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Abstract

Since its introduction more than a decade ago the homomorphic properties of the NTRU encryption
scheme have gone largely ignored. A variant of NTRU proposed by Stehlé and Steinfeld was recently
extended into a full fledged multi-key fully homomorphic encryption scheme by Alt-López, Tromer and
Vaikuntanathan (ATV). This NTRU based FHE presents a viable alternative to the currently dominant
BGV style FHE schemes. While the scheme appears to be more efficient, a full implementation and
comparison to BGV style implementations has been missing in the literature.

In this work, we develop a customized implementation of the ATV scheme. First parameters are
selected to yield an efficient and yet secure ATV instantiation. We present an analysis of the noise
growth that allows us to formulate a modulus cutting strategy for arbitrary circuits. Furthermore, we
introduce a specialization of the ring structure that allows us to drastically reduce the public key size
making evaluation of deep circuits such as the AES block cipher viable on a standard computer with a
reasonable amount of memory. Moreover, with the modulus specialization the need for key switching is
eliminated.

Finally, we present a generic bit-sliced implementation of the ATV scheme that embodies a number of
optimizations. To assess the performance of the scheme we homomorphically evaluate the full 10 round
AES circuit in 31 hours with 2048 message slots resulting in 55 sec per AES block evaluation time.

Keywords: Fully homomorphic encryption, NTRU, AES.

1 Introduction

Fully homomorphic encryption has come a long way in a mere few years since the first plausibly secure
construction was introduced by Gentry [1] in 2009. This advance settled an open problem posed by Rivest
[2], and opened the door to many new applications. In a nutshell, by employing FHE one may perform
an arbitrary number of computations directly on the encrypted data without revealing the secret key. This
feature, makes FHE a powerful tool in multi-party computing and perfectly suited to protect sensitive data
in distributed applications including those hosted on semi-trusted cloud servers.

The efficiency bottleneck that prevents FHE from being deployed in real-life applications is now being
bridged with the introduction of numerous new optimizations and related proof-of-concept implementations.
The first implementation of an FHE variant was proposed by Gentry and Halevi [3]. An impressive array
of optimizations were proposed with the goals of reducing the size of the public-key and improving the
performance of the primitives. Still, encryption of one bit takes more than a second on a high-end Intel
Xeon based server, while recrypt primitive takes nearly half a minute for the lowest security setting. In [7],
a GPU based implementation of the same scheme was developed which managed to reduce the recryption
time to a few seconds.

Recently more efficient schemes emerged based on the hardness of learning with errors (LWE) problem.
In [11] Brakerski, Gentry, and Vaikuntanathan (BGV) introduced an LWE based scheme that reduces the
need for bootstrapping. Instead the BGV scheme uses a new lightweight method, i.e. modulus switching, to
mitigate noise growth in ciphertexts as homomorphic evaluation proceeds. While modulus switching cannot
restore the original level of noise as bootstrapping does, it still manages to gain exponentially on depth
of the circuits evaluated without affecting the depth of the decryption circuit. Therefore, as long as we
can fix the depth of the circuit a priori, we can perform evaluations without bootstrapping using a leveled
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implementation. Smart and Vercauteren [9] presented a number of batching techniques for packing multiple
data streams into a single ciphertext.

In [10] Gentry, Halevi and Smart introduced the first evaluation of a complex circuit, i.e. a full AES
block evaluation by using a BGV style scheme introduced earlier in [8] by the same authors. The scheme
makes use of batching [9, 8], key switching and modulus switching techniques to obtain an efficient leveled
implementation. Three batching techniques are used to obtain bit–sliced, byte–sliced and SIMD implemen-
tations. With 5 minutes per block evaluation time the byte-sliced implementation is faster, but also requires
less memory. The SIMD implementation takes about 40 minutes per block.

In [12], Alt-López, Tromer and Vaikuntanathan (ATV) presented a leveled FHE scheme based on the
modified NTRU [14] scheme introduced earlier by Stehle and Steinfeld [13]. A unique aspect of the ATV
scheme is that it supports homomorphic evaluation of ciphertexts encrypted by using public keys assigned to
different parties. The authors outline the scheme using a leveled implementation and introduce a technique
called relinearization to facilitate key switching during the levels of the evaluation. Modulus switching is
also performed after multiplication and addition operations. The security of ATV scheme relies on two
assumptions: the ring LWE assumption, and the Decisional Small Polynomial Ratio (DSPR) assumption.
The scheme also supports bootstrapping. While the scheme is appears to be efficient, the analysis in [12]
lacks concrete parameters.

Very recently Bos et al. [22] presented a leveled implementation based on ATV . The authors modify the
proposed scheme in a number of aspects to build up their own fully homomorphic scheme. The semantic
security of ATV is based on uniformity of the public key which relies on the DSPR assumption. In [22], the
ATV scheme is modified by adopting a tensor product technique introduced by Brakerski [23] such that the
security depends only on standard lattice assumptions. Furthermore, modulus–switching is no longer needed
due to the reduced noise growth. Lastly, the authors improve the flexibility of the scheme by splitting the
message using the Chinese Remainder Theorem and then encrypting them into separate ciphertexts. This
makes integer based arithmetic easier and more efficient with a cost of a reduction in the depth of circuits
that can be evaluated with the scheme.

Our Contributions. We introduce an implementation of the ATV FHE scheme along with a number of
optimizations. More specifically we

• present a batched, bit-sliced implementation of the ATV scheme. The implementation is generic and
is not customized to optimally evaluate any class of circuits (e.g. AES) more efficiently than other.

• resolve the parameter selection issue in the light of recent theoretical and experimental results in the
field of lattice reduction.

• introduce a specialization of the rings that simplifies modulus reduction and allows us to significantly
reduce the size of the public key. We show that the impact of this specialization on the key space is
negligibly small. Even further, with the specialization key switching is no longer needed.

• rigorously analyze the noise growth of the ATV scheme over the levels of computation, and develop a
simple formula for estimating the number of bits one needs to cut during the modulus reduction step.

• homomorphically evaluate the full 128-bit AES circuit in a bit-sliced implementation to demonstrate
the scalability of the introduced technique. Our implementation is 5 times faster than the byte sliced
implementation and 43 times faster than the SIMD implementation of [10].

2 Background

In [12], Alt-López, Tromer and Vaikuntanathan proposed a multi-key homomorphic encryption scheme (LTV-
FHE) based on a modified NTRU [14] scheme previously introduced by Stehlé and Steinfeld [13]. In this
section we adapt their presentation to derive a single-key formulation suitable for homomorphic evaluation
by a single party.

Preliminaries. We work with polynomials in R = Zq[x]/〈xn + 1〉 where n represents the lattice dimension.
All operations are performed in Rq = R/qR where q is the prime modulus. Elements of Zq are associated

2



with elements of {b−q2 e, . . . , b
q
2e}. We require the ability to sample from a probability distribution χ, i.e. the

truncated discrete Gaussian distribution DZn,r with standard deviation r > 0. A polynomial is B-bounded
if all of its coefficients are in [−B,B]. A sample from this distribution is a r

√
n-bounded polynomial

e ∈ R. For a detailed treatment of the discrete Gaussian distribution see [6]. For an element a ∈ R we let
||a||∞ = max|ai|. The following rules apply on the infinity norm.

Lemma 1 ([24, 12]) Let n ∈ N and let φ(x) = xn + 1 and let R = Z[x]/〈φ(x)〉. For any a, b ∈ R

||ab|| ≤
√
n||a||||b||

||ab||∞ ≤ n||a||∞||b||∞ .

Samples of the truncated discrete Gaussian distribution may be obtained from a discrete Gaussian distribu-
tion DZn,r (see [6]) with the aid of the following lemma:

Lemma 2 ([6] Lemma 4.4) Let n ∈ N. For any real number r > ω(
√

log(n)), we have

Pr
x←DZn,r

[||x|| > r
√
n] ≤ 2−n+1 .

Informally, the lemma tells us that by sampling from a discrete gaussian distribution DZn,r with deviation
r we obtain a sample from a truncated gaussian distribution χr

√
n with very high probability.

The ATV-FHE Scheme. We are now ready to introduce the ATV variant of the NTRU scheme. We would
like to stress that we specialize the scheme to work in the single user setting for clarity. One (positive) side-
effect is that we no longer need to relinearize after homomorphic addition operations. For a full description
see [12]. The primitives of the public key encryption scheme E = (KeyGen,Encrypt,Decrypt,Eval,Relinearize)
as as defined follows:

• KeyGen: We choose a decreasing sequence of primes q0 > q1 > · · · > qd and a polynomial φ(x) = xn+1.

For each i, we sample u(i) and g(i) from distribution χ, set f (i) = 2u(i) + 1 and h(i) = 2g(i)
(
f (i)
)−1

in ring Rqi = Zqi [x]/〈φ(x)〉. (If f (i) is not invertible in this ring, re-sample.) We then sample, for

i = 0, . . . , d and for τ = 0, . . . , blog qic, s(i)τ and e
(i)
τ from χ and publish evaluation key

{
ζ
(i)
τ (x)

}i
tau

where ζ
(i)
τ (x) = h(i)s

(i)
τ + 2e

(i)
τ + 2τ

(
f (i−1)

)2
in Rqi−1

.

• Encrypt: To encrypt a bit b ∈ {0, 1} with a public key (h(0), q0), Encrypt first generates random samples
s and e from χB and sets c(0) = h(0)s+ 2e+ b, a polynomial in Rq0 .

• Decrypt: To decrypt the ciphertext c with the corresponding private key f (i), Decrypt multiplies the
ciphertext and the private key in Rqi then compute the message by modulo two: m = c(i)f (i) (mod 2)

• Eval: Arithmetic operations are performed directly on ciphertexts as follows: Suppose c
(0)
1 = Encrypt(b1)

and c
(0)
2 = Encrypt(b2). Then XOR is effected by simply adding ciphertexts:

Encrypt(b1 + b2) = c
(0)
1 + c

(0)
2 .

Polynomial multiplication incurs a much greater growth in the noise, so each multiplication step is
followed by a modulus switching. First, we compute

c̃(0)(x) = c
(0)
1 · c

(0)
2 (mod φ(x))

and then perform Relinearization, as described below, to obtain c̃(1)(x) followed by modulus switching

Encrypt(b1 · b2) =
⌊
q1
q0
c̃(1)(x)

⌉
2

where the subscript 2 on the rounding operator indicates that we round

up or down in order to make all coefficients equal modulo 2. The same process hold for evaluating

with ith level ciphertexts, e.g. computing c̃(i)(x) from c
(i−1)
1 and c

(i−1)
2 .

3



• Relinearize: We will show the general process that computing c̃(i)(x) from c̃(i−1)(x). We expand c̃(i−1)(x)

as an integer linear combination of 1-bounded polynomials c̃(i−1)(x) =
∑
τ 2τ c̃

(i−1)
τ (x) where c̃

(i−1)
τ (x)

takes its coefficients from {0, 1}. We then define c̃(i)(x) =
∑
τ ζ

(i)
τ (x)c̃

(i−1)
τ (x) in Rqi .

To see why relinearization works, observe that simple substitution gives us

c̃(i)(x) = h(i)(x)

blog qic∑
τ=0

s(i)τ (x)c̃(i−1)τ (x)

+ 2

blog qic∑
τ=0

e(i)τ (x)c̃(i−1)τ (x)

+
[
f (i−1)

]2 blog qic∑
τ=0

2τ c̃(i−1)τ (x)

= h(i)(x)S(x) + 2E(x) +
[
f (i−1)

]2
c̃(i−1)(x)

= h(i)(x)S(x) + 2E(x) +
[
f (i−1)c

(i−1)
1 (x)

] [
f (i−1)c

(i−1)
2 (x)

]
= h(i)(x)S(x) + 2E′(x) +m1m2

modulo qi−1 for some pseudorandom polynomials S(x) and E′(x). This ensures that the output of each
gate takes the form of a valid fresh encryption of the product m1m2 of plaintexts. Later in Section 5
we study the growth of noise under relinearization more carefully.

3 Parameter Selection in the NTRU-FHE

A significant challenge in implementing and improving NTRU-FHE is parameter selection. In [12] and [14]
the security analysis is mostly given in asymmptotics by reduction to the related learning with error (LWE)
problem [13]. In this section we summarize the results of our preliminary work on parameter selection.
The NTRU-FHE scheme in [12] is developed from a modified version of NTRU [14] proposed by Stehle and
Steinfeld [13], which can be reduced to the Ring-LWE (RLWE) problem. Specifically, the security reduction
is obtained through a hybrid argument:

1. Recall that for the NTRU-FHE scheme, the public key is of the form h = 2gf−1 where g, f chosen from
a Gaussian distribution D where f is kept secret. The DSPR problem is to distinguish polynomials
of the form h = 2gf−1 from samples h′ picked uniformly at random from the ring Rq. If the DSPR
problem is hard, we can replace h = 2gf−1 by some uniformly sampled h′.

2. Once h is replaced by h′, the encryption c = h′s+ 2e+m takes the form of the RLWE problem and we
can replace the challenge cipher by c′ = u+m with a uniformly sampled u, thereby ensuring security.

Stehlé and Steinfeld have shown that the DSPR problem is hard even for unbounded adversaries with their
parameter selection. However, the new NTRU-FHE scheme will require different parameters to support
homomorphic evaluation. The impact of the new parameter settings to the security level is largely unknown
and requires careful research. However, even if we assume that the DSPR problem is hard for typical
NTRU-FHE parameter selection, concrete parameters are still hard to chose. The RLWE problem is still
relatively new and lacks thorough security analysis. A common approach is to assume that RLWE follows
the same behavior as the LWE problem [10]. Under this assumption only, we can select parameters. If we
omit the noise, given the prime number q and k-bit security level, the dimension is bounded as in [10] as
n ≤ log(q)(k + 110)/7.2 .

For example, given a 256-bit prime q, an 80-bit security level will require dimension n = 6756. However,
this large estimate is actually an upper bound and assumes that the NTRU-FHE scheme can be reduced
to the RLWE problem. It is not clear whether the reverse is true, i.e. whether attacks against the RLWE
problem apply to the NTRU-FHE scheme. For instance, the standard attack on the LWE problem requires
many samples generated with the same secret s. However, in the NTRU-FHE scheme, the corresponding
samples are ciphertexts of the form c = h′s+ 2e+m, where the s polynomials are randomly generated and
independent. This difference alone suggests that standard attacks against LWE problems cannot be directly
applied to the NTRU-FHE scheme. However, as a modified version of NTRU, the NTRU-FHE scheme suffers
from the same attack as the original NTRU.
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We can follow a similar approach as in the original NTRU paper [14] (see also [18]) to find the secret f :
Consider the following 2n by 2n NTRU lattice where the hi are the coefficients of h = 2gf−1. Let L be the
lattice generated by the matrix.

L =


I

h0 h1 · · · hN−1
−hN−1 h0 · · · hN−2

...
...

. . .
...

−h1 −h2 · · · h0
0 qI


Clearly, L contains the vector a = (f, 2g) which is short, i.e. ||a||∞ ≤ 4B + 1. Now the problem is
transformed to searching for short lattice vectors. Quite naturally, to be able to select concrete parameters
with a reasonable safety margin we need to have a clear estimate on the work factor of finding a short vector
in L. In what follows, we present a Hermite (work) factor estimate, and experimental results in that will
allow us to chose safe parameters.

Hermite Factor Estimates. Gama and Nguyen [15] proposed a useful approach to estimate the hardness
of the SVP in an N -dimensional lattice L using the Hermite factor δ defined as(

d∏
i=1

λi(L)

)
≤
√
δnvol(L)1/n . (1)

More practically we can compute δn as

δn = ||b1||/ det(L)1/n

where ||b1|| is the length of the shortest vector or the length of the vector for which we are searching. The
authors also estimate that, for larger dimensional lattices, a factor δn ≤ 1.01n would be the feasibility
limit for current lattice reduction algorithms. In [16], Lindner and Peikert gave further experimental results
regarding the relation between the Hermite factor and the break time as t(δ) := log(T (δ)) = 1.8/ log(δ)−110.
For instance, for δn = 1.0066n, we need about 280 seconds on the platform in [16].

For the NTRU-FHE scheme, we can estimate the δ of the NTRU lattice and thus the time required to
find the shortest vector. Clearly, the NTRU lattice has dimension 2n and volume qn. However, the desired
level of approximation, i.e. the desired ||b1|| is unclear. In [15], Gama and Nguyen use q as the desired level
for the original NTRU. However, for the much larger q used in the NTRU-FHE scheme, this estimate will
not apply. In particular, Minkowski tells us that L has a nonzero vector of length at most det(L)1/t

√
t where

t is the dimension. There will be exponentially many (in t) vectors of length poly(t) det(L)1/t.
To overcome this impasse we make use of an observation by Coppersmith and Shamir [5]: we do not

need to find the precise secret key since most of the vectors of similar norm will correctly decrypt NTRU
ciphertexts. Setting ||b1|| as the norm of the short vector we are searching for and volume as qn, we can
simplify into:

δn
2n =

||b1||
(qn)1/2n

Following the recommendation of [5], we set the norm of b1 as q/4. Coppersmith and Shamir observed that
q/10 can ensure a successful attack in majority cases for NTRU with dimension n = 167 while q/4 is enough
to extract some information. With a much larger dimension used then in NTRU, we may need a ||b|| even
smaller than q/10 to fully recover a usable key. However, we choose q/4 here to provide a conservative

estimate of the security parameters. Thus δn
2n = q/4

q1/2
=
√
q/4 . In Table 1 we compiled the Hermite factor

for various choices of q and n values.

Experimental Approach. As a secondary countermeasure we ran a large number of experiments to
determine the time required to compromise the ATV scheme following the lattice formulation of Hoffstein,
Pipher, and Silverman with the relaxation introduced by Coppersmith and Shamir [5]. We generated various
ATV keys with coefficient size log(q) = 1024 and various dimensions. To search the short vectors required in
the attacks described as above we used the Block-Korkin-Zolotarev (BKZ) [19] lattice reduction functions in
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n
log2(q)

512 1024 2048
213 1.0108 1.0218 1.0441
214 1.0053 1.0108 1.0218
215 1.0027 1.0054 1.0108
216 1.0013 1.0027 1.0054

Table 1: Hermite Factor estimates for various dimensions n and sizes of q. According to [16] for δn = 1.0066n,
we need about 280 seconds computation on a current PC. Therefore, we need δ < 1.0066 and the smaller δ
the higher the security margin will be.

Shoup’s NTL Library 6.0 [17] linked with the GNU Multiprecision (GMP) 5.1.3 package. More specifically,
we set Schnorr’s pruning constant to 0 as experiments did not show that it would improve the running time
with the setting of our tests. Then we set the LLL constant to 0.99 and ran the program with the block size
2. The block size has exponential impact on the resulting vector size and the running time of the algorithm.
For the dimensions covered by our experiments, even the lowest block size is enough to successfully carry
out attacks. Experiment results show that with the same block size, the size of the recovered keys grows
exponentially with the dimension and the time for the algorithm grows polynomially with the dimension. As
discussed above, the recovered vectors are only useful if they are shorter than q/4. When the dimension is
sufficiently large we end up with vectors longer than this limit, and we will need larger block sizes causing an
exponential rise in the time required to recover a useful vector [19]. From the collected data, we estimated
that the block size of 2 can be used until about dimension n = 26777.

Clearly, we cannot run test on such large dimensions to examine the exponential effects and estimate the
cost for higher dimensions. To investigate the detailed impact of larger block sizes, we ran the experiment on
low dimensions with higher block sizes and checked the changes on the recovered key sizes and the running
time. The result of the experiment follows the prediction of [19], i.e. the result vector size decreases exponen-
tially while the running time grows exponentially with the block size. Assuming that the higher dimensions
follow similar rates, we estimate the security level for higher dimensions in Table 2. The estimation assumes
the relation between parameters follows a similar pattern for low dimension and high dimensions and ignores
all sub-exponential terms1. Therefore the estimated security level is not very precise. However, the results
are not far off from what the Hermite factor estimate predicts. For instance, our experiments predict a
80-bit security for dimension n = 28940 with log(q) = 1024. The Hermite work factor estimate for the same
parameters yields δ = 1.0061. This is slightly more conservative than [16] whose experiments found that
δ = 1.0066 for the same security level.

Dimension 28340 28940 30140 31300 32768
Security 70 80 100 120 144

Table 2: Estimated security level with BKZ. Running times were collected on an Intel Xeon 2.9 GHz machine
and converted to bits by taking the logarithm.

4 Optimizations

Batching. Batching has become an indispensable tool for boosting the efficiency of homomorphic evaluations
[9]. In a nutshell, batching allows us to evaluate a circuit, e.g. AES, on multiple independent data inputs
simultaneously by embedding them into the same ciphertext. With batching multiple message bits belonging
to parallel data streams are packed into a single ciphertext all undergoing the same operation similarly as
in the single instruction multiple data (SIMD) computing paradigm.

1Ignoring those terms will result in a more conservative estimation.
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The ATV scheme we use here permits the encryption of binary polynomials as messages. However a simple
encoding where each message polynomial coefficient holds a message bit is not very useful when it comes
to the evaluation of multiplication operations. When we multiply two ciphertexts (evaluate an AND) the
resulting ciphertext will contain the product of the two message polynomials. However, we will not be able
to extract the parallel product of message bits packed in the original ciphertext operands. The cross product
terms will overwrite the desired results. Therefore, a different type of encoding of the message polynomial is
required so that AND and XOR operations can be performed on batched bits fully in parallel. We adopted
the technique presented by Smart and Vercauteren [9]. Their technique is based on an elegant application
of the Chinese Remainder Theorem on a cyclotomic polynomial Φm(x) where deg(Φm(x)) = φ(m). An
important property of cyclotomic polynomials with m odd is that it factorizes into same degree factors over
F2. In other words, Φm has the form

Φm(x) =
∏
i∈[`]

Fi(x),

where ` is the number of factors irreducible in F2 and deg(Fi(x)) = d and d = N/`. The parameter d is the
smallest value satisfying m|(2d − 1). Each factor Fi defines a message slot in which we can embed message
bits. Actually we can embed elements of F2[x]/〈Fi〉 and perform batched arithmetic in the same domain.
However, in this paper we will only embed elements of F2 in the message slots. To pack a vector of ` message
bits a = (a0, a1, a2, . . . , a`−1) into a message polynomial a(x) we compute the CRT inverse on the vector a

a(x) = CRT−1(a) = a0M0 + a1M1 + · · ·+ a`−1M`−1 (mod Φm).

The values Mi are precomputed values that are shown as:

Mi =
Φm
Fi(x)

((
Φm
Fi(x)

)−1
(mod Fi(x))

)
(mod Φm).

The batched message can be extracted easily by performing modular reduction on the polynomial, e.g.
ai = a(x) (mod Fi(x)). Due to the Chinese Remainder Theorem multiplication and addition of the message
polynomials carry through to the residues: ai · bi = a(x) · b(x) (mod Fi(x)) and ai + bi = a(x) + b(x)
(mod Fi(x)).

Reducing the Public Key Size. To cope with the growth of noise, following Brakerski el al [11] we
introduce a series of decreasing moduli q0 > q1 > . . . > qt−1; one modulus per circuit level. Modulus
reduction is a powerful technique that exponentially reduces the growth of noise during computations. Here
we introduce a mild optimization that allows us to reduce the public key size drastically. We require that
qi = pt−i for i = 0, . . . , t − 1 where p ∈ Z is a prime integer. Therefore, Zqi ⊃ Zqj for any i < j. We also
require the secret key f ∈ Zq0/〈Φ(x)〉 to be invertible in all rings Zqi . Luckily, the following lemma from
[21] tells us that we only need to worry about invertibility in Zp = Fp. Note that the lemma is given for
R′p = Zp[x]/〈xn − 1〉 however the proof given in [21] is generic and also applies to the Rp setting.

Lemma 3 (Lemma 3.3 in [21]) Let p be a prime, and let f be a polynomial. If f is a unit in R′p, (or Rp)
then f is a unit in R′pk (or Rpk) for every k ≥ 1.

Under this condition the inverse f−1 ∈ Zq0/〈Φ(x)〉 which is contained in the public key h will persist through
the levels of computations, while implicitly being reduced to each new subring Zqi+1

/〈Φ(x)〉 when qi+1 is used

in the computation. More precisely, let f (i)(x) = f(x)−1 (mod qi). Then we claim f (i) (mod qi+1) = f (i+1)

for i = 0, . . . , t− 1. To see why this works, note that by definition it holds that f(x)f (t−1)(x) = 1 (mod p)
which allows us to write f(x)f (t−1)(x) = 1−pu(x) for some u(x) and form the geometric expansion of f(x)−1

w.r.t. modulus qt−k = pk−1 for any k = 1, . . . , t as follows

f(x)−1 = f (t−1)(x)(1− pu(x))−1 = h(x)(1 + pu(x) + p2u(x)2 + · · ·+ pk−2u(x)k−2) (mod pk−1) .

Then it holds that f (i) (mod qi+1) = f (i+1) for i = 0, . . . , t − 1. This means that to switch to a new level
(and modulus) during homomorphic evaluation the public key we simply compute via modular reduction.
The secret key f remains the same for all levels. Therefore, key switching is no longer needed. Also we no
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longer need to store a secret-key/public-key for each level of the circuit. With this approach we can still
take advantage of modulus reduction without having to pay for storage or key switching.

In the original scheme, the public key size is quadratically dependent on the the number of the levels the
instantiation can support. Also the number of evaluation keys needed in a level is dependent to the bit size
of the modulus at that level, i.e. log qi. Having a polynomial size n log qi at each level, the public key size
can be written as

|PK| =
t−2∑
i=0

n(log qi)
2 .

In our modified scheme we only need the key for the first level q0 = pt which is progressively reduced as the
evaluation proceeds through the levels, and therefore

|PK′| = n(log q0)2 .

In Section 7 we calculate the public key size for two settings which show drastic savings in memory use.
To understand the impact of this restriction on key generation and on the size of the key space we invoke

an earlier result by Silverman [21]. In this study, Silverman analyzed the probability of a randomly chosen
f ∈ R′q = Zq[x]/〈xn − 1〉 to be invertible in R′q.

Theorem 1 ([21]) Let q = pk be a power of a prime p, and let n ≥ 2 be an integer with gcd(q, n) = 1.
Define w ≥ 1 to be the smallest positive integer such that pw = 1 mod n and for each integer d|w, let

νd =
1

d

∑
e|d

µ

(
d

e

)
gcd(n, pe − 1)

then
|R′∗q |
|R′q|

=
∏
d|w

(
1− 1

pd

)νd
Furthermore, it is shown [21] that if n is a prime and large the following approximation shows that the
probability of picking a noninvertible f ∈ Rq such that f(1) 6= 0 may be made negligibly small by picking
appropriate p and n:

|R′∗q (1)|
|R′q(1)|

≈ 1− n− 1

wpw
.

Here Rq(1) = {∀f ∈ Rq s.t f(1) 6= 0}. In this paper we are working in a much simpler setting, i.e. Rq =
Zq[z]/〈Φm(x)〉. The uniform factorization of the cyclotomic polynomial Φ(x) allows us to adapt Silverman’s
analysis [21] and obtain a much simpler result. Assuming gcd(n, p) = 1, the cyclotomic polynomial factors

into equal degree irreducible polynomials Φm(x) =
∏`
i=1 Fi(x) over Zp, where deg(Fi(x)) = w, ` = φ(m)/w

and w ≥ 1 ∈ Z is the smallest integer satisfying pw = 1 (mod φ(m)). Therefore

Fp[x]/〈Φm(x)〉 ∼= Fp[x]/〈F1(x)〉 × · · · × Fp[x]/〈F`(x)〉 ∼= (Fpw)`

and for Rq we have νd = `. With this simplification the probability of randomly picking an invertible f ∈ Rq

given in Theorem 1 simplifies to
|R∗q |
|Rq|

=
|R∗p|
|Rp|

=

(
1− 1

pw

)`
.

When p is large |R∗q |/|Rq| ≈ 1− `p−w.

Optimizing Relinearization. In homomorphic circuit evaluation using ATV by far the most expensive
operation is relinearization. Therefore, it becomes essential to optimize relinearization as much as possible.
Recall that the relinearization operation computes a sum of encrypted shifted versions of a secret key f(x)
and polynomials c̃τ (x) with coefficients in F2 extracted from the ciphertext c.

c̃(x) =
∑
τ

ζτ (x) · c̃τ (x)

8



For simplicity we dropped the level indices in superscripts. The ciphertext ζτ (x) ∈ Rq[x]/〈Φ(x)〉 values
are full size polynomials with coefficients in Rq and do shrink in size over the levels of evaluation after each
modulus reduction. In contrast c̃τ (x) ∈ F2[x]/〈Φ(x)〉. Also τ ranges log(q). We may evaluate the summation,
by scanning the coefficients of the current c̃τ (x) and conditionally shifting and adding ζτ (x) to the current sum
depending on the value of the coefficient. With this approach the computational complexity of relinearization
becomes O(n log(q)) polynomial summations or O(n2 log(q)) coefficient, i.e. Zq, summations. This approach
is useful only for small n.

In contrast, if we directly compute the sum after we compute the products we obtain a more efficient
algorithm. The number of polynomial multiplications is O(log(q)) each having a complexity of
O(n log(n) log log(n)) with the Schönhage Strassen algorithm [4]. The algorithm simply uses Number Theo-
retic Transform (NTT) and completes the polynomial multiplication in three steps; conversion of the poly-
nomials to NTT form, digit-wise multiplications, conversion from NTT to polynomial form. After the
multiplications, coefficient additions require O(n log(q)) operations. The total complexity of relinearization
becomes O(n log(n) log log(n) log(q)) coefficient operations.

Another optimization technique is to store the polynomials ζτ (x) in NTT form. This eliminates the time
needed for the conversions of ζτ (x) at beginning of each multiplication operation. Furthermore, polynomial
additions are also performed in NTT form to eliminate NTT−1 conversions to polynomial form. Representing
the precomputed NTT form of ζτ (x) as ζ ′τ (x) we can rewrite the relinearization operations as follows

c̃(x) = NTT−1

[∑
τ

ζ ′τ (x) ·NTT[c̃τ (x)]

]
.

With this final optimization, we eliminate 2/3rds of the conversions in each relinearization and obtain nearly
3 times speedup.

5 Coping with Noise

In this section, we describe our approach in managing the growth of noise over the homomorphic evaluation
of levels of the circuit. The accumulation of noise from the evaluations of additions adds very little noise
compared to that contributed by multiplication. Therefore, as long as we have a reasonably balanced circuit
we can focus only on multiplications. Furthermore, in our analysis we focus on noise growth with regards to
its effect on the correctness of the scheme. Our goal is to minimize the computational burden, i.e. minimize
parameters q and N , such that the scheme still correctly decrypts with very high probability.

Consider two plaintexts m1,m2 ∈ χ1 and parameters g, s ∈ χB encrypted using a single user (single key)
with no modulus switching specialization of the LTV scheme. The secret key is f = 2f ′ + 1 where f ′ ∈ χB .
the product of two given ciphertexts c1 = E(m1) = hs1 + 2e1 +m1 and c2 = E(m2) = hs2 + 2e2 +m2 yields:

c1c2 = h2s1s2 + h(s1m2 + s2m1) + 2[h(s1e2 + s2e1) + e1m2 + e2m1 + 2e1e2] +m1m2

To decrypt the resulting ciphertext we compute

f2c1c2 = 4g2s1s2 + 2gf(s1m2 + s2m1) + 2[2gf(s1e2 + s2e1) +

+f2e1m2 + f2e2m1 + 2f2e1e2] + f2m1m2

If the following condition is satisfied no wraparound on the ciphertext coefficients will occur during decryp-
tion:

q/2 > 4n3B4 + 4n3B3(2B + 1) + 8n3B3(2B + 1) + 8n3B2(2B + 1)2 + n3B2(2B + 1)2

> n3(64B4 + 48B3 + 9B2)

Note that this is the worst case behavior of the norm and therefore decryption will work for most ciphertext
seven with a somewhat smaller q.

9



Modulus Reduction. It will be impractical to evaluate a deep circuit, e.g. AES, using this approach
since the norm grows exponentially with the depth of the circuit. To cope with the growth of noise, we
employ modulus reduction as introduced in [11]. For this, we make use of a series of decreasing moduli
q0 > q1 > . . . > qt; one modulus per level. Modulus reduction is a powerful technique that exponentially
reduces the growth of noise during computations. For simplicity assume qi+1/qi ≈ κ. As before, for
c1 = E(m1) = hs1 + 2e1 +m1 and c2 = E(m2) = hs2 + 2e2 +m2 the product of the two ciphertexts gives

c1c2 = h2s1s2 + h(s1m2 + s2m1) + 2[h(s1e2 + s2e1) + e1m2 + e2m1 + 2e1e2] +m1m2

After modulus reduction, i.e. multiplication by q1/q0 ≈ κ and correction of parities symbolized by pi ∈ DZn,r

we obtain

c1c2κ+ p1 =
[
h2s1s2 + h(s1m2 + s2m1) + 2[h(s1e2 + s2e1) + e1m2 + e2m1 + 2e1e2 +m1m2

]
κ+ p1

After i levels the ciphertext products (for simplicity assume c = c1 = . . . = c2i) where each multiplication is
followed by modulus reduction and parity corrections (symbolized by the pi) will be

c2
i

= (. . . ((c2κ+ p1)2κ+ p2)2 . . . κ+ p2i)

We may decrypt the result as follows:

c2
i

f2
i

= (. . . ((c2κ+ p1)2κ+ p2)2 . . . κ+ p2i)f
2i

= (. . . ((c2κ+ p1)2κ+ p2)2 . . . κ+ p2i)f
2i

The correctness condition becomes ||c2if2i ||∞ < q/2. Note that due to the final multiplication with the f2
i

term we still have exponential growth in the norm with the circuit depth. Therefore, we need one more
ingredient, i.e. relinearization [12], to force the growth into a linear function of the circuit depth. Intuitively,
relinearization achieves to linearize the growth by homomorphically multiplying the current ciphertext by f
right before modulus reduction.

Relinearization and Modulus Reduction. After each multiplication level we implement a relinearization
operation which keeps the power of f in the ciphertext under control and reduces the chances of wraparound

before decryption. Assume we homomorphically evaluate a simple d-level circuit circuit C(m) = m2d by
computing repeated squaring, relinearization and modulus switching operations on a ciphertext c where
||c||∞ = Bi. Recall that for relinearization we compute

c̃(i)(x) =
∑
τ

ζ(i)τ (x)c̃(i−1)τ (x)

where each ζ
(i)
τ (x) is of the form ζ

(i)
τ (x) = h(i)s

(i)
τ + 2e

(i)
τ + 2τf (i−1) in Rqi−1 . Substituting this value we

obtain

c̃(i)(x) =
∑
τ

[
h(i)s(i)τ + 2e(i)τ + 2τ

(
f (i−1)

)]
c̃(i−1)τ (x)

=
∑
τ

[
h(i)s(i)τ + 2e(i)τ

]
c̃(i−1)τ (x) +

∑
τ

2τ
(
f (i−1)

)
c̃(i−1)τ (x)

Since we are only interested in bounding the growth of noise we assume s
(i)
τ = s ∈ χB , g

(i)
τ = g ∈ χB and

e
(i)
τ = e ∈ χB and drop unnecessary indices from here on:

c̃ =
∑
τ

(hs+ 2e+ 2τf)c̃τ

=
∑
τ

(hs+ 2e)c̃τ +
∑
τ

2τf c̃τ

=
∑
τ

(2gf−1s+ 2e)c̃τ + f c̃

=
∑

τ∈[log(q)]

(2gf−1s+ 2e)c̃τ + c̃f

10



Also factoring in the modulus reduction and parity correction steps and substituting c̃ = c2 we obtain

c̃′ =

 ∑
τ∈[log(q)]

(2gf−1s+ 2e)c̃τ + c2f

κ+ p

where p ∈ χ1 represents the parity polynomial. The distribution (and norm) of the left summand in
the inner parenthesis is constant over the levels. To simplify the equation we use the shorthand X0 =∑
τ∈[log(qi)](2gf

−1s + 2e)c̃τ where the index is used to indicate the level. Assume we use Yi to label the

ciphertext (output) of evaluation level i then

Y0 =
(
fc2 +X0

)
κ+ p0 .

Assume we continue this process, i.e. squaring, relinearization, modulus reduction and parity correction for
d levels and then decrypt by multiplying the resulting ciphertext by f we obtain:

Yi =
(
fY 2

i−1 +Xi−1
)
κ+ pi , for i = 1, . . . , d− 1

To decrypt Yd−1 we need ||Yd−1f ||∞ < q/2. Now first note that

Yif =
[(
fY 2

i−1 +Xi−1
)
κ+ pi

]
f

=
(
(Yi−1f)2 +Xi−1f

)
κ+ pif

Therefore, ||Yif ||∞ ≤ ||(Yi−1f)2||∞κ+ ||Xi−1f ||∞κ+ ||pif ||∞ Also note that

||fXi||∞ = ||
∑
τ

(2gsτ + 2eτf)c̃τ ||∞

≤ n||
∑
τ

(2gsτ + 2eτf)||∞||
∑
τ

c̃τ ||∞

≤ n(2nB2 + n2B(2B + 1)) log(qi)

≤ n2(6B2 + 2B) log(qi)

Now let Bi denote an upper bound on the norm of a decrypted ciphertext entering level i of leveled circuit, i.e.
Bi ≥ ||fYi||∞. The norm of the output grows from one level to the next including multiplication (squaring
with our simplification), relinearization and modulus reduction as follows

Bi ≤
[
n2(6B2 + 2B) log(qi) + n3(2B + 1)2B2

i−1
]
κ+ n(2B + 1) . (2)

Notice the level independent (fixed) noise growth term on the left summand of the recursion. In practice,
the summand on the right dominates right-hand-side and therefore κ needs to be chosen so as to stabilize
the the norm over the levels of computation, i.e. B1 ≈ B2 ≈ . . . ≈ Bd−1 < qd−1/2. Finally, we can make
the accounting a bit more generic by defining circuit parameters ai which denote the maximum number of
ciphertext additions that take place in evaluation level i. With this parameter we can bound the worst case
growth simply by multiplying any ciphertext that goes into level i+ 1 by ai as follows.

Bi ≤
[
a2in

2(6B2 + 2B)(log(qi) + log(ai)) + n3(2B + 1)2B2
i−1
]
κ+ n(2B + 1) . (3)

Average Case Behavior. In our analysis so far we have considered worst case behavior. When viewed
as a distribution, the product norm ||ab||∞ will grow much more slowly and the probability that the norm
will reach the worst case has exponentially small probability. To take advantage of the slow growth we
can instead focus on the growth of the standard deviation by modeling each coefficient of a and b as a
scaled continuous Gaussian distribution with zero mean and deviation σ = B. The coefficients of the
product (ab)i =

∑
i=0,...,n−1 aibn−1−i, behave as drawn from a scaled chi-square distribution with 2n degrees

of freedom, i.e. χ2(2n). To see this just note each coefficient product can be rewritten as aibn−1−i =
1
4 (ai+bn−1−1)2− 1

4 (ai−bn−1−1)2. As n becomes large χ2(2n) becomes close to an ideal Gaussian distribution
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with variance 4n. Thus σ((ab)i) ≈
√
nB2 for large n. Therefore, a sufficiently good approximation of the

expected norm may be obtained by replacing n with
√
n in Equation 3 as follows.

Bi,avg ≈
[
ain(6B2 + 2B)(log(qi) + log(ai)) + n3/2(2B + 1)2B2

i−1,avg

]
κ+
√
n(2B + 1) .

For practical values of n and small B the left-hand-side dominates the other terms in the equation. Further
simplifying we obtain

Bavg ≈
[
ain(6B2 + 2B) log(aiqi) + n3/2(2B + 1)2B2

i−1,avg

]
κ . (4)

Assuming nearly fixed ai ≈ a, if we set 1/κ = ε
[
an(6B2 + 2B)(log(q0) + log(a)) + n3/2(2B + 1)2B2

]
for a

small constant ε > 1 we can stabilize the growth of the norm and keep it nearly constant over the levels of
the evaluation. Values of Bi and Bi,avg for n relevant to our implementation are tabulated in Figure 1.

We can simplify the noise equation further to gain more insight on the noise growth and subsequently
on how the modulus q and the dimension n will be affected. Fix B = 2 and assume we are interested in
evaluating a depth t circuit and therefore q0 = pt. Also since with our q = pt specialization 1/κ ≈ p and
since p� a neglecting log(a) we can simplify our noise estimate as follows:

p ≈ 28at log(p)n+ 100n3/2 .

This nonlinear equation displays the relationship between the chosen dimension n and depth of circuit we
wish to support and the number of bits we need to cut in each level. However, p and n are not independent
since n and q = pt are tied through the Hermite factor δ = (

√
q/4)1/(2n) = (

√
pt/4)

1
2n and p = (4δ2n)2/t.

Substituting p yields

(4δ2n)2/t ≈ 28at[4n/t log(δ)]n+ 100n1.5 ,

(4δ2n)2/t ≈ 112a log(δ)n2 + 100n1.5 .

By taking the logarithm and fixing a and the security level δ we see that t ∼ O(n/ log(n)).

Worst Case Average Case
log(n) log(q) log(1/K) #L log(1/K) #L

12 155 43 2 27 4
13 311 46 5 29 9
14 622 49 11 30 19
15 1244 52 22 32 37
16 2488 55 44 33 74
17 4976 58 84 35 141

Figure 1: Worst case and average case number of bits log(1/K) required to cut to correctly evaluate a pure
multiplication circuit of depth L with B = 2 and α = 6 for n and q chosen such that δ(n, q) = 1.0066.

Failure Probability. Equation 4 tells us that we can use a much smaller q than that determined by the
worst case bound in Equation 3 if are willing to accept a small decryption failure probability at the expense
of a small margin. The failure probability is easily approximated. If we set q/2 > αBavg where α > 1
captures the margin, then αBavg/σ determines how much of the probability space we cover in a Gaussian
distribution N(µ = 0, σ). The probability for the norm of a single coefficient to exceed a preset margin ασ
becomes Prob [||(ab)i||∞ > ασ] ≈ 1−erf

(
α/
√

2
)

where erf denotes the error function. For the entire product
polynomial we can approximate the worst case probability by assuming independent product coefficients as
Prob [||ab||∞ > ασ] ≈ 1− erf

(
α/
√

2
)n

. Having dependent coefficients (as they really are) will only improve
the success probability. For instance, assuming n = 214 and σ = B with a modest margin of α = 7 we obtain
a reasonably small failure probability of 2−60.

12



6 Evaluating AES using LTV-FHE

Here we briefly summarize the AES circuit we use in during evaluation. The homomorphic evaluation function
takes as input the encrypted AES evaluation keys, and the description of the AES circuit as input. All input
bits are individually encrypted into separate ciphertexts. We do not use byte-slicing in our implementation.
Our description follows the standard definition of AES with 128-bit keys where each of the 10 rounds are
divided into four steps: AddRoundKey, ShiftRows, MixColumns and SubBytes:

AddRoundKey. The round keys are derived from the key through an expansion algorithm and encrypted
to be given alongside the message beforehand. The first round key is added right after the computation starts
and the remaining round keys are added at the end of each of their respective rounds during evaluation.
Therefore, each round key is prepared for the level during which it will be used. As we will shortly show
each AES level requires 4 multiplication levels. Therefore the round key for level i is computed in Rq4i for
0 ≤ i ≤ 10. Adding a round key is a simple XOR operation performed by addition of the ciphertexts. Since
round keys are fresh ciphertexts, the added noise is limited to a single bit.

ShiftRows. The shifting of rows is a simple operation that only requires swapping of indices trivially
handled in the code. This operation has no effect on the noise.

MixColumns. The Mix Column operation is a 4× 4 matrix multiplication with constant terms in GF (28).
The multiplication is between a byte and one of the constant terms of {x+ 1, x, 1} with modulo (x8 + x4 +
x3 + x+ 1). These products are evaluated by simple additions and shifts as follows.

(b7b6b5b4b3b2b1b0)
×1−−→ (b7b6b5b4b3b2b1b0)

(b7b6b5b4b3b2b1b0)
×x−−→ (b6b5b4b3b2b1b0b7)⊕ (000b7b70b70)

(b7b6b5b4b3b2b1b0)
×(x+1)−−−−−→ (b7b6b5b4b3b2b1b0)⊕ (b6b5b4b3b2b1b0b7)⊕ (000b7b70b70)

Once the multiplication of the rows are finished, 4 values are added to each other. The addition operations
add a few bits of noise.

SubBytes. The SubBytes step or the S–Box is the only place where we require homomorphic multiplications
and Relinearization operations. An S–Box lookup in AES corresponds to a finite field inverse computation
followed by the application of an affine transformation; i.e., s = Mb−1 ⊕ B. M is a {0, 1} matrix and B
is constant vector for the affine transformation which may are simply realized using addition operations
between ciphertexts. The time consuming part of the S–Box is the evaluation of inversion operation. In [20],
the authors introduced a compact design for computing the inverse. The input byte in GF (28) is converted
using an isomorphism into a tower field representation, i.e. GF (((22)2)2), which allows much more efficient
inversion. This conversion to/from tower field representation is achieved by simply multiplying with a
conversion matrix with {0, 1} coefficients. The inversion operation can be written as: b−1 = X(X−1b)−1.
With this modificaiton the operations in the SubBytes step can be expressed as s = M(X(X−1b)−1) ⊕ B.
The conversion matrices X−1 and the matrix product MX are given as follows.

X−1 =



1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 1 1 0 0 0 0 1
1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
0 1 0 0 1 1 1 1


MX =



0 0 1 0 1 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0
1 1 1 1 1 0 0 0
0 1 1 0 1 1 0 1
0 0 1 1 0 0 1 0
0 1 0 1 0 0 1 0


(5)

With tower field representation, the 8-bit S–Box substitution requires 4 (multiplication) levels of circuit
evaluation. The full 10 round 128 bit-AES block homomorphic evaluation requires the evaluation of a depth
40 circuit.
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7 Implementation Results

We implemented the customized ATV scheme with the optimizations summarized in Section 4 using Shoup’s
NTL library version 6.0 [17] compiled with the GMP 5.1.3 package. The implementation batches bits into
ciphertexts using CRT applied using a cyclotomic modulus polynomial Ψm(x) where deg(Ψ) = n. The
evaluation functions supports homomorphic additions and multiplication operations. Each multiplication is
followed by a Relinearization operation and modulus switching in our implementation. After homomorphic
evaluation the results may be recovered from the message slots using remainder computations as usual.

Homomorphic AES evaluation. Using the ATV primitives we implemented the depth 40 AES circuit
described in Section 6. The AES S–Box evaluation, is completed using 18 Relinearization operations and thus
2,880 Relinearizations are needed for the full AES.

We ran the AES evaluation for two choices of parameters:

• Polynomial degree of n = 27000 with a modulus of size log (q) = 1230 and Hermite factor δ = 1.0078
(low security setting). For a error margin of α ≈ 8 and number of additions per AES level of a ≈ 100 if
we cut log(p) ≈ log(1/K) = 30 bits at each level Equation 4 tells us that the noise will stabilize around
12.8 bits. For α ≈ 8 we obtain an error probability of 2−41 per ciphertext. Under these parameters the
total running time of AES is 27 hours. Since we batched with 1800 message slots we obtain 54 seconds
evaluation time per block.

• Polynomial degree set as n = 32768 with modulus size log (q) = 1271 and Hermite factor δ = 1.0067.
For a error margin of α ≈ 8 and number of additions of a ≈ 100 if we cut log(1/K) = 31 bits at each
level the noise will stabilize around 12.6 bits. The total running time is 31 hours resulting in 55 seconds
per block encryption with 2048 message slots.

Table 3 summarizes the parameters for the two settings and the timing results.

n log(q0) δ log(1/K) Message Slots Total Time Time/Block
27000 1230 1.0078 30 1800 27 hours 54 sec
32768 1271 1.0067 31 2048 31 hours 55 sec

Table 3: The two settings under which we evaluated AES and timing results on Intel Xeon @ 2.9 GHz.

Memory requirements. In the implementation we are taking advantage of the reduced public key size as
described in Section 4. To support a 40 level AES circuit evaluation with the original scheme in [12] for the two
settings outlined above we would need to store public keys of size 67 GBytes and 87 GBytes, respectively.
The optimized scheme reduces the public keys to 4.75 Gbytes and 6.15 GBytes. This demonstrates the
effectiveness of the optimization. We can perform the evaluation on common machines with less than 16
Gbytes memory. Table 4 summarizes the public key sizes for the two chosen parameter settings with and
without the public key optimization.

Since our server has more memory, to speed up the relinearization operations we keep the public keys in
the NTT domain requiring 12.2 Gbytes and 13.1 Gbytes, respectively. Keeping the public keys in the NTT
domain improved the speed of relinearizations by about 3 times. Since relinearizations amount to about 70%
of the time we gained an overall speedup of 2.5 times in AES evaluation.

Brief comparison to GHS AES. When compared to the BGV style leveled AES implementation by Gen-
try, Smart, Halevi (GHS) [10]; our implementation runs 48 times faster than the bit-sliced and 6 times faster
than the byte-sliced implementation. Our implementation is more comparable to the bit-sliced version since
we did not customize our software library to more efficiently evaluate AES in order to keep it generic. While
we also use optimizations such as modulus reduction, and batching the two implementations differ in the way
they handle noise. In the GHS FHE implementation take a more fine grain approach to modulus reduction,
by cutting the noise even after constant multiplications, additions and shifting operations. Depending on
the implementation is bit–sliced or byte–sliced, the number of levels ranges between 50 to 100 where in each
level 18-20 bits are cut. In the presented work we only cut the modulus after multiplications and therefore
we have a fixed 40 levels with 30-31 bits cut per level.
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Representation Original (GBytes) Optimized (GBytes) AES Speedup
Polynomial 67 87 4.75 6.13 1

NTT 172 184 12.2 13.1 2.5

Table 4: Sizes of public-key in various representations with and without optimization for the two selected
parameter settings.

8 Conclusion

In this work, we presented a customized leveled implementation of the NTRU based ATV homomorphic
encryption scheme. We introduced a number of optimizations to obtain an efficient bit-sliced and batched
implementation. We analyzed noise growth for increasing circuit depths and developed a simple formula
that allows one to determine parameter sizes to support arbitrary depth circuits efficiently. Furthermore,
we specialized the modulus in a way that allows us to drastically reduce the public key size while retaining
the ability to apply modulus reduction and switching through the levels of evaluation. The reduced public
key size makes it possible to evaluate deep circuits such as the AES block cipher on common (non-server)
computing platforms with a reasonable amount of memory.

To expose the performance of the NTRU based FHE scheme, we homomorphically evaluated the full 10
round AES circuit in 31 hours with 2048 message slots yielding a 55 sec per AES block evaluation making
it 43 times faster than the generic bit-sliced implementation, 5 times faster than the AES customized byte
sliced BGV implementation by Gentry, Halevi and Smart. This suggest that the NTRU based evaluation
does indeed yield more efficient homomorphic evaluation than the ones based on the BGV scheme.
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