
A fast integer-based batch full-homomorphic

encryption scheme over finite field

Long Zhang1 and Qiuling Yue2

1School of Mathematical Sciences, Heilongjiang University, Harbin, 150080, China

lzhang@hlju.edu.cn
2School of Mathematical Sciences, Heilongjiang University, Harbin, 150080, China

yueqiuling@hotmail.com

November 19, 2013

Abstract

In view of the problems that the plaintext space is too small in the existing schemes. In this

paper, a new improved scheme is presented by improving the DGHV scheme. The plaintext

space of the improved scheme is extended from finite prime field F2 in the original scheme to finite

prime field Fp. Combine and apply the method of encryption in the batch encryption scheme

was proposed in 2013, and the plaintext space is further extended to finite fields Fq. The new

improved scheme encrypts the message by applying the modular mathematical operation and

the Chinese remainder theorem, and the security of the scheme is based on the the difficulty

of approximate greatest common divisor problem and the spare subset sum problem. The

improved scheme we got has the advantages of encrypt fast, and the size of ciphertext is small.

So compared with the original scheme, it is better for practical application.

Key words: Fully homomorphic encryption; Public key; Finite fields; Chinese Remainder The-

orem; Squash decryption circuit

1 Introduction

The ideas of fully homomorphic encryption was proposed in 1978 and has been highly concerned

by the researchers(see[1]). The homomorphic makes the scheme has a lot of applications in many

fields. Especially it has a significant impact on untrusted platform for trusted computing, So many

problems in fact can be applied fully homomorphic encryption to solve. Over the years it has been

a beautiful dream the cryptographers longing for. But little progress in their studies, until 2009

Gentry (see[2, 3]) presented the first fully homomorphic encryption scheme, and the research of fully

homomorphic encryption scheme just walked into the new era. DGHV is a classic fully homomorphic

encryption scheme following the scheme based on ideal lattice that was proposed by Gentry(see[4]).

1

The advantages of this scheme are the required mathematical tool has simple structure and is

easy to understand and computer-implemented. But now there are still many problems in fully

homomorphic encryption, where efficiency is important and these problems seriously affect its

application in practice. Therefore, how to improve the whole efficiency of the scheme is crucial.

DGHV scheme can only encrypt a single bit of message, and encryption and decryption is slow and

the size of ciphertext is too large. In this paper, According to these problems to improve and the

improved scheme can be encrypted message from the finite prime fieldFp, not the finite prime field

F2. Then improve anther scheme was proposed by Cheon et al.(see[5]), and eventually get a scheme

which plaintext space is arbitrary finite fieldFq. This expansion undoubtedly will shorten the time

of encryption and the size of ciphertext consumedly, and these advantages will be conducive to

fully homomorphic filtering scheme in practical application.

2 Preliminaries

2.1 Symbols

For a real number r, we denote by dze if dze ∈ [z, z + 1); denote by bzc if bzc ∈ (z − 1, z];

denote by bze if bze ∈ (z − 1/2, z + 1/2]; For a real number z and an integer p, the quotient of z

with respect to p is denoted by qp(z) and the remainder is denoted byrp(z) ∈ (−p/2, p/2], namely

qp(z) = bz/pe,rp(z) = z − qp(z) · p. We also denote the remainder by [z]p orrp(z), we use these

notations interchangeably throughout the paper.

2.2 DGHV scheme

DGHV scheme changes the mathematical tool fully homomorphic scheme based on from the

ideal lattice which was put forward by Gentry to integer ring. So it makes fully homomorphic

scheme more easy to understand. Dijk et al. who wanted to show that so complex problems can

also be achieved through the simple integers. The construction ideas of the scheme as same as

Gentry’s, Just using simpler tool. Therefore the whole scheme looks very concise and clear.

The way of DGHV is to construct a somewhat scheme which can achieve the finite orders of

fully homomorphic operations firstly, then converts it into the bootstrapping scheme by squashing

the decryption circuit. Finally, gets the fully homomorphic encryption scheme that we expect

using Bootstrap transformation theorem. The whole thought is relatively simple, but there is

no lack of nodus, such as how to squash the decryption circuit, and how to determine the times

the somewhat scheme can evaluate. Its security is based on mathematical calculations difficult

problems: Approximate greatest common divisor problem. More details about the security see [4].

3 Improved DGHV scheme

The improved DGHV scheme in this paper mainly aims at plaintext space in the original scheme

is too small(i.e. plaintext space only has two elements 0 and 1)to improve, and makes plaintext

2

space of the improved scheme extending to the finite prime field Fp. To encrypt a number n, if apply

DGHV scheme firstly, we should convert n into binary bits and then encrypt per-bit. It will encrypt

dlog ne times. The time of encryption determines the size of ciphertext and the time encryption

and decryption require. Thus reducing the times of encryption will improve the efficiency of fully

homomorphic encryption scheme.

3.1 Somewhat scheme

3.1.1 Parameters

γ is the bit-length of the integers in the public key;

η is the bit-length of the secret key;

ρ is the bit-length of the noise;

ε is the bit-length of the plaintext;

ξ is the bit-length of p in the finite prime field.

τ is the number of the integers in the public key;

And these parameters are not casual to set, they must satisfy the following conditions:

ρ = ω(log λ), in order to resistance the brute force attack of the noise;

η ≥ ρ ·Θ(λ log2 λ), in order to evaluate the squashed decryption circuit;

γ = ω(η2 log λ), in order to be able to defeat all kinds of the attacks based on lattice;

τ ≥ γ + ω(log λ), for using the hash leftover lemma;

ξ ≤ Θ(η log λ), to ensure the noise does not exceed the threshold so that the decryption is

correct;

ε ≤ ξ/2, for applying the improved scheme to encrypt the message.

We also use another noise parameter ρ′ = ρ + ω(log λ), a simple parameter setting is ρ = λ,

ρ′ = 2λ, η = Θ(λ2), γ = Θ(λ5), τ = γ + λ [4].

3.1.2 Concrete scheme

KeyGen(λ): Select a η-bit prime number s from (2Z+1)∩[2η−1, 2η) as the secret key. Randomly

select τ primes qi from [0, 2γ/s], ri ∈ (−2ρ, 2ρ), and compute xi = sqi + ri, with 1 ≤ i ≤ τ . Output

the public key pk = (N, x), secret key sk = s.

Encrypt(pk,m): Randomly choose a subset S ⊆ {1, 2, · · · , τ} and a integer r ∈ (−2ρ
′
, 2ρ

′
). Let

c← [m+ pr + p
∑

i∈S xi]x0 and output c.

Decrypt(sk, c): Compute m← (cmods)modp and output s.

Evaluate(pk,C, c1, · · · , cg): For a given circuit C with g input, and ciphertext c1, c2, · · · , cg,
firstly modulo 2 multiplication gate in circuit is switched to modulo x0 multiplication gate, at the

same time mode 2 addition gate in circuits is replaced by addition gate of module x0, Then input

the ciphertext to expansion of circuit, and execute all operations. Finally, output the result of the

operations.

3

3.1.3 Homomorphic verification

Note in order to decrypt correctly, it need to ensure that the values of cmods in between

(−s/2, s/2). Now we verify its homomorphic. Let c1 ← [m1 + pr1 + p
∑

i∈S xi]x0 , c2 ← [m2 + pr2 +

p
∑

i∈S′ xi]x0 , then

E(m1) + E(m2) = c1 + c2 = [m1 + pr1 + p
∑
i∈S

xi]x0 + [m2 + pr2 + p
∑
i∈S′

xi]x0

= [m1 + pr1 + p
∑
i∈S

xi +m2 + pr2 + p
∑
i∈S′

xi]x0

= [m1 +m2 + p(r1 + r2) + p
∑
i∈S′′

xi]x0 = E(m1 +m2)

E(m1)× E(m2) = c1 × c2 = [m1 + pr1 + p
∑
i∈S

xi]x0 × [m2 + pr2 + p
∑
i∈S′

xi]x0

= [(m1 + pr1 + p
∑
i∈S

xi)× (m2 + pr2 + p
∑
i∈S′

xi)]x0

= [m1 ×m2 + pA+ p
∑
i∈S′′

xi]x0 = E(m1 ×m2)

Where A is a integer.

Then consider the correctness of the decryption, and analyze the noise.

3.1.4 Correctness

The noise of above scheme is cmods, and we know c = m + p(r + r̃) + spq̃. So bc/se needs to

calculate firstly. In fact, it is equivalent to solve the integer pq̃ which is the quotientc divided by

s. Due to c/s = p(r + r̃)/s+ pq̃, in order to satisfy bc/se = p(r + r̃), need to satisfy the following

conditions firstly:

|m+ p(r + r̃)

s
| ≤ 1

2

Namely |m+ p(r + r̃)| ≤ s/2.

Furthermore c− bc/se = |m+ p(r + r̃)|, next step is to calculate c− bc/se modulo p. Because

m ≤ p/2, hence (p(r + r̃))modp = m. So we can properly recover the plaintext m.

3.1.5 Noise and the times of evaluate polynomial

Observe the noise how to change in above verification, when in addition situations the noise is

m1 +m2 + p(r1 + r2 + r̃), while in the multiplication circumstances, the noise is [m1 + p(r1 + r̃)]×
[m1 + p(r1 + r̃)].

According to the changes above, easy to know in the add operation circumstances, the noise

is in a linear growth and increases slowly, but in the multiplicative circumstances, the noise is in

quadratic growth and increases sharply. So impact on the capacity of evaluation mainly is the

4

degree of polynomials and the depth of multiply circuit. As we know, once the noise exceeds the

threshold value, it would not be able to decrypt correctly. So if want to achieve fully homomorphic

encryption scheme, it requires for reducing noise. A method of refresh the noise was presented in

Gentry’s papers, namely Recrypt algorithm, more details about Recrypt seeing [3].

After discussing the noise, and then take a look at how many times the scheme can evaluate.

According to the definition of noise, we know the noise is m1m2 + pR, where R is an integer.

Let circuit C as the circuit need to evaluate. Circuit C can be expressed as a g element d

times function f . For a given plaintext sequence m1,m2, · · · ,mg, and the corresponding ciphertext

sequence is c1, c2, · · · , cg, where ci = Encrypt (pk,mi), i = 1, 2, · · · , g. The value range of a g

element d times function f can be used to measure by an elementary symmetric polynomial.

|f(x1, x2, · · · , xg)| ≤ CdgMd ≤ gdMd

where xi ≤M .

Let xi = mi + p(ri + r̃i), then M ∼ 2ξ+ρ
′+2, s ∼ 2η, ξ ∼ (α′ − 1)ρ′ can be deduced by

M ∼ 2ξ+ρ
′+1 ∼ 2α

′(ρ′+2), where α′ is a constant.

We have

d ≤ α′(η − 4)

log gM
.

So the times of polynomial in the scheme can evaluate satisfies

d ≤ α′(η − 4)

log g + α′(ρ′ + 2)
.

3.2 Bootstrapping scheme

In order to compress we still need to introduce some other parameters.

κ = γη/ρ′, Θ = ω(κ log λ), λsub = λ, κ′ = γk′/ρ′.

KeyGen: Choose a random integer from [2η−ξ, 2η−ξ−1), and compute s = pt + 1, and ask s/2

for a prime, or re-select t. Invoke the KeyGen algorithm in above scheme to generate public key

pk = 〈x0, x1, · · · , xτ 〉, and secret key sk = s. Let xs = b2κ/se, and randomly select a Θ-dimensional

vector −→s = 〈s1, s2, · · · , sΘ〉 which the hamming weight is λsub. Then get a set S = {i : si = 1}
according to the vector ~s, and we know the number of non-zero elements is λsub. Randomly choose

integers ui from [0, 2κ + 1), where i = 1, · · · ,Θ. Make
∑

i∈S ui = xs(mod2κ+1). Let yi = ui/2
κ,

and get a vector ~y = 〈y1, · · · , yΘ〉, where

[
∑
i∈S

yi]p = [
∑
i∈S

ui/2
κ]p

= [(
∑
i∈S

ui)/2
κ]p

= [(xsmod2κ+1)/2κ]p

= [(b2κ/semod2κ+1)/2κ]p

5

= [(2κ/s)/2κ]p = [1/s]p

= (1/s)− |∆s|

Encrypt: Apply the Encrypt algorithm in above scheme to generate the ciphertext c∗ of plain-

text m. Then let zi ← [c∗ ·yi]p, where i = 1, · · · ,Θ. Each zi retains n bits accuracy: n = dlog θe+3,

and output c∗ and ~z = 〈z1, · · · , zΘ〉.
Decrypt: Input c∗, ~z and secret key ~s. Compute m← [c∗ − b

∑
i sizie]pand finally output m.

Evaluate: For a given circuit C with g inputs, and ciphertext c1, c2, · · · , cg, firstly modulo 2

multiplication gate in circuit is switched to modulo x0 multiplication gate, at the same time mode

2 addition gate in circuits is replaced by addition gate of module x0, and then input the ciphertext

into expansion of circuit. In order to keep the correctness of decryption, it need to extract the main

ciphertext c∗ from ciphertext c before operation. Then refresh the main ciphertext c∗ to get c∗
′
,

and input it to the operation gate. Output c∗
′′
, and c′ = (c∗′′, z′′) is extended by it. This continues

until the end of the operations, and the final result will be outputted.

To achieve better results of reducing the complexity of decryption, According to [4], the de-

cryption circuit is divided into three steps.

1.Compute ai =
∑
sizi,

2.Generate m + 1 rational numbers {wj}mj=1 according to λsub rational numbers {ai}Θi=1, and

satisfies
∑
wj =

∑
ai(modp).

3.Compute and output c∗ −
∑
wi.

Now analyze the times of polynomials in above three steps.

Step 1. The times of polynomial required is 2;

Step 2. The times of polynomial required is λsub;

Step 3. The times of
∑
wj required is 32 log2 λ. Take λsub = λ, then the times of the decryption

polynomial required approximately is 2λsub · 32 log2 λ = 64λ log2 λ, and the times of corresponding

expansion decryption circuit required approximately is 128λ log2 λ. Since log g is very small relative

to η, it can be neglected. If want the decryption circuit can be evaluated ,it must satisfy

128λ log2 λ ≤ η − 4

ρ′ + 2
.

Let η = ρ′ · 128λ log2 λ, and the times of polynomial the scheme can evaluate is 128λ log2 λ ≤
η − 4/ρ′ + 2. At the same time the decryption circuit belongs to the permission circuits, therefore

the above scheme is a bootstrapping scheme. According the bootstrap transformation theorem to

guarantee that the fully homomorphic scheme can be converted by a bootstrapping scheme. Thus

we get a fully homomorphic encryption scheme whose plaintext space is the finite prime field FP .

4 Introduce [5]

Coron et al. proposed [5] in 2013, and it got a batch fully homomorphic scheme with Chinese

remainder theorem. Its main idea is to select l relatively prime integers p0, p1, · · · , pl−1 and gets

6

the ciphertext c← q ·Πl−1
i=0pi +CRT (2r0 +m0, · · · , 2rl−1 +ml−1) through encrypting the plaintext

m0,m1, · · · ,ml−1.

Hence a plaintext vector ~m = 〈m0,m1, · · · ,ml−1〉 can be encrypted a ordinary ciphertext:

c = q[
l−1∑
i=0

mi · x′i + 2r + 2
∑
i∈S

xi]x0 .

where xi satisfies ximodpj = ri,j , and the additional public key satisfies x′imodpj = δi,j + 2r′i,j ;

where δi,j is Kronecker function. So these can guarantee [cmodpj]2 = mj . The following is the

scheme.

4.1 Parameters

ρ ≥ 2λ, for resisting brute-force attack against noise;

η ≥ α′ + ρ′ + 1 + log2(l), keep the correctness of decryption;

η ≥ ρ ·Θ(λ log2 λ), in order to evaluate the squashed decryption circuit;

γ = ω(η2 log λ), in order to be able to defeat all kinds attack method based on lattice;

ρ′ ≥ ρ+ λ and α′ ≥ α+ λ, to keep the semantic security;

ατ ≤ γ + λ and τ ≤ l(ρ′ + 2) + λ, to ensure the noise does not exceed the threshold value so

that the decryption is correct;

ε ≤ ξ/2, for applying the hash leftover lemma.

The parameter setting is ρ = 2λ, ρ′ = 3λ, η = Θ(λ2), α = Θ(λ2), τ = Θ(λ3), α′ = Θ(λ2),

l = Θ(λ2), γ = Θ(λ5) [5].

4.2 Somewhat scheme

KeyGen(λ): Select l η-bit prime numbers p0, p1, · · · , pl−1 and let π = p0p1 · · · pl−1, and x0 =

q0π, where q0 ← [0, 2γ/π]. According to the following method to generate xi, x
′
i and Πi:

1 ≤ i ≤ τ , ximodpj = 2ri,j ,

1 ≤ i ≤ τ , x′imodpj = δi,j + 2r′i,j ,

1 ≤ i ≤ τ , Πimodpj = 2$i,j + δi,j · 2ρ
′+1,

where r′i,j , $i,j ← Z ∩ (−2ρ, 2ρ), ri,j ← Z ∩ (−2ρ
′−1, 2ρ

′−1).

Finally, output the public key pk = 〈x0, (xi)0≤i≤τ , (x
′
i)0≤i≤l−1, (Πi)0≤i≤l−1〉, and the secret key

sk = (pj)0≤j≤l−1.

Encrypt(pk,m): Randomly choose vectors ~b = (bi)0≤i≤τ ∈ (−2α, 2α)τ and ~b′ = (b′i)0≤i≤τ ∈
(−2α

′
, 2α

′
)l. Output

c = [
l−1∑
i=0

mi · x′i +
l−1∑
i=0

b′i ·Πi +
τ∑
i=1

bi · xi]x0 .

.

Decrypt(sk, c): Compute mj ← (cmodpj)mod2 and output ~m = (m0,m1, · · · , ml−1).

7

4.3 Bootstrapping scheme

Using the same compression method as [4].

KeyGen: Invoke the KeyGen algorithm in above scheme to generate public key pk∗, and secret

key sk∗ = (p0, p1, · · · , pl−1). Randomly select a θ-dimensional vector −→sj = 〈sj,0, sj,1, · · · , sj,θ−1〉
and Θ integers ui from [0, 2κ + 1), where i = 1, · · · ,Θ, such that

∑Θ−1
i=0 sj,iui = xpj (mod2κ+1).

Let yi = ui/2
κ, and get a vector −→y = 〈y1, · · · , yΘ〉. We have 1/pj =

∑Θ−1
i=0 sj,iyi + εjmod2, where

|εj | < 2−κ and output pk = (pk∗, ~y), sk = ~s.

Encrypt: Apply the Encrypt algorithm in above scheme to generate the ciphertext c∗ of

plaintext m. Then let zi ← [c∗ · yi]2, where i = 1, · · · ,Θ. Each zi retains n bits accuracy:

n = dlog θ + 1e+ 3. Define ~z = (zi)i=0,··· ,Θ−1 and output c = (c∗, ~z).

Decrypt: Compute mj ← [b
∑Θ−1

i=0 sj,izie]2 ⊕ (cmod2)and finally output ~m.

There is no longer the duplicate explanation for the correctness safety of the scheme, more

details see [5].

5 Finite field scheme

According to finite field theory, the arbitrary finite field can be expressed as a prime field n

times extension field. The thought in section 3 is mainly to improve [5]. Finally we will get a fully

homomorphic scheme whose plaintext space is the finite field Fq, the concrete scheme is following:

ρ ≥ 2λ, for resisting brute-force attack against noise;

η ≥ α′ + ρ′ + 1 + log2(l), keep the correctness of decryption;

η ≥ ρ ·Θ(λ log2 λ), in order to evaluate the squashed decryption circuit;

γ = ω(η2 log λ), in order to be able to defeat all kinds attack method based on lattice;

ρ′ ≥ ρ+ λ and α′ ≥ α+ λ, to keep the semantic security;

ατ ≤ γ + λ and τ ≤ l(ρ′ + 2) + λ, to ensure the noise does not exceed the threshold value so

that the decryption is correct;

ε ≤ ξ/2, for applying the hash leftover lemma;

ξ ≤ Θ(η log λ), to also ensure the noise does not exceed the threshold value so that the decryp-

tion is correct;

ε ≤ ξ/2, for applying the improved scheme.

The parameter setting is ρ = 2λ, ρ′ = 3λ, η = Θ(λ2), α = Θ(λ2), τ = Θ(λ3), α′ = Θ(λ2),

l = Θ(λ2), γ = Θ(λ5) [5].

5.1 Somewhat scheme

KeyGen(λ): Select l η-bit prime numbers p0, p1, · · · , pl−1 and let π = p0p1 · · · pl−1, and x0 =

q0π, where q0 ← [0, 2γ/π]. According to the following method to generate xi, x
′
i and Πi:

1 ≤ i ≤ τ , ximodpj = pri,j ,

1 ≤ i ≤ τ , x′imodpj = δi,j + pr′i,j ,

8

1 ≤ i ≤ τ , Πimodpj = p$i,j + δi,j · 2ρ
′+1,

where r′i,j , $i,j ← Z ∩ (−2ρ, 2ρ), ri,j ← Z ∩ (−2ρ
′−1, 2ρ

′−1).

Finally, output the public key pk = 〈x0, (xi)0≤i≤τ , (x
′
i)0≤i≤l−1, (Πi)0≤i≤l−1〉, and the secret key

sk = (pj)0≤j≤l−1.

Encrypt(pk,m): Randomly choose a vector ~b = (bi)0≤i≤τ ∈ (−2α, 2α)τ and the other vector

~b′ = (b′i)0≤i≤τ ∈ (−2α
′
, 2α

′
)l. Output

c = [

l−1∑
i=0

mi · x′i +

l−1∑
i=0

b′i ·Πi +

τ∑
i=1

bi · xi]x0 .

.

Decrypt(sk, c): Compute mj ← (cmodpj)modp and output ~m = (m0,m1, · · · , ml−1).

5.2 Bootstrapping scheme

Using the similar squash method as [4].

KeyGen: Choose a prime number t. Calculate s = pt+ 1 and it satisfies s/2 is still a prime, or

reselect t. Invoke the KeyGen algorithm in above scheme to generate public key pk∗, and secret

key sk∗ = (p0, p1, · · · , pl−1). Randomly select a θ-dimensional vector −→sj = 〈sj,0, sj,1, · · · , sj,θ−1〉
and Θ integers ui from [0, 2κ + 1), where i = 1, · · · ,Θ. Make

∑Θ−1
i=0 sj,iui = xpj (mod2κ+1). Let

yi = ui/2
κ, and get a vector −→y = 〈y1, · · · , yΘ〉. We have 1/pj =

∑Θ−1
i=0 sj,iyi + εjmodp, where

|εj | < 2−κ and output pk = (pk∗, ~y), sk = ~s.

Encrypt: Apply the Encrypt algorithm in above scheme to generate the ciphertext c∗ of

plaintext m. Then let zi ← [c∗ · yi]p, where i = 1, · · · ,Θ. Each zi retains n bits accuracy:

n = dlog θ + 1e+ 3. Define ~z = (zi)i=0,··· ,Θ−1 and output c = (c∗, ~z).

Decrypt: Compute mj ← (c− b
∑Θ−1

i=0 sj,iziemodsj)modp, and finally output ~m.

6 Comparison and analysis

In this paper, the encryption algorithm is similar to [4], but due to the expansion of plaintext

space, the running time of encryption and the size of ciphertext are varied considerably.

Now there is a toy instance, it just want to illustrate how concise and fast the improved scheme,

so it do not take account of security.

The plaintext is ”We are in China”.

Which corresponds to the set of integers Z26 is

220400170408130207081300,

which converts into binary number is

10100100001111010001001110100011100.

Apply different schemes to encrypt the message, we can get the Table 1 below.

The data in above table is simulated on a desktop computer(Intel Core i3-2120 at 3.30GHz,

2.0GB RAM)

9

Table 1: The comparison among these scheme

scheme size of ciphertext time of encryption time of decryption

DGHV 11445 0.19s 0.16s

Fp = F21192287 1336 0.022s 0.018s

Fq = F211922874 336 0.019s 0.015s

According to the above comparison of the data in Table 1, the size of ciphertext has reduced

in the improved scheme drastically, and the time of encryption is less than before. The security

parameters for this example is 5, and certainly the security parameters will be much larger than

5 in practical applications. This makes the size of public key and secret key larger, so the size of

ciphertext and the computational complexity will become very large. At that time, the advantages

of improved scheme will be more obvious.

7 Summary

For researching and improving the DGHV scheme, a different kind of improved ideas is proposed.

Integrate the ideas in [5], Then the plaintext space extended to a wider range: arbitrary finite field.

The difficult problems based on in the new improved scheme are as the same as the original DGHV

scheme. The selection of parameter is also in accordance with the requirements of the original

scheme. So the safety of the improvement scheme and the security of DGHV scheme are the same.

Though the security of the proposed improvement is as the same as the the original scheme, the

speed of encryption is greatly faster and dramatically reduces the size of the ciphertext. These

advantages are more obvious in the situation that the message is very long.

Although the homomorphic encryption was proposed in earlier time, the progress is little. There

are many problems still to be solved, such as how to reduce the size of secret key, or how to shorten

the size of ciphertext and at the same time ensure the security and so many problems. It still

remains to be further research.

References

[1] Rivest R L, Adleman L, Dertouzos M L. On data banks and privacy homomorphisms[J]. Foun-

dations of secure computation, 1978, 32(4): 169-178.

[2] Gentry C. Fully Homomorphic Encryption Using Ideal Lattices[A]. ACM STOC[C] 2009: 169-

178.

[3] Gentry C. A fully homomorphic encryption scheme[D]. Stanford University, 2009.

[4] Van Dijk M, Gentry C, Halevi S, et al. Fully homomorphic encryption over the inte-

gers[A].Advances in CryptologyCEUROCRYPT 2010. Springer Berlin Heidelberg, 2010: 24-43.

10

[5] Cheon J H, Coron J S, Kim J, et al. Batch fully homomorphic encryption over the inte-

gers[A].Advances in CryptologyCEUROCRYPT 2013. Springer Berlin Heidelberg, 2013: 315-

335.

11

