
Distributed Key Generation for Secure

Encrypted Deduplication

Yitao Duan

NetEase Youdao
Beijing, China

duan@rd.netease.com

Abstract. Large-scale storage systems often attempt to achieve two
seemingly conflicting goals: (1) the systems need to reduce the copies
of redundant data to save space, a process called deduplication; and (2)
users demand encryption of their data to ensure privacy. Conventional
encryption makes deduplication on ciphertexts ineffective, as it destroys
data redundancy. A line of work, originated from Convergent Encryption
[28], and evolved into Message Locked Encryption [12], strives to solve
this problem. The latest work, DupLESS [11], proposes a server-aided
architecture that provides the strongest privacy. The DupLESS architec-
ture relies on a key server to help the clients generate encryption keys
that result in convergent ciphertexts. In this paper, we first provide a
rigorous proof of security, in the random oracle model, for the DupLESS
architecture which is lacking in the original paper. Our proof shows that
using additional secret, other than the data itself, for generating encryp-
tion keys achieves the best possible security under current deduplication
paradigm. We then introduce a distributed protocol that eliminates the
need for a key server and allows less managed systems such as P2P sys-
tems to enjoy the high security level. Implementation and evaluation
show that the scheme is both robust and practical.

1 Introduction

Deduplication is a very important technique that many storage systems use to
reduce cost. It exploits the redundancy in data and avoids having to store identi-
cal data multiple times. It is reported that effective deduplication can achieve up
to 50% or even 90% saving on disk space and bandwidth [33, 18, 28, 22]. Dedu-
plication has seen wide-spread use and been built into many production cloud
storage systems such as Dropbox [3], EMC [38], etc., as well many Peer-to-Peer
(P2P) systems such as [56, 57, 5, 6]. Deduplication, however, comes in direct con-
flict with another crucial goal of storage systems: data privacy which is provided
via encryption. Deduplication exploits the redundancy that exists in naturally
generated data (e.g., images, documents) and by nature leaks (to the server) the
equality information among data chunks. Conventional encryption regards this
as a serious leakage and destroys the redundancy, making deduplication ineffec-
tive. Convergent Encryption (CE) [28] was proposed as a workaround. With CE,

a piece of data is encrypted with a key derived deterministically from its content.
This guarantees a convergence property: the same chunk always encrypts to the
same ciphertext. Although lacking a rigorous theoretical treatment on its secu-
rity, CE, or its variants, has been deployed in many research [13, 7], open-source
and commercial systems such as Freenet [5], GNUnet [6], flud [4], Ciphertite [2],
Bitcasa [1], and [55].

The protection CE provides, however, is too weak. The content-based key
generation process allows anyone who has access to the data to derive the key
and perform encryption. This makes it vulnerable to off-line brute-force dictio-
nary attack. Subsequent works result in a few variants but do not eradicate the
vulnerability. Very recently, a USENIX Security ’13 paper introduced the Du-
pLESS [11] approach that includes an additional secret in the encryption key
generation process. This disables dictionary attacks. To ensure the convergence
property, this secret is identical for all users and provided via a key server (KS)
in DupLESS. As we will show in this paper, DupLESS provides the best possible
security for encrypted deduplication. However, its reliance on a dedicated key
server makes it difficult to deploy in a less managed setting such as P2P systems.

Our work originated independently of, and prior to the publication of, [11].
1 We took a similar approach as we also include a global secret in the key
generation. However, unlike [11], our scheme is distributed and does not need
the key server. We also provide a rigorous security analysis which is lacking in
[11]. Specifically, our contributions include

– A new notion of security, denoted D-IND$ for deterministic indistinguisha-
bility from random strings, with proof that it is strictly stronger than all
existing relevant notions.

– A rigorous proof that DupLESS architecture is D-IND$-CPA secure in the
random oracle model.

– A distributed architecture for encrypted deduplication, achieving D-IND$-
CPA security. The scheme is robust against the collusion between the server
and up to a threshold number of users.

Our scheme features simplified and scalable key management: each party in-
volved only needs to maintain a key of constant length, independent of the
number of users or the number of data blocks. It facilitates efficient sharing:
if desired, users within a group can freely share their data without having to
acquire additional keys. This is not possible with DupLESS. We also make con-
nections to research in statistical database security and point out possible re-
search directions that could measure the actual privacy implication of even the
best encrypted deduplication. We believe this is a crucial step towards a holistic
understanding of privacy issues caused by deduplication.

We have implemented our protocol and evaluated its performance. Our tests
show that the scheme is practical for many real-world applications. For example,
at a a quite strong robustness level, our protocol can retain 55% to 90% of
the original system upload throughput, depending on the configurations, while
achieving 35% space saving.

1 We became aware of the work of [11] after the USENIX Security ’13 conference.

2

2 Related Work

Convergent encryption [28] was the first popular solution to encrypted deduplica-
tion. The scheme is very simple: data is encrypted using a symmetric encryption
scheme with a key derived deterministically (e.g., via a hash function) from its
content. It has been deployed in many systems [13, 7, 5, 6, 4, 2, 1, 55].

Theoretical analysis of encrypted deduplication was then conducted in the
context of deterministic encryption. [8] defines a semantic-security style notion
of security, denoted PRIV security, for a deterministic public-key encryption
scheme (D-PKE) and gives constructions in the random oracle model. Two
follow-up works [17, 10] provided definitional equivalences and constructions
without random oracles. This line of work was recently extended to the sym-
metric encryption setting by the Message-Locked Encryption (MLE) framework
[12] where the key used for encryption and decryption is itself derived from the
message. CE is analyzed under this framework in [12]. [12] also introduces a few
new security notions that are similar to the PRIV security in [8].

The Problem with Public Encryption. It is interesting to notice that, al-
though differing in their key distribution configurations (MLEs are symmetric
[12] while D-PKEs are asymmetric or public-key [8, 17, 10]), the encryption pro-
cesses in both MLE and D-PKE are public, meaning that anyone having access
to the data can perform the encryption and produce valid ciphertext. The reason
is probably due to the need for each player to produce converging ciphertexts
independently. This design has very serious security consequences:

1. The schemes can only protect unpredictable messages. Brute-force attack
can recover messages with low entropy. In reality, however, data is often
predictable [11].

2. Even if the message source has high entropy, the adversary can easily obtain
one bit of information: whether a ciphertext is the encryption of a message
from a small set. This can be a serious leakage. For example, one could
imagine the service provider’s dilemma when it is approached by RIAA or
MPAA with a list of files and demanding that they refuse to host any content
matching those files, or identify the users with matching data.

A very recent work, DupLESS [11], attempts to solve the problem. It introduces
another secret key, denoted SK, held by a key server. Data is encrypted with a
key that is derived from both the data and SK. Encryption is thus not public
anymore. We show later that this achieves the strongest possible security for
deduplication encryption.

3 Preliminaries

Deduplication can be either at file level or block level. Our scheme is oblivious
to this differentiation and in this paper we refer to the units of deduplication
(file or block) as chunks. Our scheme can be applied to the scenario either with

3

or without a storage service provider (denoted the server). In the latter case
the data can be scattered in a P2P fashion among the users. Our system can
tolerate up to t corrupted users where t is a system parameter. Corrupted users
are allowed to collude with each other and with the server if there is one.

We use Z to denote the set of integers. For a positive integer N , let ZN =
{0, 1, . . . , N − 1} and Z

∗
N = {i ∈ Z : 1 ≤ i ≤ N − 1 and gcd(i, N) = 1}. For

a vector v we write v[i] to denote its ith element. The notation s
$
←− S means

that an element is uniformly randomly selected from the set S and assigned
to the variable s. We use boldface, e.g., SE, to denote an encryption scheme
and, without causing confusion, we also use the same notation for its encryption
algorithm. That is, SEK(M) means the encryption of message M with key K
by the algorithm SE. Since we focus on the privacy of encryption in this paper,
we ignore decryption algorithms whenever convenient. They should be assumed
to have the standard properties such as efficient recovery of plaintext given the
ciphertext and the key.

4 A New Notion of Security

Research in cryptography has established the importance of a proper notion of
security. Over the years many ad hoc and syntactic notions that target at certain
properties that “seem” right have been proven inadequate. In 1982 Goldwasser
and Micali proposed the notion of semantic security [41]. A cryptosystem is se-
mantically secure if any probabilistic, polynomial-time adversary that is given
the ciphertext of a certain message, and the message’s length, cannot determine
any partial information on the message with probability non-negligibly higher
than all other probabilistic, polynomial-time algorithm that only have access
to the message length (but not the ciphertext) [41]. Later Goldwasser and Mi-
cali proved that semantic security is equivalent to ciphertext indistinguishability
(IND) [42] which is easier to work with. Semantic security or IND is a strong
property and can be combined with different attack scenarios, such as chosen
plaintext attacks (CPA), chosen ciphertext attack (CCA1), and adaptive chosen
ciphertext attack (CCA2), to form various security levels.

Clearly any MLE or D-PKE cannot be semantically secure, as they leak
message equality. We introduce a new notion of security, denoted D-IND$ for
deterministic indistinguishability from random strings, which we show to be the
strongest among all relevant notions [8, 51, 10, 12]. We then proceed to prove
that this is the best achievable security under current deduplication paradigm:
the scheme does not allow a computationally bounded adversary to extract more
information about user data besides what is necessary for deduplication.

4.1 D-IND$

The new security notion is an extension to a similar notion for randomized sym-
metric encryption which we state in the following. The notion is called indistin-
guishability from random strings (denoted IND$ in this paper). It is introduced

4

in [52] and captures an adversarys inability to distinguish a ciphertext from a
random string of the same length. This is a particularly strong notion and can be
shown to imply more standard definitions such as find-then-guess, left-or-right,
and semantic security etc [52, 9]. We focus on its CPA version. Others such as
CCA and adaptive versions follow standard extensions.

IND$. For a one-time symmetric encryption scheme SE with key space {0, 1}k,
an adversary A’s IND$-CPA advantage is defined with respect to the following
game: a random bit b is drawn. Then adversary A is run. A can make multiple
queries to an encryption oracle Enc. On each query M , if b = 1, Enc will first

choose a random key K
$
←− {0, 1}k and return C ← SEK(M). If b = 0, Enc

simply returns C
$
←− {0, 1}clSE(k,|M|) where clSE(k, |M |) is the ciphertext length

if M is encrypted by SE with security parameter k. A should output a bit b′ at
the end of the game. The advantage of A is defined as

AdvIND$−CPA
SE (A) = Pr[b′ = b]− 1/2

D-IND$. The definition of deterministic indistinguishability from random strings
under CPA, denoted D-IND$-CPA, is identical to that of IND$-CPA except that
the adversary is restricted to querying the encryption oracle with only distinct
messages. This restriction is inherit with deterministic encryption as determin-
istic encryption inevitably leaks message equality. In [8, 10] this is formalized as
requiring the two message sequences submitted to the encryption oracle to have
the same quality pattern. Distinct message sequence is easier to work with and
it has been shown to be equivalent to the identical equality pattern restriction
[51]. Intuitively, with a deterministic encryption, an adversary gains nothing by
repeatedly querying the oracle with the same message.

It is worth pointing out that, similar to its counterpart for standard, ran-
domized symmetric encryption, IND$, the definition of D-IND$ does not place
any restriction on the message entropy. This is in contrast to the notions for
D-PKE [8, 10] and MLE [12] which only protects unpredictable messages.

4.2 Relating to Other Notions

Other notions of security for D-PKE or MLE, which are relevant to encrypted
deduplication, have been introduced in [8, 10] and [12]. Among them, PRV$-CDA
is the strongest and implies all others, including the adaptive versions [12]. Now
we show that D-IND$-CPA is strictly stronger than PRV$-CDA. PRV$-CDA is
introduced in [12] in the context of MLE whose encryption is public while in the
D-IND$-CPA model it is often not the case, so we need to adapt PRV$-CDA in
order for the two to be comparable. The adaption is very simple: substituting
the encryption in MLE with an encryption oracle suffices to allow the adversary
to work in both models without affecting any information it obtains.

Following the standard approach for analyzing relations among security no-
tions [9], we show that any scheme that is D-IND$-CPA secure is also PRV$-CDA
secure but the converse is not true. To prove this, we show that, any adversary’s

5

PRV$-CDA advantage is bounded in someway by some adversary’s D-IND$-
CPA advantage. The existence of a counterexample, i.e., there exists a scheme
that is PRV$-CDA secure but is not D-IND$-CPA secure, is sufficient to prove
the other direction.

PRV$-CDA Security. The essence of PRV$-CDA security is summarized as
follows. For detailed discussion please see [12]. Ignoring the tagging algorithm,
an MLE scheme Π = (P,K,E,D) consists of the following polynomial time
algorithms: public parameter generation P, key generation K, encryption E
and decryption D. A source M is a polynomial time algorithm that on input
1k generates (M, z) where M ∈ ({0, 1}∗)q is a vector of q messages with each
M[i] ∈ {0, 1}∗ and z ∈ {0, 1}∗. There is the usual restriction for MLE adversaries
that the entries of M are all distinct. Unless otherwise stated, all operations on
vectors are element-wise. The PRV$-CDA advantage of adversary A is defined
as

AdvPRV$−CDA
Π (A) =

Pr

P
$
←− P(1k); b

$
←− {0, 1};

(M, z)
$
←−M;C1

$
←− EP (KP (M),M);

C0[i]
$
←− {0, 1}|C1[i]|, ∀i ∈ {1, . . . , q};

b′ ← A(P,Cb, z) : b = b′

− 1/2

Theorem 1 (D-IND$-CPA ⇒ PRV$-CDA). Let Π = (P,K,E,D) be an
MLE scheme. For any PRV$-CDA adversary A against Π, there exists a D-
IND$-CPA adversary, B, also against Π, such that

AdvPRV$−CDA
Π (A) ≤ AdvD−IND$−CPA

Π (B)

Proof. B is constructed as follows. It runs P
$
←− P(1k) and (M, z)

$
←− M(1k)

to get P and (M, z). It then feeds M to its oracle. Let C be what is returned
by the oracle. B runs A with (C, z). Note that since A is restricted to asking
only distinct queries, B does not need to do anything special with the queries
or returned ciphertexts. When A terminates and returns a bit b′, B outputs the
same bit.

During the process, C is either the encryption of M or some random bit
strings with the same lengths. A get identical information as if it is attacking Π
in a PRV$-CDA game. The advantage (success probability) of B is at least that
of A.

Theorem 2 (PRV$-CDA ; D-IND$-CPA). There
exists a scheme that is PRV$-CDA secure but not D-IND$-CPA secure.

This is trivial to show as CE and all MLEs that are proven to be PRV$-CDA
secure in [12] are not D-IND$-CPA secure: their public encryption nature allows
the adversary to distinguish encryptions ofM from random strings by encrypting
the messages and comparing C with the resulting ciphertexts.

6

5 Security Proof of EwS

Fig. 1. Encryption with Signature

We now analyze the security of DupLESS architecture. Conceptually, the
encryption process of DupLESS can be depicted by the schematic in figure 1. H
and G are two hash function, Sign is a signing algorithm generating signatures
on input messages using private key SK. In DupLESS, SK is held by the key
server. SE is an one-time IND$-CPA symmetric encryption scheme. The scheme
generates the randomness for SE with the hash of the signature on the message.
2 We denote the scheme Encrypt-with-Signature (EwS).

The security of the EwS is based on the security of its two subcomponents:
IND$-CPA security of SE and existential non-forgeability of Sign. We cast the
latter in an adaptive chosen message attack (CMA) setting and define the ad-
vantage of an adversary to be the maximum probability that the adversary
successfully forges a signature. To make it concrete, we provide the proof for an
instantiation of the scheme using deterministic RSA-based signature. This is also
the choice of DupLESS [11]. The proof framework is actually more general and
can work through as long as the signature scheme has a simulator in the random
oracle model that generates valid signatures on given messages by manipulating
hash oracle(s).

Let p and q are two random primes of equal length (e.g., 512 bits) with
p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ themselves are primes. 3 The RSA
modulus is N = pq. Let the RSA public exponent be a prime e > N . 4 The
public key is PK = (N, e). The private key is (d,N) where ed ≡ 1 mod φ(N).
H is assumed to be H : {0, 1}∗ → Z

∗
N . The standard RSA signature on message

M is y ∈ Z
∗
N such that H(M) = ye.

2 DupLESS uses blind signature to prevent the key server from learning any informa-
tion about the data (e.g., its hash H(M)). Given the information-theoretic privacy
nature of blind signature [20], this does not affect the security of the encryption
scheme thus omitted from the analysis.

3 This is actually stronger than the requirements for standard RSA signature. This
property is necessary when we introduce the distributed version in section 6.2.

4 The purpose of such a property is, together with e being a prime, to ensure
gcd(φ(N), e) = 1 even if N is not properly generated. This in turn guarantees that
the blinding technique works.

7

Same as [12], the underlying symmetric encryption is assumed to be IND$-
CPA secure as defined in section 4.1. AES with standard CTR mode and fixed
IV, and the OCB Authenticated Encryption scheme introduced in [52] are all
such schemes. In addition, and this is also in line with [12], the scheme is a
one-time symmetric encryption, meaning that it generates a fresh key for each
message.

Theorem 3. Let SE be a one-time symmetric encryption scheme whose key
space is {0, 1}l and Sign a signature scheme. Let EwS(1k) be an EwS encryption
scheme constructed as in figure 1 using SE and Sign. For any adversary A
attacking the D-IND$-CPA security of EwS that runs in time at most t and
asks at most qe encryption oracle calls and qH (resp. qG) queries to H (resp. G),
with these queries totaling at most µ bits, there exists an adversary B attacking
the standard IND$-CPA security of SE such that

AdvD−IND$−CPA
EwS (A) ≤ AdvIND$−CPA

SE (B) + qGAdvForge−CMA
Sign (A) (1)

where AdvForge−CMA
Sign (A) is the advantage A has in attacking the existential

non-forgeability of Sign. Furthermore, B makes qe encryption oracle queries and
its running time is t+O(µ).

Proof. B is constructed as the algorithm depicted in figure 2. It runs A against
a simulated EwS constructed using SE that B tries to attacks.

Let ΛH and ΛG be the sets of queries A submits to H and G, respectively,
and ΛSign the set of messages A submits to the signing oracle. Consider the
following event F : there exists a pair (x,M) such that x ∈ ΛG and M ∈ ΛH

but M /∈ ΛSign and H [M] = xe mod N . In other words, this is the event when
A manages to succeed in forging a signature. We argue that F is the only case
when A’s view in the simulated EwS game differs from that of an actual EwS
attacking game. To see this, suppose F does not happen, then for any query
M , what A obtains from Enc is either random strings if b = 0 or, if b = 1,
encryption of M by SE under some key K which is randomly generated via

K
$
←− {0, 1}l. In the latter case, the “correct” response A expects, in attacking

EwS, is SEK′(M) where K ′ ← G[SignSK(M)]. Instead, B provides A with
SEK(M). This is equivalent to setting K ← G[SignSK(M)] in the EwS scheme.
B does not know K but it does not matter: If G has never been queried with a
valid signature on M , B is free to choose any random number in the range of
G. Since K is randomly generated in its game against SE and independent of
other keys, it is a perfectly valid value for G[SignSK(M)].

And F is simply the success in attacking the existential non-forgeability of
a signature scheme in an adaptive chosen message scenario whose probability is
bounded by AdvForge−CMA

Sign (A). By simple union bound, we have equation 1. 5

5 Note that the advantage the adversary gains by querying H or the signing oracle
multiple times is already factored into Adv

Forge
Sign (A).

8

Adversary BEnc(1k,b)(1k)

Run A on input 1k, replying to its
oracle queries as follows:
On Encryption Query EwS(M):

Forward M to its encryption oracle Enc

and obtains C ← Enc(M)
Return C

On Query H(M):
If H [M] is undefined then

sigMap[M]
$
←− Z∗

N

H [M]← sigMap[M]e mod N
Endif
Return H [M]

On Query G(x):
If G[x] is undefined then

G[x]
$
←− {0, 1}l

Endif
Return G[x]

On Query Sign(M):
If sigMap[M] is undefined then

Query H with M
Endif
Return sigMap[M]

When A returns a bit b′, return b′.

Fig. 2. Adversary B for theorem 3

6 Eliminating the Key Server

In this section we introduce a distributed protocol that removes the need for
a centralized key server. There are several advantages in such a change. First,
a dedicated key server represents additional resource requirement and can be
a bottleneck for both security and performance. Security-wise, compromising a
single host (the KS) reduces the security to the level of CE which has been
shown to be inadequate [11]. Duplicating the key server improves performance,
at the price of higher hardware and operation cost, but does not help with the
security issue, as each server still holds the same secret key SK. Furthermore,
the DupLESS architecture is incompatible with the P2P paradigm as it is very
difficult to deploy, maintain and secure a dedicated server in a P2P setting where
users may be distributed over a wide range of geographic regions. Yet vulnerabil-
ities exist in such systems that calls for tightened security. Many P2P systems,
such as Freenet [5], flud [4], and GNUnet [6], are designed specifically for secu-
rity, anonymity and/or censorship-resistance. They use CE for their protection.
However, due to the weakness of CE, it is relatively easy to break their promises.
For example, an attacker can mount many of the serious attacks outlined in [54]
by compromising a single node.

9

We bridge the gap and present a decentralized version of encrypted deduplica-
tion that attains the same security as DupLESS. Our scheme is fully compatible
with the P2P paradigm: in a P2P setting, a user may interact with different
entities each time it performs certain operation (e.g., uploading a file). With our
scheme, as long as the user obtains the cooperation of any qualified subset of
players, it can perform the desired operation.

6.1 Threshold Signature

Our solution is built upon threshold signature scheme which we introduce in
this section. Let n be the number of players and t < n a parameter, a (t+1, n)-
threshold signature scheme allows any subset of t + 1 players to generate a
signature, but prohibits any t or less players from producing a valid signature.
Standard notions of security include non-forgeability and robustness.

Non-forgeability.Non-forgeability for a threshold signature scheme is extended
from the notion for standard signature [44] and is defined with respect to the
following game. The adversary chooses to corrupt any fixed set of t players.
Then the key generation algorithm is run. The public key, verification keys and
private keys of the corrupted players are given to the adversary. The other private
keys are given to the uncorrupted players. Next, the adversary submits signing
requests to the uncorrupted players for messages of its choice. Upon such a
request, a player outputs a signature share for the given message. An adversary
forges a signature if at the end of the game it outputs a valid signature on
message M that it has never submitted to any uncorrupted players as signing
request. The scheme is non-forgeable if no polynomial time adversary could forge
a signature.

Robustness. A threshold signature scheme should also guarantee that cor-
rupted players should not be able to prevent uncorrupted players from gen-
erating signatures. Standard technique is to have each signer generate a “proof
of correctness” that ensures that its signature share can be combined with other
valid shares to produce the correct signature. The system typically generates
additional verification keys for such purpose.

There are threshold signature schemes with provable non-forgeability and
robustness. They can be based on either Diffie-Hellman problem [46] or RSA
[53, 25, 39].

6.2 Distributed Oblivious Key Generation

In our decentralized EwS scheme, we replace the signature scheme with a thresh-
old one. We call the scheme Distributed Oblivious Key Generation (DOPG). For
our purpose we need an efficient, deterministic and non-interactive threshold
signature. Shoup’s RSA-based scheme [53] is such a solution. The deterministic
nature of the scheme ensures the convergence property. It is also non-interactive,
and is essentially as efficient as possible: the workload for generating a signature
share is roughly equivalent to computing a single RSA signature.

10

We introduce a few modifications to the scheme. The first is an optimization
trick that significantly boosts its performance. We then introduce a “blind”
version that prevents the signers from obtaining information about the data.
The scheme is summarized as follows.

Setup. Let n be the total number of signers. The RSA system parameters
p, q, p′, q′, e,N and RSA public/private key pair are the same as specified in
section 5 where we proved the security of centralized EwS. Let m = p′q′. The
private key d is shared using a random degree t polynomial f(X), over the ring
Zm, whose free term is set to d. Player i’s secret key is si = f(i) mod m. Let
QN be the subgroup of squares in Z

∗
N . The dealer chooses a random v ∈ QN and

computes vi = vsi for i = 1, . . . , n. The verification key for player i is (v, vi).

Signature Shares and Proof of Correctness. Given x = H(M) for message
M , let LN be the bit length of N and L1 a secondary security parameter (e.g.,
L1 = 128), the signature share of player i is

xi = x2∆si ∈ QN , ∆ = n!

together with a proof of correctness (z, c) computed as

v′ = vr, x̃ = x4∆, x′ = x̃r , c = H ′(v, x̃, vi, x
2
i , v

′, x′), z = sic+ r

where r
$
←− Z2L(N)+2L1 and H ′ is another hash function whose output is an L1-

bit integer. The signature share would be correct if

c = H ′(v, x̃, vi, x
2
i , v

zv−c
i , x̃zx−2c

i)

which can be verified by the client [53].

Combining Shares. When the client collects valid shares from a set S of t+1

players, the signature can be produced as follows. It computes w =
∏

i∈S x
2λS

0,i

i

where

λS
0,i = ∆

∏

j∈S\{i} j
∏

j∈S\{i}(j − i)
∈ Z. (2)

The factor ∆ is needed to ensure that the coefficients are all integers. Once we
have w, the signature y such that ye = x can be computed as y = waxb, where
a, b are integers such that e′a+ eb = 1 for e′ = 4∆2. a, b can be computed using
extended Euclidean algorithm on e′ and e. See [53].

Optimization. In practice, Shoup’s scheme can be optimized for speed by mov-
ing some computation off-line. In particular, share combination uses Lagrange
interpolation and needs to compute λS

0,i with equation 2. Suppose the client
chooses an initial set S of signers with |S| = t+ 1. Equation 2 can be rewritten
as

λS
0,i = ∆

numS
0,i

denS0,i
, i ∈ S (3)

11

The client pre-computes and stores λS
0,i and denS0,i. Now suppose the client needs

to combine shares from another set of signers S′ with |S′| = t + 1 that differs
from S by only a single element. Let k ∈ S \ (S∩S′) and k′ ∈ S′ \ (S ∩S′). Then
for i ∈ S′

λS′

0,i =

λS
0,i ·

k′(k−i)
k(k′−i) i 6= k′,

λS
0,i ·

denS
0,i∏

j∈S′\{i}(j−i) i = k′.
(4)

Computing all the t+ 1 coefficients for S′ using the original equation 2 requires
O(t2) integer multiplications and divisions. Using the running update method,
the cost is only O(t). The saving could be significant (please see section 7 for
empirical evaluation) since ∆ is typically very large.

If S and S′ differ by more than one elements, then the above process can be
repeated multiple times.

Blinding.Blind signature is used in [11] to protect user data from the key server.
We take a similar approach and present a threshold version. Blind signature is a
variant of signature scheme that allows one to obtain a valid signature without
leaking any information about the message to the signer. It was proposed by
Chaum in [20] as a solution to obtaining anonymity in a digital cash system.
The threshold version works as follows. To blind x, the requester generates a

random group element r
$
←− Z

∗
N and sends x̄ ← rex mod N to the signers.

Combining t+1 valid signature shares (on x̄), the requester obtains ȳ such that
x̄ = ȳ e mod N . It then removes the blinding by y ← ȳr−1 mod N . y is then a
standard RSA signature on M .

Clearly Shoup’s threshold scheme can correctly recover y, as both x and x̄
are elements in Z

∗
N , there is no difference for the signers to generate shares that

combine into ȳ. The “unblinding” process works as a regular blind signature does
[20]. The proof that this does not leak any information is the same as given in
[20, 11]. Since e > N is a prime, the map fe(x) = xe mod N is a permutation on
Z
∗
N . Thus re mod N is a random element in Z

∗
N for randomly chosen r ∈ Z

∗
N .

6.3 Security of DOPG-based EwS

We have established the deterministic D-IND$-CPA security of EwS. Our scheme
replaces Sign with a distributed threshold protocol. Using the simulation paradigm
introduced in [43], we show that the adversary’s view during the protocol can
be simulated with a statistically close distribution by a polynomial time simu-
lator who is given only access to the public key, corrupted users keys, and the
deduplication information.

To further empower the adversary, in addition to the ciphertexts and other
transcript information, we also allow it to obtain the signature shares from honest
users, for any chunk of its choice, up to a polynomial bound. We use a duplica-
tion oracle Dup to model the adversary’s knowledge on duplication pattern as
follows. We number the chunks 1, 2, . . . , n, where n is the maximum number of
chunks the system could see, in the order they arrive at the system, and write

12

ci for the content of the i-th chunk. Duplication information for chunk i is the
smallest integer j such that j ≤ i and ci = cj . That is Dup is defined as

Dup(i) = argmin
j

s.t. j ≤ i and ci = cj

Before the game starts, the duplication oracle can be initialized with arbi-
trary duplication pattern. We require that the adversary’s query messages must
be consistent with the duplication oracle’s equality pattern, meaning that, if
x1, . . . , xn are the adversary’s query messages, in the order they are submitted,
the following must hold:

xi = xj iff Dup(i) = Dup(j)

This is consistent with the condition in [10] and reflects the fact that every
deterministic encryption leaks plaintext quality. We no longer use the distinct
message restriction here because we would like to model the adversary’s view in
an actual deployment. For each xi, the adversary is allowed to request signature
shares from a set Λ of honest signers.

Theorem 4. The view of the adversary can be simulated with a statistically
close distribution by a polynomial time simulator who has access only to the
adversary’s keys and the duplication oracle (but not the signing key of the honest
signers).

Proof. The adversary’s view consists of the signature shares and proofs of cor-
rectness from honest signers, the signatures, and the ciphertexts. The trick is
to simulate the signature shares and the signature without the signing keys.
Fortunately there are standard techniques for doing that. Because the simulator
controls H , we can simply select a random y and define H(M) = ye for any
M . This makes y a standard RSA signature on message M with respect to H .
There also exists a simulator for signature shares and proofs of correctness as
in [53]. Let S be such a simulator. Our simulator maintains a mapping sigMap

from integers to numbers in Z
∗
N and a counter cnt initialized to 1.

At the beginning of the game when the adversary chooses the corrupted
signers, S is initialized with global keys and the IDs of the corrupted signers and
their keys. S could simulate any honest signer’s output on x given y such that
x = ye [53]. The simulator is implemented with the algorithm listed in following
figure:

Essentially, on each query, the simulator first queries the duplication oracle
Dup with cnt. If Dup returns a number other than cnt, the simulator tries to
retrieve y ∈ Z∗

N from sigMap. If the adversary respects the duplication pattern,
this should always be successful and the simulator should never return FAIL. If
this is a complete new chunk, the simulator chooses a random y ∈ Z∗

N and defines
the output of H on c to be ye mod N . It also adds to sigMap the mapping from
cnt to y and increment cnt. The purpose of using sigMap and cnt is to ensure
that the view is consistent with the deduplication pattern seen by the adversary.

13

Sim(Λ, c)
j ← Dup(cnt)
If j 6= cnt then

y ← sigMap[j]
If y = null then Return FAIL

Else
y ←R Z∗

N

sigMap[cnt] ← y
Endif
H [c]← ye mod N
cnt ← cnt + 1
If G[y] is undefined then

G[y]
$
←− {0, 1}∗

Endif
K ← G[y]
Z ← ∅
For i ∈ Λ

zi ← S(y,H [c], i)
Z ← Z ∪ {(i, zi)}

Endfor
Return (Z,SEK(c))

Fig. 3. Simulator Sim for theorem 4

The simulator passes (y,H [c], i) to S which returns zi, the corresponding
signature share and proof of correctness. 6 It also feeds y to G to generate
encryption key, denoted K. It then passes (Z,SEK(c)) to the adversary. It is
easy to verify that the simulator generates a view that is indistinguishable from
a real run.

Theorem 4 implies that, EwS scheme, centralized or distributed, leaks no in-
formation, in an IND$ sense, other than message equality. Since message equality
is necessary for deduplication, this means that EwS achieves the best possible
privacy under the current deduplication paradigm. Unless deduplication tech-
nique advances to a state that does not rely on message equality, we cannot
hope for better.

6.4 Encrypted Deduplication

Using the DOKG scheme described earlier, when the client needs to upload a
chunk, c, it requests blind signature shares from T ≥ t + 1 signers. Once it
receives enough shares, it performs share combination and unblinding to obtain
the signature y on c. It then generates encryption key viaK ← G(y) and encrypts
c by SEK(c). Access to the data is ensured via the “lockbox” or key encapsulation
mechanism [23, 49, 30]: lb(c) = {AEPKi

(K)|i ∈ Λ} where AE is an asymmetric

6 Please see [53] for how S works.

14

encryption algorithm, K is the data encryption key, PKi is the public key for
user i, and Λ is the set of users having access right. Such a scheme is known to
be IND-CPA secure [10]. The deduplication process works essentially the same
as what is being done in most existing storage services such as [28]: the server
identify data redundancy by comparing hashes of ciphertexts and appending the
lockboxes to the data to ensure access.

A subtle issue is how a user could find its own key among the multiple slots
in the lockbox. A simple solution is to explicitly store the user IDs. However,
this allows the party having access to the lockbox to know who has access to a
particular chunk. This may not be new information to the server but could be
exploited by other parties (e.g., other users) if they somehow obtain the data.
We thus recommend using the zero-knowledge lockbox scheme of [30] which uses
a series of hash functions to locate a slot for a user. The scheme is quite efficient:
the user could find its key in an average of log2 m steps where m = |Λ|. For
detailed construction please see [30].

Group Access: In the case where the data should be made accessible to all
the users in a group (but not to any party outside the group), there is no need
to construct the lockboxes for each individual users. Instead, we can use the
multicast encryption scheme of [31] and encrypt K using a multicast cryptosys-
tem. The key structure of [31] is very similar to ours and it is straightforward to
combine the two, or, in the cases where the underlying threshold schemes (for
multicast encryption and threshold signature) are the same, even let them share
keys. For details please see [31].

7 Implementation and Evaluation

We have implemented our protocol and performed experiments to evaluate its
feasibility. We adapted a Java implementation 7 of Shoup’s threshold signature
[53] with a number of optimizations to improve its performance. Our optimiza-
tions mainly include the following: (1) we replaced Java’s built-in BigInteger with
a NativeBigInteger implementation from the I2P anonymous network 8; (2) we
added a few pre-computations to move some work off-line, the most important
one being the technique introduced in section 6.2. Compared with deduplication
without encryption, the only change on the storage server’s operation is that
now the hash is computed over the ciphertext. There is no additional cost to the
server’s load. Therefore we only measured the impact on signers and the client.

Test Setting and Methodology. All tests were carried out with a 1024-bit
RSA modulus with full-domain-hash using SHA256. All measurements on a sin-
gle machine were repeated 1,000 times and all tests involving network were
repeated 50 times. We report average running time for various benchmarks.
Our protocol can be operated in two modes: semi-honest and malicious. In the

7 http://sourceforge.net/projects/threshsig/
8 http://www.i2p.net/

15

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

800

900

1000

t

R
un

ni
ng

 T
im

e
(m

s)

Client Computation Time: Semi−honest Mode

α = 0
α = 50%
α = 100%

0 20 40 60 80 100 120 140
0

200

400

600

800

1000

1200

1400

1600

1800

t

Client Computation Time: Malicious Mode

α = 0
α = 50%
α = 100%

Fig. 4. Client computation time. Left: Semi-honest mode. Right: Malicious mode.

semi-honest mode, the adversary is assumed to follow the protocol. In the ma-
licious mode, on the other hand, the adversary is allowed to deviate arbitrarily
from the protocol. The first mode represents a more benign environment, e.g., a
well protected enterprise network where nodes are cooperative and not subject
to external compromise. In this case we can omit the robustness mechanism,
including the generation and verification of the proof of share correctness, for
better performance. The second mode requires the full-fledged protocol in order
to produce the correct signature. Note that the scheme is “fail-secure” in that
if the protocol is set to run in the semi-honest mode but the adversary turns
malicious, the result is incorrect signature, thus non-converging ciphertext and
failed deduplication. As far as privacy is concerned, the protection is the same
as semi-honest mode: unless the adversary corrupts t+1 players, the encryption
is D-IND$, assuming the underlying threshold signature scheme is non-forgeable
and symmetric encryption is IND$. This is in contrast to the DupLESS archi-
tecture where compromising a single key server reduces the security to that of
CE.

Microbenchmarks. We first measured a few microbenchmarks on a 2.00GHz
Intel(R) Xeon(R) E5-2650 running Linux. Table 1 shows the time needed to
perform a number of basic operations for n = 1024 users.

Table 1. Microbenchmarks (milliseconds)

Mode KeyGen. ShareGen. ShareVer.

Semi-honest 880 0.7480 N/A

Malicious 9258 9.6432 4.5552

16

Computation Time. Figure 4 shows, for both modes, the client computation
time, in milliseconds, including combining signature shares, unblinding and pro-
ducing the final encryption key, for varying t. To evaluate the effectiveness of
pre-computation introduced in section 6.2, we tested with different signer change
rate α which is defined as follows. Let S be the original set of signers upon which
λS
0,i’s are pre-computed and S′ the actual set of signers whose shares are used

to generate the signature, 9 α is defined as α = (|S′| − |S ∩ S′|)/(t + 1). α = 0
means S′ = S and there is no need to update the pre-computed coefficients at
all while α = 1 means S ∩ S′ = ∅ and all the coefficients must be re-computed.

It is clear that the client’s workload grows almost linearly with t, especially
for full pre-computation settings (the lowest curves on both plots). The non-
linearity is due to the cost for updating the Lagrange coefficients.

Complete Running Time. We then deployed the protocol in an actual net-
work scenario. The signers and the clients are connected via a 1000Mbps LAN.
This is a production cluster running routine jobs such as data mining MapRe-
duce jobs. We run our tests during regular work hours, with normal work loads
on the cluster.

Figure 5 shows, for both modes, the clients latency for the entire key gen-
eration process, including both computation (signer’s signing time and client’s
combining time) and network latency. Comparing figures 4 and 5, it is clear that
computation time dominates. This should not be surprising since the signing
time is quite small (0.7480 ms in semi-honest mode and 9.6432 ms in malicious
mode) and our protocol only involves very inexpensive communication: The user
needs to receive t + 1 signature shares together with proofs of correctness. All
the shares are in the subgroup of squares in Z

∗
N . The data total no more than

100 KB even for t = 128.
At t = 64, which means the adversary must corrupt 65 signers to break the

privacy, the entire latency for our key generation process is 533.26 milliseconds
for the worst case (malicious mode and 100% signer change rate) and only 67.71
for the best case (semi-honest mode and 0 signer change rate).

Impact on Upload Throughput. We then used the numbers to evaluate
the impact on client’s upload throughput. let s be the user’s original upload
throughput without our scheme, measured in MB/s, c the chunk size in MB,
and u the additional latency, in seconds, caused by our key generation process,
then a user’s throughput is

c

c/s+ u
=

s

1 + u s
c

= sρ, where ρ =
1

1 + u s
c

Figure 6 plots ρ versus varying values of c/s for a number of configurations for
t = 64. It shows how the key generation process affects the uplink throughput
for different choices of chunk sizes. The top curve is the best case scenario, with

9 Due to the distributed nature, S and S′ may not be identical. This could happen,
e.g., when the client sends request to say 2(t + 1) signers and uses the first t + 1
responses to generate the signature.

17

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

800

900

1000

t

R
un

ni
ng

 T
im

e
(m

s)

Complete Running Time: Semi−honest Mode

α = 0
α = 50%
α = 100%

0 20 40 60 80 100 120 140
0

200

400

600

800

1000

1200

1400

1600

1800

t

Complete Running Time: Malicious Mode

α = 0
α = 50%
α = 100%

Fig. 5. Complete execution time. Left: Semi-honest mode. Right: Malicious mode.

a semi-honest mode and full pre-computation, while the bottom curve represents
the worst case where the protocol operates in malicious mode and the compu-
tation is fully online. If c/s = 1, which essentially means that originally it takes
1 second to upload the chunk, our scheme can retain about 90% of the original
upload throughput in the best case and 70% in the worst. If c/s = 2, the ratios
become about 96% and 80%, respectively. Clearly, the larger the c to s ratio is,
the less relative overhead our scheme will cause on user’s upload speed. From
deduplication perspective, the choice of chunk size affects the effectiveness of
deduplication. Smaller chunk size tends to offer stronger redundancy and more
effective deduplication. However, small chunk size also introduces more overhead,
not only for our secure encryption, but also for deduplication. A good balance
must be struck. [28] shows that, under typical workload of a corporate environ-
ment, a chunk size of 256KB could achieve about 35% space saving, while 32KB
42%. These chunk sizes are comparable to typical uplink speed of common users.
This means that, using our scheme, we can choose a chunk size that is only about
one or two times that of the amount of data a user could upload in one second
and achieve substantial space saving via deduplication while retaining much of
the original throughput and maintaining higher security. Using the benchmarks
of DupLESS as references, uploading a 1 MB file with Dropbox takes 2700 mil-
liseconds (ms) [11]. This translates into a system throughput of 0.37 MB/s. A
chunk size of 256KB, achieving 35% space saving [28], results in c/s = 0.68, at
which point our protocol retains about 90% of the original throughput in the
best case, or 55% in the worst case, for t = 64. In addition, upload operations can
often be made asynchronous to further reduce the impact on users’ experience.

Fault Tolerance. In addition to performance and security benefits, a dis-
tributed scheme enjoys higher tolerance to faults. We did not run actual tests but

18

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chunk Size/System Throughput

U
se

r
T

hr
ou

gh
pu

t/S
ys

te
m

 T
hr

ou
gh

pu
t

Semi−honest, α = 0

Semi−honest, α = 50%

Malicious, α = 50%

Malicious, α = 100%

Fig. 6. Impact on user throughput (t = 64).

a simple analysis shows that careful configuration can make the system highly
robust in face of failures.

Let ǫ be the probability that a signer fails, meaning that it does not respond
with a correct signature share during a certain period. Suppose for each chunk,
the client sends signing requests to T > t+1 signers. Assuming that the signers
fail independently, then the probability that the client fails to obtain enough
correct signature shares is

t
∑

i=0

(

T

i

)

(1− ǫ)iǫT−i = binocdf(t, T, 1− ǫ)

where binocdf is the binomial cumulative distribution function that can be
found in many statistical analysis tools such as MATLAB. It is very easy to
“reverse” it and compute the minimum T for given ǫ, t and target failure prob-
ability bound. Figure 7 shows the minimum T for varying t that bounds the
clients failure probability due to signer failure by ǫ/1000. Even for large t, and
very severe node failure rate (40%), it suffices to use less than 300 signers for
the scheme to be quite robust against signer failures.

Our optimization is by no means thorough. A more aggressive optimization
that utilizes more language and processor features could result in better per-
formance. Our results, even in these sub-optimal cases, demonstrated that the
scheme is practical for some reasonably large scale systems.

8 Conclusion and Discussion

In this paper we present a distributed key generation scheme supporting en-
crypted deduplication in cloud and other storage systems. We introduce a par-
ticularly strong notion of security for deterministic encryption and prove that

19

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

M
in

 T

t

Minimum Signer Set

ε = 0.1

ε = 0.2

ε = 0.3

ε = 0.4

Fig. 7. Minimum number of signers to bound the client failure probability by ǫ/1000.

our scheme and the generalized EwS are secure against such a notion. We show
that the security level that our scheme achieves is the best under current dedu-
plication paradigm. Our implementation demonstrates that the performance is
adequate to support large-scale systems. In the following we discuss possible
extensions to our scheme and future research directions.

8.1 Distributed Dealer

The scheme we described so far assumed a centralized dealer distributing the
keys. It is actually possible to replace it with a distributed protocol so it can be
made fully distributed. There are reasonably efficient distributed key generation
protocols for sharing an RSA key (e.g., [19, 26, 40]). However, Shoup’s threshold
RSA that we use requires a special assumption on the RSA modulus: the modulus
N must be the product of safe primes, i.e., N = pq where p′ = (p − 1)/2, q′ =
(q − 1)/2 are also primes. It is difficult to generate such a safe modulus in a
distributed manner.

RSA modulus built with safe primes is needed in Shoup’s scheme in two
ways: [39] (1) for generating the proof of correctness of shares; and (2) for key
generation to ensure that Shamir secret sharing is secure in the ring Zφ(N) where
φ(N) is the Euler’s totient function. Both are necessary if the dealer’s role is to
be distributed. There are two ways to work around it: (1) the key generation
and distribution is still done by a trusted party (e.g., the users could find a
trusted member to do it) but the signing process is distributed; or (2) use a less
efficient, but still reasonably practical, variant of Shoup’s scheme that allows for
distributed key generation such as [39, 25]. We do not pursue this issue in this
paper.

20

8.2 Measuring the Final Leakage

We have shown that, under current deduplication paradigm, full semantic se-
curity is impossible to achieve. In particular, the server learns the chunk dedu-
plication pattern (e.g., the frequency that a chunk maps to other chunks). It
remains open whether this is a serious leakage or not. This situation bears an
interesting parallel to the challenge in statistical database privacy, which stud-
ies the problem of releasing statistical patterns of the data while preserving the
privacy of each individual record [21, 45, 27, 14, 37, 36, 35, 50]. In 1977 Dalenius
offered a semantic notion of privacy breach for statistical databases that is in the
same spirit as semantic security in cryptography: “If the release of the statistic
S makes it possible to determine the (microdata) value more accurately than
without access to S, a disclosure has taken place” [24]. And it has also been
proven that this is impossible to prevent if a database is to provide some degree
of utility [34]. And the reason is simple: after all, one expects to learn some non-
trivial facts from the data, which could be laws of nature (e.g., smoking causes
lung cancer) or global statistics (e.g., average height) of a population. Both may
allow an adversary to infer an individual’s information [34].

Dwork [34] proposed the notion of differential privacy that is an achievable
semantic notion based on participation: “we move from comparing an adversarys
prior and posterior views of an individual to comparing the risk to an individual
when included in, versus when not included in, the database.” Formally it is
defined as:

Definition 1 (Differential Privacy [37, 36]). ∀ǫ, δ ≥ 0, an algorithm A gives
(ǫ, δ)-differential privacy if for all S ⊆ Range(A), for all data sets D,D′ such
that D and D′ differ by a single record

Pr[A(D) ∈ S] ≤ exp(ǫ) Pr[A(D′) ∈ S] + δ

Af is said to be (ǫ, δ)-private if it gives (ǫ, δ)-differential privacy.

Differential privacy captures the intuition that the function is private if the risk
to one’s privacy does not substantially increase as a result of participating in
the data set. It has been widely adopted by many works [16, 50, 48, 15, 47, 29,
32] and has became the “gold standard” of privacy in statistical database and
privacy-preserving data mining.

It is therefore an interesting research question to ask: is differential privacy a
meaningful notion for data privacy in the context of cloud storage, especially in
the presence of deduplication? That is, can we also shift from measuring the dif-
ference between the adversarys prior and posterior views to comparing the risk
to an individual when participating versus when not participating in the sys-
tem? With our scheme, the only leakage is caused by the deduplication pattern,
which can be seen as a utility that the server has to learn to perform its normal
operations. It might be possible to cast it into a form that is compatible with
differential privacy and examine whether the risk to one’s privacy increases sub-
stantially as a result of storing one’s data in the system. The mechanisms that

21

achieve differential privacy (e.g., the ones based on additive noise [16, 50, 48, 15,
47] and those relying on aggregation [29, 32]) can then be used to guide the con-
struction of a private deduplication algorithm that determines what and when
to deduplicate to ensure that the deduplication pattern is differentially private.
Unless there is a breakthrough in space saving techniques that does not need to
exploit data redundancy, which appears to be unlikely in the foreseeable future,
the above seems to be a viable approach that makes controllable compromise
between privacy and utility. We leave this as a future research direction.

References

1. Bitcasa. http://www.bitcasa.com/.
2. Ciphertite. http://www.ciphertite.com.
3. Dropbox. http://www.dropbox.com/.
4. flud. http://flud.org.
5. Freenet. https://freenetproject.org/.
6. GNUnet. http://gnunet.org.
7. Anderson, P., and Zhang, L. Fast and secure laptop backups with encrypted

de-duplication. In Proceedings of the 24th international conference on Large in-
stallation system administration (Berkeley, CA, USA, 2010), LISA’10, USENIX
Association, pp. 1–8.

8. Bellare, M., Boldyreva, A., and O’Neill, A. Deterministic and effi-
ciently searchable encryption. In Proceedings of the 27th annual international
cryptology conference on Advances in cryptology (Berlin, Heidelberg, 2007),
CRYPTO’07, Springer-Verlag, pp. 535–552. Full Version of this paper at
http://www.cc.gatech.edu/ aboldyre/papers/bbo.pdf.

9. Bellare, M., Desai, A., Jokipii, E., and Rogaway, P. A concrete security
treatment of symmetric encryption. In Proceedings of the 38th Annual Symposium
on Foundations of Computer Science (Washington, DC, USA, 1997), FOCS ’97,
IEEE Computer Society, pp. 394–403.

10. Bellare, M., Fischlin, M., O’Neill, A., and Ristenpart, T. Deterministic
encryption: Definitional equivalences and constructions without random oracles. In
Proceedings of the 28th Annual conference on Cryptology: Advances in Cryptology
(Berlin, Heidelberg, 2008), CRYPTO 2008, Springer-Verlag, pp. 360–378.

11. Bellare, M., and Keelveedhi, S. DupLESS: Server-aided encryption for dedu-
plicated storage. In USENIX Security Symposium 2013 (2013).

12. Bellare, M., Keelveedhi, S., and Ristenpart, T. Message-locked encryption
and secure deduplication. In Advances in Cryptology C EUROCRYPT 2013 (2013),
T. Johansson and P. Nguyen, Eds., vol. 7881 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, pp. 296–312.

13. Bennett, K., Grothoff, C., Horozov, T., and Patrascu, I. Efficient sharing
of encrypted data. In Proceedings of the 7th Australian Conference on Informa-
tion Security and Privacy (London, UK, UK, 2002), ACISP ’02, Springer-Verlag,
pp. 107–120.

14. Blum, A., Dwork, C., McSherry, F., and Nissim, K. Practical privacy: the
SuLQ framework. In PODS ’05 (New York, NY, USA, 2005), ACM Press, pp. 128–
138.

15. Blum, A., Ligett, K., and Roth, A. A learning theory approach to non-
interactive database privacy. In STOC 08 (2008), pp. 609–618.

22

16. Boaz Barak, e. a. Privacy, accuracy, and consistency too: a holistic solution to
contingency table release. In PODS ’07 (New York, NY, USA, 2007), ACM Press,
pp. 273–282.

17. Boldyreva, A., Fehr, S., and O’Neill, A. On notions of security for determin-
istic encryption, and efficient constructions without random oracles. In Proceedings
of the 28th Annual conference on Cryptology: Advances in Cryptology (Berlin, Hei-
delberg, 2008), CRYPTO 2008, Springer-Verlag, pp. 335–359.

18. Bolosky, W. J., Douceur, J. R., Ely, D., and Theimer, M. Feasibility of a
serverless distributed file system deployed on an existing set of desktop pcs. In Pro-
ceedings of the 2000 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems (New York, NY, USA, 2000), SIGMETRICS ’00,
ACM, pp. 34–43.

19. Boneh, D., and Franklin, M. Efficient generation of shared rsa keys. J. ACM
48, 4 (July 2001), 702–722.

20. Chaum, D. Blind signatures for untraceable payments. In Advances in Cryptology,
D. Chaum, R. Rivest, and A. Sherman, Eds. Springer US, 1983, pp. 199–203.

21. Chin, F., and Ozsoyoglu, G. Auditing for secure statistical databases. In ACM
81: Proceedings of the ACM ’81 conference (New York, NY, USA, 1981), ACM,
pp. 53–59.

22. Clements, A. T., Ahmad, I., Vilayannur, M., and Li, J. Decentralized dedu-
plication in san cluster file systems. In Proceedings of the 2009 conference on
USENIX Annual technical conference (Berkeley, CA, USA, 2009), USENIX’09,
USENIX Association, pp. 8–8.

23. Cramer, R., and Shoup, V. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Advances in Cryptology CRYPTO
’98, H. Krawczyk, Ed., vol. 1462 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 1998, pp. 13–25.

24. Dalenius, T. Towards a methodology for statistical disclosure control. Statistik
Tidskrift 15 (1977), 429–444.

25. Damgård, I., and Koprowski, M. Practical threshold rsa signatures without a
trusted dealer. In Proceedings of the International Conference on the Theory and
Application of Cryptographic Techniques: Advances in Cryptology (London, UK,
UK, 2001), EUROCRYPT ’01, Springer-Verlag, pp. 152–165.

26. Damgård, I., and Mikkelsen, G. L. Efficient, robust and constant-round dis-
tributed rsa key generation. In Proceedings of the 7th international conference
on Theory of Cryptography (Berlin, Heidelberg, 2010), TCC’10, Springer-Verlag,
pp. 183–200.

27. Dinur, I., and Nissim, K. Revealing information while preserving privacy. In
PODS ’03 (New York, NY, USA, 2003), ACM Press, pp. 202–210.

28. Douceur, J. R., Adya, A., Bolosky, W. J., Simon, D., and Theimer, M.

Reclaiming space from duplicate files in a serverless distributed file system. In
Proceedings of the 22 nd International Conference on Distributed Computing Sys-
tems (ICDCS’02) (Washington, DC, USA, 2002), ICDCS ’02, IEEE Computer
Society, pp. 617–624.

29. Duan, Y. Privacy without noise. In CIKM ’09 (New York, NY, USA, 2009),
ACM.

30. Duan, Y., and Canny, J. Protecting user data in ubiquitous computing: Towards
trustworthy environments. In PET’04 (2004).

31. Duan, Y., and Canny, J. How to construct multicast cryptosystems provably
secure against adaptive chosen ciphertext attack. In RSA Conference 2006, Cryp-

23

tographers’ Track. San Jose, USA (2006), vol. 3860 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 244–261.

32. Duan, Y., Canny, J., and Zhan, J. P4P: Practical large-scale privacy-preserving
distributed computation robust against malicious users. In USENIX Security Sym-
posium 2010 (2010), pp. 609–618.

33. Dutch, M. Understanding data deduplication ratios.
34. Dwork, C. An ad omnia approach to defining and achieving private data analysis.

In PinKDD (2007), pp. 1–13.
35. Dwork, C. Ask a better question, get a better answer a new approach to private

data analysis. In ICDT 2007 (2007), Springer, pp. 18–27.
36. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and Naor, M. Our

data, ourselves: Privacy via distributed noise generation. In EUROCRYPT 2006
(2006), Springer.

37. Dwork, C., McSherry, F., Nissim, K., and Smith, A. Calibrating noise to
sensitivity in private data analysis. In TCC 2006 (2006), Springer.

38. EMC. http://www.emc.com/solutions/samples/backup-recovery-
archiving/backup-data-deduplication.htm.

39. Fouque, P.-A., and Stern, J. Fully distributed threshold RSA under standard
assumptions. In Proceedings of the 7th International Conference on the Theory
and Application of Cryptology and Information Security: Advances in Cryptology
(London, UK, UK, 2001), ASIACRYPT ’01, Springer-Verlag, pp. 310–330.

40. Frankel, Y., MacKenzie, P. D., and Yung, M. Robust efficient distributed
rsa-key generation. In Proceedings of the seventeenth annual ACM symposium on
Principles of distributed computing (New York, NY, USA, 1998), PODC ’98, ACM,
pp. 320–.

41. Goldwasser, S., and Micali, S. Probabilistic encryption & how to play mental
poker keeping secret all partial information. In Proceedings of the fourteenth annual
ACM symposium on Theory of computing (New York, NY, USA, 1982), STOC ’82,
ACM, pp. 365–377.

42. Goldwasser, S., and Micali, S. Probabilistic encryption. Journal of Computer
and System Sciences 28, 2 (1984), 270 – 299.

43. Goldwasser, S., Micali, S., and Rackoff, C. The knowledge complexity of
interactive proof systems. SIAM J. Comput. 18, 1 (Feb. 1989), 186–208.

44. Goldwasser, S., Micali, S., and Rivest, R. L. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing 17,
2 (1988), 281–308.

45. Kleinberg, J., Papadimitriou, C., and Raghavan, P. Auditing boolean at-
tributes. In PODS ’00 (New York, NY, USA, 2000), ACM, pp. 86–91.

46. Langford, S. K. Threshold dss signatures without a trusted party. In Proceedings
of the 15th Annual International Cryptology Conference on Advances in Cryptology
(London, UK, UK, 1995), CRYPTO ’95, Springer-Verlag, pp. 397–409.

47. McSherry, F., and Mironov, I. Differentially private recommender systems:
Building privacy into the netflix prize contenders. In KDD ’09 (New York, NY,
USA, 2009), ACM, pp. 627–636.

48. McSherry, F., and Talwar, K. Mechanism design via differential privacy. In
FOCS ’07 (Washington, DC, USA, 2007), IEEE Computer Society, pp. 94–103.

49. Miller, E. L., Long, D. D. E., Freeman, W. E., and Reed, B. Strong security
for network-attached storage. In Proceedings of the Conference on File and Storage
Technologies (Berkeley, CA, USA, 2002), FAST ’02, USENIX Association, pp. 1–
13.

24

50. Nissim, K., Raskhodnikova, S., and Smith, A. Smooth sensitivity and sampling
in private data analysis. In STOC ’07 (2007), ACM, pp. 75–84.

51. Phan, D. H., and Pointcheval, D. Deterministic Symmetric Encryption
(Semantic Security and Pseudo-Random Permutations). In Proceedings of the
11th Annual Workshop on Selected Areas in Cryptography (SAC ’04) (Waterloo,
Canada, 2004), H. Handschuh and M. A. Hasan, Eds., vol. 3357 of Lecture Notes
in Computer Science, Springer, pp. 185–200.

52. Rogaway, P., Bellare, M., and Black, J. Ocb: A block-cipher mode of op-
eration for efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6, 3
(Aug. 2003), 365–403.

53. Shoup, V. Practical threshold signatures. In Proceedings of the 19th interna-
tional conference on Theory and application of cryptographic techniques (Berlin,
Heidelberg, 2000), EUROCRYPT’00, Springer-Verlag, pp. 207–220.

54. Wilcox-O’Hearn, Z. Convergent encryption reconsidered. https://tahoe-
lafs.org/pipermail/tahoe-dev/2008-March/000449.html, 2008.

55. Wilcox-O’Hearn, Z., and Warner, B. Tahoe: the least-authority filesystem.
In Proceedings of the 4th ACM international workshop on Storage security and
survivability (New York, NY, USA, 2008), StorageSS ’08, ACM, pp. 21–26.

56. Xing, Y., Li, Z., and Dai, Y. Peerdedupe: Insights into the peer-assisted sampling
deduplication. In Peer-to-Peer Computing (2010), IEEE, pp. 1–10.

57. Zhao, X., Zhang, Y., Wu, Y., Chen, K., Jiang, J., and Li, K. Liquid: A
scalable deduplication file system for virtual machine images. IEEE Transactions
on Parallel and Distributed Systems 99, PrePrints (2013), 1.

25

