryption in Section 3.2. After that, the signer arbitrarily

chooses an element X in the set X̂, and generates a signature σ = (x′1, ..., x
′
n) on

the message M by computing (x′1, ..., x
′
n) = S−1 ◦ϕ(X). Finally, the verifier can

verify the signature σ by evaluating P (x′1, ..., x
′
n). If P (x′1, ..., x

′
n) = (y′1, ..., y

′
n),

then the signature σ is valid; otherwise, invalid.
Besides, TOT can also be used for authentication. The verifier encrypts a

challenge first, then asks the user being verified for the corresponding plaintext.
Therefore, the process of authentication is similar to ones in encryption and
decryption of TOT.
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4 Security Analysis

Currently, MPKC is still hard to rigorously reduce to some intractable problems
from a provable security point of view. In general, we can analyze the security
of a multivariate cryptosystem by algebraic attacks. At present, current known
algebraic attacks for MPKC are divided into two classes [33]. The first one is the
structural attack which can break some multivariate schemes according to the
particular properties on the inner structure of the cryptosystem. Another is the
direct attack that can solve a system of polynomial equations over a finite field,
which usually contains Gröbner bases method [34] [35] [36] [37], XL method [38]
[39] [40] and Zhuang-Zi method [41]. In the following sub-sections, we are going
to adopt these approaches to elaborately analyze the TOT system. We assert
that TOT is a secure multivariate cryptosystem, which can resist current known
algebraic attacks if properly used.

4.1 Exhaustive Search Attack

Usually, in order to avoid exhaustive search attack [19], the length of a message
M should be at least 64 bits. This can be easily realized by TOT.

4.2 Affine Multiple Attack

The affine multiple attack, which can attack the basic HFE algorithm, was intro-
duced by Patarin [19]. The idea is that for some polynomial G, there are always
some affine multiples A(X,Y ′) of the polynomial G(X) − Y ′. In other words,
each solution X ′ to G(X) = Y ′ is also a solution to A(X,Y ′) = 0. Unfortunately,
this case might occur in our system. However, this is not a flaw of TOT, but
it will generate a weak key of TOT. Patarin [19] claimed that the asymptotic
complexity of the affine multiple attack is O(nO(D)) for a polynomial G of degree
D. We thus can easily avoid this attack. If n ≥ 64, D ≥ 17, and G is well chosen
to contain at least two monomials in X, then the complexity of the attack is
greater than 2102. Therefore, this attack is expected to fail completely in our
system, since the degree of G in TOT is designed to be greater than 24.

4.3 Linearization Equation Attack

The linearization equation attack was introduced to destroy C∗ scheme by Patarin
[9]. However, the map G of the TOT system is not a bijection, thus this attack
is no longer applicable to ours.

4.4 Kipnis-Shamir Attack and Distillation Attack

The Kipnis-Shamir attack is a general cryptanalytic approach, which is based on
the fact that a system of n multivariate polynomials in n variables over a field F
can be represented by a single univariate polynomial over the n-extension filed
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E of F . This cryptanalytic method was used to attack both the HFE scheme
[7] and the Dragon scheme [42] [7] . Unfortunately, owing to employing the “big
field” structure which is used in the HFE scheme, the TOT system might also
be attacked by the Kipnis-Shamir method. However, from the analyses of [7]

and [43], we find that the original Kipnis-Shamir attack is in at most nO(log2
q D)

for TOT. This means that when choosing n ≥ 64, q = 2 and D ≥ 16, the
TOT scheme is broken in at least 296. Obviously, the Kipnis-Shamir attack has
a negligible effect on our scheme. Moreover, Courtois [43] presented a new ad-
vanced attack method called the distillation attack that is more efficient than
the Kipnis-Shamir attack. However, the distillation attack need n

3
2 logq D com-

putations to break our TOT system. Therefore, if we choose proper parameters,
such as n ≥ 85, q = 2 and D ≥ 400, then TOT can be broken in at least 282.
In addition, with the increase of n and D, the attack complexity will increase
accordingly. For example, for n ≥ 170, q = 2 and D ≥ 800, the attack needs at
least 2108 computations to wreck TOT. According to Section 3, we know that
the decryption (or the signing process) of the TOT is almost not affected by the
parameter D which is the degree of G(X). Thus, TOT can resist both attacks
if properly used.

4.5 Differential Cryptanalysis

Differential cryptanalysis is a general and powerful method to attack some cryp-
tographic schemes. In multivariate quadratic systems, the differential of the pub-
lic key is a affine map, and the dimension of its kernel is invariant [44]. One can
then utilize these facts to obtain some information on the secret key. The d-
ifferential attack was successfully applied to break some multivariate schemes,
such as C∗, PMI and Sflash [44] [45]. However, it cannot break the TOT system.
Reasons are elaborated as follows.

Let us consider the linear part of the differential of the public key P . We can
define the differential of P of TOT as DPk(x) = P (x+k)−P (x)−P (k)−P (0),
where x, k ∈ (F )n. It is not difficult to infer that the dimension of the expected
kernel K (in the cleartext space) of the map DPk is in O(D). Thus an attacker
has a success probability ε

qn·O(D) to find O(D) linearly independent vectors to

construct the kernel K by some probabilistic algorithm, where ε is a probabilis-
tic coefficient. Obviously, the success probability is negligible. Therefore, it is
unpractical to attack ours by the differential method.

4.6 Attacks using Gröbner Bases and XL

The public key of a multivariate scheme is a set of multivariate quadratic poly-
nomials over a finite field, so any method to solve this set of equations can attack
the multivariate scheme. For example, Gröbner bases algorithm and XL algorith-
m are two well-established and general methods. However, the XL algorithm is
essentially a Gröbner basis algorithm, and can even be regarded as a redundant
variant of the Gröbner basis algorithm F4 [46]. Some results also show that the
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new Gröbner basis algorithm is actually more powerful than the XL algorithm
[40]. Thus, we can focus on how some multivariate scheme behaves under an
attack by Gröbner bases algorithm, instead of XL algorithm [4].

For Gröbner bases algorithm, we know that computing Gröbner bases of a
random system of multivariate quadratic polynomials is simply exponential in
2n [33] [47]. Thus, from a practical point of view, when choosing n ≥ 80, it is
impossible to solve a system of n equations of degree 2 in n variables. In other
words, Gröbner bases method need to run in time at least 280 to break the TOT
system for using the parameter n ≥ 80. Obviously, this method is unpractical to
attack our algorithm so long as we properly choose parameters of TOT.

5 Performance

5.1 Computation Complexity of TOT

As we know, for two elements of F , an addition requires O(k) basic computations
and a multiplication needs O(k2) basic computations [9]. Thus, we can easily
compute the complexity of the components of TOT according to this fact. The
resultant complexities are shown in Table 1. Moreover, we need to notice that
if k is not too big, we can turn multiplication of two elements of F into a table
and store it [9]. So computing TOT algorithm will be about k2 times faster.

Table 1. The Computation Complexity of TOT

Component Complexity

Public key generation O(k2n5)
Private key generation O(k2n2)
Public map O(k2n3)
Secret map O(k3n3)

5.2 Practical Parameters for TOT

According to the security analysis in Section 4, we can give some practical im-
plementations of TOT.

(1) When utilizing TOT to encrypt a plaintext, we suggest that the worthy
parameters are q = 2, n = 160, d ≥ 6 and t ≥ 128. In this case, both P and P
are maps from F 160 to F 160.

– The public key. It consists of 160 quadratic polynomials with 160 variables.
The total number of coefficients for the public key is at least 160 × 161 ×
162/2 = 2086560 bits ≈ 254.71 KB.

– The private key. It consists of at least 7 elements in the field E of cardinality
2160, and two affine transformations over F 160. The total number of coeffi-
cients for the private key is at least 2×(160×160+160)+7×160 = 52640 bits,
or about 6.43 KB of storage.
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– The length of ciphertext: 160 bits.
– Complexity of best known attack: greater than 2105.

(2) When using TOT to sign a message, we recommend that practical pa-
rameters are q = 2, n = 128, d ≥ 6 and t ≥ 64. In this case, both P and P are
maps from F 128 to F 128.

– The public key. It consists of 128 quadratic polynomials with 128 variables.
The total number of coefficients for the public key is at least 128 × 129 ×
130/2 = 1073280 bits ≈ 131.02 KB.

– The private key. It consists of at least 7 elements in the field E of cardinality
2128, and two affine transformations over F 128. The total number of coeffi-
cients for the private key is at least 2×(128×128+128)+7×128 = 33920 bits,
or about 4.14 KB of storage.

– The length of signature: 128 bits.
– Complexity of best known attack: greater than 290.

Overall, the security of TOT should be at least 290 under our values in
accordance with the existing attack complexity. We thus claim that the best
known attack method against the TOT system will be the brute force checking
of all possible plaintexts one-by-one.

6 Comparison with Other Multivariate Schemes

Security and efficiency that are two important factors in evaluating a crypto-
graphic system. We are going to compare TOT with other multivariate schemes,
including encryption schemes and signature schemes.

In the aspect of security level, the comparison is presented in Table 2.
In the aspect of efficiency, we compare the computation complexity of TOT

with ones of HFE, HFEv, Quartz, PMI+ and Sflashv2 from the structural point
of view, as shown in Table 3. We also compare TOT with UOV and Rainbow
according to the size of public/private key, since it can determine the time to
verify the signature or to sign a document. The comparison on the size of mes-
sage, signature, and public/private key is summarized in Table 4, where Mes.,
Sig., PK, and SK stands for Message, Signature, Public Key, and Private Key,
respectively.

We notice that the efficiency comparison of MPKC is often reflected in com-
puting the secret map. That is, the computation speed of the secret map can
estimate whether a MPKC scheme is efficient or not.

6.1 Comparison with HFE and HFEv

From the structural point of view, the secret map of HFE contains inverting
two affine transformations THFE and SHFE , and inverting the central map
PHFE = ϕ◦GHFE◦ϕ−1. Namely, computing T−1HFE , G−1HFE and S−1HFE . We know
that the computation complexity of G−1HFE is O(nD2

HFE logDHFE +D3
HFE) by
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Table 2. Comparison on Security Level

Encryption Signature

TOT 2105 290

HFE [43] 267 –
PMI+ [5] [18] 283 –

Sflashv2 [13] – 280

HFEv [11] [20] – 280

Quartz [21] – 280

UOV [48] – 283.7

Rainbow [49] – 287

Table 3. Comparison on Computation

Scheme Time

TOT 2A−1 + O(log(qn − 1)3) + O(n)
HFE 2A−1 + O(n(qn − 1)2log(qn − 1) + (qn − 1)3)
HFEv T ime(HFE) + F−1

v + O(n)
Quartz T ime(HFE) + F−1

v + O(n)
PMI+ 2A−1 + O(log(qn − 1)3) + O(qr)
Sflashv2 2A−1 + O(log(qn − 1)3) + O(n)

A−1 denotes the time to invert an affine transformation A.
F−1
v denotes the time to invert the “vinegar” function Fv.

T ime(·) denotes the time to call a function “·”.

Table 4. Comparison on Size of Mes/Sig/PK/SK

Mes. Sig. PK SK Total

Unit bits bits KB KB KB

TOT 128 128 131.02 4.14 135.16
UOV [48] 224 672 99.94 87.31 187.25
Rainbow [49] 192 336 22.17 16.86 39.03

“Total” denotes the total size of public key and secret key.
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using the probabilistic Berlekamp algorithm [29] [30] [31] [32], a greater upper
bound is O(nD3

HFE) [4], where DHFE = deg(GHFE(X)). For TOT, the se-
cret map also contains T−1, G−1 and S−1. However, computing G−1(Y ) in the

TOT system is transformed into computing Ŷ ′ = Y
v

mod (qn− 1) and g−1(Ŷ ′),
namely Steps 3 and 4 in Section 3.2. The complexity of Step 3 is O(log(qn−1)3)
by using the square-and-multiply method. It can be done ten times faster than
naive square-and-multiply method [13] [14]. The complexity of Step 4 is O(n),
because the degree of g is designed as a small value. Thus the total complexi-
ty of G−1(Y ) of TOT is O(log(qn − 1)3 + n). For both complexities, since the
range of each parameter is different, it seems difficult to compare the complexi-
ty O(log(qn − 1)3 + n) with O(nD2

HFE logDHFE +D3
HFE). However, we know

that the upper bound of DHFE is O(qn − 1), thus we can think in theory that
O(nD2

HFE logDHFE + D3
HFE) is greater than O(log(qn − 1)3 + n). In other

words, the computation speed of the secret map of TOT is faster than that of
HFE, at least not slower than it.

From the security point of view, we know that DHFE plays a vital role in
HFE. In theory, the larger DHFE is, the more secure HFE is. The situation is
similar in TOT, i.e., the larger D is, the more secure TOT is. However, DHFE

cannot unlimitedly grow, otherwise, the decryption process of HFE is inefficient.
The difference between D and DHFE is that, D can expand indefinitely, while
the computation speed of the secret map of TOT may be more faster. This is a
beautiful point of TOT. All in all, comparing with HFE, TOT can easily gain a
higher security level.

For HFEv, we know that it is a combination of HFE with the idea of Oil-
Vinegar. Its efficiency and security strictly rely on the basic HFE [20] [11]. Ob-
viously, the running speed of the secret map of TOT is also faster than that of
HFEv, then TOT can also get a higher security level.

Therefore, TOT is a better choice than HFE and HFEv.

6.2 Comparison with PMI+

PMI+ is a combination of PMI with the plus method, namely, a few addition-
al polynomials are added to PMI which is an extension of C∗ with an internal
perturbation. The secret map of PMI+ is the same as that of PMI. Therefore,
the total computation workload of the secret map of PMI+ is equivalent to com-
puting the secret map of C∗ and inverting “the perturbed map”. Obviously, the
workload of Steps 1-3, 5 of TOT (in Section 3.2) is equivalent to computing the
secret map of C∗. While the workload of Step 4 of TOT is less than that of in-
verting the perturbed map of PMI+, because inverting the perturbed map needs
O(qr) basic computations to obtain tentatively a correct solution. In general,
the computations of the secret map of TOT is less than that of PMI+.

In the aspect of security, Ding [5] [18] claimed that the security level of PMI+

is 283 with given practical parameters, while the security level of TOT is greater
than 2105 in our first example.

We conclude that our scheme should be a better choice in terms of both
security and efficiency.
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6.3 Comparison with Sflashv2

Currently, Sflashv2 is still considered to be secure [14]. Sflashv2 is a combination
of C∗ with the minus method. From the above analyses in Sections 6.1 and 6.2,
we know that the running speed of the secret map of TOT is very close to that
of C∗ from a structural point of view. Therefore, we believe that the signature
generation process of TOT will take as much time as Sflashv2.

With the parameters in [13], Sflashv2 generates a signature of 259 bits, and
its security level is up to 280. However, our second example has a short signature
of 128 bits and a security level of 290. Thus, from aspects of both security and
efficiency, we believe that TOT is a better choice compared to Sflashv2.

6.4 Comparison with Quartz

Quartz is a practical HFEv− signature scheme with length of 128 bits. It was
accepted as a short digital signature by NESSIE (New European Schemes for
Signature, Integrity, and Encryption). The parameters for a Quartz scheme [21]
are q = 2, DQuartz = 129, n = 103, v = 4 and r = 3. In this case, the public
key of Quartz is a map from F 107 to F 100, and has the length of 71 KB which
is about 1.8 times less than our second practical example. This implies that our
public computation of verifying the signature will take about 1.8 times longer.
However, from the structural point of view, the computation speed of the secret
map of Quartz is obviously slower than that of HFE. In Section 6.1, we knew
that the computation speed of the secret map of TOT is faster than that of HFE.
Therefore, the computation speed of the secret map of TOT must be faster than
that of Quartz. Moreover, both TOT and Quartz can generate signatures with
the same length of 128 bits.

From the secure point of view, the security level of Quartz is 280, yet ours is
greater than 290. Thus, we conclude that our scheme should be a better choice
in terms of both security and efficiency.

6.5 Comparison with UOV

Up to now, UOV has not been broken from the structural side. A suit of practical
parameters (28, 84, 28, 56) for UOV was given in [48]. In this case, the public key
of UOV is a map from F 84 to F 28, and has a length of 8 × 28 × (85 × 86)/2 =
818720 bits ≈ 99.94 KB. Its private key consists of 28 Oil-Vinegar polynomials in
56 Vinegar variables and 28 Oil variables, and an invertible affine transformation
S : F 84 → F 84. The size of the private key is thus 8×28× (56×28+56×55/2+
56 + 28 + 1) = 715232 bits ≈ 87.31 KB, which is 21 times of ours. This implies
that the secret calculation to sign the message will take about 21 times longer
than ours. Moreover, the total size of public and private key is also larger than
ours. UOV can generate a signature of 672 bits from a message of 224 bits. The
size of signature of UOV is obviously 3 times the size of its message, and this
can be considered to be a weak point of UOV. While TOT can produce a short
signature with 128 bits, and its signature and message own the same length.



14 Wuqiang Shen, Shaohua Tang

With given practical parameters, the security level of our second example is
greater than 290, while that of UOV is 283.7.

Therefore, we still think that UOV is a better choice from both security and
efficiency.

6.6 Comparison with Rainbow

Rainbow is a multi-layer UOV scheme. A set of practical parameters GF (28)
and (18, 12, 12) for Rainbow was given in [49], which is a two-layer construction.
Therefore, its public key consists of 24 quadratic polynomials in 42 variables.
That is, the size of the public key is 8 × 24 × (43 × 44)/2 = 181632 bits ≈
22.17 KB. Its private key consists of 12 polynomials in 18 Vinegar variables and
12 Oil variables in the first layer, and 12 polynomials in 30 Vinegar variables
and 12 Oil variables in the second layer, and two invertible affine transformations
S : F 42 → F 42 and T : F 24 → F 24. The total size of the private key is thus
about 16.86 KB. Obviously, the size of the public key of Rainbow is about 6
times less than our second example, but the size of the private key of Rainbow
is roughly 4 times larger than ours. Moreover, Rainbow generates a signature of
336 bits from a message of 192 bits. The size of signature is larger than that of
message. This case is similar to UOV. Thus ours is better than Rainbow in this
aspect. Besides, both TOT and Rainbow have almost the same security level.

7 Conclusion

We design a novel one-way trapdoor function with special properties, which can
compute the secret map quickly. With the growth of t in g(X), the security level
of TOT can be enhanced, while the process of decryption or signing will not
be affected. On the contrary, if t is properly chosen, the speed of decryption or
signing can be faster. This is a good job compared to HFE, HFEv and Quartz.
In addition, because the degree d of g(X) is designed to choose a small value,
the computation speed of the secret map of TOT is as fast as C∗ and Sflashv2.
Meanwhile, TOT can withstand current known algebraic attacks as long as be-
fittingly used. We give some practical implementations of TOT with the security
level of greater than 290. Of course, one can choose more suitable parameters
and let TOT reach a higher security level according to concrete situations. It
is worth mentioning that TOT can generate a signature with the same length
of 128 bits as Quartz. In terms of both security and efficiency, we believe that
TOT will be a good choice for encryption, signature and authentication.
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