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Abstract. Support of membership revocation is a desirable functionality for any group signature scheme.
Among the known revocation approaches, verifier-local revocation (VLR) seems to be the most flexible
one, because it only requires the verifiers to possess some up-to-date revocation information, but not the
signers. All of the contemporary VLR group signatures operate in the bilinear map setting, and all of them
will be insecure once quantum computers become a reality. In this work, we introduce the first lattice-
based VLR group signature, and thus, the first such scheme that is believed to be quantum-resistant. In
comparison with existing lattice-based group signatures, our scheme has several noticeable advantages:
support of membership revocation, logarithmic-size signatures, and milder hardness assumptions. In the
random oracle model, our scheme is proven secure based on the hardness of the SIVPÕ(n2.5) problem in
general lattices. Moreover, our construction works without relying on public-key encryption schemes, which
is an intriguing feature for group signatures.
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1 Introduction

Group Signatures. Group signatures have been an important research topic in public-key cryp-
tography since their introduction by Chaum and van Heyst [15]. In these schemes, all the potential
signers form a group, where each signer can anonymously issue a signature on behalf of the whole
group (anonymity). On the other hand, in cases of disputes, there is a tracing mechanism which can
link a given signature to the identity of the misbehaving member (traceability). These two attractive
features allow group signatures to find applications in various real-life scenarios, such as anonymous
online communications, digital right management, e-commerce systems, and much more. Over the last
two decades, many group signature schemes with different security models, different levels of efficiency
and functionality have been proposed ([16,4,5,8,9,6,20,23], ...).

One desirable functionality of group signatures is the support for membership revocation. For
example, misbehaving members who issue signatures for documents, which they are not allowed to
sign, should be revoked from the group. In these cases, if a group signature scheme does not support
revocation, then the whole system has to be re-initialized, which is obviously an unsuitable solution in
practice. Currently there are two main revocation approaches for group signatures. The first approach
requires all the unrevoked members to update their signing keys after each revocation ([4,12,8,11],...).
At the same time, all the signature verifiers need to download the up-to-date group public key. As
a consequence, it is sometimes inconvenient to practically implement such schemes. The second ap-
proach, that is group signatures with verifier-local revocation (VLR), only requires the verifiers to



possess some up-to-date revocation information, but not the signers. Since in most of real-life sce-
narios, the number of signature verifiers is much smaller than the number of signers, this revocation
approach is more flexible and more practical. Moreover, it is akin to that of the traditional Public Key
Infrastructures, where the verifiers use the latest Certificate Revocation List to check the public key
of the signer. The notion of VLR group signatures was introduced by Brickell [10], then formalized
by Boneh and Shacham [9], further investigated and extended by Nakanishi and Funabiki [32,33],
Libert and Vergnaud [24], and Bichsel et al. [7]. It is worth mentioning that all the existing VLR
group signatures scheme operate in the bilinear map setting. Furthermore, all these schemes will be
insecure once quantum computers become a reality [40]. Thus, constructing a VLR group signature
schemes which is secure against quantum computers, or even outside of the bilinear map setting, is a
challenging open question.

Lattice-based Group Signatures. Lattice-based cryptography is currently considered as the most
promising candidate for post-quantum cryptography. As opposed to classical cryptography (i.e., based
on the hardness of factoring or discrete log problems), lattice-based cryptography is widely believed
to be resistant against quantum computers, moreover, it enjoys provable security under worst-case
hardness assumptions ([1,38,18,28]). Designing secure and efficient lattice-based cryptographic con-
structions (and group signatures, in particular) becomes an intriguing challenge for the research com-
munity looking forward to the future. To the best of our knowledge, three lattice-based group signature
schemes have been proposed, but none of them supports membership revocation. The first one was
introduced by Gordon et al. [19] in 2010. While their scheme is of great theoretical interest, its signa-
tures have size O(N), where N is the number of group users. In terms of efficiency, this is a noticeable
disadvantage if the group is large, e.g., group of all employees of a big company. Camenisch et al. [13]
later proposed lattice-based anonymous attribute tokens system, a primitive that can be considered
as a generalization of group signature. However, in their construction, the signatures size is still linear
in N . Recently, Laguillaumie et al. [22] designed a scheme featuring signature size Õ(logN), which is
the first lattice-based group signature that overcomes the linear-size barrier. We remark that all the
above mentioned schemes follow the traditional sign-and-encrypt-and-prove paradigm: to enable the
tracing mechanism, these schemes require the signer to encrypt some private information via certain
type of public-key encryption (PKE) based on the Learning With Errors (LWE) problem, and then
generate a sophisticated proof to prove particularly that the ciphertext is well-formed. Relying on
PKE to construct group signatures may imply two troublesome issues: firstly, it makes the construc-
tion less efficient; secondly, since the whole system is secure only if the underlying PKE scheme is
secure, it sometimes does lead to a relatively strong hardness assumption. In particular, the recent
scheme by Laguillaumie et al. [22] is only provably secure if there is no quantum algorithm to ap-
proximate the Shortest Independent Vectors Problem (SIVPγ) on lattices of dimension n to within

certain γ = Õ(n8.5). This yields several interesting open questions in this direction: Is it possible to
construct a scheme that supports membership revocation? Can lattice-based group signature schemes
be free of LWE-based PKE? How to design a more efficient scheme based on weaker security assump-
tions?

Our Contributions. In the present work, we reply to all the above open questions positively. In par-
ticular, we introduce the first group signature with verifier-local revocation from lattice assumptions,
and thus, the first such scheme that is believed to be quantum-resistant. In comparison with known
lattice-based group signatures, while the schemes from [19], [13] and [22] follow the CPA-anonymity and
CCA-anonymity notions from [8,5], our construction satisfies the (weaker) notion of selfless-anonymity
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for VLR group signatures from [9]. Nevertheless, our scheme has several remarkable advantages over
the contemporary counterparts:

1. Functionality: Our scheme is the first lattice-based group signature that supports membership
revocation. As discussed above, this is a desirable functionality for any group signature scheme.

2. Simplicity: Our scheme is conceptually very simple. Each group signature roughly consists of an
LWE instance and an all-in-one argument of knowledge, made non-interactive using Fiat-Shamir
paradigm [17]. Moreover, the scheme departs from the traditional paradigm, and is free of LWE-
based public-key encryptions.

3. Efficiency: For a security parameter n and for a group of N members, the group public key and
the signature have bit-sizes Õ(n2) · logN and Õ(n) · logN , respectively. This level of asymptotic
efficiency is comparable to that of [22], and is a noticeable improvement over those of [19] and [13].

4. Security assumption: Our scheme is proved to be secure (in the random oracle model) based on
the worst-case hardness of approximating the Shortest Independent Vectors Problem, for general
lattices of dimension n, to within a factor γ = Õ(n2.5). That is, in contrast to [22], we achieve
logarithmic-size signatures without having to pay a heavy cost in terms of hardness assumptions.

Overview of Our Techniques. The main building block of our VLR group signature scheme is a
Stern-like [41] interactive argument system allowing a signer to convince the verifier in zero-knowledge
that: (i) the signer is a certified group member (i.e., he possesses a valid secret signing key); (ii)
the “revocation token” assigned to the signer is correctly committed via a function that is injective,
one-way and pseudo-random. The argument system is repeated many times to make the soundness
error negligibly small, and then is converted to a signature scheme via Fiat-Shamir heuristic [17]. If
the produced signature is generated by an honest signer whose revocation token is unavailable to the
verifier, then it should be accepted and anonymous. On the other hand, if the signer has been revoked,
then his token is known to the verifier, which allows the latter to check that the token yields the
committed function value and to reject the signature accordingly.

We consider a group of N = 2` users, where each user is identified by a string d ∈ {0, 1}` denoting
the binary representation of his index in the group. Let n,m, β, and q ≥ 2 be integers (to be determined
later). Our scheme operates within the structure of a Bonsai tree of hard random lattices [14], specified

by a matrix A =
[
A0

∣∣A0
1

∣∣A1
1

∣∣ . . . ∣∣A0
`

∣∣A1
`

]
∈ Zn×(2`+1)m

q , and a vector u ∈ Znq . Initially, the group user

with identity d = d[1] . . . d[`] ∈ {0, 1}` is issued a Bonsai signature on his identity, that is a small

vector z ∈ Z(`+1)m, such that ‖z‖∞ ≤ β and Ad · z = u mod q, where Ad =
[
A0

∣∣Ad[1]
1

∣∣ . . . ∣∣Ad[`]
`

]
-

a subtree defined by d. In other words, z is a solution to the Inhomogeneous Small Integer Solution
(ISIS) instance (Ad,u). To prove that he is a certified group member without leaking z, the user can
perform a proof/argument of knowledge (e.g., [29,26,25]) to convince the verifier that he knows such
a vector z in zero-knowledge.

At this stage, one can obtain a secure identity-based identification scheme (as shown in [39]), but
it is insufficient for our purposes: to achieve anonymity, the group user additionally has to hide his
identity d, and hence, the matrix Ad should not be explicitly given. This raises an interesting question:
If the verifier does not know Ad, how could he be convinced that Ad · z = u mod q? To address this
issue, we introduce the following extension: we add ` suitable zero-blocks of size m to vector z to
obtain the extended vector x =

(
x0‖x0

1‖x1
1‖ . . . ‖x0

`‖x1
`

)
∈ Z(2`+1)m, where the added zero-blocks are

x
1−d[1]
1 , . . . ,x

1−d[`]
` . We then have ‖x‖∞ ≤ β, and A · x = u mod q. Namely x is a solution to the ISIS

instance given by the whole Bonsai tree, with an additional condition: for each i = 1, . . . , `, one of
the two blocks x0

i ,x
1
i must be zero, where the arrangement of the zero-blocks is determined by d. To

prove in zero-knowledge the possession of such a vector x, we adapt the ‘Stern Extension’ argument
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system from [25], where the user identity d is hidden by a “one-time pad” technique. This technique
is as follows. In each round of the protocol, the user samples a fresh uniformly random e ∈ {0, 1}` and
permutes the blocks of x to obtain the permuted vector v, whose zero-blocks are arranged according
to d ⊕ e (where ⊕ denotes the bit XOR operation). Depending on the verifier’s challenge, the user
later will either reveal e, or reveal d⊕ e and show that v has the correct shape determined by d⊕ e.
Since d⊕ e is uniformly random over {0, 1}`, the user identity d is completely hidden. As a result, the
user can anonymously prove his group membership.

We now sketch our revocation mechanism. For each group user’s secret key x, consider the first
block x0 that corresponds to the “root” A0 of the Bonsai tree, and let his revocation token be
token = A0 ·x0 mod q ∈ Znq . We choose suitable parameters, and sample x0 from a proper distribution,
so that the token is statistically close to uniform over Znq . When issuing a VLR group signature, the
user draws a uniformly random matrix B ∈ Zm×nq from a random oracle, samples a small vector
e ∈ Zm from the LWE error distribution, outputs the LWE function:

b = B · token + e mod q,

and extends the zero-knowledge argument system discussed above to additionally prove that vector b
is honestly generated. Given a signature containing vector b, and a list of revocation tokens RL =
{{ui}i}, the verifier computes e′i = b−B · ui mod q, for all i, and rejects the signature if there exists
index i such that ‖e′i‖∞ is small. The soundness of the underlying argument system ensures that a
revoked signer cannot pass the test. On the other hand, since the LWE function is injective, one-way
and pseudo-random (for appropriate setting of parameters), signatures issued by non-revoked members
should remain anonymous and should not be falsely rejected.

Putting everything together, we obtain a lattice-based VLR group signature that has several nice
features, as mentioned earlier. In the process, we exploit the rich structure of the Bonsai tree [14],
and the versatility of the “Stern Extension” argument system from [25]. We also employ a special
“one-time pad” technique for hiding secret bits, and an interesting revocation mechanism.

2 Preliminaries

Notations. For a positive integer n, we let [n] denote the set {1, . . . , n}. Vectors will be denoted in bold
lower-case letters and matrices will be denoted in bold upper-case letters. We assume that all vectors
are column vectors. The concatenation of vectors x ∈ Rm and y ∈ Rk is denoted by (x‖y). We denote
the column concatenation of matrices A ∈ Rn×m and B ∈ Rn×k by

[
A
∣∣B]. Let x = (x1, . . . , xn), we

denote by Parse(x, i1, i2) the vector (xi1 , xi1+1 . . . , xi2) for 1 ≤ i1 ≤ i2 ≤ n. If S is a finite set, y
$←− S

means that y is chosen uniformly at random from S. If D1 and D2 are two distributions over the same
countable support S, then their statistical distance is defined as ∆(D1, D2) = 1

2

∑
x∈S |D1(x)−D2(x)|.

Two distributions are statistically close if their statistical distance is negligible.

2.1 VLR Group Signature

The presentation in this Section follows [9]. A VLR group signature consists of 3 following algorithms:

• KeyGen(n,N): On input security parameter n and group size N , this PPT algorithm outputs a
group public key gpk, a vector of user secret keys gsk = (gsk[0], gsk[1], . . . , gsk[N−1]), and a vector
of user revocation tokens grt = (grt[0], grt[1], . . . , grt[N − 1]).
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• Sign(gpk, gsk[d],M): On input gpk, a user secret key gsk[d], and a message M ∈ {0, 1}∗, this PPT
algorithm outputs a signature Σ.
• Verify(gpk, RL,Σ,M): On input gpk, a set of revocation tokens RL ⊆ {grt[0], grt[1], . . . , grt[N−1]},

a signature Σ, and the message M , this algorithm outputs either Valid or Invalid. The output Valid
indicates that Σ is a valid signature on message M under gpk, and the signer has not been revoked.

Remark 1. Any VLR group signature has an implicit tracing algorithm using grt as the tracing key.
The tracing algorithm works as follows: on input a valid signature Σ on a message M , it reveals the
signer of Σ by running Verify(gpk, RL = grt[d], Σ,M), for d = 0, 1, . . ., and outputting the first index
d∗ ∈ {0, 1, . . . , N − 1} for which the verification algorithm returns Invalid. The tracing algorithm fails
if and only if the given signature is properly verified for all d.

A secure VLR group signature scheme must satisfy the following 3 requirements:

1. Correctness: For all (gpk, gsk, grt) outputted by KeyGen, all d ∈ {0, 1, . . . , N − 1}, and all M ∈
{0, 1}∗,

Verify(gpk, RL, Sign(gpk, gsk[d],M),M) = Valid⇔ grt[d] 6∈ RL.
2. Selfless-anonymity: In the following selfless-anonymity game, the adversary’s goal is to determine
which of the two adaptively chosen keys generated a signature. He is not given access to either key.
(a) Setup. The challenger runs KeyGen to generate (gpk, gsk, grt), then gives gpk to the adversary A.
(b) Queries. Adversary A can make the following queries:
• Signing: Query for signature of any user d on any message M ∈ {0, 1}∗. The challenger returns
the signature Σ = Sign(gpk, gsk[d],M).
• Corruption: Query for the secret key of any user d. The challenger returns gsk[d].
• Revocation: Query for the revocation token of any user d. The challenger returns grt[d].

(c) Challenge. Adversary A outputs a message M∗ and two indices d0 and d1, such that A never made

a corruption or revocation query for user d0 or user d1. The challenger chooses a bit c
$←− {0, 1},

computes a signature of user dc on M∗ as Σ∗ = Sign(gpk, gsk[dc],M
∗), and returns Σ∗ to A.

(d) Restricted Queries. After the challenge phase, A can still make queries as before, but with the
following restrictions: it is not allowed to make any corruption or revocation query for user d0 or
user d1.

(e) Output. Eventually, A outputs a bit c′. It wins the game if c′ = c.
We define the adversary’s advantage in winning the game as AdvA =

∣∣Pr[c′ = c]− 1/2
∣∣. We say that

the VLR group signature is selfless-anonymous if AdvA is negligible.

3. Traceability: The adversary’s goal in the traceability game is to forge a signature that cannot be
traced to one of the users in his coalition using the implicit tracing algorithm above. The traceability
game is defined as follows:
(a) Setup: Run KeyGen(n,N) to obtain (gpk, gsk, grt). Adversary A is given (gpk, grt). Set U = ∅.
(b) Queries: Adversary A can make queries to the following oracles:

• Signing: On input a message M , and an index d, the oracle returns Σ = Sign(gpk, gsk[d],M).
• Corruption: On input an index d, the oracle adds d to the set U , and returns gsk[d].

(c) Forgery: Eventually, A outputs a message M∗, a set of revocation tokens RL∗ and a signature Σ∗.
The adversary wins the game if:
i. Verify(gpk, RL∗, Σ∗,M∗) = valid.
ii. The (implicit) tracing algorithm fails or traces to a user outside of the coalition U \RL∗.
iii. The signature Σ∗ is non-trivial, i.e., A did not obtain Σ∗ by making a signing query on M∗.

The probability that A wins the game, denoted by SuccPTA, is taken over the randomness of A,
algorithms KeyGen and Sign. We say that a VLR group signature is traceable if SuccPTA is negligible.
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2.2 Some Cryptographic Tools from Lattices

Lattices. Let n,m, and q ≥ 2 be integers. For matrix A ∈ Zn×mq , define the m-dimensional lattice:

Λ⊥(A) =
{
x ∈ Zm : A · x = 0 mod q

}
⊆ Zm.

For any u in the image of A, define the coset Λ⊥u (A) =
{
x ∈ Zm : A · x = u mod q

}
.

We recall the homogeneous and inhomogeneous Small Integer Solution problems (SIS and ISIS),
the Learning With Errors LWE problem, as well as their hardness results..

Definition 1. The SISpn,m,q,β and ISISpn,m,q,β problem in the `p norm with parameters (n,m, q, β) are

as follows: Given a uniformly random matrix A ∈ Zn×mq , and a uniformly random vector u ∈ Znq ,

• SISpn,m,q,β asks to find a non-zero vector x ∈ Λ⊥(A) such that ‖x‖p ≤ β.

• ISISpn,m,q,β asks to find a vector x ∈ Λ⊥u (A) such that ‖x‖p ≤ β.

The hardness of the SIS and ISIS problems is given by a worst-case to average-case reduction from
standard lattice problems, such as the Shortest Independent Vectors Problem (SIVP).

Lemma 1 ([18]). For any m, β = poly(n), and for any q ≥ β · ω(
√
n log n), solving a random

instance of the SIS2
n,m,q,β or ISIS2

n,m,q,β problem with non-negligible probability is at least as hard as

approximating the SIVPγ problem on any lattice of dimension n to within certain γ = β · Õ(
√
n)

factors.

It then follows from the relationship between the `2 and `∞ norms that the SIS∞n,m,q,β and ISIS∞n,m,q,β
problems are at least as hard as SIVPγ (in the `2 norm) for some γ = β · Õ(

√
nm).

Definition 2 ([38]). Let n,m ≥ 1, q ≥ 2, and let χ be a probability distribution on Z. For s ∈ Znq ,

let As,χ be the distribution obtained by sampling a
$←− Znq and e ←↩ χ, and outputting the pair

(a,aT · s + e) ∈ Znq × Zq. The LWEn,q,χ problem asks to distinguish m samples chosen according to

As,χ (for s
$←− Znq ) and m samples chosen according to the uniform distribution over Znq × Zq.

If q is a prime power, β ≥
√
nω(log n), γ = Õ(nq/β), then there exists an efficient sampleable β-

bounded distribution χ (i.e., χ outputs samples with norm at most β with overwhelming probability)
such that the LWEn,q,χ problem is as least as hard as SIVPγ (see [38,36,30,31]).

Gaussians over Lattices. For any positive real σ, the n-dimensional Gaussian function is defined
as: ∀x ∈ Rn, ρσ(x)= exp(−π‖x‖2/σ2). For any n-dimensional lattice Λ, define the discrete Gaussian

distribution over Λ as: ∀x ∈ Λ, DΛ,σ(x) = ρσ(x)
ρσ(Λ)

. In the following lemma, we review several well-known
facts about discrete Gaussian distribution:

Lemma 2 ([18][35]). Let n and q ≥ 2 be integers. Let m ≥ 2n log q, and σ ≥ ω(
√

logm).

1. For all but a 2q−n fraction of all A ∈ Zn×mq , for x←↩ DZm,σ, the distribution of u = A · x mod q
is statistically close to uniform over Znq . Moreover, the conditional distribution of x given u is
DΛ⊥u (A),σ.

2. For β = dσ · logme, and x←↩ DZm,σ, Pr
[
‖x‖∞ > β

]
is negligible.

3. The min-entropy of DZm,σ is at least m− 1.
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We now recall the results about two fundamental tools in lattice-based cryptography: the trapdoor
generation and the preimage sampling algorithms. The algorithms stated in the following lemma are
improvements of those in the literature [2,18,34,3].

Lemma 3 ([27]). Given integers n ≥ 1, q ≥ 2, and m ≥ 2n log q. There is a PPT algorithm
GenTrap(n,m, q) that outputs a matrix A ∈ Zn×mq and a trapdoor RA, such that the distribution of A
is negl(n)-far from uniform. Moreover, for any vector u in the image of A and σ = ω(

√
n log q log n),

there is a PPT algorithm SampleD(RA,A,u, σ) that outputs x ∈ Zm sampled from the distribution
DZm,σ, conditioned on the event that A · x = u mod q.

The KTX String Commitment Scheme. Kawachi et al. [21] constructed a string commitment
scheme COM : {0, 1}∗ × {0, 1}m/2 → Znq , such that:

• If m > 2n(1 + δ) log q for some positive constant δ, then COM is statistically hiding.

• If the SIS∞n,m,q,1 problem is hard, then COM is computationally binding.

In this paper, we will extensively employ the KTX commitment scheme. We implicitly choose m
sufficiently large, e.g., m = 4n log q, to make COM statistically hiding.

3 Preparations

This section describes the parameters and techniques that will be used in our scheme.

3.1 Parameters

Our group signature scheme involves two main parameters: a security parameter n and a maximum
expected number of group users N = 2` ∈ poly(n). Given n, we fix the other scheme parameters as in
Table 1.

Parameter Value or Asymptotic bound

Prime modulus q ω(n2 logn)

Dimension m ≥ 2n log q

Gaussian parameter σ ω(
√
n log q logn)

Integer norm bound β dσ · logme s.t. (4β + 1)2 ≤ q

Number of ‘decompositions’ p blog βc+ 1

Sequence of integers β1 = dβ/2e;β2 = d(β − β1)/2e
β1, β2, β3, . . . , βp β3 = d(β − β1 − β2)/2e; . . . ;βp = 1

Number of protocol repetitions t ω(logn)

Table 1. Parameters of our VLR group signature scheme. The sequence β1, β2, . . . , βp satisfies
∑p
j=1 βj = β, and every

integer in the interval [−β, β] can be efficiently expressed as a subset sum of elements in the set {±β1,±β2, . . . ,±βp}.
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3.2 Some Specific Sets

We now define some specific sets of vectors and permutations that will be extensively used throughout
this work. First, we denote by B3m the set of all vectors in {−1, 0, 1}3m having exactly m coordi-
nates −1; m coordinates 0; and m coordinates 1. Given a binary string d = d[1] . . . d[`] ∈ {0, 1}`, we
define two sets:

• Secretβ(d): The set of all vectors x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

`‖x1
`

)
∈ Z(2`+1)m consisting of 2`+ 1 blocks

of size m, such that ‖x‖∞ ≤ β, and the following ` blocks are zero-blocks 0m: x
1−d[1]
1 , . . . ,x

1−d[`]
` .

• SecretExt(d): The set of all vectors x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

`‖x1
`

)
∈ {−1, 0, 1}(2`+1)3m consisting of

2`+ 1 blocks of size 3m, such that the `+ 1 blocks x0,x
d[1]
1 , . . . ,x

d[`]
` are elements of B3m, and the

remaining ` blocks x
1−d[1]
1 , . . . ,x

1−d[`]
` are zero-blocks 03m.

Given a vector x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

`‖x1
`

)
∈ Z(2`+1)3m consisting of 2` + 1 blocks of size 3m, we

define two sets of permutations of x:

• The set S of all permutations that keep the arrangement of the blocks. Specifically, if π ∈ S, then

π(x) =
(
τ0(x0)‖τ01 (x0

1)‖τ11 (x1
1)‖ . . . ‖τ0` (x0

` )‖τ1` (x1
` )
)
,

where τ0, τ
0
1 , τ

1
1 , . . . , τ

0
` , τ

1
` ∈ S3m. (Hereunder, S3m denotes the symmetric group of all permuta-

tions of 3m elements.)

• The set T = {Te
∣∣ e ∈ {0, 1}`}, where for e = e[1] . . . e[`], Te ∈ T rearranges the blocks as follows:

Te(x) =
(
x0‖xe[1]1 ‖x

1−e[1]
1 ‖ . . . ‖xe[`]` ‖x

1−e[`]
`

)
.

In particular, given d, c ∈ {0, 1}`, π ∈ S, and x ∈ Z(2`+1)3m, it can be checked that:

x ∈ SecretExt(d)⇔ π(x) ∈ SecretExt(d)⇔ Tc ◦ π(x) ∈ SecretExt(d⊕ c), (1)

where ⊕ denotes the (bit-wise) addition operation modulo 2.

3.3 The Decomposition - Extension Technique

Ling et al. [25] proposed a Stern-type zero-knowledge proof of knowledge for the ISIS∞n,m,q,β problem
that enjoys a strong security guarantee: the best way to break their protocol is to solve the underlying
ISIS problem. They achieve this feature by using a versatile Decomposition-Extension framework.
Adapting their technique, we construct the following procedures:

Elementary Decomposition. On input a vector v = (v1, v2, . . . , vm) ∈ Zm such that ‖v‖∞ ≤ β, the
procedure EleDec outputs p = blog βc+1 vectors w̃1, . . . , w̃p ∈ {−1, 0, 1}m, such that

∑p
j=1 βj ·w̃j = v.

This procedure works as follows:

1. For each i ∈ [m], express vi as vi = β1 ·vi,1+β2 ·vi,2+ . . .+βp ·vi,p, where ∀j ∈ [p] : vi,j ∈ {−1, 0, 1}.
It was noted in [25] that for β1, β2, . . . , βp given in Table 1, this step can easily be done.

2. For each j ∈ [p], let w̃j := (v1,j , v2,j , . . . , vm,j) ∈ {−1, 0, 1}m. Output w̃1, . . . , w̃p.

Elementary Extension. On input a vector w̃ ∈ {−1, 0, 1}m, the procedure EleExt extends w̃ to a
vector w ∈ B3m. This procedure works as follows:

1. Let λ(−1), λ(0) and λ(1) be the numbers of coordinates of w̃ that equal to −1, 0, and 1 respectively.
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2. Pick a random vector ŵ ∈ {−1, 0, 1}2m that has exactly (m − λ(−1)) coordinates −1, (m − λ(0))
coordinates 0, and (m− λ(1)) coordinates 1. Output w =

(
w̃‖ŵ

)
∈ B3m.

Witness Decomposition and Extensions. On input x ∈ Secretβ(d) for some d = d[1] . . . d[`] ∈
{0, 1}`, the procedure WitnessDE outputs p vectors z1, . . . zp ∈ SecretExt(d). This procedure works as
follows:

1. Write x as the concatenation of 2`+ 1 blocks of size m, namely: x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

`‖x1
`

)
.

2. Run EleDec on each of the `+ 1 blocks x0,x
d[1]
1 , . . . ,x

d[`]
` to obtained (`+ 1)p decomposed vectors.

Then run EleExt on each of the decomposed vectors to obtain (` + 1)p vectors in B3m, denoted

respectively by {w0,j}pj=1, {w
d[1]
1,j }

p
j=1, . . . , {w

d[`]
`,j }

p
j=1.

3. Create `p zero-vectors of dimension 3m, and denote them by {w1−d[1]
1,j }pj=1, . . . , {w

1−d[`]
`,j }pj=1.

4. For each j ∈ [p], let zj =
(
w0,j‖w0

1,j‖w1
1,j‖ . . . ‖w0

`,j‖w1
`,j

)
. Output z1, . . . , zp ∈ SecretExt(d).

Matrix Extension. On input matrix A ∈ Zn×(2`+1)m
q , the following procedure MatrixExt outputs

matrix A∗ ∈ Zn×(2`+1)3m
q :

1. Write A as the concatenation of 2`+ 1 component-matrices in Zn×mq .
2. Append 2m zero-columns to each of the component-matrices, then output the extended matrix A∗.

In particular, let {zj}pj=1 ←WitnessDE(x) and A∗ ← MatrixExt(A) then we have A·x = A∗ ·(
∑p

j=1 βj ·
zj). We illustrate our Decomposition-Extension technique in Figure 1.

A · x = u (mod q)

x ∈ Secretβ(d)

d = (1 . . . 0) ∈ {0, 1}`

A0 A0
1 A1

1 A0
` A1

`
· x0

x0
1 = 0m

x1
1

x0
`

x1
` = 0m

u
=n

m

A0

A∗ =
0 A0

1 0 A1
1 0 A0

` 0 A1
` 0

n

2m

zT1 = ︸ ︷︷ ︸
w0,1

︸ ︷︷ ︸
w0

1,1 = 03m

︸ ︷︷ ︸
w1

1,1

︸ ︷︷ ︸
w0
`,1

︸ ︷︷ ︸
w1
`,1 = 03m

zTp =

......

β
1 ·

+
...

+
β
p ·

=

x1
1

β
1 ·

+
...

+
β
p ·

=

x0
`

β
1 ·

+
...

+
β
p ·

=

x0

Fig. 1. An illustration of our Decomposition-Extension technique, where the first bit of d is 1 and its last bit is 0. We
denote by an element of B3m. After performing Decomposition-Extension, one has that zj ∈ SecretExt(d)
for all j ∈ [p], and A∗ ·

(∑p
j=1 βj · zj

)
= A · x = u mod q.

Therefore, in the protocol in Section 4, in order to prove that x ∈ Secretβ(d) for some d ∈ {0, 1}`,
and A · x = u mod q, one can instead prove that:

A∗ · (
p∑
j=1

βj · zj) = u mod q and ∀j ∈ [p], π ∈ S, e ∈ {0, 1}` : Te ◦ π(zj) ∈ SecretExt(d⊕ e),

where the latter relation follows from the fact that zj ∈ SecretExt(d) for all j ∈ [p], and from (1).
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4 The Underlying Interactive Protocol

The main building block of our VLR group signature scheme is a Stern-like [41] interactive argument
system allowing a signer to convince the verifier in zero-knowledge that:

1. The signer is a certified group member: he possesses a signature on his secret index, with respect
to the Bonsai tree signature scheme [14].

2. The signer’s revocation token is correctly committed via an LWE function.

In Section 5, the protocol is repeated t = ω(log n) times to make the soundness error negligibly small,
and then is transform to a signature scheme via Fiat-Shamir heuristic. The interactive protocol is
summarized as follows:

• The public parameters consist of matrix A =
[
A0

∣∣A0
1

∣∣A1
1

∣∣ . . . ∣∣A0
`

∣∣A1
`

]
∈ Zn×(2`+1)m

q , vector u ∈
Znq , matrix B ∈ Zm×nq and vector b ∈ Zmq .

• The prover’s witness consists of vector x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

`‖x1
`

)
∈ Secretβ(d) for some secret

d ∈ {0, 1}`; and vector e ∈ Zm.

• The prover’s goal is to convince the verifier in zero-knowledge that:

1. A · x = u mod q and x ∈ Secretβ(d).

2. ‖e‖∞ ≤ β and B · (A0 · x0) + e = b mod q.

Prior to the interaction, both the prover and the verifier compute the following public matrices:
A∗ ← MatrixExt(A); B∗ = B · A0 ∈ Zm×mq ; and I∗ ∈ {0, 1}m×3m, which is the matrix obtained by
appending 2m zero-columns to the identity matrix of order m.

Meanwhile, the prover applies the Decomposition-Extension technique on his witness vectors:

• Let z1, . . . , zp ←WitnessDE(x), and for each j ∈ [p], let zj,0 = Parse(zj , 1,m).

• Let ẽ1, . . . , ẽp ← EleDec(e), then for each i ∈ [p], let ei ← EleExt(ẽi).

In the protocol, the prover instead convinces the verifier that he knows z1, . . . , zp ∈ SecretExt(d) and
e1, . . . , ep ∈ B3m such that:{

A∗ ·
(∑p

j=1 βj · zj
)

= u mod q;

B∗ ·
(∑p

j=1 βj · zj,0
)

+ I∗ ·
(∑p

j=1 βj · ej
)

= b mod q.

4.1 Description of the Protocol

The protocol follows Stern’s approach for three-pass zero-knowledge identification schemes [41,25]. Let
COM be the statistically hiding and computationally binding string commitment scheme from [21].
The prover and the verifier interact as follows.

1. Commitment: The prover samples randomness ρ1, ρ2, ρ3 for COM and the following uniformly
random objects: 

c
$←− {0, 1}`;

πz,1, . . . , πz,p
$←− S; πe,1, . . . , πe,p

$←− S3m;

rz,1, . . . , rz,p
$←− Z(2`+1)·3m

q ; re,1, . . . , re,p
$←− Z3m

q .
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For each j ∈ [p], let rj,0 = Parse(rz,j , 1,m). Then it and sends the commitment CMT =
(
c1, c2, c3

)
to the verifier, where

c1 = COM
(
c, {πz,j , πe,j}pj=1, A∗(

∑p
j=1 βj · rz,j); B∗(

∑p
j=1 βj · rj,0) + I∗(

∑p
j=1 βj · re,j); ρ1

)
,

c2 = COM
(
{Tc ◦ πz,j(rz,j), πe,j(re,j)}pj=1; ρ2

)
,

c3 = COM
(
{Tc ◦ πz,j(zj + rz,j), πe,j(ej + re,j)}pj=1; ρ3

)
.

(2)

2. Challenge: The verifier sends a challenge Ch
$←− {1, 2, 3} to the prover.

3. Response: Depending on the challenge, the prover sends the response RSP computed as follows.

• Case Ch = 1: Let d1 = d ⊕ c. For each j ∈ [p], let vz,j = Tc ◦ πz,j(zj); wz,j = Tc ◦ πz,j(rz,j);
ve,j = πe,j(ej); we,j = πe,j(re,j). Send

RSP =
(
d1, {vz,j ,wz,j ,ve,j ,we,j}pj=1, ρ2, ρ3

)
. (3)

• Case Ch = 2: Let d2 = c. For each j ∈ [p], let φz,j = πz,j ; φe,j = πe,j ; sz,j = zj + rz,j ;
se,j = ej + re,j . Send

RSP =
(
d2, {φz,j , φe,j , sz,j , se,j}pj=1, ρ1, ρ3

)
. (4)

• Case Ch = 3: Let d3 = c. For each j ∈ [p], let ψz,j = πz,j ; ψe,j = πe,j ; hz,j = rz,j ; he,j = re,j .
Send

RSP =
(
d3, {ψz,j , ψe,j ,hz,j ,he,j}pj=1, ρ1, ρ2

)
. (5)

Verification: Receiving the response RSP, the verifier proceeds as follows:

• Case Ch = 1: Parse RSP as in (3). Check that ∀j ∈ [p] : vz,j ∈ SecretExt(d1) and ve,j ∈ B3m and
that: {

c2 = COM
(
{wz,j , we,j}pj=1; ρ2

)
c3 = COM

(
{vz,j + wz,j , ve,j + we,j}pj=1; ρ3

)
.

• Case Ch = 2: Parse RSP as in (4). For each j ∈ [p], let sj,0 = Parse(sz,j , 1,m). Check that:
c1 = COM

(
d2, {φz,j , φe,j}pj=1, A∗(

∑p
j=1 βj · sz,j)− u;

B∗(
∑p

j=1 βj · sj,0) + I∗(
∑p

j=1 βj · se,j)− b; ρ1
)
,

c3 = COM
(
{Td2 ◦ φz,j(sz,j), φe,j(se,j)}

p
j=1; ρ3

)
.

• Case Ch = 3: Parse RSP as in (5). For each j ∈ [p], let hj,0 = Parse(hz,j , 1,m). Check that:{
c1 = COM

(
d3, {ψz,j , ψe,j}pj=1, A∗(

∑p
j=1 βj · hz,j); B∗(

∑p
j=1 βj · hj,0) + I∗(

∑p
j=1 βj · he,j); ρ1

)
;

c2 = COM
(
{Td3 ◦ ψz,j(hz,j), ψe,j(he,j)}

p
j=1; ρ2

)
.

The verifier outputs Valid if and only if all the conditions hold. Otherwise, he outputs Invalid.
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4.2 Analysis of the Protocol

The following theorem summarizes the properties of the given interactive protocol.

Theorem 1. Let COM be a statistically hiding and computationally binding string commitment scheme.
Then the interactive protocol described in Section 4.1 is a zero-knowledge argument of knowledge with
perfect completeness, soundness error 2/3, and communication cost ` · Õ(n). In particular:

• There exists an efficient simulator that, on public input (A,u,B,b), outputs an accepted transcript
which is statistically close to that produced by the real prover.

• There exists an efficient knowledge extractor that, on input a commitment CMT and 3 valid re-
sponses (RSP(1),RSP(2),RSP(3)) corresponding to all 3 possible values of the challenge Ch, outputs
a pair of vector (y, e′) ∈ Z(2`+1)m × Zm such that:

1. y =
(
y0‖y0

1‖y1
1‖ . . . ‖y0

`‖y1
`

)
∈ Secretβ(d) for some d ∈ {0, 1}`, and A · y = u mod q.

2. ‖e′‖∞ ≤ β and B · (A0 · y0) + e′ = b mod q.

The proof of Theorem 1 employs standard simulation and extraction techniques for Stern-like proto-
col [41,21,25], and is given in Appendix A.

5 The VLR Group Signature Scheme

In this section we first describe our lattice-based VLR group signature scheme, and then we prove
that the scheme satisfies the requirements defined in Section 2.1: correctness, selfless-anonymity and
traceability. The parameters of the scheme are as specified in Table 1.

5.1 Description of the Scheme

Keys Generation. The randomized algorithm KeyGen(n,N), works as follows:

1. Run GenTrap(n,m, q) to get A0 ∈ Zn×mq and trapdoor R.

2. Sample u
$←− Znq , and Ab

i
$←− Zn×mq for all b ∈ {0, 1} and i ∈ [`]. Then define the matrix

A =
[
A0

∣∣A0
1

∣∣A1
1

∣∣ . . . ∣∣A0
`

∣∣A1
`

]
∈ Zn×(2`+1)m

q .

3. For group user with index d ∈ {0, 1, . . . , N − 1}, let d[1] . . . d[`] ∈ {0, 1}` denote the binary repre-
sentation of d, and do the following:

(a) Sample vectors x
d[1]
1 , . . . ,x

d[`]
` ←↩ DZm,σ. Compute z =

∑`
i=1 A

d[i]
i · xd[i]i mod q, and sample

x0 ∈ Zm with x0 ←↩ SampleD
(
R,A0,u− z, σ

)
. Let x

1−d[1]
1 , . . . ,x

1−d[`]
` be zero-vectors 0m, and

define x(d) =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

`‖x1
`

)
∈ Z(2`+1)m. If ‖x(d)‖∞ ≤ β then go to step (3b); else,

repeat step (3a).

(b) Let the user secret key be gsk[d] = x(d), and the revocation token be grt[d] = A0 · x0 ∈ Znq .

4. Finally, the algorithm outputs (gpk, gsk, grt), where

gpk = (A,u); gsk =
(
gsk[0], gsk[1], . . . , gsk[N − 1]

)
; grt =

(
grt[0], grt[1], . . . , grt[N − 1]

)
.

Remark 2. We have some observations on the behaviour of the above key generation algorithm:
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• By Lemma 3, the distribution of matrix A0 generated by GenTrap(n,m, q) is statistically close to
uniform over Zn×mq . Thus, the distribution of gpk output by KeyGen(n,N) is statistically close to

uniform over Zn×(2`+1)m
q × Znq . We note that the pair (A,u) resembles the Bonsai tree structure

[14], where A0 is the “root” of the tree.
• In Step (3a), each coordinate of vector x(d) is either 0 or distributed according to the distribution
DZ,σ (see Lemma 3 regarding the output distribution of algorithm SampleD). By setting β =
dσ · logme, we ensure that ‖x(d)‖∞ ≤ β with overwhelming probability (see Lemma 2). Thus, the
event that Step (3a) needs to be repeated only occurs with negligible probability.
• The secret key x(d) of group user with index d satisfies A · x(d) = u mod q, and x(d) ∈ Secretβ(d).
• By Lemma 2, the distribution of each user revocation token grt[d] is statistically close to uniform

over Znq . The trivial requirement is that the revocation tokens of two different group users must
be different. In the very rare event of conflict (i.e., there exist d1, d2 ∈ {0, . . . , N − 1} such that
d2 > d1 and grt[d1] = grt[d2]), the algorithm simply re-samples the key and token for user with
index d2.

Signing Algorithm. Let H : {0, 1}∗ → {1, 2, 3}t and G : {0, 1}∗ → Zn×mq be random oracles. Let
χ be a β-bounded distribution, e.g., χ = DZm,σ. Given gpk = (A,u), to sign a message M ∈ {0, 1}∗
using the secret key gsk[d] = x = (x0‖x0

1‖x1
1‖ . . . ‖x0

`‖x1
` ) ∈ Secretβ(d), the user runs the randomized

algorithm Sign(gpk, gsk[d],M), which performs the following steps:

1. Sample ρ
$←− {0, 1}n and let B = G(A,u,M, ρ) ∈ Zm×nq .

2. Sample e←↩ χm. (Note that ‖e‖∞ ≤ β with overwhelming probability.) Then compute

b = B · grt[d] + e mod q = B · (A0 · x0) + e mod q.

3. Generate a non-interactive zero-knowledge argument of knowledge Π to prove the possession of a
valid secret signing key, and that vector b ∈ Zmq is honestly computed as above. This is done by
repeating t = ω(log n) times the basic protocol from Section 4 with public parameter (A,u,B,b)
and prover’s witness (x, e), and then making it non-interactive with the Fiat-Shamir heuristic as
a triple Π =

(
{CMT(k)}tk=1, CH, {RSP(k)}tk=1

)
, where

CH =
(
{Ch(k)}tk=1

)
= H

(
M,A,u,B,b, {CMT(k)}tk=1

)
∈ {1, 2, 3}t.

4. Output the group signature:

Σ =
(
M,ρ,b, Π

)
. (6)

Verification Algorithm. On input gpk = (A,u), a set of tokens RL =
{
{ui}i

}
⊂ Znq whose

cardinality is at most N − 1, a message M ∈ {0, 1}∗, and a purported group signature Σ on M , the
verifier runs the deterministic algorithm Verify(gpk, RL,Σ,M), which performs the following steps:

1. Parse the signature Σ as in (6), and compute B = G(A,u,M, ρ) ∈ Zm×nq .

2. If
(
Ch(1), . . . , Ch(t)

)
= H

(
M,A,u,B,b, {CMT(k)}tk=1

)
, then return Invalid.

3. For k = 1 to t, run the verification of the protocol from Section 4 to check the validity of RSP(k)

with respect to CMT(k) and Ch(k). If any of the verification conditions does not hold, then return
Invalid.

4. For each ui ∈ RL compute vector e′i = b − B · ui mod q. If there exists an index i such that
‖e′i‖∞ ≤ β, then return Invalid.

5. Return Valid.
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5.2 Analysis of the Scheme

Efficiency and Correctness. The parameters in Table 1 are set so that all of the algorithms in
the VLR group signature in Section 5.1 can be implemented in polynomial time. Asymptotically,
the group public key has bit-size ` · Õ(n2) = logN · Õ(n2), while the group signatures have bit-size
` · Õ(n) = logN · Õ(n). The revocation check, which corresponds to Step 4 of the signature verification
algorithm, runs in linear time in the number of revoked users, as it seems unavoidable for secure VLR
group signature schemes.

To demonstrate the correctness of the scheme, we will make use of the following lemma.

Lemma 4. Let β = poly(n), q ≥ (4β + 1)2 and m ≥ 3n. Then, over the randomness of B
$←− Zm×nq ,

we have
Pr
[
∃ non-zero s ∈ Znq : ‖B · s‖∞ ≤ 2β

]
≤ negl(n).

Proof. Fix a non-zero vector s ∈ Znq . Then the vector B · s is uniformly distributed over Zmq . It then

follows that Pr
[
‖B · s‖∞ ≤ 2β

]
≤ (4β+1)m

qm . Applying a union-bound, we get:

Pr
[
∃ non-zero s ∈ Znq : ‖B · s‖∞ ≤ 2β

]
≤ qn(4β + 1)m

qm
≤ 1

(4β + 1)m−2n
≤ (4β + 1)−n = negl(n).

ut

In particular, for parameters q,m, β specified in Table 1, for uniformly random matrix B ∈ Zm×nq , and
for non-zero vector s ∈ Znq , we have ‖B · s‖∞ > 2β with overwhelming probability.

Theorem 2. The VLR group signature scheme described in Section 5.1 is correct with overwhelming
probability.

Proof. According to the correctness requirement, we have to prove that for all gpk = (A,u), gsk =
({gsk[d]}N−1d=0 ), grt = ({grt[d]}N−1d=0 ) outputted by KeyGen(n,N), all d ∈ {0, 1, . . . , N − 1}, and all
M ∈ {0, 1}∗, we have:

Verify(gpk, RL, Sign(gpk, gsk[d],M),M) = Valid⇔ grt[d] 6∈ RL.

We first remark that, with overwhelming probability, the honest signer can obtain a valid witness
(x, e) ∈ Secretβ(d) × [−β, β]m to be used in the underlying argument system. Then, thanks to the
perfect completeness of the latter protocol, the signature verification algorithm should not return
Invalid after its first 3 steps. We further note that, in Step 4, the vector e′i, for every i, can be
expressed as:

e′i = b−B · ui = B · grt[d] + e−B · ui = B · (grt[d]− ui) + e mod q.

Now, suppose that the verification algorithm outputs Valid, i.e., we have ‖e′i‖∞ ≤ β, for all i. We
will show that grt[d] 6∈ RL. Indeed, if there exists index i such that grt[d] = ui, then e′i = e. Since
‖e′i‖∞ = ‖e‖∞ ≤ β, the signature should not pass Step 4 of the verification procedure, which yields a
contradiction.

Next, suppose that grt[d] 6∈ RL, i.e., for every i, the vector si := grt[d] − ui mod q is non-zero.
We will demonstrate that, in this case, the verification algorithm outputs Valid with overwhelming
probability. It suffices to show that e′i has infinity norm larger than β, for all i. Indeed, on one hand,
Lemma 4 implies that ‖B · si‖∞ > 2β with overwhelming probability. On the other hand, ‖B · si‖∞ ≤
‖e′i‖∞ + ‖e‖∞ ≤ ‖e′i‖∞ + β. Hence, except for a negligible probability, we have ‖e′i‖∞ > 2β − β = β.

ut
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Selfless-Anonymity. We now prove that our VLR group signature scheme is selfless-anonymous.

Theorem 3. In the random oracle model, the VLR group signature scheme in Section 5.1 is selfless-
anonymous under the LWEn,q,χ assumption.

Via the reduction from SIVP to LWE, the selfless anonymity of the scheme can be based on the
worst-case hardness of SIVPγ , where γ = Õ(n2.5), for the given setting of parameters.

Proof. We define a sequence of hybrid games G
(0)
0 , G

(0)
1 , G

(0)
2 , G3, G

(1)
2 , G

(1)
1 , G

(1)
0 , such that game

G
(c)
0 , for c ∈ {0, 1}, is the original selfless-anonymity game (see Section 2) where the bit chosen by the

challenger is c. We then prove that these games are indistinguishable, based on the zero-knowledge
property of the underlying argument system and the hardness of the LWEn,q,χ problem. The selfless-
anonymity of our scheme then follows from the fact that game G3 is independent of the bit c.

Game G
(c)
0 :

1. Run KeyGen(n,N) to obtain

gpk = (A,u); gsk =
(
gsk[0], gsk[1], . . . , gsk[N − 1]

)
; grt =

(
grt[0], grt[1], . . . , grt[N − 1]

)
.

Set RL := ∅, Corrupted := ∅, and give gpk to the adversary A.
2. If A queries the signature on any message M by user of index d, return Σ = Sign

(
gpk, gsk[d],M

)
.

If A queries the corruption of user of index d, set Corrupted := Corrupted ∪ {d}, and return gsk[d].
If A queries the revocation of user d, set RL := RL ∪ {grt[d]}, and return grt[d].

3. A outputs a message M∗ and d0, d1 such that d0, d1 6∈ Corrupted and grt[d0], grt[d1] 6∈ RL.
4. Generate a legitimate signature

Σ = Sign
(
gpk, gsk[dc],M

∗) =
(
M∗, ρ,b, Π

)
,

and return Σ to A.
5. A can still make queries as before, but it is not allowed to ask for gsk[d0], gsk[d1], grt[d0] and

grt[d1].
6. Finally A outputs a bit c′.

Game G
(c)
1 :

In this game, we make the following modification with respect to Game G
(c)
0 : In Step 4, instead of

generating a legitimate signature, we simulate it as follows:

1. Run the first 2 steps of the signing algorithm in an honest manner, and obtain ρ ∈ {0, 1}n;
B = G(A,u,M∗, ρ); ec ←↩ χm; and b = B · grt[dc] + ec ∈ Zmq .

2. Simulate the non-interactive zero-knowledge argument Π∗. This is done by invoking the simula-
tor of the argument system from Section 4 (see Theorem 1) for every repetition, and then pro-
gramming the random oracle H accordingly. Since the underlying argument system is statistically
zero-knowledge, the distribution of Π∗ is statistically close to that of the legitimate Π.

3. Output Σ∗ = (M∗, ρ,b, Π∗).

It can be seen that Σ∗ is statistically close to the signature Σ outputted by Step 4 of Game G
(c)
0 .

As a result, Game G
(c)
1 and Game G

(c)
0 are statistically indistinguishable.

Game G
(c)
2 :
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In this game, we introduce the following modification with respect to Game G
(c)
1 . Recall that in G

(c)
1 ,

we have b = B · grt[dc] + ec mod q, where the token grt[dc], unknown to A, is statistically close
to uniform over Znq ; B is uniformly random over Zm×nq ; and eb has entries sampled from the error
distribution χ. Now, we instead compute b as

b = B · sc + ec mod q,

where sc
$←− Znq . The rest of the game remains the same as in Game G

(c)
1 . This way, the two games are

statistically indistinguishable.

Game G3:
Note that in the previous game, the pair (B,b) is a proper LWEn,q,χ instance (with m samples). Thus,
under the LWEn,q,χ assumption, its distribution is computationally close to the uniform distribution
over Zm×nq × Zmq .

In this game, we make b truly uniform by sampling v
$←− Zmq and setting b = v. The rest of the game

is the same as in Game G
(c)
2 . Clearly, the advantage of the adversary in this game is 0. Furthermore,

if the LWEn,q,χ problem is hard, then G
(c)
2 and G3 are computationally indistinguishable.

Finally, observe that we have established a chain of indistinguishable games

G
(0)
0

s
≈ G(0)

1

s
≈ G(0)

2

c
≈ G3

c
≈ G(1)

2

s
≈ G(1)

1

s
≈ G(1)

0 ,

which implies that the adversary’s advantage in game G
(c)
0 , for c ∈ {0, 1}, is negligible. This concludes

the proof.
ut

Traceability. We now prove that, in the random oracle model, our VLR group signature scheme is
traceable if the SIS∞n,(`+1)·m,q,2β problem is hard.

Theorem 4. In the random oracle model, if there is a traceability adversary A with success probability
ε and running time T , then there is an algorithm F that solves the SIS∞n,(`+1)·m,q,2β problem with success

probability ε′ >
(
1− (7/9)t

)
· 1
2N , and running time T ′ = 32 · T · qH/(ε− 3−t) + poly(n,N), where qH

is the number of queries to the random oracle H : {0, 1}∗ → {1, 2, 3}t.

The results of Lemma 1 and Theorem 4 imply that our scheme is traceable in the random oracle
model, based on the worst-case hardness of SIVPγ , where γ = 2β · Õ(

√
n(`+ 1)m) = Õ(n1.5).

Proof. First, suppose that adversary A can break with non-negligible probability the computational
binding property of the commitment scheme COM employed by the underlying argument system. As
mentioned earlier (see Section 2.2), we can use A to solve the SIS∞n,(`+1)·m,q,2β problem. Therefore,
without loss of generality, we assume that COM is computationally binding.

We construct a PPT algorithm F solving the SIS∞n,(`+1)·m,q,2β problem with non-negligible proba-
bility, which works as follows.

Challenge: Algorithm F is given a uniformly random matrix C =
[
C0

∣∣C1

∣∣ . . . ∣∣C`

]
∈ Zn×(`+1)·m

q .

It wins the challenge if it can produce a non-zero vector x ∈ Z(`+1)·m such that ‖x‖∞ ≤ 2β and
C · x = 0 mod q.
Setup: F performs the following steps:
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1. Sample vector z =
(
z0‖z1‖ . . . ‖z`

)
∈ Z(`+1)·m, where each coordinate of z is sampled from DZ,σ.

If ‖z‖∞ > β, then repeat the sampling. Otherwise, compute u = C · z mod q.
2. Run TrapGen(n,m, q) algorithm ` times, and let the outputs be

(
(F1,R1), (F2,R2), . . . , (F`,R`)

)
.

3. Pick a target index d∗ = d∗[1] . . . d∗[`]
$←− {0, 1}`, and define A =

[
A0|A0

1|A1
1| . . . |A0

` |A1
`

]
∈

Zn×(2`+1)·m
q , where A0 = C0, and for each i ∈ [`]: A

d∗[i]
i = Ci and A

1−d∗[i]
i = Fi.

4. Define the secret key and revocation token for user d∗ as follows:

• gsk[d∗] = (x0‖x0
1‖x1

1‖ . . . ‖x0
`‖x1

` ) ∈ Z(2`+1)·m, where x0 = z0, ∀i ∈ [`]: x
d∗[i]
i = zi and x

1−d∗[i]
i =

0m,
• grt[d∗] = A0 · x0 mod q ∈ Znq .

5. Generate the secret key and the revocation token for each user d 6= d∗, where d = d[1] . . . d[`], as
follows:

• Let d[b] (1 ≤ b ≤ `) be the first bit from the left where d[b] 6= d∗[b]. Since d 6= d∗, such b must

exist. It follows that A
d[b]
b = A

1−d∗[b]
b = Fb.

• Sample ` vectors x0,x
d[1]
1 , . . . ,x

d[b−1]
b−1 ,x

d[b+1]
b+1 , . . . ,x

d[`]
` ←↩ DZm,σ, and let

t(d) = u−
(
A0 · x0 +

∑
i∈[`],i 6=b

A
d[i]
i · x

d[i]
i

)
mod q.

• Sample x
d[b]
b ←↩ SampleD(Rb,Fb, t

(d), σ).

• For each i ∈ [`], let x
1−d[i]
i = 0m, then let x(d) =

(
x0‖x0

1‖x1
1‖ . . . ‖x0

`‖x1
`

)
∈ Z(2`+1)·m. If

the very rare event that ‖x(d)‖∞ > β happens, then repeat the sampling. Otherwise, set
gsk[d] = x(d) and grt[d] = A0 · x0 mod q ∈ Znq .

6. Let gpk = (A,u), gsk =
(
gsk[0], gsk[1], . . . , gsk[N − 1]

)
, grt =

(
grt[0], grt[1], . . . , grt[N − 1]

)
. We

note that, by construction, the distribution of (gpk, gsk, grt) is statistically close to that of the real
scheme, and the choice of d∗ is hidden from the adversary. Algorithm F then gives (gpk, grt) to A.

Queries: Algorithm F answers the queries of A as follows:

• Corruption queries: The corruption set U is initially set to be empty. If A queries the secret
key of any user d ∈ {0, . . . , N − 1}, then F adds d to the corruption set U , and returns gsk[d].
• Signatures queries: If A queries signature of user d on arbitrary message M , then F returns
Σ = Sign

(
gpk, gsk[d],M

)
. Queries to the random oracles H and G are handled by consistently

returning uniformly random values in their respective ranges. For each κ ≤ qH, we let rκ denote
the answer to the κ-th query.

Forgery: Eventually, A outputs a message M∗, a set of tokens RL∗ and a non-trivial forged signature

Σ∗ =
(
M∗, ρ∗,b∗, {CMTi}ti=1, {Chi}ti=1, {RSPi}ti=1

)
,

such that Verify(gpk, RL∗, Σ∗,M∗) = Valid, and the implicit tracing algorithm fails or traces to a user
outside of the coalition U \ RL∗. Let B∗ = G(A,u,M∗, ρ∗) ∈ Zm×nq . Algorithm F then exploits the
forgery as follows.

First, one can argue that A must have queried H on input
(
M∗,A,u,B∗,b∗, {CMT(k)}tk=1

)
, as

otherwise, the probability that (Ch1, . . . , Cht) = H
(
M∗,A,u,B∗,b∗, {CMT(k)}tk=1

)
is at most 3−t.

Therefore, with probability at least ε − 3−t, there exists certain κ∗ ≤ qH such that the κ∗-th oracle
queries involves the tuple

(
M∗,A,u,B∗,b∗, {CMT(k)}tk=1

)
.
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Next, F picks κ∗ as the target forking point and replays A many times with the same random
tape and input as in the original run. In each rerun, for the first κ∗ − 1 queries, A is given the same
answers r1, . . . , rκ∗−1 as in the initial run, but from the κ∗-th query onwards, F replies with fresh

random values r
′
κ∗ , . . . , r

′
qH

$←− {1, 2, 3}t. The Improved Forking Lemma of Pointcheval and Vaudenay
[37, Lemma 7] implies that, with probability larger than 1/2, algorithm F can obtain a 3-fork involving
the tuple

(
M∗,A,u,B∗,b∗, {CMT(k)}tk=1

)
after less than 32 · qH/(ε− 3−t) executions of A. Now, let

the answers of F with respect to the 3-fork branches be

r
(1)
κ∗ = (Ch

(1)
1 , . . . , Ch

(1)
t ); r

(2)
κ∗ = (Ch

(2)
1 , . . . , Ch

(2)
t ); r

(3)
κ∗ = (Ch

(3)
1 , . . . , Ch

(3)
t ).

A simple calculation shows that:

Pr
[
∃i ∈ {1, . . . , t} : {Ch(1)i , Ch

(2)
i , Ch

(3)
i } = {1, 2, 3}

]
= 1− (7/9)t.

Conditioned on the existence of such index i, one parses the 3 forgeries corresponding to the fork

branches to obtain
(
RSP

(1)
i ,RSP

(2)
i ,RSP

(3)
i

)
. They turn out to be 3 valid responses with respect to 3

different challenges for the same commitment CMTi. Since COM is computationally binding, we can
apply Theorem 1 to extract vectors y =

(
y0‖y0

1‖y1
1‖ . . . ‖y0

`‖y1
`

)
∈ Z(2`+1)m and e∗ ∈ Zm such that:

1. y ∈ Secretβ(d) for some d ∈ {0, 1}`, and A · y = u mod q;
2. ‖e∗‖∞ ≤ β and b∗ = B∗ · (A0 · y0) + e∗ mod q.

Now we consider two cases:

• If d 6= d∗, which happens with probability at most N−1
N , then algorithm F declares Fail and aborts.

• If d = d∗, then let y∗ =
(
y0‖yd

∗[1]
1 ‖ . . . ‖yd

∗[`]
`

)
∈ Z(`+1)m, obtained by removing the zero-blocks

y
1−d∗[1]
1 , . . . ,y

1−d∗[`]
` from y. Note that, by construction, one has C ·y∗ = A ·y = u = C · z mod q.

We will show that, over the randomness of all algorithms, y∗ 6= z with overwhelming probability.
Recall that Σ∗ is a valid signature such that the implicit tracing algorithm either fails or outputs an
index j∗ 6∈ U \RL∗.

• If the tracing algorithm fails, then, in particular, one has Verify(gpk, grt[d∗], Σ∗,M∗) = Valid. This
implies that A0 · y0 6= grt[d∗] = A0 · z0 mod q, since otherwise, vector e′ = b∗ − B∗ · grt[d∗] =
e∗ mod q would have infinity norm at most β and algorithm Verify(gpk, grt[d∗], Σ∗,M∗) would
output Invalid. As a result, y0 6= z0, and thus y∗ 6= z.

• If the tracing algorithm outputs j∗ 6∈ U \RL∗, namely, the following two facts simultaneously hold
true:

Verify(gpk, grt[j∗], Σ∗,M∗) = Invalid and Verify(gpk, RL∗, Σ∗,M∗) = Valid.

This leads to the following two facts:
1. grt[j∗] 6∈ RL∗, and hence, j∗ 6∈ U .

2. Vector b∗ −B∗ · grt[j∗] = B∗ · (A0 · y0 − grt[j∗]) + e∗ mod q has infinity norm bounded by β.
Recall that we also have ‖e∗‖∞ ≤ β. Applying the triangle inequality, we then have

‖B∗ · (A0 · y0 − grt[j∗])‖∞ ≤ 2β.

By Lemma 4, we deduce that A0 · y0 = grt[j∗] mod q, except for a negligible probability.

18



Now we consider two sub-cases:

1. If A has never requested the secret key gsk[d∗], then z is unknown to A. In this case, because z
has large min-entropy given u (see Lemma 2), we have z 6= y∗ with overwhelming probability.

2. If the adversary A has requested the secret key gsk[d∗] in the Queries phase, then d∗ ∈ U . In
particular, it must be true that d∗ 6= j∗ (because j∗ 6∈ U), and thus grt[d∗] 6= grt[j∗]. In other
words, we have A0 · y0 6= A0 · z0 mod q. Therefore, in this case, we also have y∗ 6= z.

Now let x = z − y∗ ∈ Z(`+1)m, then we get the following facts: (i) x 6= 0; (ii) C · x = 0 mod q; (iii)
‖x‖∞ ≤ ‖z‖∞ + ‖y‖∞ ≤ β + β = 2β. Algorithm F finally outputs the vector x, which is a valid
solution to the given SIS∞n,(`+1)·m,q,2β instance.

We observe that the probability that F does not abort is at least 1/N , and conditioned on not
aborting, it can solve the SIS∞n,(`+1)·m,q,2β problem with probability larger than 1/2 ·

(
1 − (7/9)t

)
in

time
T · 32 · qH/(ε− 3−t) + poly(n,N).

This concludes the proof. ut
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A Deferred Analyses of the Underlying Interactive Protocol

We first restate Theorem 1.

Theorem 5. Let COM be a statistically hiding and computationally binding string commitment scheme.
Then the interactive protocol described in Section 4.1 is a zero-knowledge argument of knowledge with
perfect completeness, soundness error 2/3, and communication cost ` · Õ(n). In particular:

• There exists an efficient simulator that, on public input (A,u,B,b), outputs an accepted transcript
which is statistically close to that produced by the real prover.
• There exists an efficient knowledge extractor that, on input a commitment CMT and 3 valid re-

sponses (RSP(1),RSP(2),RSP(3)) corresponding to all 3 possible values of the challenge Ch, outputs
a pair of vector (y, e′) ∈ Z(2`+1)m × Zm such that:

1. y =
(
y0‖y0

1‖y1
1‖ . . . ‖y0

`‖y1
`

)
∈ Secretβ(d) for some d ∈ {0, 1}`, and A · y = u mod q.

2. ‖e′‖∞ ≤ β and B · (A0 · y0) + e′ = b mod q.

The proof of the theorem is carried out through the next 4 subsections.

A.1 Completeness and Soundness

An honest prover, given a valid witness (x, e) ∈ Secretβ(d)× [−β, β]m, for some d ∈ {0, 1}`, can always
obtain z1, . . . , zp ∈ SecretExt(d) and e1, . . . , ep ∈ B3m via the Decomposition-Extension technique.
Then if he follows the protocol, he should always get accepted by the verifier. Therefore, the protocol
has perfect completeness.

The protocol admits a soundness error 2/3, which is inherent for typical Stern-like systems, but
this error can be made negligible by repeating the protocol t = ω(log n) times in parallel.

A.2 Communication Cost

The scheme COM from [21] outputs an element of Znq , and thus, the commitment CMT has bit-size

3n log q = Õ(n). The response RSP is dominated (in size) by p = O(log β) = Õ(1) permutations in

S and p vectors in Z(2`+1)·3m
q . It can be checked that the bit-size of RSP is ` · Õ(n). This is also the

asymptotic bound for the communication cost of the whole protocol.

A.3 Zero-Knowledge Property

We will prove that, if COM is statistically hiding, then the interactive protocol in Section 4.1 is a
statistical zero-knowledge argument. Specifically, we construct a PPT simulator SIM interacting
with a (possibly dishonest) verifier V̂ such that, given only the public input, SIM outputs with
probability close to 2/3 a simulated transcript that is statistically close to the one produced by the
honest prover in the real interaction.

Both SIM and V̂ obtain matrices A∗,B∗, I∗ from the public input (A,u,B,b), as specified by the
protocol. Then SIM begins its simulation by selecting a random Ch ∈ {1, 2, 3}. This is a prediction
of the challenge value that V̂ will not choose.

Case Ch = 1: Using linear algebra, SIM computes the following vectors:
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• z′1, . . . , z
′
p ∈ Z(2`+1)3m

q such that A∗ · (
∑p

j=1 βj · z′j) = u mod q.

• z′j,0 = Parse(z′j , 1,m), for each j ∈ [p].

• e′1, . . . , e
′
p ∈ Z3m

q such that B∗ · (
∑p

j=1 βj · z′j,0) + I∗ · (
∑p

j=1 βj · e′j) = b mod q.

Next, it samples randomness ρ1, ρ2, ρ3 for COM and
c

$←− {0, 1}`;
πz,1, . . . , πz,p

$←− S; πe,1, . . . , πe,p
$←− S3m;

rz,1, . . . , rz,p
$←− Z(2`+1)·3m

q ; re,1, . . . , re,p
$←− Z3m

q .

For each j ∈ [p], let rj,0 = Parse(rz,j , 1,m). Then SIM sends V̂ commitment CMT =
(
c′1, c

′
2, c
′
3

)
,

where
c′1 = COM

(
c, {πz,j , πe,j}pj=1, A∗(

∑p
j=1 βj · rz,j); B∗(

∑p
j=1 βj · rj,0) + I∗(

∑p
j=1 βj · re,j); ρ1

)
,

c′2 = COM
(
{Tc ◦ πz,j(rz,j), πe,j(re,j)}pj=1; ρ2

)
,

c′3 = COM
(
{Tc ◦ πz,j(z′j + rz,j), πe,j(e

′
j + re,j)}pj=1; ρ3

)
.

(7)

Receiving a challenge Ch from V̂, the simulator responds as follows:

• If Ch = 1: Output ⊥ and abort.

• If Ch = 2: Send

RSP =
(
c, {πz,j , πe,j , z′j + rz,j , e

′
j + re,j}pj=1, ρ1, ρ3

)
. (8)

• If Ch = 3: Send

RSP =
(
c, {πz,j , πe,j , rz,j , re,j}pj=1, ρ1, ρ2

)
. (9)

Case Ch = 2: SIM samples randomness ρ1, ρ2, ρ3 for COM and
d′

$←− {0, 1}`, c $←− {0, 1}`;
z′1, . . . , z

′
p

$←− SecretExt(d); e′1, . . . , e
′
p

$←− B3m;

πz,1, . . . , πz,p
$←− S; πe,1, . . . , πe,p

$←− S3m;

rz,1, . . . , rz,p
$←− Z(2`+1)·3m

q ; re,1, . . . , re,p
$←− Z3m

q .

For each j ∈ [p], let rj,0 = Parse(rz,j , 1,m). Then SIM sends the commitment CMT computed in the
same manner as in (7).

Receiving a challenge Ch from V̂, it responds as follows:

• If Ch = 1: Send

RSP =
(
d′ ⊕ c, {Tc ◦ πz,j(z′j),Tc ◦ πz,j(rz,j), πe,j(e′j), πe,j(re,j)}

p
j=1, ρ2, ρ3

)
. (10)

• If Ch = 2: Output ⊥ and abort.

• If Ch = 3: Send RSP computed as in the case (Ch = 1, Ch = 3).
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Case Ch = 3: The simulator proceeds the preparation as in the case Ch = 2 above. It additionally
computes z′j,0 = Parse(z′j , 1,m), for each j ∈ [p]. Then it sends the commitment CMT =

(
c′1, c

′
2, c
′
3

)
,

where c′2, c
′
3 are computed as in (7), while

c′1 = COM
(
c, {πz,j , πe,j}pj=1, A∗(

p∑
j=1

βj · (z′j + rz,j))− u;

B∗(

p∑
j=1

βj · (z′j,0 + rj,0)) + I∗(

p∑
j=1

βj · (e′j + re,j))− b; ρ1
)
.

Receiving a challenge Ch from V̂, it responds as follows:

• If Ch = 1: Send RSP computed as in the case (Ch = 2, Ch = 1).

• If Ch = 2: Send RSP computed as in the case (Ch = 1, Ch = 2).

• If Ch = 3: Output ⊥ and abort.

We observe that, in every case we have considered above, since COM is statistically hiding, the distri-
bution of the commitment CMT and the distribution of the challenge Ch from V̂ are statistically close
to those in the real interaction. Hence, the probability that the simulator outputs ⊥ is negligibly far
from 1/3. Moreover, one can check that, whenever the simulator does not halt, it provides an accepting
transcript, the distribution of which is statistically close to that of the prover in the real interaction.
In other words, we have designed a simulator that can successfully emulate the honest prover with
probability negligibly far from 2/3.

A.4 Argument of Knowledge

We prove that, if COM is computationally binding, then the given protocol is an argument of knowl-
edge. To this end, it suffices to demonstrate that the protocol has the special soundness property, i.e.,
given a commitment CMT and 3 valid responses RSP(1), RSP(2), RSP(3) to all 3 possible values of the
challenge Ch, one can extract a valid witness.

Specifically, let CMT =
(
c0, c1, c2, c3

)
, and let RSP(1), RSP(2), RSP(3) as in (3), (4), and (5),

respectively. Since all 3 responses satisfy the verification conditions, the following are true:

∀j ∈ [p] : vz,j ∈ SecretExt(d1); ve,j ∈ B3m; sj,0 = Parse(sz,j , 1,m); hj,0 = Parse(hz,j , 1,m);

c1 = COM
(
d2, {φz,j , φe,j}pj=1, A∗(

∑p
j=1 βj · sz,j)− u;

B∗(
∑p

j=1 βj · sj,0) + I∗(
∑p

j=1 βj · se,j)− b; ρ1
)

= COM
(
d3, {ψz,j , ψe,j}pj=1, A∗(

∑p
j=1 βj · hz,j);

B∗(
∑p

j=1 βj · hj,0) + I∗(
∑p

j=1 βj · he,j); ρ1
)
;

c2 = COM
(
{wz,j , we,j}pj=1; ρ2

)
= COM

(
{Td3 ◦ ψz,j(hz,j), ψe,j(he,j)}

p
j=1; ρ2

)
;

c3 = COM
(
{vz,j + wz,j , ve,j + we,j}pj=1; ρ3

)
= COM

(
{Td2 ◦ φz,j(sz,j), φe,j(se,j)}

p
j=1; ρ3

)
.
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The computational binding property of COM implies that:

d2 = d3;

∀j ∈ [p] : φz,j = ψz,j ; wz,j = Td2 ◦ φz,j(hz,j) and vz,j + wz,j = Td2 ◦ φz,j(sz,j);

∀j ∈ [p] : φe,j = ψe,j ; we,j = φe,j(he,j) and ve,j + we,j = φe,j(se,j);

A∗(
∑p

j=1 βj · (sz,j − hz,j)) = u mod q;

B∗(
∑p

j=1 βj · (sj,0 − hj,0)) + I∗(
∑p

j=1 βj · (se,j − he,j)) = b mod q.

For each j ∈ [p], let y′j = sz,j − hz,j . Then we have:

Td2 ◦ φz,j(y′j) = Td2 ◦ φz,j(sz,j)− Td2 ◦ φz,j(hz,j) = vz,j ∈ SecretExt(d1).

It then follows that φz,j(y
′
j) ∈ SecretExt(d1 ⊕ d2). Let d = d1 ⊕ d2, then y′j ∈ SecretExt(d) for all

j ∈ [p], since the permutation φz,j ∈ S preserves the arrangements of the blocks of y′j .

Now let y′ =
∑p

j=1 βj · y′j ∈ Z(2`+1)3m
q , and let y ∈ Z(2`+1)m be the vector obtained from y′ by

removing the last 2m coordinates in each 3m-block. We note that

‖y‖∞ ≤ ‖y′‖∞ ≤
p∑
j=1

βj · ‖yj‖∞ =

p∑
j=1

βj · 1 = β.

Moreover, as y′j ∈ SecretExt(d) for all j ∈ [p], we have that y ∈ Secretβ(d). Furthermore,

A · y = A∗ · y′ = A∗ ·
p∑
j=1

βj · yj = A∗(

p∑
j=1

βj · (sz,j − hz,j)) = u mod q.

Write vector y as y =
(
y0‖y0

1‖y1
1‖ . . . ‖y0

`‖y1
`

)
, then observe that y0 =

∑p
j=1 βj · (sj,0 − hj,0).

On the other hand, for each j ∈ [p], let e′j = se,j − he,j . Then we have,

φe,j(e
′
j) = φe,j(se,j)− φe,j(he,j) = ve,j ∈ B3m,

which implies that e′j ∈ B3m. Let ê =
∑p

j=1 βj · e′j ∈ Z3m and let e′ ∈ Zm be the vector obtained by
dropping the last 2m coordinates from ê. We then note that:

‖e′‖∞ ≤ ‖ê‖∞ ≤
p∑
j=1

βj · ‖e′j‖∞ =

p∑
j=1

βj · 1 = β.

Observe further that we have the relation:

B∗ · y0 + I∗ · ê = b mod q ⇐⇒ B · (A0 · y0) + e′ = b mod q.

In conclusion, we have constructed an efficient knowledge extractor that outputs a pair of vectors
(y, e′) satisfying all the conditions stated in Theorem 1. ut
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