
Ultra-lightweight 8-bit Multiplicative Inverse
Based S-box Using LFSR

Sourav Das

Alcatel-Lucent India Ltd
Email:sourav10101976@gmail.com

Abstract. Most of the lightweight block ciphers are nibble-oriented as
the implementation of a 4-bit S-box is much more compact than an 8-bit
S-box. This paper proposes a novel implementation of multiplicative in-
verse for 8-bit S-boxes using LFSR requiring only 138 gate-equivalent. It
can be shown that if such S-boxes are adopted for the AES it takes less
than 50 gate-equivalent per S-box in parallel implementation. Canright’s
[1] implementation of the AES S-box is five times more expensive com-
pared to this method for AES-like S-boxes. With this powerful scheme,
a lightweight block cipher can be designed using an 8-bit S-box.

Key words: Multiplicative Inverse, AES, LFSR, Lightweight Cryptog-
raphy

1 Introduction

The goal of lightweight cryptography is to have cryptographic primitives for ex-
tremely constrained devices (i.e. with minimal hardware) without sacrificing on
the cryptographic strengths. While the AES is suitable for most of the applica-
tions, the hardware requirement for the AES is considered to be high for these
tiny devices. The AES uses multiplicative inverse for the S-box which is the main
contributor of its security. However, the S-box layer in AES is the most hard-
ware resource consuming construct unless the S-boxes are used serially as in [6].
There have been many approaches for reduction of hardware for AES [1], [3], [5],
[6], [9], [10], [11]. Among these, the approach of Satoh et al [10] and Canright’s
approach [1] are the most important ones for reducing the hardware resources
of the AES S-box. In Satoh’s approach, the subfield arithmetic by breaking the
field GF (28) to several smaller subfield of GF (24) as originally suggested by Rij-
men, was further extended using the tower field [8] approach of Paar by breaking
up further to GF (22). Canright further optimized that approach by considering
normal bases in addition to polynomial bases along with optimization in the
gates. Till date, this approach provides the tiniest hardware implementation of
not only AES S-box but also multiplicative inverse.

This paper takes a completely different approach for implementing the mul-
tiplicative inverse and proposes a novel hardware efficient algorithm to find out
the multiplicative inverse. It simply uses a maximum length Linear Feedback

2 Sourav Das

Shift Register (LFSR) running both forward and backwards for constant num-
ber of times to find out the multiplicative inverse. As LFSR requires a very
small hardware, this approach reduces the hardware requirement significantly
for the AES-like S-Boxes using multiplicative inverse. Canright’s approach re-
quires 85 percent more area compared to this method. One drawback of this
method is that full length cycles need to be run for the LFSR. However, as the
LFSR transformation has a very minimal critical path, the speed loss is not as
high as it seems to be. Hence, the number of cycles is not the right metric to
compare the speed. Also, speed is not the main concern in lightweight cryptog-
raphy. Nevertheless, we also propose a speed improvement for the S-box with an
additional hardware. This approach takes 15 cycles where the hardware cost is
comparable with Canright’s implementation. We provide a better tradeoff using
31 cycles where Canright’s approach is 15 percent more expensive. Also, we can
easily show that if such S-boxes are adopted for AES (or any other 128/256 bit
cipher), it takes around 50 gate-equivalent per S-box in the S-box layer. The
number of cycles remains the same across the S-box layer. Hence, in a 256 bit
block cipher using these S-boxes, it needs only 1 cycle per bit per round of S-box
transformation. As multiplicative inverse has strong cryptographic properties,
we believe that these algorithms will help greatly in future design of symmetric
key algorithms and hash functions with low hardware count.

This paper is organized as follows. Section 2 provides the schematic of mul-
tiplicative inverse implementation using LFSR that can be used for AES. It
describes the compact hardware method in Section 2.1 and a method for better
speed in Section 2.2. Section 2.3 provides the description of parametrization of
the S-box.

2 Multiplicative Inverse Using LFSR

In this section, we present two different hardware implementations for calculat-
ing multiplicative inverse. One method of implementation is compact hardware
mode where extremely minimal hardware is required. The second method is the
speed improvement mode where the speed is improved with additional hardware.
Both the methods use maximum length LFSR. See [4] for a detailed description
of LFSR. Throughout the rest of the paper referring to LFSR would mean a
maximum length LFSR with a given primitive polynomial.

2.1 Compact Hardware Mode

We begin this section with an introduction of how mathematically multiplicative
inverse can be calculated using LFSR. The LFSR transformation can be written
as for a single cycle:

S(t + 1) = T · S(t)

where, T is the LFSR transformation matrix, S(t) is the state of the LFSR
at tth time instant or the initial seed and S(t + 1) is the state of the LFSR at

Ultra-lightweight 8-bit Multiplicative Inverse Based S-box Using LFSR 3

(t + 1)th time instant i.e. after running one clock cycle. We can generalize the
above equation for any number of cycles p as:

S(t + p) = T p · S(t)
It can be noted that for a maximum length LFSR, running 2n−1 cycles gives

back the initial state (where n is the length of the LFSR), i.e.:
S(t + 2n − 1) = T 2n−1 · S(t) = S(t) ⇒ T 2n−1 = 1, which is the identity

element.
To calculate the multiplicative inverse of a given input S(t + p), the task is

to find out a new state S(t + ṕ) of the LFSR so that p + ṕ = 2n − 1, implying,
S(t+ p+ ṕ) = S(t+ 2n− 1) = S(t) or alternatively, T p ·T ṕ = T 2n−1. The above
implies the following equation for an 8-bit LFSR:

S(t + ṕ) = S(t + 255− p) (1)

One way to implement this is to run the LFSR with a particular initial seed
till the LFSR state matches the input, then re-initialize the LFSR with the same
seed and run it. When the total number of cycles in both the run is 255 (for 8-
bit LFSR) the state of the LFSR gives the multiplicative inverse. Comparison of
two eight bit variable requires eight XOR gates, eight NOT gates and one eight
input NAND gate along with the LFSR circuit. Additionally, eight 2:1 Mux are
required for reloading the initial value to the LFSR. However, we find a better
optimization as given below.

Note that, the comparison of the LFSR state with the constant initial seed
is very easy. It only needs an eight input NAND (or AND) gate along with a
few NOT gates. The input to this NAND gate are the LFSR state bits. For the
bits that are zero in the initial seed, the corresponding state bits are negated
by NOT gates. When the state becomes equal to the constant initial seed, the
output of the NAND gate becomes zero.

Then, we use the following algorithm where the comparison is only performed
with constant initial seed.

Require: 8-bit LFSR, initial seed=S(t), S-box input=S(t+p)
1: Initialize the LFSR with lfsr state=S-box input=S(t+p)
2: Run the LFSR in the forward direction till lfsr state=initial seed=S(t)
3: Run the LFSR in the reverse direction
4: Stop when total number cycles in both the above steps is 255
5: Output lfsr state=S(t+ṕ)

Theorem 1. The algorithm above outputs the multiplicative inverse of S-box input,
S(t+p).

Proof. Let, S-box input correspond to the lfsr state after running p cycles of
LFSR from initial seed. This is the state of the LFSR at step 1. Then, in step 2,
the number of cycles run is, 255−p, but the LFSR contains the initial seed=S(t)
at this point. The number of cycles run in step 4 is 255− (255− p) = p. But as
mentioned in step 3, the LFSR is running in reverse direction at this point with
initial seed as S(t). Hence the state of the LFSR is S(t-p). Since, S(t)=S(t+255),

4 Sourav Das

the state of the LFSR can also be denoted as S(t+255-p). From Equation 1, this
state is the multiplicative inverse of S(t+p). ut

Hardware Implementation: The practical implementation is as follows.
1. Use eight two-input flip-flops (e.g. scan flip-flops) to store the LFSR state.
2. Arrange one of the inputs of the flip-flops to make the forward LFSR

transformation for a given primitive polynomial. Use 2:1 Muxes at the input to
load the S-box input on Reset signal. As the combinational logic of the LFSR is
applied only on the first flip-flop, the initial loading can also be applied serially
where the 2:1 Mux is used only at the first flip-flop. An eight input NAND gate
from the existing counter can indicate the completion of eight cycles for the serial
loading. The output of this NAND8 gate can go to another 2-input NAND gate
to control the Reset signal. The state of the LFSR counter after eight cycles is
considered as the initial state for counting the S-box cycles.

3. Arrange the other inputs of the flip-flops to make reverse LFSR transfor-
mation for the same primitive polynomial.

4. The output of the LFSR is connected to an 8-input NAND gate (via a few
NOT gates) whose output is connected to the Select input of the flip-flops (via
a flip-flop so that the output stays there after a match is found). This provides
the comparison with the constant seed and the control logic for the LFSR to run
in the reverse direction.

5. An 8-bit LFSR counter is used. The output of the counter is connected
to an 8-input NAND gate (via a few NOT gates) to signal when LFSR state
contains the multiplicative inverse of the input. This provides the control logic
to indicate the completion of 255 cycles.

6. The circuit diagram is shown in Figure 1.

Reset

8 8

CLK

1 FF

f(x)

NAND8

D Q

SI

 2
SE

CLK

D Q

SI

 3
SE

CLK

D Q

SI

 8
SE

CLK

D Q

SI

 1
SE

CLK

8-bit LFSR Counter

NAND8 NAND8

Fig. 1. Circuit Diagram for Compact Hardware Mode

Hardware Cost and Gate Count: We use the primitive polynomial x8 +x4 +
x3 +x2 +1 which requires three XOR gates for the LFSR feedback function. The
total numbers of various gates required to realize the circuit are eight 2-input
flip-flops, six 2-input XOR gates, one NAND8 gates and two NOT gates. Using
serial loading, the initialization requires 1 mux, 1 NAND8 and 1 NAND gate. The
counter requires one NAND8 gate, three XOR gates and eight 1-input flip-flops.

Ultra-lightweight 8-bit Multiplicative Inverse Based S-box Using LFSR 5

In addition, to avoid the S-box giving zero as output when the input is zero, two
NOT gates are added at the input. Using Standard Cells UMCL18G212T3, the
total equivalent gate count is 6 × 16 + 2.67 × 9 + 4 × 3 + 0.67 × 2 + 2.33 × 1 +
1× 1 + 0.67× 2 = 138.

To compare with the existing standards, Canright’s implementation takes
253 GE and Satoh’s implementation takes 275 GE. Hence Canright’s implemen-
tation is 85 percent more expensive than this method. The speed is lower in
terms of number of cycles. But as stated before, the number of cycles should
not be the only metric as the experience shows that the speed reduces drasti-
cally when the number of gates is increased due to gate delay. However, as AES
uses a polynomial which is irreducible but not primitive, getting the exact AES
S-box using this method is not possible. Maximum length LFSRs necessarily
need primitive polynomials. Hence, this comparison is with respect to AES-like
S-boxes. The AES designers have mentioned that other S-boxes satisfying the
same cryptographic properties as with the AES S-box can be used for AES.
However, till date that replacement was never attempted as there was no real
benefit of doing that. This method generates AES-like S-boxes with same cryp-
tographic properties as in the AES S-box and provides a real benefit of saving
the hardware count greatly. By reusing the data state flip-flops for the LFSR and
with the common counter for all S-boxes in the S-box layer, the hardware count
of AES S-box can be as low as 50 gate equivalent per S-box (see Appendix for
a detailed calculation). Hence, we can think about replacing the non-primitive
irreducible polynomial of AES with a primitive polynomial that can provide the
implementation using LFSR with a great reduction in hardware. Note that, the
“super S-box” implementation, Canright’s and Satoh’s implementations will still
be applicable after changing the polynomial. But, since the AES S-box is widely
scrutinized and deployed, we leave it at this point for the community to decide
on that.

2.2 Speed Improvement Mode

In this mode of implementation, it requires only 15 cycles to calculate the
multiplicative inverse. Here, we divide the whole state space of 8-bit LFSR
into sixteen zones, each zone is of length 16 states. We denote the zones as
Zi = (S(t+16 · i), · · · .S(t+16 · (i+1)−1)) where i ∈ (0, · · · , 15). We generate a
mapping of input zone to output zone Zini → Zoutj , where Zini and Zoutj de-
note the input zone and output zone, respectively. For example, if the input is in
zone Z0, then the output zone is Z15; if the input is in zone Z9, the output zone is
Z6 and so on. In implementation, the zone mapping is simply a mapping between
the highest states of the zones i.e. S(t+16·(i+1)−1)→ S(t+16·((15−i)+1)−1)
or, S(t + 16 · (i + 1)− 1)→ S(t + 16 · (16− i)− 1) .

The method to calculate the multiplicative inverse is as follows. First we
determine the input zone by initializing the LFSR with the input and comparing
with the highest state of the sixteen zones. This comparison requires sixteen 8-
input NAND gates and an average of 64 NOT gates (four NOT gate each). From
the Zini → Zoutj mapping, we load the highest state in Zoutj in the reverse

6 Sourav Das

LFSR and run till overall 15 cycles complete. At this point the output of the
LFSR will contain the multiplicative inverse. This is outlined in the following
algorithm.

Require: 8-bit LFSR, the maximum state in zones S(t+16·i−1), zone mapping
S(t + 16 · (i + 1)− 1)→ S(t + 16 · (16− i)− 1), S-box input=S(t+p)

1: Initialize the LFSR with lfsr state=S-box input=S(t+p)
2: Run the LFSR in the forward direction till lfsr state= S(t+ 16 · (i+ 1)− 1)

for any i ∈ (0 · · · 15)
3: Load the LFSR with the maximum state of Zouti i.e. S(t+ 16 · (16− i)− 1)
4: Run the LFSR in the reverse direction
5: Stop when total number cycles in both the above steps is 15
6: Output lfsr state=S(t+ṕ)

Theorem 2. The algorithm above produces the multiplicative inverse of S-box
input, S(t+p)

Proof. In step2, the state of the LFSR is S(t + 16 · (i + 1)− 1) and the number
of cycles run is 16 · (i + 1)− 1− p. In step 3, the state of the LFSR is S(t + 16 ·
(16− i)−1). In steps 4 and 5, the number of cycles run is 15−16 · (i+1)+1+p.
The state of the LFSR is S((t + 16 · (16− i)− 1)− (15− 16 · (i + 1) + 1 + p)) =
S(t+256−16·i−1−16+16·i+16−p) = S(t+255−p). But, from Equation 1, we
have S(t+ 255− p) = S(t+ ṕ). Hence the algorithm produces the multiplicative
inverse of the input. ut

Hardware Implementation: The practical implementation is as follows.
1. Keep the LFSR structure same as in Figure 1 except the second input is

taken from a mapping module.
2. In this implementation, we need two additional blocks, namely, a com-

parator module and one mapping module.
3. The comparator module takes the input from the LFSR states and the

output is connected to the select input of the flip-flops. Inside the module it
contains sixteen 8-input NAND gates in parallel whose inputs are LFSR state
bits with some of the bits complemented by NOT gates. The output of the
NAND8 gates are connected to a 16-input OR gate whose output is the output
of the module.

4. The mapping module is implemented using boolean equations (LUT). Since
most of the entries in the mapping table are zeros, the LUT approach does not
require large hardware. The input is from LFSR state bits and the output is
connected to the second input of the flip-flops. The number of logic gates required
will vary and will be dependent on the initial seed (S(t)). In our implementation,
it required 27 NOT gates, 47 AND gates and 12 OR gates.

5. A 4-bit LFSR counter is used. The output of the counter is connected to a
4-input NAND gate (via a few NOT gates) to signal when LFSR state contains
the multiplicative inverse of the input i.e 15 cycles are run.

6. 2:1 Muxes are added in the reverse input as well since a new seed needs
to be reloaded when the reverse LFSR starts. The circuit diagram is shown in
Figure 2.

Ultra-lightweight 8-bit Multiplicative Inverse Based S-box Using LFSR 7

Q

 1 FF

16 i/p OR

f(x)
Eight 2:1 Mux

8

8 8

SE SI

LFSR Circuit as in Figure 1
(with two input FF)

Mapping Circuit (LUT)

NOT and 16 * NAND8

4-Bit Counter
+ NAND4

Fig. 2. Circuit Diagram for Speed Improvement Mode

Hardware Cost and Gate Count: We use the primitive polynomial x8 +x4 +
x3 + x2 + 1 which requires three XOR gates for LFSR feedback function. The
total numbers of various gates required to realize the circuit are eight 2-input
flip-flops, six 2-input XOR gates, for comparator sixteen NAND8 gates along
with one sixteen input OR gate, for the mapping module 27 NOT gates, 47
AND gates and 12 OR gates and four 1-input flip-flops and one XOR gate for
4-bit counter. Since, the LFSR is reloaded, eight 2:1 Mux will also be required.
The total equivalent gate count is 6× 8 + 2.67× 6 + 4× 16 + 10× 1 + 0.67× 27 +
1.33× 47 + 1.33× 12 + 4.67× 4 + 2.67× 1 + 2.33× 8 = 274 (same as in Satoh’s).

In summary, we can achieve the higher speed with this approach. The extra
hardware was taken mainly by the comparator and the mapping modules. A
better speed vs area trade-off will be achieved with 31 cycles.
Hardware Cost for 31 Cycles: We use the same algorithm above for 31 cycles.
In this case, we divide the whole state space into eight zones. Same hardware
architecture is used, but in this case the hardware requirements for comparator
and mapping modules reduce considerably. For the comparator module, we need
eight 8-input NAND gate and one 8-input OR gate. The mapping module in our
implementation requires 24 NOT gates, 31 AND gates and 13 OR gates. The
counter now requires 5 flip-flops and one XOR gate (with feedback polynomial
x5 + x2 + 1). The LFSR module requires the same hardware as above i.e. eight
2-input flip-flops, six 2-input XOR gates and eight 2:1 Mux. The total gate
equivalent count in this case is, 6 × 8 + 2.67 × 6 + 4 × 8 + 6 × 1 + 0.67 × 24 +
1.33× 31 + 1.33× 13 + 4.67× 5 + 2.67× 1 + 2.33× 8 = 220.

Hence, we reduced the hardware to a great extent still achieved good speed
in terms of the number of cycles. This method is 15 percent better with respect
to gate equivalent than Canright’s approach.

2.3 Parametrization

The multiplicative inverse S-box using LFSR takes the initial seed, S(t), as a
parameter. Selection of a seed doesn’t have an impact on the main security
properties of the S-box i.e. bias, non-linearity, differential uniformity, SAC etc.

8 Sourav Das

This also provides a great advantage that the intra-S-box linear transformation
used in AES is not required for LFSR based implementation of multiplicative
inverse. Since the internal linear transformations are different for different seeds,
the number of terms in algebraic expression will vary for different seeds. The
algebraic degree, however, is always 7, hence this is not a big threat. LFSRs
are already known for their excellent statistical properties which are applied to
the S-box automatically. The only additional hardware required is for avoiding
the zero to zero mapping in the multiplicative inverse. This can be achieved by
putting just a couple of NOT gates at the output of forward S-box and in the
input of the reverse S-box. However, special care may be needed in selecting the
S-box when used in a cipher depending on the linear layer or the structure of the
cipher. In order to alleviate any concern with this variable number of terms in
algebraic expression, we provide a concrete S-box table and compare the security
properties with AES.

2.4 A Concrete S-box

A concrete S-box Table was generated with initial seed as 0x16 and constant
value 0x24 that is XORed at the output requiring two NOT gates. These values
were used for the specific implementation of Halka. The full table is shown in
Table 1.

Table 1. A Concrete S-box

24 2c 20 dc 26 73 d8 91 25 b7 8f 9c da 1f fe e9

9f a4 d5 6d c3 71 32 78 96 db 55 b9 4c 49 6e 42

9a f9 1d 64 3 5c a0 0 4a d7 e3 8e 75 af b a

7d 4d 5b 1a 1c e7 6a 74 10 6 92 29 81 79 17 40

7 7b 69 ca c8 b8 ef 84 c2 37 3a 98 df 66 12 b6

13 8 5d fc 47 31 f1 21 8c 14 e1 51 33 19 b3 65

88 4e 90 70 1b a8 3b cc 38 15 45 a7 83 39 c de

a1 3e c1 b5 eb 7f ac a2 1 76 9b 8a b4 bd 99 16

35 d4 8b 4f 2 54 53 be 52 c7 ea 9 41 c6 f4 b1

58 57 6b 2d f8 ab 87 7a f6 59 a3 85 61 3f 9e ed

63 bf fd b2 e8 18 d2 48 7c 95 f 2e 44 ce 5f a6

f0 8d 3c f5 46 23 1e d0 2f ee ba 34 6f 5a 4 5e

c5 f2 c4 11 e2 7e e0 e dd bb 9d 62 80 2b ae 50

aa 97 bc c9 94 72 e5 d3 77 86 2a cd b0 5 d9 d1

e6 e4 a9 ad d6 56 6c 30 43 ff 89 cb 60 f7 67 cf

a5 36 c0 d 93 fb 82 f3 27 ec 4b 68 22 fa 28 3d

The comparison of security properties of the S-box generated with the above
parameters with AES S-box is shown in Table 2. It can be seen that the security
properties are essentially same as it is expected. Note that, we have used alge-
braic normal form to compare the algebraic properties for convenience, unlike
the univariate polynomial expression given in original AES specification.

Ultra-lightweight 8-bit Multiplicative Inverse Based S-box Using LFSR 9
Table 2. Comparison of Security Properties with AES

S-box Max Alg Min Alg Alg Diff Bias Max Min Max Min
Term Term Deg Uni SAC SAC NL NL

AES 145 110 7 4 2−4 144 116 114 112

Halka 139 118 7 4 2−4 140 112 114 112

To summarize, we presented a novel method for implementing multiplicative
inverse with a great hardware compactness and showed that the method can
even be used for 8-bit S-boxes with area better than existing standard. The area
requirement in full cycle case is so small that even a lightweight block cipher can
be proposed with 8-bit S-boxes.

3 Conclusion

In this paper a novel method of implementing multiplicative inverse using LFSR
is proposed. It was shown that if AES used a primitive polynomial, instead of
only irreducible polynomial, then it could implement the S-box with less than
50 GE per S-box in AES-256. With this scheme, the security of the lightweight
block ciphers can be enhanced greatly.

References

1. D. Canright. A very compact S-box for AES. CHES 2005. LNCS vol. 3659. pp.
441-455. Springer, 2005.

2. C. Carlet. On highly nonlinear S-boxes and their inability to thwart DPA attacks.
Indocrypt 2005. LNCS vol. 3797, pp. 49–62, 2005.

3. P. Chodowiec and K. Gaj. Very compact FPGA implementation of the AES algo-
rithm. CHES 2003, LNCS vol. 2279. pp. 319-333. Springer, 2003.

4. R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applications.
Cambridge. Cambridge Univercity Press. 1994.

5. N. Mentens, L. Batina, B. Preneel and I. Verbauwhede. A systematic evaluation of
compact hardware implementations for the Rijndael S-box. CTRSA 2005. LNCS vol.
3376, pp. 323–333. Springer, 2005.

6. A. Moradi, A. Poschmann, S. Ling, C. Paar and H. Wang. Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. Eurocrypt 2011. LNCS vol.
6632. pp. 69–88. Springer, 2011.

7. K. Nyberg. Differentially uniform mappings for cryptography. Advances in Cryptol-
ogy, Eurocrypt’93. LNCS vol. 765. pp. 55–64. Springer-Verlag. 1994.

8. C. Paar. Efficient VLSI Architectures for Bit-Parallel Computation in Galois Fields.
PhD thesis, Institute for Experimental Mathematics, University of Essen, Germany,
1994.

9. A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R. Rao, and P. Rohatgi. Efficient
Rijndael encryption implementation with composite field arithmetic. In CHES, 2001,
LNCS vol. 2162. pp. 171-184. Springer, 2001.

10. A. Satoh, S. Morioka, K. Takano, and Seiji Munetoh. A compact Rijndael hardware
architecture with S-box optimization. In Advances in Cryptology - ASIACRYPT
2001, LNCS vol. 2248, pages 239-254. Springer, 2001.

11. J. Wolkerstorfer, E. Oswald and M. Lamberger. An ASIC implementation of the
AES Sboxes. In CT-RSA, LNCS vol. 2271. pp. 67-78. Springer, 2002.

10 Sourav Das

4 Appendix

4.1 Notes on Gate Equivalent

We have not done the actual implementation on ASIC as we don’t have those
tools. Instead, we have used Xilinx 7i FPGA to check the hardware. Gate equiv-
alents for various hardware primitives that are used in this paper for estimation
are given in the following Table. These figures are mainly taken from the thesis
of Poschman (http://eprint.iacr.org/2009/516.pdf) to have a fare comparison
with PRESENT. Note that, NAND8 does not exist in those libraries. But ATL
60 and ATLS60 series datasheet shows that a NAND8 gate needs 3.5 times the
site count of a NAND2 gate. The datasheet can be found in the following link:
http://www.datasheetcatalog.org/datasheet/atmel/DOC0388.PDF. So, I think
we can safely assume that if the support of NAND8 gate is provided in the li-
brary used in PRESENT, the gate equivalent count will be 4. If the reader is
not convinced with that assumption, the error margin is really less. We have
only three NAND8 gates in the compact circuit. In the worst case, the NAND8
gate will require 7 GE by combining 2-input NAND gates. In that case, the gate
equivalent count of compact hardware mode will be 138+3(7-4)=147.

Table 3. Gate Vs Gate Equivalent Count

Gate GE Gate GE Gate GE Gate GE

NOT 0.67 NAND, NOR 1 2:1 MUX 2.33 NAND8 4

XOR 2.67 AND, OR 1.33 2-input FF 6

4.2 A Note on Prior Art on LFSR Based Multiplicative Inverse

The possibility of generation of multiplicative inverse using LFSR is existing
ever since the LFSR was invented. The novelty of this work is the hardware
efficient usage of it which is simple but unpublished using excellent engineering
techniques. Even though this work was done independently and we searched
exhaustively later, there could still be a possibility that LFSR has been used in
some fashion inside some other literature. One such work was found in:
http://www.kemt.fei.tuke.sk/personal/drutarovsky/publications/fpl2009.pdf.

The above paper uses two LFSRs and runs them in both forward and reverse
directions, performs a matrix multiplication after the LFSR transformations
and then caches both the LFSRs outputs using the LUTs to get the AES S-
box. While this can be a good strategy for FPGA, it is very clear that such an
approach would require much bigger ASIC gate equivalent count (two different
LFSRs flip-flops and XORs, one 8-bit counter requiring one more LFSR flip-
flops and XORs, LUT where boolean equations would take a large hardware,
XORs for two matrix multiplications, the control logic and Muxes) than both
Satoh’s and Canright’s approach. Clearly, the approach taken in Halka is much
more optimized with much more efficient algorithm for implementation. It uses
a single LFSR flip-flops and a small control logic; no matrix multiplications or
LUTs. Using a different initial seed, this also gets a free linear transformation for
Halka S-box. The algorithm is also different here as it cleverly loads the S-box

Ultra-lightweight 8-bit Multiplicative Inverse Based S-box Using LFSR 11

input as the initial seed and runs it till the LFSR state becomes the initial seed
and then running it on reverse direction till the number of cycles is 255. The
contribution of this paper over the paper mentioned above should now be quite
obvious for the LFSR based algorithms.

4.3 Per S-box Gate Equivalent Count for AES or in a Larger Cipher

Here we show the per S-box Gate Equivalent Count if this S-box were adopted
for AES when the S-boxes are implemented in parallel. This is applicable for
any other new cipher that plans to use 8-bit S-boxes. It was shown in Section 5
that for each S-box the hardware requirement sans the counter is 76.67 GE. The
counter requires a hardware of 61.33 GE that can be reused across the S-boxes.
Now, the storage of the each data state requires a two-input flip-flop with gate
equivalent count 6. However, the S-box flip-flops can be reused to keep the data
state. In other words, the data state flip-flops can be reused for the S-box. The
initialization of the data state flip-flops (i.e. mux/second input of the 2-input
flip-flops) can also be common with the S-box. So we can subtract the flip-flop
hardware requirement of the S-box. However, we need to add a 2:1 mux for
loading the data state in various rounds. This makes the hardware requirement
of the S-box sans the counter as 76.67−8×6+8×2.33 = 47.31. To this, we need
to add the share of each S-box for the counter. For AES-128, there are 16 S-boxes
(excluding the key-scheduling part). Hence, the share of the counter per S-box is
61.33/16=3.83. Thus, the hardware requirement per S-box is 47.31+3.83=51.14
GE.

For AES-256, the hardware requirement per S-box is 47.31+61.33/32=49.22.

