
Multi-Stage Fault Attacks on Block Ciphers

Philipp Jovanovic, Martin Kreuzer, Ilia Polian
Fakultät für Informatik und Mathematik

Universität Passau
94032 Passau, Germany

{Philipp.Jovanovic, Martin.Kreuzer, Ilia.Polian}@uni-passau.de

Abstract—This paper introduces Multi-Stage Fault Attacks,
which allow Differential Fault Analysis of block ciphers having
independent subkeys. Besides the specification of an algorithm
implementing the technique, we show concrete applications to
LED-128 and PRINCE and demonstrate that in both cases
approximately 3 to 4 fault-injections are enough to reconstruct
the full 128-bit key.

Keywords-cryptanalysis; Differential Fault Analysis; LED-
128; lightweight block cipher; Multi-Stage Fault Attack;
PRINCE;

I. INTRODUCTION

Small mobile and embedded devices, like RFID chips and
nodes of sensor networks, increasingly find their way into
our everyday life. In many cases they are utilised to process
sensitive (personal) data, for example in the form of financial
and medical information, which requires protection against
unauthorised access. The design of cryptographic primitives
that provide acceptable security and can be implemented on
devices with strictly limited resources is very challenging
and has raised significant interest in the last few years.
Numerous new algorithms have been proposed to address
those problems including lightweight block ciphers such as
PRESENT [3], PRINCE [5], and LED [7]

On the other hand, with the ubiquitous proliferation and
easy accessibility of such devices, new types of attacks,
known as side-channel analysis, examine the implementa-
tion of cryptographic primitives. Differential Fault Analysis
[2], which combines fault attacks [4] with differential crypt-
analysis [1], is particularly effective and was employed for
successful attacks on a variety of ciphers, including Trivium
[8], AES [11] and LED-64 [9]

Symmetric ciphers encrypt information using a secret key
k. Classical ciphers, such as DES or AES, incorporate a
key schedule which generates a number of subkeys from
k using certain transformations. The subkeys are used for
individual steps, or rounds, of the encryption algorithm.
Several state-of-the-art ciphers have no key schedule: their
subkeys are simply independent parts of k. For example,
LED-128 uses a 128-bit key k = k0 ‖ k1 which consists
of two 64-bit subkeys k0 and k1 that are used during
encryption. One argument for avoiding the key schedule is
the lower cost of hardware implementations. Furthermore,
several attacks utilise the dependencies between different
rounds of the algorithm introduced by the key schedule; such
dependencies are avoided when subkeys are independent.

In this paper, we propose a generic differential fault
analysis technique for ciphers with s independent subkeys.
The attack is mounted in s stages, where each stage pro-
duces a set of candidates for one subkey. The number of
fault injections per stage is variable; in general, performing
more fault injections will narrow down the set of subkey
candidates. We introduce an algorithm which minimises the
overall number of required fault injections while producing

a number of key candidates that can be analysed by brute-
force search. It can be regarded as a generalisation of the
“peeling-off” approach [6], where the last subkey is derived
and the cipher is reduced by partial decryption using that
subkey. In contrast to [6], our algorithm does not require
the definite knowledge of the last subkeys but works with a
(comparatively small) set of subkey candidates that include
the actual (correct) subkeys together with a number of wrong
guesses. The algorithm uses special threshold variables τi
to adaptively distribute the fault injections between stages
such as to keep the overall effort feasible.

We report the application of the algorithm to complete
attacks against two recent ciphers: LED-128 and PRINCE.
The attack on LED-128 is the first one based purely on
fault injections. The attack mentioned in [9] assumed the
capability of the adversary to temporarily set one of the 64-
bit subkeys to 0, in addition to applying controlled fault
injections to the hardware. The attack on PRINCE has been
developed independently and simultaneously by a different
group and published online [10]. Note that these attacks
on particular ciphers serve as illustrations of the generic
technique. We verified our algorithm by simulating 10,000
attacks, and we were able to derive key candidate spaces that
were sufficiently small for brute-force search using roughly
3 fault injections for LED-128 and between 3 and 4 fault
injections for PRINCE on average.

The work is structured as follows: Section II introduces
the Multi-Stage Fault Attack algorithm in its most general
form, tailored to attack block ciphers using independent
subkeys, i.e. block ciphers having no key schedule. Sec-
tions III and IV first recall the designs of LED and PRINCE,
respectively, then show how to cryptanalyse the ciphers
using Differential Fault Analysis, and finally give some
experimental results on the attacks. Section V concludes the
paper and presents an outlook on future work.

II. THE MULTI-STAGE FAULT ATTACK FRAMEWORK

Let F be a block cipher with block size 2n (n ∈ N). We
assume that the secret key k is written as a concatenation
of independent subkeys k = k0 ‖ k1 ‖ · · · ‖ ks−1 such
that each subkey is of size 2n. Further, we suppose that the
encryption algorithm works on 2m-bit sized parts (for m = 2
those are called nibbles) of the 2n-bit state. For the 64-bit
ciphers LED-128 and PRINCE two subkeys are used and we
have n = 6, s = 2, and m = 2. The proposed Multi-Stage
Fault Attack is a known-plaintext attack and proceeds in s
stages (one stage per subkey).

The attack starts by encrypting the known plaintext
and recording the obtained ciphertext c. Each stage i ∈
{0, 1, . . . , s− 1} consists of one or several fault injections.
The particular parameters of a fault injection (location and
time) depend on the cipher under analysis and on the
capabilities of the attacker. For example, ciphers based on

Substitution-Permutation Networks typically require fault
injection two rounds before termination for successful dif-
ferential fault analysis. Let the fault induced during the j-th
fault injection of stage i be denoted by fij , and let cij be the
ciphertext obtained by the encryption affected by this fault.
Note that cij is observable by the attacker, who is assumed to
have physical access to the hardware into which she injects
faults. However, she may or may not know which fault fij
was injected, as many physical fault-injection techniques do
not allow perfect control of the bits that flip as a result
of the disturbance. The assumptions on the fault-injection
capabilities must be formalised in a fault model.

In this work, we employ two fault models: random and
known fault model (RKF) and random and unknown fault
model (RUF). Both models assume that a fault perturbs one
nibble (2m-bit sized part) of the state of the cipher while
leaving its other (2n − 2m) bits unaffected. We represent
fij as a bit string with values 1 on the positions where the
state is flipped, i.e., the fault injection is described by an
addition (bitwise XOR) of fij to the state. Consequently,
there are at most 2n−m · (2(2m) − 1) different faults in a
particular stage (which amounts to 240 in case of LED-128
and PRINCE). The RKF model assumes that the attacker can
target a specific nibble, e.g., the very first one that includes
state bit positions 0 through 2m−1. The RUF model assumes
that the fault injection will perturb a randomly selected
nibble, and it cannot be observed which nibble was affected.
The RUF model is weaker and therefore easier to match
by practical fault-injection equipment, but it requires more
complex mathematical analysis.

We denote by Analyse(c, cij) a cipher-dependent proce-
dure that performs differential fault analysis and yields a set
Kij of candidates for the i-th part ki of the secret key. We
will introduce two instances of the procedure Analyse(c, cij)
for the ciphers LED-128 in Section III and PRINCE in
Section IV. Performing multiple fault injections during the
same stage results in multiple invocations of Analyse(c, cij)
for different cij and therefore results in different sets of
subkey candidates Kij . Since the correct subkey ki must
be contained in all Kij , it must also be contained in their
intersection Ki =

⋂
Kij , which is frequently much smaller

than the individual sets Kij . Consequently, multiple fault
injections reduce the size of the subkey candidate set. Note
that no reduction occurs if the same fault is injected multiple
times, resulting in identical cij ; in that case, the fault
injection must be repeated.

After all stages have been performed, the final candidate
set can be obtained by computing the Cartesian product
K = K0× · · ·×Ks−1, where Ki are subkey candidate sets
calculated during the individual stages. As it will become
apparent, it is possible to further reduce this set and therefore
the complexity of the subsequent brute-force search.

The Multi-Stage Fault Attack algorithm incorporates a
mechanism to balance between the available computational
power and the number of fault injections necessary in order
to successfully execute the attack. As was observed above,
more fault injections in stage i will reduce the set of subkey
candidates Ki. Let T be an estimate of time complexity
of one invocation of procedure Analyse(c, cij) (either actual
run-time in milliseconds or number of operations). We define
a sequence of threshold values τ0, . . . , τs−1 which have
the same unit as T . The value of τi roughly represents
the amount of computational power allocated to stage i;
it will be used to set an upper bound for the number of

invocations of procedure Analyse(c, cij) in stage i. In stage
0 at the beginning of the algorithm, fault injections are
continued until subkey candidate set K0 becomes so small
that T ·#K0 < τ0 holds. In stage i, subkey candidate sets
K0, . . . ,Ki−1 have been calculated already. Each subkey
combination (k0, . . . , ki−1) ∈ K0 × · · · × Ki−1 is used to
partially decrypt c and cij , and procedure Analyse is applied
to the obtained intermediate states. The worst-case number
of procedure invocations is #(K0 × · · · × Ki−1), and the
number of fault injections is set such that Ki is sufficiently
small to fulfill T ·#(K0 × · · · ×Ki) < τi.

The formal description of the attack algorithm is as
follows.

1) The Multi-Stage Fault Attack Algorithm.: The algo-
rithm iteratively computes K = K0 × · · · × Ks−1. In the
beginning, i←− 0, j ←− 0, and K ←− ∅.

(1) Let Kij ←− ∅. Inject fault fij according to the fault
model and obtain a faulty ciphertext cij .

(2) For every x ∈ K, partially decrypt c and cij and obtain
intermediate correct and faulty states vx and v′x. For
stage 0 we have K = ∅ and (vx, v

′
x) := (c, cij).

(3) Apply Analyse(vx, v′x) and obtain a key candidate set
Kij(x) depending on x.

(4) If Kij(x) 6= ∅, append this set as a new element
to Kij . Otherwise, discard x from K. If there is an
untried x ∈ K, continue with the next x in step (2).

(5) If j > 0, set Kij ←− Ki ∩Kij . This intersection is
computed pairwise as the elements of Ki and Kij are
sets.

(6) Set Ki ←− Kij . If T ·#(K ×Ki) < τi, set K ←−
K ×Ki and go to next stage (i ←− i + 1, j ←− 0),
otherwise inject an additional fault (j ←− j + 1).

(7) If i = s then stop and return K. Otherwise, start again
from step (1).

In step (6) we can leverage the knowledge which x led to
which key candidate set Kij(x) by computing {x}×Kij(x)
instead of the complete Cartesian product.

III. APPLICATION TO LED-128
We first recall the design of the LED family of lightweight

block ciphers [7] and then show how to cryptanalyse LED-
128 using a Multi-Stage Fault Attack.

A. Specification of LED
The LED family of lightweight block ciphers features a

64-bit block size and has two instances, LED-64 and LED-
128, with keysizes of 64 and 128 bit. The design of LED is
heavily inspired by AES. Its basic layout is a Substitution-
Permutation Network which is composed of the operations
AddKey (AK), AddConstants (AC), the SBox-layer Sub-
Cells (SC), which re-uses the PRESENT SBox [3], and
has a linear layer. The latter consists of the two operations
MixColumnsSerial (MCS), where the state (represented by
a 4 × 4 matrix over F16) is multiplied by a MDS matrix,
and ShiftRows (SR), which cyclically shifts the rows of the
state. One of the prominent features of LED is that it has no
key schedule. Instead, the key material is applied directly
for input-/output-whitening and each time four rounds of
encryption have been executed. In the case of LED-64, the
secret key is used as given, whereas in LED-128 the key
is decomposed into two 64-bit subkeys which are applied
alternatingly.

For more details we refer the reader to the original speci-
fication [7] of LED. Next we continue with the cryptanalysis
of LED-128 using the Multi-Stage Fault Attack algorithm.

AC SC

SR

MCS AC

SC

SR MCS AC,SC,SR

MCS,AK

r

f f’ 4f’

8f’

Bf’

2f’

r + 1

w

x

y

z

w

x

y

z

4w

8w

Bw

2w

2z

6z

9z

Bz

2y

5y

Ay

Fy

1x

6x

Ex

2x

Figure 1. Fault propagation in LED over two rounds.

B. A Multi-Stage Fault Attack on LED-128
The attack on LED-128 is based on the Differential Fault

Analysis of LED-64 [9], which employs one fault injection
and reduces the number of key candidates to 219 – 226, a
number that can be handled by exhaustive search. Applying
this attack to LED-128 would shrink the key space for the
last applied subkey k0, but considering all combinations
of up to 226 candidates for k0 and 264 possibilities for
the second subkey k1 is clearly infeasible. The Multi-Stage
Fault Attack algorithm solves this problem in two stages
i ∈ {0, 1}, one for the reconstruction of each 64-bit subkey
ki = ki,0 ‖ · · · ‖ ki,15 with nibbles ki,0, . . . , ki,15. Before
we outline the details of the attack on LED-128, we first
introduce notation.

Let w, x, y, z, u0, u1, u2, u3, vj , v′j and pj be variables
over F16 for j ∈ {0, . . . , 15}. The variables vj and v′j
represent nibbles of the correct and faulty cipher state and
the variables pj represent nibbles of the current key.

The Analyse procedure takes vj and v′j as input, uses
fault equations to analyse them and finally generates a
set of key candidates Ki for the current subkey ki. The
fault equations are obviously the central building block of
Analyse. Following the techniques of [9], we construct
generalised fault equations Ds(l), with s, l ∈ {0, . . . , 15},
as follows: First we fix a fault location l ∈ {0, . . . , 15}, i.e.
one of the 16 state nibbles, in round ri. Then we track the
fault propagation over two rounds as illustrated in Figure 1.

Finally, beginning from the end of round ri+2 and using
vj and v′j as input, we invert the LED-128 encryption steps
up to the point before the SBox is applied for the last time
in round ri + 1. The generalised fault equations Ds(l) can
be written as illustrated in Figure 2.

w = (d0)
−1 · g0((vi0

), (v
′
i0

))

w = (d4)
−1 · g1((vi3

), (v
′
i3

))

w = (d8)
−1 · g2((vi2

), (v
′
i2

))

w = (d12)
−1 · g3((vi1

), (v
′
i1

))

x = (d3)
−1 · g0((vi3

), (v
′
i3

))

x = (d7)
−1 · g1((vi2

), (v
′
i2

))

x = (d11)
−1 · g2((vi1

), (v
′
i1

))

x = (d15)
−1 · g3((vi0

), (v
′
i0

))

y = (d2)
−1 · g0((vi2

), (v
′
i2

))

y = (d6)
−1 · g1((vi1

), (v
′
i1

))

y = (d10)
−1 · g2((vi0

), (v
′
i0

))

y = (d14)
−1 · g3((vi3

), (v
′
i3

))

z = (d1)
−1 · g0((vi1

), (v
′
i1

))

z = (d5)
−1 · g1((vi0

), (v
′
i0

))

z = (d9)
−1 · g2((vi3

), (v
′
i3

))

z = (d13)
−1 · g3((vi2

), (v
′
i2

))

i0 ∈ {0, 4, 8, 12}, i1 ∈ {1, 5, 9, 13}, i2 ∈ {2, 6, 10, 12}, i3 ∈ {3, 7, 11, 15}

(d0, . . . , d15) =


(4, 2, 2, 1, 8, 6, 5, 6, B, 9, A, E, 2, B, F, 2), if l ∈ {0, 5, 10, 15}
(1, 4, 2, 2, 6, 8, 6, 5, E, B, 9, A, 2, 2, B, F), if l ∈ {1, 6, 11, 12}
(2, 1, 4, 2, 5, 6, 8, 6, A, E, B, 9, F, 2, 2, B), if l ∈ {2, 7, 8, 13}
(2, 2, 1, 4, 6, 5, 6, 8, 9, A, E, B, B, F, 2, 2), if l ∈ {3, 4, 9, 14}

Figure 2. The generalised fault equations for LED.

The functions g0, . . . , g3 correspond to the right-hand
sides of the fault equations as given in [9] and are illustrated
in the Appendix A. Note that the dependency of Ds(l) on l
is introduced by the values ds as their inverses over F16 are
multiplied to the right-hand sides of the Ds(l).

Additionally we can define the so-called generalised key
set fault equations E0(l), . . . , E3(l), see Appendix A, by
starting from four unknown state elements u0, . . . , u3 ∈ F16

in round ri + 1 and inverting the encryption steps of one
more round. This can be derived again from Figure 1. Those
equations share the variables w, x, y and z with Ds(l) and
define conditions on complete sets of key candidates, and
thus improve the filtering procedure.

By evaluating all equations Ds for all possible key nibbles
of the subkey ki and discarding nibbles that do not fulfil
the equations we effectively shrink the keyspace Ki. All
key nibbles that pass the first filtering step generate valid
assignments of the variables w, x, y and z, which are
then double-checked by the equations E0(l), . . . , E3(l). If
there is no solution for at least one of the assignments of
u0, . . . , u3 then the values assigned to w, x, y and z were
incorrect and the entire candidate set computed through the
equations Ds can be discarded. More details on the complete
filtering process can be found in [9]. Note that coefficients
for the equations Ds and Et do not depend on the same
fault locations l. This influences the time complexity when
comparing the two fault models RKF and RUF with each
other.

Finally, to run the Multi-Stage Fault Attack on LED-
128, we first produce faulty ciphertexts c′0 in stage 0, by
injecting faults in round r0 = 46. Then we apply Analyse
to the pair of ciphertexts c and c′0 which generates a set of
key candidates K0. Recall, as described in Section II, that
multiple fault injections and thus multiple calls to Analyse
might be necessary until the set K0 is smaller than the
threshold τ0. In stage 1 we inject faults in round r1 = 42 to
get faulty ciphertexts c′1. Then, for each x ∈ K0, we partially
decrypt c and c′1 by 4 rounds and apply Analyse to each
of those pairs which results in a key candidate set K1(x).
The union of the sets K1(x) forms the candidate set K1 of
the subkey k1. As in stage 0, multiple fault injections might
be necessary to shrink K1 until its size is smaller than τ1.
The final step of the attack determines the correct key by a
brute-force search on K0 ×K1.

0 5 10 15 20 25 30
Size of keyspace: 2n

50

100

150

200

250

300

1 Fault

2 Faults

0 5 10 15 20 25 30
Size of keyspace: 2n

50

100

150

200

250

300

1 Fault

2 Faults

Figure 3. Num. of candidates in stage 0 / 1 (left / right) for LED-128.

1) Complexity analysis of the attack.: Executing one run
of the Analyse method under the RKF model requires 220

evaluations of single fault equations, as each one of the
16 equations Ds depends on four key nibbles. Compared

Table I
STATISTICS FOR THE NUMBER OF CANDIDATES OF ki , i ∈ {0, 1}.

after stage 0 after stage 1

fault injections 1 2 1 2

min 217.00 1 217.00 1

max 230.00 214.00 231.00 215.00

avg 223.64 23.26 223.71 23.32

median 224.50 28.00 225.00 28.50

to that, the evaluation of the equations Et has negligible
time complexity and hence is not considered further. The
complexity for the RUF model is even higher with 224

evaluations. Under that model, the location of the fault
injection is unknown and an attacker has to try all 16
possible combinations of the values of the variables ds and
et. This results in a complexity of about T · 220 (for RKF)
respectively T · 224 (for RUF) for stage 1 where T is the
number of key candidates for k0.

C. Experimental Results
The results of the Multi-Stage Fault Attack on LED-

128 were obtained from 10,000 runs of the attack using
the RUF model. Figure 3 shows the numbers of remaining
key candidates after one and two fault injections for stage
i ∈ {0, 1}. The number of times a particular count of key
candidates appeared during our experiments is displayed on
the Y-axis. Table I shows the numbers of key candidates if 1
and 2 fault injections are performed in stage 0 and 1 of the
attack. If the attacker injects just a single fault in stage 0 she
has to execute, on average, 224 · 223.64 = 247.64 evaluations
of single fault equations in stage 1. Even in a rare best case
where stage 0 yields 217 key candidates, the complete attack
requires 241 evaluations, which is still beyond feasibility. But
as soon as we inject a second fault in stage 0, the number of
key candidates for k0 drops very rapidly to 23.26. Thus, three
fault injections are required to break LED-128 on average:
two in stage 0 and one in stage 1.

IV. APPLICATION TO PRINCE
As in the previous section we first describe the block

cipher PRINCE, as specified in [5], and then show how to
cryptanalyse it using the Multi-Stage Fault Attack algorithm
from Section II. For the rest of the paper, let � and ≫
denote a non-cyclic resp. cyclic shift of a bitstring to the
right, and let ⊕ denote addition using bitwise XOR.

A. Specification of PRINCE
PRINCE is a 64-bit block cipher with a 128-bit key.

Before an encryption (or decryption) is executed, a 64-bit
subkey k2 is derived from the user supplied 128-bit key
k0 ‖ k1 via k2 = (k0 ≫ 1) ⊕ (k0 � 63). The subkeys k0
and k2 are used for input- and output-whitening. The core
of PRINCE is a 12-round block cipher which solely uses k1
as subkey. Figure 4 gives an overview of the cipher.

x

k0 k1

RC0

R1

k1

RC1

R2

k1

RC2

R3

k1

RC3

R4

k1

RC4

R5

k1

RC5

S M’ S-1 R-1
6

k1

RC6

R-1
7

k1

RC7

R-1
8

k1

RC8

R-1
9

k1

RC9

R-1
10

k1

RC10RC11

k1 k2

y

MS

RCi k1

M-1 S-1

RCjk1

Figure 4. Layout of PRINCE.

Each round Ri and R−1j with i ∈ {1, . . . , 5} and j ∈
{6, . . . , 10} consists of a key addition, an S-layer, a linear

layer which multiplies the state (represented by a 64 bit row
vector) by a matrix, and the addition of a round constant
(see Figure 4). The particular operations are described as
follows.

1) S-Layer.: PRINCE uses the following 4-bit SBox:
x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

2) M -/M ′-Layer.: The 64-bit state is multiplied by a 64×
64 matrix M or M ′. We refer to the original specification
[5] for the exact definitions of M and M ′. It is important to
observe that M ′ is an involutive matrix and M = SR ◦M ′,
where SR is the ShiftRows operation as used in AES. Note
that the multiplication by M is not an involution anymore,
as ShiftRows is non-involutive.

3) RCi-add.: This operation adds the round constant
RCi to the state using bitwise XOR. The values of RCi

are defined in the table below.
i RCi

0 – 2 0000000000000000, 13198a2e03707344, a4093822299f31d0,
3 – 5 082efa98ec4e6c89, 452821e638d01377, be5466cf34e90c6c,
6 – 8 7ef84f78fd955cb1, 85840851f1ac43aa, c882d32f25323c54,
9 – 11 64a51195e0e3610d, d3b5a399ca0c2399, c0ac29b7c97c50dd

Those constants have a special property: For all
i ∈ {1, . . . , 10} the equality RCi ⊕ RC11−i =
c0ac29b7c97c50dd (= α) holds. Together with the fact
that M ′ is involutive, this makes it possible to perform
encryption and decryption using basically the same circuit
(or implementation) and is referred to as the α-reflection
property. For details, see the specification of PRINCE [5].

B. A Multi-Stage Fault Attack on PRINCE
The fault attack on PRINCE requires two stages, as k0

can be easily derived as soon as k2 is known. As before
we now discuss the functionality of the Analyse method.
To produce faulty ciphertexts for stage 0, we inject faults
between the application of the S-Layer in round R−18 and
the multiplication with the matrix M ′ in round R−19 . For
stage 1, we inject faults exactly one round earlier. Figure 5
shows the fault propagation of a fault in PRINCE over two
R−1 rounds.

In order to construct the fault equations used for key
candidate filtering, we start, as in the case of LED, with
the correct and faulty ciphertexts c = c0 ‖ · · · ‖ c15 and
c′ = c′0 ‖ · · · ‖ c′15 (or with the respective intermediate
states in the second stage) and work backward through the
encryption, inverting each of the steps, up to the point before
the application of the last SBox. This corresponds to the last
“matrix” in Figure 5. Let us start by fixing notation.

Let i ∈ {0, . . . , 15}, and let vi and v′i be variables
representing the i-th nibble of the correct and the faulty
ciphertext (or the i-th correct and faulty state nibble in
the case of the second stage of the attack) respectively.
Moreover, the variables pi represent key nibbles and qi round
constants. In stage 0 we substitute the nibbles of RC11 for
qi and in stage 1 the nibbles of RC10 for qi.

Let us point out a particular feature of the attack on
PRINCE: an adversary cannot reconstruct one of the secret
keys directly during stage 0 of the attack. The keys k1 and k2
are applied immediately in succession during one run of the
encryption, and thus we can only reconstruct the XOR value
k1⊕k2. This fact presents no drawback for the feasibility of
the attack. In stage 1 we will directly reconstruct candidates
for k1.

Let a = b0 ‖ b1 ‖ b2 ‖ b3 be a 4-bit value and j ∈
{0, . . . , 3}. Then we define ϕj(a) as the value equal to a

k1

RCi

SR-1 M’ S-1,
k1

RCi+1

SR-1 M’ S-1,
k1

RCi+2

r

f f ϕ(f)
0

ϕ(f)
1

ϕ(f)
2

ϕ(f)
3

r + 1

w

x

y

z

w

x

y

z

ϕ(w)
0

ϕ(w)
1

ϕ(w)
2

ϕ(w)
3

ϕ(x)
2

ϕ(x)
3

ϕ(x)
0

ϕ(x)
1

ϕ(y)
3

ϕ(y)
0

ϕ(y)
1

ϕ(y)
2

ϕ(z)
3

ϕ(z)
0

ϕ(z)
1

ϕ(z)
2

Figure 5. Fault propagation in PRINCE over two R−1 rounds.

except for the j-th bit bj which is set to 0. So, for example,
for j = 2, we get ϕ2(a) = b0 ‖ b1 ‖ 0 ‖ b3. Let w, x, y and
z be variables and let ji ∈ {0, . . . , 3} then we can describe
the fault equations Ei of PRINCE in the following way:

S(vi ⊕ pi ⊕ qi)⊕ S(v
′
i ⊕ pi ⊕ qi) =


ϕji

(w), i ∈ {0, . . . , 3}
ϕji

(x), i ∈ {4, . . . , 7}
ϕji

(y), i ∈ {8, . . . , 11}
ϕji

(z), i ∈ {12, . . . , 15}

The values of the indices ji from the variables on the
right-hand sides of the equations Ei are derived from the
multiplication of the state with the matrix M ′ (see Figure 5)
and depend on the location l of the injected fault. They
assume the following values:

(j0, . . . , j15) =


(0, 1, 2, 3, 2, 3, 0, 1, 3, 0, 1, 2, 3, 0, 1, 2), if l ∈ {0, 7, 10, 13}
(3, 0, 1, 2, 1, 2, 3, 0, 2, 3, 0, 1, 2, 3, 0, 1), if l ∈ {1, 4, 11, 14}
(2, 3, 0, 1, 0, 1, 2, 3, 1, 2, 3, 0, 1, 2, 3, 0), if l ∈ {2, 5, 8, 15}
(1, 2, 3, 0, 3, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3), if l ∈ {3, 6, 8, 12}

(∗)

A 4-bit value t is called valid with respect to pattern
ϕji if the binary representation of t has a 0 at the bit
position ji. In the following we use bit pattern matching to
construct inductively a set Si which will ultimately contain
candidates for the nibble pi of the subkey. Key candidate
filtering is done in three steps: Evaluation, Inner Filtering
and Outer Filtering, which are described next. Note that
the first two steps could be executed together, but for better
comprehensibility we describe them separately.

1) Evaluation.: Each equation Ei is evaluated for all
possible 4-bit values u of nibble candidates associated to
the variable pi. When the result of an evaluation t = Ei(u)
has been computed, the tuple (t, u) is appended to the set
Si.

2) Inner Filtering.: In this step we check for all tuples
(t, u) ∈ Si if the entry t is valid with respect to the bit
pattern ϕji . Those tuples that do not have a valid entry t are
discarded, all others are kept.

For example, we take fault equation E0 and assume that
a fault was injected in nibble l = 0. From the definition of
ji above we see that the 0-th entry of j0 is 0. Moreover, we
assume that the tuple (t, u) = (0x7, 0x3) is an element of
S0 and observe immediately that 0x7 matches the bit pattern
ϕj0 = 0 ‖ s1 ‖ s2 ‖ s3. Thus (0x7, 0x3) is a valid tuple and
0x3 a potential candidate for the nibble associated to p0.

3) Outer Filtering.: The idea in the final filtering
step is to exploit the fact that the elements of the sets
S4·m, . . . , S4·m+3 are related to each other for a fixed
m ∈ {0, . . . , 3}. This is due to the fact that the right-
hand sides of the equations E4·m, . . . , E4·m+3 are derived
from a common pre-image. This can be utilized to build
conditions for filtering candidates of the nibbles associated
to p4·m, . . . , p4·m+3. First we fix m ∈ {0, . . . , 3} and order
the tuples (t4·m+n, u4·m+n) ∈ S4·m+n lexicographically
for all n ∈ {0, . . . , 3}. Then we compute the sets P4·m+n

containing the pre-images of all the values t4·m+n. This is

done as follows. After the Inner Filtering, all values t4·m+n

match the bit pattern derived from ϕ4·m+n. But we do not
know if the j4·m+n-th bit of t4·m+n had value 0 or 1 before it
was fixed to 0. Hence we obviously have two possible values
for the pre-images of t4·m+n. One is t4·m+n itself, and the
other has a 1 at bit position j4·m+n. Then we intersect the
pre-image sets P4·m, . . . , P4·m+3 with each other and obtain
a set Gm of pre-image candidates. After that we check for
each gm ∈ Gm if, for every n ∈ {0, . . . , 3}, there is at least
one tuple in S4·m+n which has the value ϕi4·m+n(gm) in its
first component. If so, gm is a valid pre-image. When all
pre-images have been processed, all tuples are deleted from
the sets S4·m, . . . , S4·m+3, except those where the first entry
has a valid pre-image gm. This finishes the filtering stage.

Finally, after projecting the sets Si to their second com-
ponents ui, the Cartesian product over those projections is
computed to get the key candidates for k1 ⊕ k2. If the
number of candidates for k1⊕k2 is small enough, stage 0 of
the attack ends. Otherwise the procedure above is repeated
as described in the Multi-Stage Fault Attack algorithm in
Section II.

In the second stage of the attack, candidates for k1 are
computed using the previously described configurations for
the fault injections. This is repeated until the number of
candidates for k1 falls below the specified threshold value
τ1. As soon as this is the case, the candidates for k1 and
k1⊕k2 are used to derive candidates for the subkeys k2 and
k0. Finally, a brute-force search on the Cartesian product
K0 ×K1 is performed to find the actual key k0 ‖ k1.

4) Complexity analysis of the attack.: The complexity of
the Analyse method in the case of PRINCE is very low. The
computationally most expensive part is the evaluation of the
fault equations. For each of the 16 equations we have to
compute 16 evaluations, since there are 16 possible values
for the key nibbles. Altogether this results in 28 = 256
evaluations. As already mentioned in Section II, the number
of evaluations is multiplied by a constant factor when using
the RUF fault model. In the case of PRINCE, this factor has
the value 4, as there are four different bit patterns for key
candidate filtering and the attacker does know which pattern
is the correct one, due to the unknown location of the fault
injection. Therefore all four patterns ji (see (∗)) have to be
tried, which gives 210 = 1024 evaluations for one run of
Analyse. In stage 1 the Analyse method may be executed
up to T times in the worst case, where T is the number of
k1 ⊕ k2 candidates. This results in a complexity of about
28 · T or 210 · T evaluations, depending on the fault model
which has been used.

C. Experimental Results
In this section we will describe the results of the Multi-

Stage Fault Attack on PRINCE. All results were obtained
from 10,000 runs of the attack. For the computation of
the results, the weaker RUF fault model was used. We
observed that the differences in the sizes of the candidate

0 10 20 30 40 50
Size of keyspace: 2n

1000

2000

3000

4000

5000

1 Fault

2 Faults

3 Faults

4 Faults

0 10 20 30 40 50
Size of keyspace: 2n

1000

2000

3000

4000

5000

1 Fault

2 Faults

3 Faults

4 Faults

Figure 6. Num. of candidates in stage 0 / 1 (left / right) for PRINCE.

sets between the fault models RKF and RUF were effectively
non-existent. This can be explained by the observation that
in almost all cases the candidate sets are empty when a
wrong bit pattern (ji)i=0,...,15 is used for filtering. Figure 6
gives an overview (with stacked bars) on the two stages of
the attack for multiple fault injections. Table II summarizes
the results of the attack on PRINCE.

Table II
STATISTICS FOR THE NUMBER OF CANDIDATES OF k1 ⊕ k2 AND k1 .

after stage 0 after stage 1

keys / # faults 1 2 3 4 1 2 3 4
min 217.00 1 1 1 216.00 1 1 1

max 250.00 238.00 224.00 212.00 249.00 244.00 240.00 243.00

avg 230.89 211.44 24.12 21.47 230.41 211.64 24.44 21.82

median 234.50 219.50 212.50 27.00 233.50 221.50 221.00 221.00

For stage 0, we get on average 230.89 candidates when
injecting a single fault. This results in an overall complexity
of 240.89 evaluations of single fault equations for stage 1
under the RUF model. This is not feasible on common
hardware. But with a second fault injection in stage 0, the
complexity drops to 211.44, which is easily doable. Thus,
on average, we need about two fault injections in stage 0
to be able to finish stage 1. Furthermore as expected the
numbers for stage 0 do not differ significantly from those
of stage 1, except for the median, which surprisingly stays
rather constant after the first fault injection. But as we only
have to search through the generated key candidate sets, the
average of 230.41 is feasible for brute-force. Nevertheless,
note that the maximal sizes of the key candidate sets are
still quite high. Thus there might be cases where more than
one fault injection is required for stage 1. In summary, our
experiments show that on average 3 to 4 faults are required
to reconstruct the complete 128-bit key of PRINCE with a
Multi-Stage Fault Attack on common hardware.

V. CONCLUSION

State-of-the-art ciphers increasingly employ keys that
consist of independent subkeys. We introduced the generic
concept of Multi-Stage Fault Attacks which target individual
subkeys by multiple fault injections. One stage consists of
several fault injections followed by mathematical analysis
that yields a set of candidates for a subkey. We presented
an algorithm that balances the number of fault injections
allocated to different stages, in order to keep the sizes of
final candidate sets sufficiently small for brute-force search.
The generic algorithm estimates the expected effort for
each stage and decides the number of fault injections to
be performed based on user-specified threshold variables
while taking interaction between subkeys into account. We
illustrated the successful application of the general principle

on two recently introduced ciphers which we were able to
break with 3 to 4 fault injections on average.

REFERENCES

[1] E. Biham and A. Shamir, Differential Cryptanalysis of DES-like Cryp-
tosystems, In: CRYPTO 1990, LNCS, vol. 537, Springer, Heidelberg
1990, pp. 2–21.

[2] E. Biham and A. Shamir, Differential Fault Analysis of Secret Key
Cryptosystems, In: CRYPTO 1997, LNCS, vol. 1294, Springer, Hei-
delberg 1997, pp. 513–525.

[3] A. Bogdanov et al., PRESENT: An Ultra-Lightweight Block Cipher,
In: CHES 2007, LNCS, vol. 4727, Springer, Heidelberg 2007, pp. 450–
466.

[4] D. Boneh et al., On the Importance of Elimination Errors in Crypto-
graphic Computations, J. Cryptology 14 (2001), pp. 101–119.

[5] J. Borghoff et al., PRINCE – A Low-Latency Block Cipher for
Pervasive Computing Applications, In: ASIACRYPT 2012, LNCS, vol.
7658, Springer Heidelberg 2012, pp. 208–225.

[6] G. Piret and J.-J. Quisquater, A Differential Fault Attack Technique
against SPN Structures, with Application to the AES and KHAZAD,
In: CHES 2003, LNCS, vol. 2779, Springer, Heidelberg 2003, pp. 77–
88.

[7] J. Guo, T. Peyrin, A. Poschmann and M. Robshaw, The LED Block
Cipher, In: CHES 2011, LNCS, vol. 6917, Springer, Heidelberg 2011,
pp. 326–341.

[8] M. Hojsik and B. Rudolf, Differential Fault Analysis of Trivium, In:
FSE 2008, LNCS, vol. 5086, Springer, Heidelberg 2008, pp. 158–172.

[9] P. Jovanovic, M. Kreuzer and I. Polian, A Fault Attack on the
LED Block Cipher, In: COSADE 2012, LNCS, vol. 7275, Springer,
Heidelberg 2012, pp. 120–134.

[10] L. Song and L. Hu, Differential Fault Attack on the PRINCE Block
Cipher, In IACR Cryptology ePrint Archive, Report 2013/043, 2013.

[11] M. Tunstall et al., Differential Fault Analysis of the Advanced
Encryption Standard Using a Single Fault, In: WISTP 2011, LNCS,
vol. 6633, Springer, Heidelberg 2011, pp. 224–233.

APPENDIX

A. The functions g0, . . . , g3 of the LED attack
Let cj , c′j and kj be variables over F16, for j ∈ {0, . . . , 15}, where cj

and c′j represent nibbles of the correct and the faulty cipher state and kj
nibbles of the key. Furthermore let S−1 denote the inverse SBox of LED.
Then we define g0, . . . , g3 as:

g0 = S
−1

(C · (c0 + k0) + C · (c4 + k4) + D · (c8 + k8) + 4 · (c12 + c12)) +

S
−1

(C · (c′0 + k0) + C · (c′4 + k4) + D · (c′8 + k8) + 4 · (c′12 + k12))

g1 = S
−1

(3 · (c3 + k3) + 8 · (c7 + k7) + 4 · (c11 + k11) + 5 · (c15 + k15)) +

S
−1

(3 · (c′3 + k3) + 8 · (c′7 + k7) + 4 · (c′11 + k11) + 5 · (c′15 + k15))

g2 = S
−1

(7 · (c2 + k2) + 6 · (c6 + k6) + 2 · (c10 + k10) + E · (c14 + k14)) +

S
−1

(7 · (c′2 + k2) + 6 · (c′6 + k6) + 2 · (c′10 + k10) + E · (c′14 + k14))

g3 = S
−1

(D · (c1 + k1) + 9 · (c5 + k5) + 9 · (c9 + k9) + D · (c13 + k13)) +

S
−1

(D · (c′1 + k1) + 9 · (c′5 + k5) + 9 · (c′9 + k9) + D · (c′13 + k13))

B. The generalised key set fault equations E0(l),. . . ,E3(l)
of the LED attack

Let u0, . . . , u3, w, x, y and z denote variables over F16 and let S−1

be the inverse SBox of LED. The second set of LED fault equations is then
defined as

f
′
=(e0)

−1 · (S−1
(u0) + S

−1
(u0 + w))

f
′
=(e1)

−1 · (S−1
(u1) + S

−1
(u1 + x))

f
′
=(e2)

−1 · (S−1
(u2) + S

−1
(u2 + y))

f
′
=(e3)

−1 · (S−1
(u3) + S

−1
(u3 + z))

with values e0, . . . , e3, which depend on the fault location l, as written
below:

(e0, . . . , e3) =


(4, 1, 2, 2), if l ∈ {0, 1, 2, 3}
(8, 6, 5, 6), if l ∈ {4, 5, 6, 7}
(B, E, A, 9), if l ∈ {8, 9, 10, 11}
(2, 2, F, B), if l ∈ {12, 13, 14, 15}

