
Cryptanalysis via algebraic spans

Adi Ben-Zvi, Arkadius Kalka, and Boaz Tsaban

Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
adi2lugassy@gmail.com, tschussle@gmail.com, tsaban@math.biu.ac.il

Abstract. We introduce a method for obtaining provable polynomial
time solutions of problems in nonabelian algebraic cryptography. This
method is widely applicable, easier to apply, and more efficient than ear-
lier methods. After demonstrating its applicability to the major classic
nonabelian protocols, we use this method to cryptanalyze the Triple De-
composition key exchange protocol, the only classic group theory based
key exchange protocol that could not be cryptanalyzed by earlier meth-
ods.

1 Introduction

Since Diffie and Hellman’s 1976 key exchange protocol, few alternative proto-
cols withstood cryptanalysis, all based on abelian algebraic structures. In the
years 1999 and 2000 [2, 9], two general key exchange protocols based on non-
abelian algebraic structures were introduced. The security of these protocols is
based on variations of the conjugacy problem in nonabelian groups. The Triple
Decomposition key exchange protocol was introduced in 2006 [10,11], and subse-
quently included in textbooks on nonabelian cryptography [7,12,13]. Its security
is based on a problem that is very different from those of the earlier nonabelian
key exchange protocols, and it stood out as the only nonabelian group theoretic
protocol resisting known cryptanalyses [24].

All mentioned protocols were implemented over Artin’s braid group BN . For
the main part of this paper, it suffices to know that this group has an efficient,
faithful representation as a group of matrices, and the computational problems
on which the security of the above-mentioned protocols are based reduce to
the same problems in groups of matrices over finite fields. The details of the
reduction are available in Section 5.

Our main contribution is the introduction of algebraic span cryptanalysis, a
general approach for provable polynomial time solutions of computational prob-
lems in groups of matrices, and thus in all groups with efficient matrix repre-
sentations. Algebraic span cryptanalysis improves upon earlier ones (such as the
Cheon–Jun method and the linear centralizer method [5, 24]), in its wider ap-
plicability, simplicity, and efficiency. It solves all problems that were solved by
earlier provable methods.

A true challenge for the novelty of a new method is to cryptanalyze a protocol
that could not be cryptanalyzed by earlier methods, and the Triple Decomposi-
tion key exchange protocol is such. With a novel view at the public information

provided by this protocol, algebraic span cryptanalysis provides its first crypt-
analysis.

Previously, provable cryptanalyses of this type were considered theoretical
only. Using some algorithmic speed-ups, we also provide the first implementation
of a cryptanalysis of this type. All of our experiments, with a wide range of
parameters, succeeded in extracting the shared key out of the public information
of the protocol.

Related work. The Commutator and the Braid Diffie–Hellman protocols were
cryptanalyzed in a number of heuristic ways, but these attacks were foiled by
changing the distributions on the group [6, 23, and references therein]. In two
breakthrough papers [5,24], provable polynomial time algorithms were found for
the precise computational problems on which these, and some related protocols,
are based. In a series of works [14–18, and references therein], Roman’kov and
others developed a provable polynomial time method that applies to key ex-
change protocols with certain commuting substructures. None of these methods
applies to the Triple Decomposition protocol, that is used here to demonstrate
the novelty of our method.

Paper outline. Section 2 introduces the new method, in general terms. The
exact application of this method depends on the specific protocol we wish to
cryptanalyze. Section 3 demonstrates the applicability of this method to the
classic nonabelian key exchange protocols. In addition to demonstrating the
flexibility of this method, this section is designed to make the reader comfort-
able with this method, and make it easier to proceed to Section 4, that addresses
a hitherto resistant challenge, where the application of our method is more in-
volved. Section 5 provides the details of the Triple Decomposition key exchange
protocol and its reduction to a matrix group over a finite field, together with
more detailed complexity estimates and experimental results.

This paper is a composition of a work by the third named author (Sections 1–
3) and a joint work of all three authors (Sections 4–5).

2 Algebraic span cryptanalysis in a nutshell

Let F be a finite field, and Mn(F) be the set of n× n matrices with entries in F.
An algebra of matrices is a family of matrices A ⊆ Mn(F) that is closed under
linear combinations and multiplications. For a set S ⊆ Mn(F), let Alg(S) be the
algebra generated by S, that is, the smallest Algebra A ⊆ Mn(F) that contains
S as a subset. Every subalgebra of Mn(F) is also a vector space over the field
F. Let GLn(F) be the group of invertible matrices in Mn(F). For a subgroup
G ≤ GLn(F), we have Alg(G) = span(G), the vector space spanned by G. For
simplicity we assume, throughout, that the dimension of the vector space Alg(G)
is at least a positive constant times n. Notice that even for cyclic groups G, this
is typically the case.

2

Throughout, let ω be the linear algebra constant, the minimal real number
such that the complexity of n×n matrix multiplication is O(nω) field operations.

Proposition 1 Let G = 〈g1, . . . , gk〉 ≤ GLn(F) be a group, and d ≤ n2 be the
dimension of the vector space Alg(G). A basis for the vector space Alg(G) can
be computed using O(kd2n2) field operations.

Proof. Initialize a sequence s = (I), the identity matrix, and i := 1. Repeat the
following as long as there is an element in position i of the sequence s:

1. For j = 1, . . . , k, if sigj /∈ spanS, append sigj at the end of the sequence s.
2. i := i+ 1.

The resulting sequence s is a basis for spanG. For each i and each j, the com-
plexity of computing the products sigj is nω field operations. Assume that the
matrices are stored in s in a vector form, and the matrix s is kept in Echelon
normal form throughout the process. Since there are at most d vectors in s, each
of length n2, the complexity of checking whether a vector is in span s is at most
O(dn2). Thus, the overall complexity is O(kd(nω + dn2)) field operations. Since
we assume that d is at least a constant multiple of n, the second term dominates
the first one. ut

Proposition 1 holds, more generally, for semigroups of matrices; but this will
not be used here. There are advanced methods, via representation theory, to
slightly reduce the complexity of this computation [8] but, for our purposes,
Proposition 1 suffices as it is.

2.1 The method

Algebraic span cryptanalysis is applied as follows. Let G1, . . . , Gk be given, pub-
licly known subgroups of GLn(F). Assume that a secret f(g1, . . . , gk) is computed
from unknown matrices g1 ∈ G1, . . . , gk ∈ Gk, by means of a prescribed, public
function f . Assume that we can extract, from a protocol transaction, a sys-
tem of linear equations (or constraints) on the entries of the unknown matrices
g1, . . . , gk, and we wish to find the secret f(g1, . . . , gk) .

Instead of solving the given linear equations subject to the restrictions g1 ∈
G1, . . . , gk ∈ Gk (which may be computationally infeasible), we solve these linear
equations subject to the linear constraints g1 ∈ Alg(G1), . . . , gk ∈ Alg(Gk). We
then try to prove (or at least verify by experiments) that, for each solution
g̃1, . . . , g̃k, we have f(g̃1, . . . , g̃k) = f(g1, . . . , gk).

Strikingly, this simple method applies, provably, in all cases of nonabelian
algebraic cryptography where polynomial-time algorithms are known [9, 14–16,
24], and in a case that was not cryptanalyzed thus far. We provide these details
in the following sections.

The equations do not have to be given as linear. For example, an equation
g1ag2 = b with a and b known can be transformed to the equation ag2 = g−11 b,
which is linear in the entries of the matrices g−11 and g2.

3

2.2 Invertibility

Often, as in the latter example, we need some elements in our solution to be
invertible. Since there is an invertible solution, namely, (g1, . . . , gk), the following
lemma (Invertibility Lemma [24, Lemma 9]) guarantees that random solutions
are invertible with probability bounded away from zero, provided that the field
is not too small. This will be the situation in all of our applications. Thus, we
may pick random solutions until they are invertible.

Lemma 1. For a finite field F, let a1, . . . , am ∈ Mn(F), such that some linear
combination of these matrices is invertible. If α1, . . . , αm are chosen uniformly
and independently from F, then the probability that the linear combination α1a1+
· · ·+ αmam is invertible is at least 1− n

|F| .

2.3 Complexity

The next section provides concrete applications of this approach to several prob-
lems in the field of nonabelian algebraic cryptography. Enough examples are
provided so that the reader can apply this method to additional problems in
the field, including essentially all known key exchange protocols based on groups
with efficient representations as matrix groups. In these examples, the proposed
platform group is Artin’s braid group BN . However, these problems are known
to transform into a matrix group G ≤ GLn(F) [9,24]. The reduction uses the the
Lawrence–Krammer representation, and thus the matrices are of rank n = (N2).

In this reduction, the cardinality of the field F is, roughly, 2M
3N2

, for some length
parameter M . We may assume that M ≈ N . Then the cost of field multiplication
is about N5, ignoring a logarithmic factor. Tighter scrutiny of this reduction is
likely to lead to substantially smaller field sizes; the extra factor of N5 should
not be considered definite. Additional details are provided in Section 5.

3 Sample applications

In this section, we apply the algebraic span method to the major classic non-
abelian key exchange protocols. The application in these cases is not difficult.
This demonstrates the applicability of the method, and also serves as a good
preparation for the next section, where a more involved application is made.
The protocols are presented for general groups, but they were all proposed to
use groups that have efficient representations as matrix groups. We thus assume
here that the groups are matrix groups. The exact parameters originally sug-
gested for these protocols are not important: The cryptanalyses we provide are
provable, and their complexity is unaffected by the exact settings or distribu-
tions used by the protocol. For the main application, we will provide details in
Section 5.

The protocols to which we apply our method are described succinctly by
diagrams. In these diagrams, green letters indicate publicly known elements,

4

and red ones indicate secret elements, known only to their holders. Results of
computations involving elements of both colors may be either publicly known,
or secret, depending on the context.

Most of these protocols, and their analyzes, use the following notation. For
a nonabelian group G and group elements g, x ∈ G, we define gx := x−1gx.
Useful identities involving this notation include gxy = (gx)y, and gc = g for
every element c ∈ G that commutes with g, that is, when cg = gc.

3.1 The Commutator key exchange protocol

A free group word in the variables x1, . . . , xk is a product of the form

x ε1i1 x
ε2
i2
· · ·x εmim ,

with i1, . . . , im ∈ {1, . . . , k} and ε1, . . . , εm ∈ {1,−1}, and with no subproduct of
the form xix

−1
i or x−1i xi. The Commutator key exchange protocol [2] is described

in Figure 1 below. In some detail:

1. A nonabelian group G and elements a1, . . . , ak, b1, . . . , bk ∈ G are publicly
given.

2. Alice and Bob choose free group words in the variables x1, . . . , xk, v(x1, . . . ,
xk) and w(x1, . . . , xk), respectively.

3. Alice substitutes a1, . . . , ak for x1, . . . , xk, to obtain a secret element a =
v(a1, . . . , ak) ∈ G. Similarly, Bob computes a secret element b = w(b1, . . . , bk)
in G.

4. Alice sends the conjugated elements b1
a, . . . , bk

a to Bob, and Bob sends the
conjugated elements a1

b, . . . , ak
b to Alice.

5. The shared key is the commutator a−1b−1ab.

As conjugation is a group isomorphism, we have

v(a1
b, . . . , ak

b) = v(a1, . . . , ak)b = ab = b−1ab.

Thus, Alice can compute the shared key a−1b−1ab as a−1v(a1
b, . . . , ak

b), using
her secret a, v(x1, . . . , xk) and the public elements a1

b, . . . , ak
b. Similarly, Bob

computes a−1b−1ab as w(b1
a, . . . , bk

a)−1b.
The security of the Commutator key exchange protocol is determined by

the difficulty of the following problem. As usual, for a group G and elements
g1, . . . , gk ∈ G, the subgroup of G generated by the elements g1, . . . , gk is denoted
〈g1, . . . , gk〉.

Problem 2 Let G be a group, a1, . . . , ak, b1, . . . , bk ∈ G, a ∈ 〈a1, . . . , ak〉, and
b ∈ 〈b1, . . . , bk〉.
Given the group elements a1, . . . , ak, b1, . . . , bk, a

b
1, . . . , a

b
k, b

a
1 , . . . , b

a
k, compute the

commutator a−1b−1ab.

The Commutator key exchange protocol uses Artin’s braid group as its plat-
form group, but it is known that the problem reduces, polynomially, to the same
problem in matrix groups over finite fields [24]. Thus, we need to solve Problem 2
in matrix groups.

5

Alice Public Bob

v(x1, . . . , xk) ∈ Fk a1, . . . , ak ∈ G w(x1, . . . , xk) ∈ Fk

a = v(a1, . . . , ak) b1, . . . , bk ∈ G b = w(b1, . . . , bk)

b1
a, . . . , bk

a

//

a1
b, . . . , ak

b

oo

a−1b−1ab = a−1v(a1
b, . . . , ak

b) a−1b−1ab = w(b1
a, . . . , bk

a)−1b

Fig. 1. The Commutator key exchange protocol

Lemma 3 Let x, x̃ ∈ GLn(F) and G = 〈g1, . . . , gk〉 ≤ GLn(F). If gi
x = gi

x̃ for
all i = 1, . . . , k, then gx = gx̃ for all g ∈ Alg(G).

Proof. Conjugation is an automorphism of the matrix algebra. ut

We apply the algebraic span method to Problem 2, as follows:

1. Compute bases for the vector spaces Alg(A) and Alg(B). Let d be the max-
imum of the sizes of these bases.

2. Solve the following homogeneous system of linear equations in the unknown
matrix x ∈ Alg(A):

b1 · x = x · b1a

...

bk · x = x · bka,

a system of linear equations on the d coefficients determining the matrix x,
as a linear combination of the basis of the space Alg(A).

3. Fix a basis for the solution space, and pick random solutions until the picked
solution ã is invertible.

4. Solve the following homogeneous system of linear equations in the unknown
matrix y ∈ Alg(B):

a1 · y = y · a1b

...

ak · y = y · akb,

a system of linear equations on the d coefficients determining y.

6

5. Fix a basis for the solution space, and pick random solutions until the picked
solution b̃ is invertible.

6. Output: ã−1b̃−1ãb̃.

That step (3) terminates quickly follows from the Invertibility Lemma [24].
We prove that the output is correct. As b̃ ∈ Alg(B), we have by Lemma 3 that
b̃ã = b̃a, and therefore

(b̃−1)ã = (b̃ã)−1 = (b̃a)−1 = (b̃−1)a.

It follows that

ã−1b̃−1ãb̃ = (b̃−1)ãb̃ = (b̃−1)ab̃ = a−1b̃−1ab̃ = a−1ab̃.

As a ∈ Alg(A), we have by Lemma 3 that ab̃ = ab, and thus

ã−1b̃−1ãb̃ = a−1ab = a−1b−1ab.

Complexity. The step with linear equations computes the nullspace of a kn2×d
matrix. Thus, its complexity is O(kn

2

d dω) = O(kn2dω−1), which is dominated
by the complexity O(kd2n2) of computing the algebraic spans. In the actual
proposal [2], the dimension d is O(n2), and the complexity becomes O(kn6).
The parameter k is typically

√
n (the number of Artin generators in the braid

group BN).

Strikingly, the previous cryptanalysis, by the linear centralizer method, has
a much larger complexity: O(n8 + kn6), that is typically O(n8) [24]. Thus, the
new cryptanalysis is not only simpler and more general, but also more efficient.

3.2 The Centralizer key exchange protocol

For a group G and an element g ∈ G, the centralizer of g in G is the set

CG(g) := {h ∈ G : gh = hg}.

The Centralizer key exchange protocol, introduced by Shpilrain and Ushakov in
2006 [21], is described in Figure 2. In this protocol, a1 commutes with b1 and
a2 commutes with b2. Consequently, the keys computed by Alice and Bob are
identical, and they are equal to the group element a1b1ga2b2.

The security of the Centralizer key exchange protocol is determined by the
difficulty of the following problem.

Problem 4 Let G ≤ GLn(F), g, a1, b2 ∈ G, g1, . . . , gk ∈ CG(a1), h1, . . . , hk ∈
CG(b2), a2 ∈ 〈h1, . . . , hk〉, and b1 ∈ 〈g1, . . . , gk〉.
Given the group elements g, g1, . . . , gk, h1, . . . , hk, a1ga2, b1gb2, compute the prod-
uct a1b1ga2b2.

7

Alice Public Bob

a1 ∈ G g ∈ G b2 ∈ G

g1, . . . , gk ∈ CG(a1) //

h1, . . . , hk ∈ CG(b2)oo

a2 ∈ 〈h1, . . . , hk〉 b1 ∈ 〈g1, . . . , gk〉

a1ga2 //

b1gb2oo

K = a1 · b1gb2 · a2 K = b1 · a1ga2 · b2

Fig. 2. The Centralizer key exchange protocol

The algebraic span method applies, provably, to this problem: We note that
a−11 (a1ga2) = ga2. Find a solution to the system

x(a1ga2) = gy

xg1 = g1x

...

xgk = gkx

with x invertible and y ∈ Alg({h1, . . . , hk}). In practice, we may start with y
which has d variables, and this determines x and then we solve for x.

Let (ã1, ã2) = (x−1, y). Then ã1gã2 = x−1gy = a1ga2. As the element ã1 =
x−1 commutes with all elements g1, . . . , gk, it also commutes with b1. As b2
commutes with h1, . . . , hk and ã2 ∈ Alg({h1, . . . , hk}), we have b2ã2 = ã2b2.
Thus,

ã1b1gb2ã2 = b1ã1gã2b2 = b1a1ga2b2.

Here, too, the complexity is O(kd2n2).

3.3 The Braid Diffie–Hellman key exchange protocol and the
Double Coset key exchange protocol

The Braid Diffie–Hellman key exchange protocol, introduced by Ko, Lee, Cheon,
Han, Kang and Park [9], is illustrated in Figure 3. For subsets A,B of a group
G, that notation [A,B] = 1 means that the sets A and B commute elementwise,
that is, a and b commute (ab = ba) for all elements a ∈ A and b ∈ B. Since, in
the Braid Diffie–Hellman key exchange protocol, the subgroups A and B of G
commute element-wise, the keys computed by Alice and Bob are identical.

8

Alice Public Bob

a ∈ A A,B ≤ G, g ∈ G, [A,B] = 1 b ∈ B

ga //

gboo

K = (gb)a = gba K = (ga)b = gab

Fig. 3. The Braid Diffie–Hellman key exchange protocol

The security of the Braid Diffie–Hellman key exchange protocol for a platform
group G (Figure 3) is captured by the following problem.

Problem 5 Let A and B be subgroups of GLn(F) with [A,B] = 1, and an
element g ∈ GLn(F) be given.
Given a pair (ga, gb) where a ∈ A and b ∈ B, find gab.

As with all problems in this paper, the original problem is stated for Artin’s
Braid group, and it is known that it reduces to the same problem in matrix
groups over finite fields [5]. We solve it for matrix groups.

To apply the algebraic span method to this problem, solve the equation
gx = ga subject to the linear constraint x ∈ Alg(A), and pick an invertible
solution ã. Then

(gb)ã = gbã = gãb = (gã)b = (ga)b = gab.

Again, the complexity of the solution is dominated by the computation of Alg(A).

A generalization of the Braid Diffie–Hellman key exchange protocol was pro-
posed by Cha, Ko, Lee, Han and Cheon [4]. A variation of this protocol was
proposed in 2005, by Shpilrain and Ushakov [20]. These protocols are both spe-
cial cases of the Double Coset key exchange protocol, illustrated in Figure 4.

One may state the underlying problem as before. Here is how to solve it:
Solve the equation x1(a1ga2) = gx2 subject to x1 ∈ Alg(A1) and x2 ∈ Alg(A2),
with x1 invertible. Let (ã1, a2) = (x−11 , x2). Then

ã1(b1gb2)ã2 = b1ã1gã2b2 = b1a1ga2b2.

The complexity is the same as in the previous solutions.

9

Alice Public Bob

a1 ∈ A1, a2 ∈ A2 A1, A2, B1, B2 ≤ G, g ∈ G, [Ai, Bi] = 1 b1 ∈ B1, b2 ∈ B2

a1ga2 //

b1gb2oo

K = a1 · b1gb2 · a2 K = b1 · a1ga2 · b2

Fig. 4. The Double Coset key exchange protocol

3.4 Stickel’s key exchange protocol

We conclude with an example where the complexity of the cryptanalysis is sur-
prisingly small. The key exchange protocol described in Figure 5 was introduced
by Stickel in 2005 [22].

Alice Public Bob

k1, k2 ∈ {1, . . . , N} A,B ∈ Mn(F) m1,m2 ∈ {1, . . . , N}

Ak1Bk2
//

Am1Bm2
oo

K = Ak1 ·Am1Bm2 ·Bk2 K = Am1 ·Ak1Bk2 ·Bm2

Fig. 5. Stickel’s key exchange protocol

A successful heuristic cryptanalysis of complexity roughly n2ω was presented
by Shpilrain [19]. Shpilrain’s cryptanalysis turned out provable [24]. The alge-
braic span method provides a simple alternative, of smaller complexity.

The dimension of the algebras spanned by the matrices A and B is, by the
Cayley–Hamilton Theorem, at most n. Find a matrix Ã ∈ Alg({A}) and an
invertible matrix D ∈ Alg({B}) satisfying the linear equation Ã = Ak1Bk2D.
Since the dimension is O(n), the complexity is O(n4). Let B̃ = D−1. A cyclic

10

algebra is abelian. Moreover, the matrix B̃ is a finite power of D, and is thus in
Alg({B}). Thus,

Ã ·Am1Bm2 · B̃ = Am1ÃB̃Bm2 = Am1Ak1Bk2Bm2 = K.

The overall complexity is just O(n4).

Variations of this key exchange protocol are proposed every now and then
(for example, [1]), and are all subject to the cryptanalysis presented here.

4 Cryptanalysis of the Triple Decomposition key
exchange protocol

Kurt’s Triple Decomposition key exchange protocol [11, 13] is described in Fig-
ure 6. In this figure, uppercase letters denote subgroups. An edge between two
subgroups means that these subgroups commute elementwise. This ensures that
the keys computed by Alice and Bob are both equal to ab1a1b2a2b.

Alice Public Bob

a, a1, a2, x1, x2

A A1 A2 X1 X2

| | | |
Y1 Y2 B1 B2 B

≤ G y1, y2, b1, b2, b

ax1, x
−1
1 a1x2, x

−1
2 a2 //

b1y1, y
−1
1 b2y2, y

−1
2 boo

K = ab1y1a1y
−1
1 b2y2a2y

−1
2 b K = ax1b1x

−1
1 a1x2b2x

−1
2 a2b

Fig. 6. The Triple Decomposition key exchange protocol

Let c := x−11 a1x2. By moving the matrix x1 or x2 to the other side of the
equation, the public information x−11 a1x2 provides a quadratic equation, and
similarly for the public information y−11 b2y2. Solving quadratic equations may
be very difficult. This prevented the application of earlier methods to this key
exchange protocol. The natural approach would be to ignore this part of the
pubic information, and solve the linear equations provided by the other public
items. This works for generic matrix groups, but fails, according to our experi-
ments, for the actual groups proposed in Kurt’s paper [11]. We provide here a

11

way that takes the triple products into account, in a linear way, which still prov-
ably obtains the correct key. In the framework of algebraic spans, this solution
is natural.

The following sets can be computed from the public information:

Alg(B1)y1 = Alg(B1) · b1y1
Alg(B2 ∪ Y2)y1 = Alg(B2 ∪ Y2) · y−12 b−12 y1 = Alg(B2 ∪ Y2) · (y−11 b2y2)−1

Alg(A2)x2 = Alg(A2) · a−12 x2

Alg(A1 ∪X1)x2 = Alg(A1 ∪X1) · x−11 a1x2

The invertible matrices y1 and x2 are, respectively, in the following intersections
of subspaces of Mn(F):

Alg(Y1) ∩Alg(B1)y1 ∩Alg(B2 ∪ Y2)y1;

Alg(X2) ∩Alg(A2)x2 ∩Alg(A1 ∪X1)x2.

By the Invertibility Lemma [24, Lemma 9], we can pick invertible elements ỹ1
and x̃2 in these intersections, respectively. Then:

1. Since the elements y1 and ỹ1 are in Alg(Y1), they commute with the elements
of the subgroup A1.

2. Since ỹ1 ∈ Alg(B1)y1, we have ỹ1y
−1
1 ∈ Alg(B1), and thus the quotient ỹ1y

−1
1

commutes with the elements of the subgroup X1. By (1), this quotient also
commutes with the elements of the subgroup A1.

3. Since ỹ1 ∈ Alg(B2 ∪ Y2)y1, we have ỹ1y
−1
1 ∈ Alg(B2 ∪ Y2).

Similarly, we have:

1. The elements x2 and x̃2 commute with the elements of the subgroup B2.
2. The quotient x̃2x

−1
2 commutes with the elements of the union Y2 ∪B2.

3. The quotient x̃2x
−1
2 is in Alg(A1 ∪X1).

It suffices to use one of the items numbered (3). We will use here the former.
Using the public information, compute

K̃ := ax1 · b1y1 · ỹ−11 · x
−1
1 a1x2 · x̃−12 · ỹ1 · y

−1
1 b2y2 · x̃2 · x−12 a2 · y−12 b.

We claim that K̃ = K = ab1a1b2a2b, the key that Alice and Bob established.
Since the subgroups X1 and B1 commute elementwise, and ỹ1y

−1
1 ∈ Alg(B1),

we have
x1 · b1 · y1ỹ−11 · x

−1
1 = b1y1ỹ

−1
1 .

Since the quotient x̃2x
−1
2 commutes with the elements of the union Y2 ∪B2 and

ỹ1y
−1
1 ∈ Alg(B2 ∪ Y2), we have

x2x̃
−1
2 · ỹ1y

−1
1 · b2 · y2 · x̃2x

−1
2 = ỹ1y

−1
1 b2y2.

Thus,
K̃ = ab1y1ỹ

−1
1 a1ỹ1y

−1
1 b2y2a2y

−1
2 b.

12

Since the subgroups Y2 and A2 commute elementwise, we have

y2a2y
−1
2 = a2.

Since the quotient ỹ1y
−1
1 commutes with the elements of the subgroup A1, we

have

y1ỹ
−1
1 · a1 · ỹ1y

−1
1 = a1.

It follows that

K̃ = ab1a1b2a2b,

as required.

As in all of our previous examples, the complexity of this cryptanalysis is
dominated by the calculation of the algebraic spans, which is O(kd2n2), where
k the maximum number of generators of the given subgroups, and d is the
maximum dimension of the Algebra generated by them. In particular, it is not
greater than O(kn6).

5 Specifications and implementation

5.1 Artin’s braid group BN

All key exchange protocols addressed in this paper use Artin’s braid group BN

as the underlying group. This group is parameterized by a natural number N .
Elements of BN can be identified with braids on N strands. Braid group multi-
plication is motivated geometrically, but the details play no role in the present
paper. We provide here the necessary details, following the earlier paper [24].

Let SN be the symmetric group of permutations on N symbols. For our
purposes, the braid group BN is a group of elements of the form (i,p), where i
is an integer, and p is a finite (possibly, empty) sequence of elements of SN . In
other words, p = (p1, . . . , p`) for some ` ≥ 0 and p1, . . . , p` ∈ SN . The sequence
p = (p1, . . . , p`) is requested to be left weighted (a property whose definition will
not be used here), and p1 must not be the involution p(k) = N − k + 1.1

For “generic” braids (i, (p1, . . . , p`)) ∈ BN , i is negative and |i| is O(`), but
this is not always the case. Note that the bit-length of an element (i, (p1, . . . , p`)) ∈
BN is O(log |i|+ `N logN).

Multiplication is defined on BN by an algorithm of complexity O(`2N logN+
log |i|). Inversion is of linear complexity. Explicit implementations are provided,
for example, in [4].

1 For readers familiar with the braid group, we point out that the sequence
(i, (p1, . . . , p`)) encodes the left normal form ∆ip1 · · · p` of the braid, in Artin’s pre-
sentation, with ∆ being the fundamental, half twist braid on N strands.

13

5.2 Infimum reduction

The infimum of a braid b = (i,p) is the integer inf(b) := i. As the bit-length of b is
O(log |i|+`N logN), an algorithm polynomial in |i| would be at least exponential
in the bit-length. This obstacle is eliminated by reducing the infimum [24]. We
demonstrate this for the Triple Decomposition key exchange protocol (Section 4).

In cases where p is the empty sequence, we write (i) instead of (i,p). The
properties of the braid group BN include, among others, the following ones.

(a) (i) · (j,p) = (i+ j,p) for all integers i and all (j,p) ∈ BN .
In particular, (i) = (1)i for all i.

(b) (2) · (i,p) = (i,p) · (2) for all for all (i,p) ∈ BN .

Thus, (2j) is a central element of BN for each integer j. If follows that, for each
(i,p) ∈ BN ,

(i,p) = (i− (i mod 2)) · (i mod 2,p).

This way, every braid x ∈ BN decomposes to a unique product cxx, where cb is
of the form (2j) (and thus central), and inf(b) ∈ {0, 1}.

Consider the information in Figure 6. Since

K = ab1y1a1y
−1
1 b2y2a2y

−1
2 b = ax1b1x

−1
1 a1x2b2x

−1
2 a2b,

The central elements cy1 , cy2 , cx1
, cx2

get canceled and do not affect the shared
key. Thus, we may assume that the infimum of the braids y1, y2, x1, x2 is 0 or 1.
Decompose the central parts out of the public information:

ax1 = c1ax1, y−12 b = d1y
−1
2 b,

x−11 a1x2 = c2x
−1
1 a1x2, y−11 b2y2 = d2y

−1
1 b2y2,

x−12 a2 = c3x
−1
2 a2, b1y1 = d3b1y1.

The central elements are known, given the public information. Then

K = ax1 · b1y1 · y−11 · x
−1
1 a1x2 · x−12 y1 · y−11 b2y2 · x2 · x−12 a2 · y−12 b

= c1ax1 d3b1y1 y
−1
1 c2x

−1
1 a1x2 x

−1
2 y1 d2y

−1
1 b2y2 x2 c3x

−1
2 a2 d1y

−1
2 b

= c1c2c3d1d2d3 ax1 b1y1 y
−1
1 x−11 a1x2 x

−1
2 y1 y

−1
1 b2y2 x2 x

−1
2 a2 y

−1
2 b

=: c1c2c3d1d2d3K
′.

Assume that we have an algorithm for computing the shared key out of the
public information, that succeeds when the public braids have infimum 0 or 1.
Applying this algorithm to the reduced public braids, we obtain the braid K ′.
Multiplying by the known central braid c1c2c3d1d2d3, we obtain the original key
K. Thus, we may assume that all public braids, as well as the secret braids
y1, y2, x1, x2 have infimum 0 or 1. Assume that, henceforth.

For a braid x = (i,p), let `(x) be the number of permutations in the sequence
p. For integers i, s, let

[i, s] = {x ∈ BN : i ≤ inf(x) ≤ inf(x) + `(x) ≤ s}.

We use the following basic facts about BN :

14

1. If x1 ∈ [i1, s1] and x2 ∈ [i2, s2], then x1x2 ∈ [i1 + i2, s1 + s2].
2. If x ∈ [i, s], then x−1 ∈ [−s,−i].

By our assumption, the key K is a product of 10 braids with infimum 0 or 1,
and thus

0 ≤ inf(K) ≤ 10.

Let ` be the maximum of the lengths of the private braids in Figure 6. In the
above reduction, we had K = c1c2c3d1d2d3K

′, and thus

`(K ′) = `(K) = `(ab1a1b2a2b) ≤ 6`.

5.3 Reducing to a matrix group over a finite field

Let n be a natural number. As usual, we denote the algebra of all n×n matrices
over a field F by Mn(F), and the group of invertible elements of this algebra
by GLn(F). A matrix group is a subgroup of GLn(F). A faithful representation
of a group G in GLn(F) is a group isomorphism from G onto a matrix group
H ≤ GLn(F). A group is linear if it has a faithful representation.

Bigelow and Krammer, established in their breakthrough papers [?, ?] that
the braid group BN is linear, by proving that the so-called Lawrence–Krammer
representation

LK: BN −→ GL(N
2)(Z[t±1,

1

2
]),

whose dimension is

n :=

(
N

2

)
,

is injective. The Lawrence–Krammer representation of a braid can be computed
in polynomial time. This representation is also invertible in (similar) polynomial
time [?, 5].

Theorem 6 (Cheon–Jun [5]) Let x ∈ [i, s] in BN . Let M ≥ max(|i|, |s|).
Then:

1. The degrees of t in LK(x) ∈ GLn(Z[t±1, 12]) are in {−M,−M + 1, . . . ,M}.
2. The rational coefficients c

2d
in LK(x) (c integer, d nonnegative integer) sat-

isfy: |c| ≤ 2N
2M , |d| ≤ 2NM .

In the notation of Theorem 6, Theorem 2 in Cheon–Jun [5] implies that inver-
sion of LK(x) is of order N6 logM multiplications of entries. Ignoring logarithmic
factors and thus assuming that each entry multiplication costs NM · N2M =
N3M2, this accumulates to N8M2. We also invert the function LK as part of
our cryptanalysis. However, the complexity of the computation of the algebraic
spans dominates the complexity of these transformations, that are applied only
at the beginning and at the end of the cryptanalysis.

15

Let us return to the Triple Decomposition key exchange protocol. After infi-
mum reduction (who’s complexity is negligible), we have

K ∈ [0, 10 + 6`].

Let M := 10 + 6`. By the Cheon–Jun Theorem, we have

(22NM tM) · LK(K) ∈ GLn(Z[t]),

the absolute values of the coefficients in this matrix are bounded by 2N
2(M+1),

and the maximal degree of t in this matrix is bounded by 2M .
Let p be a prime slightly greater than 2N

2M+2NM , and f(t) be an irreducible
polynomial over Zp, of degree d slightly larger than 2M . Then

(22NM tM) · LK(K) = (22NM tM) · LK(K) mod (p, f(t)) ∈ GLn(Z[t]/〈p, f(t)〉),

under the natural identification of {−(p−1)/2, . . . , (p−1)/2} with {0, . . . , p−1}.
Let F = Z[t]/〈p, f(t)〉 = Z[t±1, 12]/〈p, f(t)〉. F is a finite field of cardinality pd,

where d is the degree of f(t). It follows that the complexity of field operations
in F is, up to logarithmic factors, of order

d2 log p = O(M3N2).

Thus, the key K can be recovered as follows:

1. Apply the composed function LK(x) mod (p, f(t)) to the input braids, to
obtain a version of this problem in GLn(F).

2. Solve the problem there, to obtain LK(K) mod (p, f(t)).
3. Compute (22NM tM) · LK(K) mod (p, f(t)) = (22NM tM) · LK(K).2

4. Divide by (22NM tM) to obtain LK(K).
5. Compute K using the Cheon–Jun inversion algorithm.

The complexity of this preliminary cryptanalysis is O(kn6) field operations,
where k is the maximum number of generators in the given subgroups. Roughly,
this is kn6 = kN12 ·M3N2 = kN14(10 + 6`)3.

5.4 Reducing the complexity

To make this cryptanalysis feasible, at least for mildly large parameters, we can
improve upon the field multiplication complexity. We do this by applying the
Chinese Remainder Theorem (CRT) on both the integer part and the polynomial
part. Let

p1, p2, · · · = 2, 3, 5, . . . ,

the sequence of prime numbers. Also, consider the relatively prime polynomials,
or degree 1,

x, x± 1, x± 2, . . .

2 The equality here is over the integers.

16

We take just enough primes so that their products exceeds 2N
2(M+1), and we

take the first 2M polynomials in our list.
For each pair (p, f(t)) of a prime and a polynomial in our lists, we reduce

modulo the prime and the polynomial, and apply the cryptanalysis, over the
resulting p-element field. In the end, we combine all results using the CRT.
Since CRT is done only once, its complexity is dominated by the complexity of
the linear span calculations.

Since we ignore logarithmic factors, it suffices to estimate the complexity of
the same algorithm, but using just a single prime p ≈ 2N

2M . For each linear
polynomial, the obtained field size is p, and thus field multiplication is, up to
logarithmic factors, of complexity N2M . We need to repeat this M times, so the
overall complexity is, roughly, of order

M · kN12 ·N2M2 = kN14M3 ≈ kN14`3.

5.5 Specifications of the Triple Decomposition key exchange
protocol

We now describe the groups proposed for the actual specification of the Triple
Decomposition key exchange protocol. Let m ≥ 2 be a natural number, and N :=
3m+1. The braid group BN is generated by N−1 generators, σ1, . . . , σN−1. One
of their defining relations is that σi and σj commute whenever |i− j| > 1. The
groups in Figure 6 are chosen as follows: Fix “generic” braids g1, g2, h1, h2 ∈ BN .
Then:

A = B = BN

A1 = 〈σ g1
1 , . . . , σ g1

m−1〉; Y1 = 〈σ g1
m+1, . . . , σ

g1
mk〉

A2 = 〈σ g2
1 , . . . , σ g2

m−1〉; Y2 = 〈σ g2
m+1, . . . , σ

g2
3m〉

X1 = 〈σ h1
1 , . . . , σ h1

2m−1〉; B1 = 〈σ h1
2m+1, . . . , σ

h1
3m 〉

X2 = 〈σ h2
1 , . . . , σ h2

2m−1〉; B2 = 〈σ h2
2m+1, . . . , σ

h2
3m 〉

The conjugations prevent an otherwise trivial cryptanalysis [11]. It follows that
the parameter k in the complexity estimation is 2m. This is the same order as
N = 3m. Thus, the complexity of the cryptanalysis is, roughly, of order N15`3.

The value ` depends on the way the secret braids are generated. This is
was never specified exactly. Comparing to more detailed proposals, it is fair to
estimate that ` is of order much smaller than N .

5.6 Implementation

This type of provable cryptanalyses is generally considered of theoretical interest
only [5,24]. The algorithmic shortcuts described above made it possible, for the
first time, to launch our attack on concrete instances, including ones where brute
force or naive attacks are infeasible. Being provable, the attacks must find the
shared key in all tests, and this provides a “sanity check” for our mathematical

17

reasoning. The attacks were implemented on the computational algebra soft-
ware MAGMA [3], with no optimizations beyond those specified above. Infimum
reduction was not implemented, since for generic braids it has little effect.

For a length parameter l, we chose the braids g1, g2, h1, h2 as products of l
random elements from the set {σ±11 , . . . , σ±1N−1}. The braids in the subgroup were
generated as products of l random generators of that subgroup. Since the run-
ning time was long, and we already know that the attacks provable succeed, we
conducted only one attack for each set of parameters. Each attack was launched
on a single core of a standard desktop CPU. The results are summarized in
Tables 1 and 2.

Table 1. Experimental results with MAGMA, single CPU core, N = 10 = 3 · 3 + 1

Length Time Memory (MB) Key recovered?

2 114 sec 30 Yes
4 10 min 33 Yes
8 38 min 38 Yes
16 3.5 hrs 108 Yes
32 49 hrs 249 Yes
64 629 hrs 640 Yes

Table 2. Experimental results with MAGMA, single CPU core, N = 13 = 3 · 4 + 1

Length Time Memory (MB) Key recovered?

2 9 min 195 Yes
4 12 min 201 Yes
8 5 hrs 215 Yes
16 19 hrs 548 Yes
32 298 hrs 1289 Yes

The attacks are highly parallelable. Larger parameters would necessitate par-
allel implementations over large grids.

6 Conclusions

We have introduced algebraic span cryptanalysis, a provable method for crypt-
analysing nonabelian cryptographic protocols and, more generally, solving com-
putational problems in groups. This method applies to all groups with efficient,
faithful representations as matrix groups. The examples provided demonstrate
the power, generality, and simplicity of this method.

18

The novelty of this method is demonstrated by showing that it applies to
a protocol that was not approachable by earlier methods. The new method
cleared out much of the difficulty of the computational problem behind the
Triple Decomposition key exchange protocol, and made it possible for us to find
the extra idea to make it work.

Initially considered of theoretical interest only, provable cryptanalysis is now
a feasible threat to nonabelian cryptographic protocols. It seems very challenging
to devise a nonabelian key exchange protocol that cannot be cryptanalyzed by
the algebraic span method.

Acknowledgments

We thank Avraham (Rami) Eizenbud and Craig Gentry for intriguing discus-
sions. A part of this work was carried out while the third named author was on
Sabbatical at the Weizmann Institute of Science. This author thanks his hosts
for their kind hospitality.

References

1. M. Andrecut, A matrix public key cryptosystem, arXiv eprint 1506.00277, 2015.
2. I. Anshel, M. Anshel, D. Goldfeld, An algebraic method for public-key cryptography,

Mathematical Research Letters 6 (1999), 287–291.
3. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user lan-

guage, Journal of Symbolic Computation 24 (1997), 235–265.
4. J. Cha, K. Ko, S. Lee, J. Han, J. Cheon, An efficient implementation of braid

groups, ASIACRYPT 2001, LNCS 2248 (2001), 144–156.
5. J. Cheon, B. Jun, A polynomial time algorithm for the braid Diffie-Hellman con-

jugacy problem, CRYPTO 2003, LNCS 2729 (2003), 212–224.
6. R. Gilman, A. Myasnikov, A. Myasnikov, A. Ushakov, New developments in Com-

mutator Key Exchange, Proceedings of the First International Conference on Sym-
bolic Computation and Cryptography, Beijing, 2008, 146–150.
http://www-calfor.lip6.fr/~jcf/Papers/scc08.pdf

7. M. González–Vasco, R. Steinwandt, Group Theoretic Cryptography, Cryp-
tography and Network Security Series, Chapman and Hall/CRC Press, 2015.

8. D. Holt, answer to MathOverflow question http://mathoverflow.net/questions/

154761

9. K. Ko, S. Lee, J. Cheon, J. Han, J. Kang, C. Park, New public-key cryptosystem
using braid groups, CRYPTO 2000, LNCS 1880 (2000), 166–183.

10. Y. Kurt, A new key exchange primitive based on the triple decomposition problem,
IACR eprint 2006/378.

11. Y. Kurt Peker, A new key agreement scheme based on the triple decomposition
problem, International Journal of Network Security 16 (2014), 340–350.

12. A. Myasnikov, V. Shpilrain, A. Ushakov, Group-based cryptography,
Birkhäuser, 2008.

13. A. Myasnikov, V. Shpilrain, A. Ushakov, Non-commutative Cryptography
and Complexity of Group-theoretic Problems, American Mathematical So-
ciety Surveys and Monographs 177, 2011.

19

14. A. Myasnikov, V. Romankov, A linear decomposition attack, Groups Complexity
Cryptology 7 (2015), 81–94.

15. V. Roman’kov, Algebraic cryptography, Omsk State Dostoevsky University,
2013. (In Russian)

16. V. Roman’kov, Cryptanalysis of some schemes applying automorphisms, Priklad-
naya Discretnaya Matematika 3 (2013), 35–51. (In Russian)

17. V. Roman’kov, A nonlinear decomposition attack, Groups Complexity Cryptology
8 (2016), 197–207.

18. V. Roman’kov, A. Obzor, A general encryption scheme using multiplica- tions with
cryptanalysis, Prikladnaya Discretnaya Matematika 37 (2017), 52–61. (In Russian)

19. V. Shpilrain, Cryptanalysis of Stickel’s key exchange scheme, in: Computer Sci-
ence in Russia, LNCS 5010 (2008), 283–288.

20. V. Shpilrain, A. Ushakov, Thompson’s group and public key cryptography, ACNS
2005, LNCS 3531 (2005), 151–164.

21. V. Shpilrain, A. Ushakov, A new key exchange protocol besed on the decomposition
problem, in: L. Gerritzen, D. Goldfeld, M. Kreuzer, G. Rosenberger and V. Shpil-
rain, eds., Algebraic Methods in Cryptography, Contemporary Mathematics
418 (2006), 161–167.

22. E. Stickel, A new method for exchanging secret keys, Proceedings of the Third
International Conference on Information Technology and Applications (ICITA05),
2005, 426–430.

23. B. Tsaban, The Conjugacy Problem: cryptoanalytic approaches to a problem of
Dehn, minicourse, Düsseldorf University, Germany, July–August 2012.
http://reh.math.uni-duesseldorf.de/~gcgta/slides/Tsaban_minicourses.

pdf

24. B. Tsaban, Polynomial-time solutions of computational problems in
noncommutative-algebraic cryptography Journal of Cryptology 28 (2015),
601–622.

20

