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We present explicit formulae and complexities of bit-parallel GF (2n)

squarers for a new class of irreducible pentanomials xn + xn−1 + xk +

x + 1, where n is odd and 1< k < (n − 1)/2. The squarer is based on
the generalized polynomial basis of GF (2n). Its gate delay matches the
best results, while its XOR gate complexity is n + 1, which is only about
2/3 of the current best results.

Introduction: Squarer is an important circuit building block in square-
and-multiply-based exponentiation and inversion circuits. When GF (2n)

elements are represented in a normal basis, squaring is simply a circular
shift operation. Therefore, most previous works on squarers focused on
other representations of GF (2n) elements.

For practical applications where values of n are often in the range of
[1, 10000], GF (2n) can be defined by either an irreducible trinomial or
an irreducible pentanomial. Paar et al. and Wu presented explicit squaring
formulae of polynomial basis squarers for an arbitrary irreducible trinomial
respectively [1], [2] and [3]. Using Montgomery’s presentation with the
factor xk, Wu also proposed an optimized Montgomery squarer [4].

On the other hand, Hariri and Reyhani-Masoleh presented a
Montgomery squarer for a special class of irreducible pentanomials
xn + xk+1 + xk + xk−1 + 1 (3< k < (n− 3)/2) [5]. For an arbitrary
irreducible pentanomial, Park derived explicit formulae and complexities
of squarers based on weakly dual basis [6]. The numbers of XOR gates
used in these pentanomial-based squarers are about 1.5n, and the gate
delays of these squarers are 2TX , where TX is the delay of one 2-input
XOR gate.

In this work, we consider bit-parallel squarers based on a new GF (2n)

representation – generalized polynomial basis (GPB), which is defined by
Cilardo and is a generalisation of the shifted polynomial basis [7].

Definition 1: Let the ordered set M = {xi|0≤ i≤ n− 1} be a polynomial
basis of GF (2n) over GF (2) and R(x)∈GF (2n)∗. The ordered set
{R(x)xi|0≤ i≤ n− 1} is called a Generalized Polynomial Basis with
respect to M .

In [7], Cilardo presented a general analysis methodology to concisely
express gate count, subexpression sharing, and time delay of parallel GPB
multipliers. Specially, he suggested to define GF (2n) using the following
two new classes of irreducible pentanomials:

Type C.1: xn + xn−1 + xk + x+ 1 (n− 1> k > 1) and
Type C.2: xn + xn−r + xq + xr + 1 (n− r > q > r > 1).

His experiments revealed that at least one such pentanomial exists
for all values of n such that n< 10, 000 and no degree-n irreducible
trinomial exists. The highlight of Cilardo’s multipliers is that he selected
a new parameter R(x), which is not equal to x−v used in a shifted
polynomial basis. Because of this new parameter, Cilardo showed that the
complexities of such GPB multipliers match or outperform previous best
parallel multipliers.

In the following, we present explicit formulae and complexities of GPB
squarers in GF (2n) defined by Type C.1 irreducible pentanomials, where
n is odd and 1< k < (n− 1)/2. While the gate delays of the proposed
GPB squarers match the best results, their XOR gate complexities are only
n+ 1, which is lower than the current best result – about 1.5n reported in
[5] and [6].

GPB Squarers for Type C.1 irreducible pentanomials: Let f(x) = xn +
xn−1 + xk + x+ 1 be the type C.1 irreducible pentanomial defining
GF (2n). As indicated in [7], parameter R(x) = xn−k + xn−k−1 + 1 can
result in an optimised multiplier. In the following, we derive explicit
expressions of the GPB squarers using this value of R(x).
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Given a GF (2n) element A(x) =R(x)
∑n−1

i=0 aix
i represented in the

GPB, its GPB square C(x) is defined as

C(x) =R(x)

n−1∑
i=0

cix
i =R(x)

2n−2∑
i=0

R(x)a′ix
i,

where a′i is defined as follows [3]:

a′i =

{
a i

2
if i is even,

0 otherwise.

Therefore, we have

n−1∑
i=0

cix
i =

2n−2∑
i=0

R(x)a′ix
i

=

2n−2∑
i=0

(xn−k + xn−k−1 + 1)a′ix
i

=

2n−2∑
i=0

(x1−k + x−k)a′ix
i =

2n−k−2∑
i=−k

(x+ 1)a′i+kx
i

= r− + r + r+,

where r− =
∑−1

i=−k (x+ 1)a′i+kx
i, r=

∑n−1
i=0 (x+ 1)a′i+kx

i and
r+ =

∑2n−k−2
i=n (x+ 1)a′i+kx

i.
The two terms r− and r+ above should be reduced respectively by the

following two reduction equations:{
x+ 1= xn + xn−1 + xk, −k≤ i≤−1,
x+ 1= x−n+1 + x−n+2 + x−n+k+1, n≤ i≤ 2n− k − 2.

The reduced results are as follows:

r̃− =

n−1∑
i=n−k

a′i−n+kx
i +

n−2∑
i=n−k−1

a′i−n+k+1x
i +

k−1∑
i=0

a′ix
i,

and

r̃+ =

n−k−1∑
i=1

a′i+n+k−1x
i +

n−k∑
i=2

a′i+n+k−2x
i +

n−1∑
i=k+1

a′i+n−1x
i.

Moreover, the term
∑n−1

i=0 a′i+kx
i+1 of r should also be reduced. So

we have

r= a′n+k−1x
n +

n−1∑
i=1

a′i+k−1x
i +

n−1∑
i=0

a′i+kx
i,

where xn = xn−1 + xk + x+ 1.
Therefore, we obtain the following expression:

n−1∑
i=0

cix
i = (

n−1∑
i=0

a′i+kx
i +

n−1∑
i=1

a′i+k−1x
i)

+ (

n−k−1∑
i=1

a′i+n+k−1x
i +

n−2∑
i=n−k−1

a′i−n+k+1x
i)

+ (

n−k∑
i=2

a′i+n+k−2x
i +

n−1∑
i=n−k

a′i−n+kx
i)

+ (

k−1∑
i=0

a′ix
i +

n−1∑
i=k+1

a′i+n−1x
i) + a′n+k−1(x

n−1 + xk + x+ 1).

In [7], the following reciprocal property was proved: the circuit
performing the GPB multiplication for a given irreducible polynomial
f(x) = xn + xn−1 + xk + x+ 1 with k > n/2 and a certain GPB
parameter R(x) is as same as the circuit for polynomial g(x) =

xn + xn−1 + xk̃ + x+ 1 with k̃= n− k < n/2 and parameter R′(x) =
R(x−1) · x−(n−1). Therefore, we only need to consider the case of 1<

k < (n− 1)/2. Similar to [5] and [6], we also consider only the case of “n
odd” in this work. The other reason that we do not consider even values
of n is that, for security reasons, there are always concerns about using
composite extension Galois fields to construct elliptic curve cryptosystems.



For the case 3< k < (n− 1)/2, we can obtain the explicit expressions
of ci (0≤ i≤ n− 1) by comparing the coefficients of xi in the above
equation. These expressions can be grouped into nine cases depending on
the values of i:

Case 1: i= 0

c0 = a′k + a′0 + a′n+k−1;

Case 2: i= 1

c1 = a′k+1 + a′k + a′n+k + a′n+k−1;

Case 3: 2≤ i≤ k − 1

ci = a′i+k + a′i+k−1 + a′i+n+k−1 + a′i+n+k−2 + a′i;

Case 4: i= k

ck = a′2k + a′n+2k−1 + a′n+2k + a′n+k−1;

Case 5: k + 1≤ i≤ n− k − 2

ci = a′i+k + a′i+k−1 + a′i+n+k−1 + a′i+n+k−2 + a′i+n−1;

Case 6: i= n− k − 1

cn−k−1 = a′n−1 + a′n−2 + a′2n−2 + a′0 + a′2n−k−2;

Case 7: i= n− k

cn−k = a′n + a′n−1 + a′0 + a′2n−k−1 + a′2n−2;

Case 8: n− k + 1≤ i≤ n− 2

ci = a′i+k + a′i+k−1 + a′i−n+k + a′i−n+k+1 + a′i+n−1;

Case 9: i= n− 1

cn−1 = a′n+k−2 + a′k−1 + a′2n−2.

The above expressions can be further simplified since a′i = 0 when i is
odd. Therefore, we have the following explicit formulae of ci for the case
“n odd, k even”:

ci =

a′k + a′n+k−1 + a0 i= 0,

a′k + a′n+k−1 i= 1,

a′i+k + a′i+n+k−1 + a′i i
.
= 2, . . . , k − 2,

a′i+k−1 + a′i+n+k−2 i
.
= 3, . . . , k − 1,

a′i+k + a′i+n+k−1 + a′i+n−1 i
.
= k, . . . , n− k − 3,

a′i+k−1 + a′i+n+k−2 i
.
= k + 1, . . . , n− k − 2,

a0 + a′n−1 + an−1 + a′2n−k−2 i= n− k − 1,

a0 + a′n−1 + an−1 i= n− k,

a′i+k + a′i−n+k+1 + a′i+n−1 i
.
= n− k + 1, . . . , n− 3,

a′i+k−1 + a′i−n+k i
.
= n− k + 2, . . . , n− 2,

an−1 i= n− 1,

(1)

where “i .
= j, . . . , l” denotes that “i= j, j + 2, j + 4, . . . , l− 2, l”.

The total number of “+” in (1) is 3n+1
2

. However, there are some
common expressions, which are underlined, and 1 + k−2

2
+ n−2k−1

2
+

1 + k−2
2

= n−1
2

XOR gates can be saved. Therefore the total number of
XOR gates used in the GPB squarer is n+ 1 for the case “n odd, k even”.

Similarly, for the case “n odd, k odd”, we have
ci =

a0 i= 0,
a′k+1 + a′n+k i= 1,

a′k+1 + a′n+k + a1 i= 2,

a′i+k + a′i+n+k−1 i
.
= 3, . . . , k − 2,

a′i+k−1 + a′i+n+k−2 + a′i i
.
= 4, . . . , k − 1,

a′i+k + a′i+n+k−1 i
.
= k, . . . , n− k − 3,

a′i+k−1 + a′i+n+k−2 + a′i+n−1 i
.
= k + 1, . . . , n− k − 2,

a′n−1 + an−1 + a0 i= n− k − 1,

a′n−1 + a′2n−k−1 + an−1 + a0 i= n− k,

a′i+k + a′i−n+k+1 i
.
= n− k + 1, . . . , n− 2,

a′i+k−1 + a′i−n+k + a′i+n−1 i
.
= n− k + 2, . . . , n− 1.

(2)

The total number of “+” in (2) is also 3n+1
2

, and 1 + k−3
2

+ n−2k−1
2

+

1 + k−1
2

= n−1
2

XOR gates can be saved. Therefore the total number of
XOR gates used in the GPB squarer is n+ 1 for the case “n odd, k odd”.

The formulae for the two cases “k= 2” and “k= 3” are slightly
different from (1) and (2), but the total number of XOR gates is also n+ 1

for the case “n odd”.
Finally, we summarise the proposed GPB squarers as follows:

Theorem 1: Let GF (2n) be generated by the irreducible pentanomial
f(x) = xn + xn−1 + xk + x+ 1 (n is odd and 1< k < n−1

2
) and the

GPB parameter R(x) = xn−k + xn−k−1 + 1. Then a bit-parallel GPB
squarer can be constructed using n+ 1 XOR gates. The gate delay of this
squarer is 2TX .

An Example: Type C.1 pentanomial f(u) = x11 + x10 + x4 + x+

1 is irreducible over GF (2). Given a GF (211) element A(x) =

R(x)
∑10

i=0 aix
i represented in the GPB, where R(x) = x7 + x6 + 1,

coefficients cis of its GPB square C(x) =R(x)
∑n−1

i=0 cix
i are as follows:

c0 = a0 + (a2 + a7), c5 = a4 + a9,

c1 = a2 + a7, c6 = (a0 + a5) + (a8 + a10),
c2 = a1 + (a3 + a8), c7 = (a0 + a5) + a10,

c3 = a3 + a8, c8 = (a1 + a6) + a9,

c4 = a7 + (a4 + a9), c9 = a1 + a6,
c10 = a10.

The coefficient c6 can also be computed using c6 = c7 + a8, which can
save 1 XOR gate, but the gate delay of the squarer increases to 3TX .

Conclusions: While keeping the same gate delays as those of GF (2n)

squarers using other representations [5] [6], the number of XOR gates used
in the proposed GPB squarer is only about 2/3 of previous best results.

Our experiments revealed that for n∈ [10, 999], there are 452 n
values that no degree-n irreducible trinomial exists. Among them, there
are 292 n values that degree-n Type C.1 irreducible pentanomials
exist. Especially, NIST has recommended five finite fields GF (2n) for
the elliptic curve digital signature algorithm: GF (2163), GF (2233),
GF (2283), GF (2409) and GF (2571), but no irreducible trinomials
exist for three of them, namely, 163, 283 and 571. For these three
fields, Type C.1 irreducible pentanomials exist, e.g., x163 + x162 +

x25 + x+ 1, x283 + x282 + x66 + x+ 1 and x571 + x570 + x9 + x+ 1

are irreducible over GF (2). Therefore, GPB squarers defined by Type
C.1 irreducible pentanomials are of importance for both theoretical and
practical purposes.

We had examined some expressions of GPB squarers for Type C.2
irreducible pentanomials. Because parameters q and r (n− r > q > r > 1)
are arbitrary integers, it becomes difficult to summarise a simple and
coherent expression for a GPB squarer. Nevertheless, for a given Type C.2
irreducible pentanomial, it is possible to derive explicit formulae of a GPB
squarer, and then obtain its exact time and space complexities.
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