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Abstract
We use multilinear maps to provide a solution to the long-standing problem of public-key

broadcast encryption where all parameters in the system are small. In our constructions,
ciphertext overhead, private key size, and public key size are all poly-logarithmic in the total
number of users. The systems are fully collusion-resistant against any number of colluders. All
our systems are based on an O(logN)-way multilinear map to support a broadcast system for N
users. We present three constructions based on different types of multilinear maps and providing
different security guarantees. Our systems naturally give identity-based broadcast systems with
short parameters.

1 Introduction
Broadcast encryption [FN94] is an important generalization of public-key encryption to the multi-
user setting. In a broadcast encryption scheme, a broadcaster encrypts a message for a subset S of
users who are listening on a broadcast channel. The broadcaster can encrypt to any set S of its
choice, and any user in S can decrypt the broadcast using its secret key. The system is said to be
fully collusion resistant if even a coalition of all users outside of S learns nothing about the plaintext.
Broadcast systems are regularly used in TV and radio subscription services where broadcasts are
encrypted for currently active subscribers. They are also used in encrypted file systems where a file
is encrypted so that only users who have access to the file can decrypt it.

The efficiency of a broadcast system is measured in the ciphertext overhead: the number of bits
in the ciphertext beyond what is needed for the description of the recipient set S and the symmetric
encryption of the plaintext payload. The shorter the overhead, the better. We say that the system
has low overhead if the ciphertext overhead depends at most logarithmically on the number of
users N in the system.

Existing constructions with low ciphertext overhead. Several broadcast systems are fully
collusion resistant with low ciphertext overhead. The first such system by Boneh, Gentry, and
Waters [BGW05] is built from bilinear maps. It has constant ciphertext overhead and short secret
keys, but the public encryption key size is linear in the number of users N . Other systems using
bilinear-maps achieve adaptive security [GW09, DPP07] and some are even identity-based [GW09,
Del07, SF07], but the public encryption key is always large.
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Multilinear maps give secret-key broadcast systems with optimal ciphertext overhead [BS03,
GGH13a, FHPS13, CLT13, BW13]. However, in these systems the broadcaster’s key must be kept
secret, and they require an N -way multilinear map to support N users. Current constructions
of N -linear maps [GGH13a, CLT13] have group elements of size O(N2) bits, resulting in large
space requirements. While these broadcast systems can be made public-key by including a few
group elements in the ciphertext, their dependence on N -linear maps leads to an O(N2) ciphertext
overhead, which is worse than the trivial broadcast system. Until this work, it has not been known
how to use multilinear maps to construct low overhead broadcast systems with a short public
encryption key.

A third class of constructions employs the powerful candidates for indistinguishability obfus-
cation (iO) [BGI+01, GGH+13b]. Using iO it is possible to build a public-key broadcast system
with optimal ciphertext overhead and short private keys, though public keys are large [BZ13]. The
resulting systems have several other remarkable properties. However, current iO candidates add
considerable complexity on top of multilinear maps. Our goal here is to construct broadcast systems
using only simple assumptions on multilinear maps, namely, without relying on iO.

Our results. We describe three broadcast systems for N users that use an O(logN)-way multi-
linear map. The systems have ciphertext overhead and decryption key of only O(1) group elements
which is O(log2N) bits using the current multilinear map candidates. The public encryption key
contains O(logN) group elements which is O(log3N) bits. The first system uses an asymmetric
multilinear map and follows the [BGW05] construction closely. It uses the O(logN)-way multilinear
map to compress the public key of that system from O(N) group elements to O(logN) elements
while keeping the ciphertext overhead and secret key short. We prove static security under a
multivariate equivalent of the [BGW05] assumption.

The second system uses a general symmetric O(logN)-way multilinear map to similarly compress
the public key in [BGW05]. The added flexibility of a symmetric map has both positive and
negative consequences. On the negative side, this flexibility allows the adversary to combine extra
elements together. To maintain security we must ensure that all user indexes u ∈ [N ] are mapped to
integers û ∈ [O(N logN)] where all û have the same Hamming weight. This mapping does not affect
ciphertext or private key size. On the positive side, this flexibility allows us to obtain slightly better
parameters and base static security on a slightly simpler, though similar, complexity assumption.

The third system is built from a symmetric O(logN)-way map, but we can prove adaptive
security of the scheme in generic multilinear groups. This system has secret keys of length O(log3N)
bits, which is longer than the previous two schemes, but has a tighter security proof in generic
groups.

Because the parameters of these systems are logarithmic in N , we can let N be exponential,
and in particular be as large as the range of a collision resistant hash function (e.g., N = 2256).
This, in effect, turns all our broadcast systems into efficient identity-based schemes. A user with
identity id ∈ {0, 1}∗ is given the secret key associated with index number H(id) ∈ [N ] where H is a
collision resistant hash whose range is [N ]. A broadcaster can then transmit to a set of recipients
simply by hashing their public identities. For this reason, we describe all our broadcast systems as
identity-based broadcast schemes.

Additional related work. Collusion resistant broadcast encryption has been widely studied.
Revocation systems (e.g., [NNL01, HS02, GST04, DF02, LSW10]) can encrypt to N − r users
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with ciphertext size of O(r). Further combinatorial solutions (e.g., [NP00, DF03]) achieve similar
parameters. A broadcast encryption system is said to be recipient-private if broadcast ciphertexts
reveal nothing about the intended set of recipients [BBW06, LPQ12, FP12]. Our broadcast
systems are not recipient private, and it is a long-standing open problem to build a low-overhead
recipient-private broadcast system. Such a system was recently built using indistinguishability
obfuscation [BZ13], but constructing such systems under weaker assumptions remains open.

2 Preliminaries

2.1 Broadcast Encryption

We begin by defining broadcast encryption. A (public key) identity-based broadcast encryption
scheme consists of three randomized algorithms:

Setup(ID): Sets up a broadcast scheme for identity space ID. It outputs public parameters params
as well as a master secret key msk

KeyGen(msk, u): Takes the master secret key and a user u ∈ ID and outputs a secret key sku for
user u.

Enc(params, S): The encryption algorithm takes the public parameters and a polynomial sized set
S ⊆ ID of recipients, and produces a pair (Hdr,K). We refer to Hdr as the header, and K as
the message encryption key.
The message is encrypted using a symmetric encryption scheme with the key K to obtain a
ciphertext c. The overall ciphertext is (Hdr, c).

Dec(params, u, sku, S,Hdr): The decryption algorithm takes the header Hdr and the secret key for
user u, and if u ∈ S, outputs the message encryption key K. If u /∈ S, the decryption algorithm
outputs ⊥.
To actually decrypt the overall ciphertext (Hdr, c), user u runs Dec to obtain K, and then
decryption c using K to obtain the message.

For correctness, we require that the decryption algorithm always succeeds when it is sup-
posed to. That is, for every (params,msk) output by Setup(ID), every set S ⊆ ID, every
sku output by KeyGen(msk, u), and (Hdr,K) outputted by Enc(params, S) where u ∈ S, that
Dec(params, u, sku, S,Hdr) = K.

For security, several notions of security are possible. We start by defining active chosen ciphertext
security. For any adversary A, let EXP(b) denote the following experiment on A:

Setup: The challenger runs (params,msk)← Setup(ID), and gives A the public key params.
Secret Key Queries: A may adaptively make secret key queries for user u. In response, the

challenger runs sku ← KeyGen(msk, u) and gives sku to A.
CCA Queries: A may make chosen ciphertext queries on tuples (u, S,Hdr). The challenger

responds with Dec(params, u, sku, S,Hdr) where sku ← KeyGen(msk, u)1.
1Another variation is to have the challenger maintain a table of (u, sku) pairs, and only run KeyGen once for a

particular user, using a single sku to answer multiple secret key and CCA queries. Note that the correctness of a
broadcast scheme implies that this does not affect CCA queries.
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Challenge: A submits a set S∗ ⊂ ID, subject to the restriction that u /∈ S∗ for any user u
requested in a secret key query. The challenger lets (Hdr∗,K∗0)← Enc(params, S∗). If b = 0,
the challenger gives (Hdr∗,K∗0 ) to the adversary. If b = 1, the challenger computes a random
key K∗1 and gives (Hdr∗,K∗1 ) to the adversary.

More Secret Key Queries: A may continue making secret key queries for users u /∈ S∗

More CCA Queries: A may continue making CCA queries on headers Hdr 6= Hdr∗2.
Guess: A produces a guess b′ for b.

Using a simple hybrid argument, we can assume the adversary makes only a single challenge query.
Let Wb be the event that A outputs 1 in EXP(b). We define the adaptive CCA advantage of A, as

BE(adv)A = |Pr[W0]− Pr[W1]|

Definition 2.1. A broadcast encryption scheme is adaptively secure under a chosen ciphertext
attack (adaptively CCA-secure) if, for all polynomial time adversaries A, BE(adv)A is negligible.

We will also consider several weaker notions of security. For example, we get static security if
we require A to commit to the challenge set S∗ before seeing the public parameters. We also get
CPA security if we do not allow chosen ciphertext queries. In this paper, we will be focusing on the
following notion of static CPA security, but will also discuss the other variants:

Definition 2.2. A broadcast encryption scheme is statically secure under a chosen plaintext attack
(statically CPA-secure) if, for all polynomial time adversaries A that must commit to S∗ before
seeing the public parameters and cannot make CCA queries, BE(adv)A is negligible.

2.2 Multilinear Maps

We now review multilinear maps [BS03, GGH13a, CLT13]. A multilinear map consists of two
algorithms:

Setup(n): Sets up an n-linear map. It outputs n groups G1, . . . ,Gn of prime order p, along with
generators gi ∈ Gi. We call G1 the source group, Gn the target group, and G2, . . . ,Gn−1
intermediate groups.

ei,j(g, h): Takes in two elements g ∈ Gi and h ∈ Gj with i+ j ≤ n, and outputs an element of Gi+j
such that

ei,j(gai , gbj) = gabi+j

We often omit the subscripts and just write e. We can also generalize e to multiple inputs as
e(h(1), . . . , h(k)) = e(h(1), e(h(2), . . . , h(k))).

We sometimes call gai as a level-i encoding of a. The scalar a itself could be referred to as a
level-0 encoding of a. Then the map e combines a level i encoding and a level j encoding, and
produces a level i+ j encoding of the product.

We will make use of asymmetric multilinear maps. In such maps, groups are indexed by integer
vectors rather than integers. The pairing operations maps Gv1 ×Gv2 into Gv1+v2 . More precisely,
we have the following algorithms:

2Another potentially stronger variation is to require (S, Hdr) 6= (S∗, Hdr∗)
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Setup(n) Sets up an n-linear map, where n ∈ Z` is some positive integer vector. It outputs a
description of groups Gv of prime order p where v are non-negative integer vectors and v ≤ n
(that is, the comparison must hold component-wise). It also outputs a description of generators
gv ∈ Gv

3. Let ei be the ith standard basis vector, with a 1 at position i and a 0 elsewhere.
We call Gei the ith source group, Gn the target group, and the rest of the Gv groups are
intermediate groups.

ev1,v2(g, h) Takes in two elements g ∈ Gv1 and h ∈ Gv2 with v1 + v2 ≤ n, and outputs an element
of Gv1+v2 such that

ev1,v2(gav1 , g
b
v2) = gabv1+v2

We often omit the subscripts and just write e. We can also generalize e to multiple inputs as
e(h(1), . . . , h(k)) = e(h(1), e(h(2), . . . , h(k))).

We note that current candidates of multilinear maps [GGH13a, CLT13] depart from the ideal
notions of multilinear maps described above. In particular, in these candidates, representations of
group elements are not unique and contain a noise term that can cause errors during group and
multilinear operations. While we present our constructions using ideal multilinear maps for simplicity,
we stress that our constructions can easily be instantiated using current non-ideal candidates. We
need multilinear maps with the following properties:

• A way to hide the group and multilinear operations that lead to a particular element. In
current multilinear maps, this is obtained by performing a re-randomization procedure which
makes the representation of an element statistically independent of the operations that lead
to that element.

• A way, given any representation of an element in the target group, to “extract” a canonical
representation of that element. This is handled by a “zero-test parameter” in current maps.

• The ability for the person who sets up the map to compute elements of the form gα
x for

exponentially-large x. In ideal multilinear maps, this would be accomplished by computing
z = αx in Zp, and then computing gz. However, with current multilinear maps, it is not
possible for normal users to compute gz for a specific z of their choice4. However, the person
who sets up the map knows a trapdoor that does allow computing gz for any z ∈ Zp.

• The ability to generate asymmetric multilinear maps for any positive integer vector n ∈ Z`.
Section 4.3 of [GGH13a] shows how to do this.

• A way to make sure the noise growth does not cause any errors during normal execution of
our protocols. Since there is no circular dependence between the parameters of the multilinear
map and the number of operations our protocols require, we can set the parameters so the
noise stays small enough to avoid errors.

3There may be an exponential number of groups and generators. The setup algorithm outputs a set of parameters
from which the groups Gv and generators gv can be derived. In particular, each gv can be derived from the pairing
operation and {gei }, where ei is the ith standard basis vector

4Instead, users can compute gz for a random, but unknown, z.
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3 Our Asymmetric Multilinear Map Construction
In this section, we give our first construction of identity-based broadcast encryption from multilinear
maps. Our starting point is the scheme of Boneh, Gentry, and Waters [BGW05], henceforth referred
to as the BGW scheme. Recall in their scheme, the public parameters consist of O(N) source group
elements (where N is the number of users), secret keys and headers are a constant number of source
group elements, and the message encryption key is a group element in the target group. Our goal is
to shrink the public key size to O(logN) group elements. We accomplish this by embedding the
BGW scheme in a multilinear map, where the BGW parameters lie in an intermediate group. The
BGW public parameters can then be derived from a small number of elements in the source group
of the map — these few source group elements are the new public key.

In more detail, the significant component of the BGW public key are the elements Z1 = gα1 , Z2 =
gα

2
1 , . . . , ZN = gα

N

1 , ZN+2 = gα
N+2

1 , . . . , Z2N = gα
2N

1 . The rest of the BGW public keys, secret keys,
and header components are also element in G1, whereas the message encryption key is an element
in the group G2.

Let N = 2n − 1 for some integer n, and let n = (
n+1 1s︷ ︸︸ ︷

1, . . . , 1) be the vector of n+ 1 1s. Our idea is
to use an asymmetric multilinear map, where the target group is G2n. We note that pairing two
elements in Gn gives an element in G2n. Thus, while the entire multilinear map is asymmetric,
the pairing operation acts symmetrically on the group Gn. Now we replace the groups G1 and G2
in the BGW scheme with Gn and G2n. Thus Zu = gα

u

n . Rather than explicitly include the Zu in
the public parameters, we give a few group elements in the groups Gei where ei are the standard
basis vectors. Specifically, we provide the parameters Xi = gα

(2i)
ei

for i = 0, . . . , n− 1. By pairing
various subsets of these Xi together, we can build all of the Zu for u ≤ 2n − 1 = N . In particular, if
u =

∑n−1
i=0 ui2i is the binary representation of u, then

Zu = e( Xu0
0 g1−u0

e0 , Xu1
1 g1−u1

e1 , . . . , X
un−1
n−1 g

1−un−1
en−1 , gen )

where X0
i g

1
ei

= gei and X1
i g

0
ei

= Xi

To allow computation of Zu for u ≥ 2n + 1 = N + 2, we might decide to publish gα(2n)
en

. However,
this would allow computation of ZN+1, which will break the security of the BGW scheme. Therefore,
we instead publish Xn = gα

(2n+1)
en

. Then, for u ∈ [N + 2, 2N ], let u′ = u − (2n + 1) =
∑n−1
i=0 u

′
i2i.

Then we can write

Zu = e( Xu′0
0 g

1−u′0e0 , X
u′1
1 g

1−u′1e1 , . . . , X
u′n−1
n−1 g

1−u′n−1
en−1 , Xn )

Now we make the observation that O(logN) graded encodings remain efficient even up to
exponential N . Therefore, we can actually make our scheme identity-based, where identities are
bit strings of length n with the caveat that the 0n is not a valid identity. Now we give our entire
construction:

Construction 3.1. Let Setup′ be the setup algorithm for a multilinear map, where groups have
order p. Our first identity-based broadcast scheme consists of the following algorithms:

Setup(n): Takes as input the length n of identities. Let ID = {0, 1}n \ {0n} be the identity space.
Let n be the all-ones vector of length n+ 1. Run Setup′ on 2n, obtaining the public parameters
params′ for a multilinear map with target group G2n.
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Choose a random α ∈ Zp and let Xi = gα
(2i)

ei
for i = 0, . . . , n− 1 and let Xn = gα

(2n+1)
en

. Also
choose a random γ ∈ Zp and let Y = gγn. Lastly, let W = gα

(2n)
2n . The public key is

params = (params′,W, {Xi}i∈{0,...,n}, Y )

The master secret key is (α, γ).

KeyGen(params, α, γ, u): The secret key for identity u ∈ [1, 2n − 1] is sku = gγα
u

n .

Enc(params, S): Recall that we can compute Zj for j ∈ [1, 2n − 1] from the public parameters
{Xi}i∈{0,...,n−1}. Pick a random t ∈ Zp and compute the key and header as

K = W t = gtα
(2n)

2n and

Hdr =
(
gtn , (Y ·

∏
u∈S

Z2n−u)t
)

=
(
gtn , g

t(γ+
∑

u∈S
α(2n−u))

n

)

Dec(params, u, sku, S,Hdr): If u /∈ S, output ⊥. Otherwise, write Hdr as (C0, C1). Recall that we
can compute Zj for j ∈ [2n + 1, 2n+1]. Output

K = e(Zu , C1)
e
(
(sku ·

∏
j∈S,j 6=u Z2n−j+u) , C0

)
If C0 and C1 are as above, then we can write K = gc2n where

c = αut

γ +
∑
j∈S

α(2n−j)

−
γαu +

∑
j∈S,j 6=u

α(2n−j+u)

 t
Most of the terms cancel, leaving c = tα2n as desired.

Implementation details. As mentioned in Section 2, there are some minor complications with
implementing our scheme using current multilinear map constructions [GGH13a, CLT13], but we
stress that these complications do not affect the semantics of our scheme. First, during normal
operations, computing gα1 for a random α involves computing a “level-0” encoding of a random
(unknown) α, and then pairing with g1. In order to compute gα2

1 , we would pair g1 with the level-0
encoding twice. However, the noise growth with repeated pairing operations would prevent us
from computing gα(2i)

1 for sufficiently high powers of i. Instead, the setup algorithm must choose
an explicit (known) α ∈ Zp, compute the various α2i , encode these powers as level-0 encodings,
and only then pair with g1. This requires knowing the secrets used to set up the multilinear map,
meaning the broadcaster must set up the map himself and cannot rely on maps generated by trusted
parties. Note, however, that this exponentiation is only required during setup, and not encryption
or decryption, meaning the secrets can be discarded immediately after setup, and anyone can still
broadcast using the public parameters.

To make sure the header does not leak any important information, we also need to re-randomize
the header components. This means re-randomization parameters need to be included for the group
Gn. No other re-randomization parameters are necessary.

Before discussing security, we must discuss our new security assumption, which is closely related
to the bilinear Diffe-Hellman Exponent assumption (BDHE) as used in BGW.
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3.1 The Hybrid Diffie-Hellman Exponent Assumption (HDHE) Assumption

We define the (computational) n-Hybrid Diffie-Hellman Exponent problem as follows: Let params′ ←
Setup′(2n) where n is the all-ones vector of length n + 1. Choose α ∈ Zp at random, and let
Xi = gα

(2i)
ei

for i = 0, . . . , n− 1 and Xn = gα
(2n+1)

en
. Choose a random t ∈ Zp and let V = gtn. Given

({Xi}i∈{0,...,n−1}, V ), the goal is to compute K = gtα
(2n)

2n .
We now define the decisional n-Hybrid Diffie-Hellman Expoent problem as, given the tuple

({Xi}i∈{0,...,n−1}, V,K) where K is either gtα(2n)
2n or a random element of G2n, to distinguish the two

cases.

Definition 3.2. We say the decisional n-Hybrid Diffie-Hellman Exponent assumption holds for
Setup′ if, for any polynomial n and probabilistic polynomial time algorithm A, A has negligible
advantage in solving the n-Hybrid Diffie-Hellman Exponent problem.

Given the Xi for i = 0, . . . , n − 1, it is straightforward to compute gαj

n for any j ∈ [0, 2n − 1].
Moreover, including Xn, it is straightforward to extend this to j ∈ [2n+1, 2n+1]. However, computing
K = gtα

(2n)
2n from the Xi and V appears difficult. The reason is that we only have one term that

depends on t, namely V . So to compute K, we would need to pair V with some combination of the
Xi. In other words, we need to be able to compute gα(2n)

n from the Xi. However, since n has a one
in each component, we can never pair any of the Xi with itself. This means we can only compute
products of terms of the form e(Xs0

0 , X
s1
1 , . . . , X

sn
n ) for si ∈ {0, 1}, where we take X0

i = ge1 . Notice
that we can never include an Xn, since then we would already exceed the desired degree of 2n. Put
another way, we can only compute products of terms of the form

g

∏
i∈S

α(2i)

n

where S ⊆ [0, n− 1]. However,
∏
i∈S α

2i = α
∑

i∈S
2i

, and
∑
i∈S 2i < 2n for all subsets S ⊆ [0, n− 1].

This is the basis for our assumption that the n-HDHE assumption is hard. In Appendix B, we
discuss the difficulty of our assumption in the generic multilinear map model.

3.2 Security Of Our Construction

With our assumption defined, we can now state and prove the security of our scheme:

Theorem 3.3. Let Setup′ be the setup algorithm for a multilinear map, and suppose that the
decisional n-Hybrid Diffie-Hellman Exponent assumption holds for Setup′. Then the identity-based
broadcast encryption scheme in Construction 3.1 is a statically CPA-secure.

Proof. Our proof closely follows the security proof for BGW [BGW05]. Suppose we have an
adversary A that breaks the security of the scheme. We use A to build an adversary B that breaks
the decisional n-HDHE problem for Setup′. B works as follows:

• B obtains a challenge tuple (params′, {Xi}i∈[0,n], V,K) where:

– params′ ← Setup′(2n) where n is the all-ones vector of length n+ 1.

– Xi = gα
2i

ei
for i = 0, . . . , n− 1 for a random α ∈ Zp.

– Xn = gα
2n+1

en
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– V = gtn for a random t ∈ Zp

– K = gtα
2n

2n or K is a random group element in G2n.

• B simulates A until A submits a subset S ⊆ [1, 2n − 1] of users that A will challenge.

• B chooses a random r ∈ Zp. It sets

Y = grn∏
u∈S Z2n−u

where the Zj are calculated from the Xi as before. This amounts to setting

γ = r −
∑
u∈S

α2n−u

Since r is uniform in Zp and independent of α, so is γ. B also computes

W ′ = e(ge0 , ge1 , . . . , gen−2 , Xn−1, gen)

and
W = e(W ′,W ′)

Observe that W = gα
2n

2n .

• B gives A the public parameters (W, {Xi}i∈[0,n], Y )

• Now A is allowed to ask for private keys for users u /∈ S. B computes

sku = Zru∏
j∈S Z2n−j+u

Observe that

sku = g
rαu−

∑
j∈S

α(2n−j+u)

n = g
γαu+

∑
j∈S

α(2n−j+u)−
∑

j∈S
α(2n−j+u)

n = gγα
u

n

as desired.

• When A asks for the challenge, B lets Hdr = (V, V r) and responds with (Hdr,K). Observe
that

V r = grtn = g
t(γ+

∑
u∈S

α(2n−u))
n

which means (V, V r) is a valid header for the set S. Also observe that if K = gtα
(2n)

2n , then K
is the correct key for this header.

• When A returns a guess b for which K it is given, B returns b as its guess.

As shown above, B perfectly simulates the view of A in the broadcast encryption security game.
Therefore, B has the same advantage as A, which must therefore be negligible, as desired.
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4 Our Symmetric Multilinear Map Construction
In this section, we give our second construction of broadcast encryption, this time from traditional
symmetric multilinear maps. That is, we do not require the more complicated asymmetric structure
of Construction 3.1, but can use a basic multilinear map. The idea, however, is very similar. We
implement BGW [BGW05] in middle levels of the multilinear map, and use elements in the bottom
level to generate the BGW public parameters. Similar to the graded encoding scheme, the BGW
parameters will have the form Zu = gα

u

n , which can be computed from the public parameters
Xi = gα

(2i)
1 .

However, we run into a problem. With asymmetric maps, we could enforce that Xi could not be
paired with itself. This was used to ensure that Z2n was not computable given Xi for i = 0, . . . , n.
However, in the symmetric multilinear map setting, Xn−1 could be paired with itself, giving Z2n .
Instead, we create a hole by limiting the total number of Xi that can be paired together. If we
allow only n − 1 of them to be paired together, the first hole occurs at Z2n−1. We therefore set
N = 2n − 2 so that the hole is at N + 1 as in BGW.

Notice that a second hole occurs at Z2n+2n−1−1, and since 2n + 2n−1 − 1 < 2(2n − 2) = 2N , we
can not yet compute all the Zu needed by BGW. One possible fix is to include extra Xi that can be
used to fill in the unwanted holes. Instead, we opt to restrict the bit representations of all identities
in the system to having the same Hamming weight. We show that this allows the computation of
all the necessary Zu.

We now describe our scheme:

Construction 4.1. Let Setup′ be the setup algorithm for a multilinear map, where groups have
order p. Our second identity-based broadcast scheme consists of the following algorithms:

Setup(n, `) Sets up a broadcast scheme for n-bit identities with Hamming weight `. Run Setup′ on
n + ` − 1, obtaining the public parameters params′ for a multilinear map with target group
Gn+`−1. Let α, γ ∈ Zp be chosen at random. Let W = gα

(2n−1)
n+`−1 . Compute Xi = gα

(2i)
1 for

i = 0, . . . , n. Lastly, let Y = gγn−1. Output

params = (params′,W, {Xi}i∈[0,n], Y )

KeyGen(params, α, γ, u) The secret key for an identity u ∈ {0, 1}n of Hamming weight ` is

sku = gγα
u

n−1

Enc(params, S) Let Zj = gα
j

n−1. We will show shortly that we can compute all of the necessary Zj
from the Xi. Pick a random t ∈ Zp and compute the key and header as

K = W t = gtα
(2n−1)

n+`−1 and

Hdr =
(
gt` , (Y

∏
u∈S

Z2n−1−u)t
)

=
(
gt` , g

t(γ+
∑

u∈S
α(2n−1−u))

n−1

)

Dec(params, u, sku, S,Hdr) If u /∈ S, output ⊥. Otherwise, write Hdr = (C0, C1). Also let Z ′u = gα
u

` .
We will shortly show that Z ′u can be computed from the Xi. Compute

K = e(Z ′u, C1)
e(sku ·

∏
j∈S,j 6=u Z2n−1−j+u , C0)

10



If C0, C1 are as above, notice that we can write K = gcn+`−1 where

c = αut(γ +
∑
j∈S

α2n−1−j)− (γαu +
∑

j∈S,j 6=u
α2n−1−j+u)t = tα2n−1

as desired.

We need to show how to compute Zj and Z ′j .

Claim 4.2. Let Zj = gα
j

n−1 and Z ′j = gα
j

` . Let Xi = gα
(2i)

1 for i = 0, . . . , n. Then, using group
multiplications and paring operations on the Xi, it is possible to compute:

• Z ′j for j ∈ [1, 2n − 2] of weight exactly `.

• Z2n−1−j for j ∈ [1, 2n − 2] of weight exactly `.

• Z2n−1−j+u for j, u ∈ [1, 2n − 2], j 6= u of weight exactly `.

Proof. Let h(j) denote the Hamming weight of j. First, observe that we can easily compute gαj

h(j)
for j ∈ [2n − 1] by paring together Xi where the ith bit of j is 1. This allows us to compute the Z ′j .
We can also compute gα(2n−1−j)

n−` for any j of weight exactly `. Thus, we can pair with g`−1 to get
Z2n−1−j .

Now we show how to compute Z2n−1−j+u. 2n − 1 − j, written as a bit string, has Hamming
weight n − `. Therefore, write 2n − 1 − j =

∑
i∈T 2i for some subset T ⊆ [0, n − 1] of size n − `.

Similarly, write u =
∑
i∈U 2i for some subset U ⊆ [0, n− 1] of size `. Notice that U and T are only

disjoint if 2n − 1− j + u = 2n − 1, in which case j = u. Since we do not allow this case, there must
be some î ∈ [0, n− 1] inside U and T . Then we can write

2n − 1− j + u =

 ∑
i∈T\{̂i}

2i
+

 ∑
i∈U\{̂i}

2i
+ 2î+1

which is the sum of n+ `− 1 powers of two. This means we can write

Z2n−1−j+u = e
(
{Xi}i∈T\{̂i} , {Xi}i∈U\{̂i} , Xî+1

)
which is the pairing of n+ `− 1 of the Xi, as desired.

Setting n and ` Suppose we want to handle λ-bit identities. We would map those identities to
bit strings of length n and weight `. Therefore, we need

λ ≥ log2

(
n

`

)
A simple solution which minimizes n (and hence the number of elements in the public parameters) is
to set n = λ+ d(log2 λ)/2e+ 1 and ` = bn/2c. However, for existing multilinear map constructions,
the multilinearity itself is expensive, so we might try to minimize the total multilinearity n +
` − 1. When ` = bn/2c, the total multilinearity is roughly 1.5(λ + (log2 λ)/2). However, setting
n ≈ 1.042(λ + (log2 λ)/2) and ` ≈ 0.398(λ + (log λ)/2) gives us roughly 2λ identities with total
multilinearity about 1.440(λ+ (log λ)/2), slightly beating the trivial construction. The following
table gives the settings of n and ` which minimize the total multilinearity for common identity
lengths:
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Length of identities (λ) n ` Total Multilinearity (n+ `− 1)
128 138 52 189
160 175 62 236
256 272 103 374
512 545 200 744

Implementation As with Construction 3.1, we must take advantage of the secrets used to
construct the multilinear map to compute the Xi. We also need to re-randomize the header
components. This time, however, there are two groups that need re-randomization terms: G` and
Gn−1. No other re-randomization parameters are necessary.

4.1 The Multilinear Diffie-Hellman Exponent Assumption

We define the computational (n, `)-multilinear Diffie-Hellman Exponent ((n, `)-MDHE) Problem
as follows: Let params ← Setup′(n + ` − 1). Choose random α, t ∈ Zp, and let Xi = gα

(2i)
1 for

i = 0, . . . , n. Let V = gt`. Given ({Xi}i∈[0,n], V ), the goal is to compute K = gtα
(2n−1)

n+`−1 .
As before, we define the decisional version as the problem of distinguishing K from a random

element in Gn+`−1.

Definition 4.3. We say the decisional (n, `)-multilinear Diffie-Hellman Exponent assumption holds
for Setup′ if, for any polynomial n and probabilistic polynomial time algorithm A, A has negligible
advantage in solving the (n, `)-multilinear Diffie-Hellman Exponent problem.

This problem appears difficult for the same reasons as the n-HDHE assumption from Section 3.
Computing K = gtα

(2n−1)
n+`−1 requires pairing V = gt` with a term gα

(2n−1)
n−1 , which must in turn be

computed from the Xi. However, there is no way to pair at most n − 1 of the Xi to create the
desired exponent 2n − 1. In Appendix B, we discuss the difficulty of the (n, `)-MDHE problem in
the generic multilinear map model.

4.2 Security of Our Construction

With our assumption defined, we can now state the security of our scheme:

Theorem 4.4. Let Setup′ be the setup algorithm for a multilinear map, and suppose that the
decisional (n, `)-multilinear Diffie-Hellman Exponent assumption holds for Setup′. Then the identity-
based broadcast encryption scheme in Construction 4.1 is a statically CPA-secure.

Proof. Again, our proof follows BGW [BGW05]. Suppose we have an adversary A that breaks
the security of the scheme. We use A to build an adversary B that breaks the decisional MDHE
problem for Setup′. B works as follows:

• B obtains a challenge tuple (params′, {Xi}i∈[0,n+1], V,K) where:

– params′ ← Setup′(n+ `− 1)

– Xi = gα
(2i)

1 for i = 0, . . . , n for a random α ∈ Zp
– V = gt` for a random t ∈ Zp
– K = gtα

(2n−1)
n+`−1 or K is a random element in Gn+`−1.
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• B simulates A until A submits a subset S ⊆ [1, 2n − 2] of users that all have Hamming weight
`.

• B chooses a random r ∈ Zp. It sets

Y = grn−1/
∏
u∈S

Z2n−1−u

where the Zj are calculated from the Xi as before. This amounts to setting

γ = r −
∑
u∈S

α2n−1−u

Since r is uniform in Zp and independent of α, so is γ. B computes

W = e(X0, X1, . . . , Xn−1, g`−1)

Observe that W = g2n−1
n+`−1.

• B gives α the public parameters (W, {Xi}i∈[0,n+1], Y )

• Now A is allowed to ask for private keys for users u /∈ S of Hamming weight `. B computes

sku = Zru/
∏
j∈S

Z2n−1−j+u

Observe that

sku = g
rαu−

∑
j∈S

α(2n−1−j+u)

n−1 = g

(
r−
∑

j∈S
α(2n−1−j)

)
αu

n−1 = gγα
u

n−1

as desired.

• When A asks for the challenge, B lets Hdr = (V, e(V, gn−1−`)r) and responds with (Hdr,K).
Observe that

e(V, gn−1−`)r = grtn−1 = g
t(γ+

∑
u∈S

α(2n−1−u))
n−1

which means (V, e(V, gn−1−`)r) is a valid header for the set S. Also, observe that if K =
gtα

(2n−1)
n+`−1 , then K is the correct key for this header.

• When A returns a guess b for which K it is given, B returns b as its guess.

As shown above, B perfectly simulates the view of A in the broadcast encryption security game.
Therefore, B has the same advantage as A, which must therefore be negligible, as desired.

5 Our Third Construction
In this section, we give our third and final broadcast scheme. This scheme is based on the basic
broadcast scheme of Gentry and Waters [GW09], henceforth called the GW scheme. Like the BGW
scheme, the GW scheme has public keys consisting of O(N) elements, where N is the number of
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users. Our idea is to, similar to Constructions 3.1 and 4.1, run the GW scheme in the higher levels
of a multilinear map, and derive the public key elements from O(logN) low-level elements.

However, unlike the BGW public parameters, which are all derived from a single scalar α ∈ Zp,
each of the GW public key elements are derived from a separate random scalar. Therefore, we
cannot possibly hope to simulate the GW public key elements exactly. Instead, we we generate
them using a Naor-Reingold-style PRF [NR97].

Also, unlike the BGW scheme, the secret keys in the GW scheme have O(N) group elements.
To make our scheme more efficient, and more importantly to make our scheme identity-based, we
need to shrink the secret keys to O(logN) elements. To accomplish this, we observe that the secret
key components are actually some of the outputs of another Naor-Reingold-style PRF, and we can
allow the secret key holder to compute just those outputs by puncturing the PRF, similar to Boneh
and Waters [BW13].

We now present out scheme:

Construction 5.1. Let Setup′ be the setup algorithm for a multilinear map, where groups have
order p. Our final identity-based broadcast scheme consists of the following algorithms:

Setup(n) Takes as input the length n of identities. Run the setup algorithm for a multilinear map,
Setup′, to construct an n + 1-linear map with parameters params′. Draw a random α ∈ Zp. For
i = 0, . . . , n− 1 and b = 0, 1, draw random βi,b ∈ Zp. The public key is

pk = (params′, {Xi,b = g
βi,b

1 }i∈[0,n−1],b∈{0,1},W = gαn+1)

For any user u ∈ {0, 1}n, note that we can compute

Zu ≡ g
∏n

i=1 βi,ui
n = e(X1,u1 , X2,u2 , . . . , Xn,un)

KeyGen(params, α, {βi,b},u) Pick a random ru ∈ Zp. Let

U
(u)
0 = gru

1

U
(u)
i = Xru

i,1−ui
= g

ruβi,1−ui
1 for i = 1, . . . , n

U
(u)
n+1 = gαnZ

ru
u = g

α+ru·
∏n

i=1 βi,ui
n

The secret key for user u is sku = {U (u)
i }i∈[0,n+1].

Observe that for v 6= u, we can compute Zru
v by finding an i∗ where vi∗ = 1−ui∗ , and computing

e(X1,v1 , . . . , Xi∗−1,vi∗−1 , U
(u)
i∗ , Xi∗+1,vi∗+1 , . . . , Xn,vn) = g

ruβi∗,vi∗
·
∏

i6=i∗ βi,vi
n

= g
ru·
∏n

i=1 βi,vi
n = Zru

v

Enc(params, S) Choose a random t ∈ Zp and compute the key and header as

K = W t = gtαn+1 and Hdr =

gt1 ,
(∏

u∈S
Zu

)t =
(
gt1 , g

t
∑

u∈S

∏n

i=1 βi,ui
n

)

where Zu are computed as above.
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Dec(params,u, sku, S,Hdr) If u /∈ S, output ⊥. Otherwise, write Hdr = (C0, C1). Compute

k =
e(U (u)

n+1 ·
∏

v∈S,v 6=u Z
ru
v , C0)

e(U (u)
0 , C1)

Observe that if (C0, C1) are as above, we can write k as gcn+1 where

c = (α+ ru
∏

βi,ui +
∑

v∈S,v 6=u
ru
∏

βi,vi) · t− ru · (t
∑
v∈S

∏
βi,vi) = αt

as desired.

Correctness follows from the comments above.

Differences from GW. In the Gentry and Waters scheme [GW09], the Zu are generated inde-
pendently and given explicitly in the public parameters (as elements of the source group G1). In
our scheme, the Zu are generated pseudorandomly by means of a Naor-Reingold PRF. Similarly, in
the GW scheme, the Zru

v for v 6= u are also given explicitly to user u. In our scheme, we note that
the Zru

v for fixed u actually form another Naor-Reignold PRF, which we puncture at the point u to
allow user u to compute the necessary values without learning Zru

u . Our puncturing follows the
puncturing used by Boneh and Waters [BW13].

Comparison to Constructions 3.1 and 4.1. Construction 5.1 has a couple advantages and
disadvantages over our previous schemes:

• Unlike the BGW-based schemes, there are no high-degree terms being generated. This means
we do not need the secret parameters for the multilinear map to set up our scheme. Therefore,
we can use a map from some trusted third party. We do, however, need to make sure re-
randomization parameters are available in the groups G1 and Gn to re-randomize the header
elements. If we are using a map that we did not set up, we also need to re-randomize the user
secret keys.

• To handle identities of length λ, the total multilinearity of Construction 5.1 is λ+ 1. Compare
this to 2λ and 1.440(λ+ (log2 λ)/2) from the previous constructions.

• On the negative side, secret keys in Construction 5.1 consist of O(logN) group elements,
compared to the single element secret keys of the previous schemes.

• For security, we unfortunately are unable to prove security relative to a non-interactive
assumption. In the original GW scheme, the security proof involved manipulating the Zu
for u /∈ S. Since each of the Zu are independent in the GW scheme, this is achievable. For
our scheme, however, the Zu are generated from O(logN) parameters, meaning we cannot
modify them independently. Instead, in Appendix B, we opt to prove security in the generic
multilinear map model. We note, however, that we obtain a better generic security theorem
than is possible for Constructions 3.1 and 4.1.
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A Extensions and Variations

A.1 Parameter Trade-offs

To handle N identities, our symmetric multilinear map scheme (Section 4) requires a total multilin-
earity of roughly 1.5 log2N , and roughly log2N group elements in the public key. Contrast this to
the BGW scheme, which only requires multilinearity 2, but needs roughly 2N public key elements.
Since multilinearity is expensive, here we discuss a generalization of both the BGW scheme and
Construction 4.1 which allows interpolating between the two. By instantiating the scheme with the
right parameters, it may be possible to obtain better performance.

Observe in our scheme that the main reason for the multilinearity is so that we can compute
many different Zu, Z ′u from relatively few Xi. For a set ID of users, the Zu, Z ′u we need to compute
are:

• Z ′u for u ∈ ID

• Zh−u and Zh−j+u for j, u ∈ ID, j 6= u, for some “hole” h.

We can generalize the requirements using the following definition:

Definition A.1. Let ID be a finite set of positive integers. We say a set T of positive integers
(h, n, `)-covers ID if:

• h > maxu∈ID u.

• For every u ∈ ID, u can be represented as a sum of at most ` (possibly repeating) integers in
T .

• For every u, j ∈ ID, h−u and h− j+u can be represented as a sum of at most n−1 (possibly
repeating) integers in T .

• h can be represented as a sum of at most n+ `− 1 (possibly repeating) integers in T .

• h cannot be represented as a sum of fewer than n (possibly repeating) integers in T .

Then the public key will consist of Xi = gα
i

1 for i ∈ T (along with the value V ). The requirements
for T show that the necessary values of Zu, Z ′u (as well asW ) can be derived from theXi. The security
assumption the scheme will be based on the following problem. Let params ← Setup′(n + ` − 1),
and choose random α, t ∈ Zp. Let Xi = gα

i

1 for i ∈ T and V = gt`. Given ({Xi}i∈T , V ), the goal is
to compute K = gtα

h

n+`−1. We call this the (T, h, n, `)-(computational) generalized multilinear Diff-
Hellman Exponent (gMDHE) assumption. The decisional variant is the problem of distinguishing
K from a random element in Gn+`−1. The requirements for the hole h ensure that the (T, h, n, `)-
gMDHE problem is not trivially solvable.

Now we give some examples:

• ID = [1, N ], T = [1, N ]
⋃

[N + 2, 2N ], h = N + 1, n = 2, and ` = 1. Here we recover the
original BGW construction.

• ID = {u ∈ [1, 2n − 2] : u has weight exactly `}, T = {20, 21, 22, . . . , 2n}, h = 2n − 1. Here we
recover the scheme in Construction 4.1.
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• ID = {u ∈ [1, 2n − 2] : u has weight at most `}, T = {20, 21, 22, . . . , 2n, 2n + 1}, h = 2n − 1.
Here we get a variant of the scheme in Construction 4.1 where identities do not all need the
same weight. This construction shaves of logarithmic additive factors in the total multilinearity
n+ `− 1, at the expense of a more complicated complexity assumption.

• ID = [1, bn−1
b−1 − 1], T = {1, 2, 3, . . . , b − 1, b, 2b, . . . , (b − 1)b, b2, . . . , bn−1, b

n−1
b−1 + 1, bn−1

b−1 +
2, . . . , bn−1

b−1 + b}, h = bn−1
b−1 , ` = n− 1. Here we get a variant of the scheme that uses a base

other than 2. The result is a somewhat larger identity space (or reduced multilinearity) at the
expense of a significantly larger public key. Note that when b = N ,n = 2, we again get the
BGW scheme.

A.2 CCA Security

Similar to the BGW construction, we can also obtain CCA security. The construction utilizes
a one-time signature scheme (G, Sign,Ver). The main difference is that verification keys for the
signature scheme cannot directly be hashed into the necessary group Gn−1, as described by BGW.
The reason is that, in current multilinear map constructions, users cannot sample elements from
intermediate groups directly, but must instead combine elements of the public parameters together
to arrive at group elements. Note that in the multilinear map construction of Garg, Gentry, and
Halevi, users can sample the source group G1 directly. Therefore, we will hash verification keys into
G1, and then lift the element to Gn−1 by pairing with gn−2.

B Security Using Generic Multilinear Maps
In this section, we discuss the security of our schemes in the generic multilinear map model. In
particular, explain why our two assumptions, the n-HDHE and (n, `)-MDHE assumptions, are secure
in the generic model, provided p is sufficiently large. This shows Constructions 3.1 and 4.1 are
statically secure in this model for sufficiently large p. We also directly show that Construction 5.1 is
adaptively secure in this model for much smaller p. We note that adaptive proofs of security can
also be obtained for Constructions 3.1 and 4.1, though for much larger p.

Generic Multilinear Maps Generic multilinear maps are a generalization of the generic group
model. Let n ∈ Z` be the target integer vector. We represent the groups Gv for v ∈ Z` using a
random injective function ξ : Zp × Z` → {0, 1}m mapping elements of the additive group Zp and
vectors v into strings of length m. We are given oracles Mult and Pair to compute the induced
multiplication and pairing operation. More precisely, any algorithm in the generic multilinear map
model interacts with the multilinear map using the following queries:

Encode(x,v) If v ∈ Z` is a non-negative integer vector satisfying v ≤ n, then the response is
ξ(x,v). Otherwise return ⊥. Note that we can recover the generator gv for the group Gv as
Encode(1,v).

Mult(ξ1, ξ2, b) If ξ1 = ξ(x1,v1) and ξ2 = ξ(x2,v2) where v1 = v2 = v, then return ξ(x1 +(−1)bx2,v).
Otherwise, return ⊥.

Pair(ξ1, ξ2) If ξ1 = ξ(x1,v1) and ξ2 = ξ(x2,v2) where v1 + v2 = v ≤ n, then return ξ(x1 · x2,v).
Otherwise, return ⊥.
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Generic security of our assumptions. Using the techniques of Boneh, Boyen, and Goh [BBG05],
it is straightforward to prove hardness results for the n-HDHE and (n, `)-MDHE assumptions in
the generic multilinear map model. However, these assumptions involve high degree exponents (as
high as α2n), meaning the adversary can construct high degree polynomials (namely, degree n2n) in
the secrets of the assumption. As a result, we can only bound the generic adversary’s advantage to
≈ t22n/p, where t is the number of queries the adversary makes. This means we must set p to be
somewhat large: if n = λ, λ-bit security would require p ≈ 23λ, rather than the usual p ≈ 2λ.

The generic security of our assumptions, together with Theorems 3.3 and 4.4 also shows the
generic static security of Constructions 3.1 and 4.1. We note that it is also possible to show generic
adaptive security for these schemes. However, these generic security results still require p ≥ 23λ.
Next, we show that, for Construction 5.1, we can actually obtain adpative generic security for
p ≈ 2λ.

Theorem B.1. For any generic adversary A whose total number of queries to Encode,Mult,Pair
is polynomial, A has negligible advantage in breaking the adaptive security of Construction 5.1,
provided 1/p is negligible.

Proof. Let A be a generic adaptive attacker. A plays the following game:

• The challenger choose random βi,b from Zp for i ∈ [1, n] and b ∈ {0, 1}, random α, t ∈ Zp, and
a random bit c ∈ {0, 1}. The challenger sets kc = αt and k1−c to be a random element in Zp.

• A receives {Xi,b = ξ(βi,b, 1)}i∈[1,n],b∈{0,1}, as well as W = ξ(α, n+ 1).

• A can adaptively make secret key queries for identities u ∈ {0, 1}n. In response, A receives
{U (u)

i }i∈[0,n+1] where

U
(u)
0 = ξ(ru, 1) for a randomly chosen ru ∈ Zp

U
(u)
i = ξ(ru · βi,1−ui , 1) for i = 1, . . . , n

U
(u)
n+1 = ξ(α+ ru ·

n∏
i=1

βi,ui , n)

We require that for a particular identity u, A can only make a single key query for u.

• A can also adaptively make queries to Encode,Mult,Pair.

• A makes a challenge query on a set S, subject to the restriction that u /∈ S for any u queried
in a secret key query. In response, A receives

Hdr = (ξ(t, 1), ξ(t ·
∑
v∈S

n∏
i=1

βi,vi , n))

In addition, A receives K0 = ξ(k0, n+ 1) and K1 = ξ(k1, n+ 1).

• A can continue making secret key queries for identities u /∈ S.

• A produces a guess c′ for c.
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Now consider an algorithm B that plays the above game with A. Rather than choose values for
βi,b, α, t, ru, k0, k1, algorithm B treats them as formal variables. B maintains a list

L = {(pj , ij , ξj)}

where pj is a polynomial in the variables {βi,b}i∈[1,n],b∈{0,1}, α, t, k0, k1, {ru}, the integer ij indexes
the groups, and ξj is a string in {0, 1}m. The list is initialized with the tuples (βi,b, 1, ξ2i+b−1)
for randomly generated strings ξ2i+b−1 ∈ {0, 1}m, as well as (α, n+ 1, ξ2n+1) for a random string
ξ2n+1 ∈ {0, 1}m. Initially, L contains 2n+ 1 entries.

The game starts with B giving A the tuple of strings {ξi}i∈[1,2n+1]. Now, A is allowed to make
the following queries:

Encode(x, i): If x ∈ Zp and 1 ≤ i ≤ n + 1, then B looks for a tuple (p, i, ξ) ∈ L, where p is the
constant polynomial equal to x. If such a tuple exists, then B responds with ξ. Otherwise, B
generates a random string ξ ∈ {0, 1}m, adds the tuple (p, i, ξ) (again, where p is a constant
polynomial equal to x) to L,and responds with ξ.

Mult(ξk, ξ`, b): B looks for tuples (pk, ik, ξk), (p`, i`, ξ`) ∈ L. If one or both tuples do not exist, then
B responds with ⊥. If both tuples are found, but ik 6= i`, then B responds with ⊥. Otherwise,
B lets i ≡ ik = i`, computes the polynomial p = pk+(−1)bp`, and looks for a tuple (p, i, ξ) ∈ L.
If the tuple is found, then B responds with ξ. Otherwise, B generates a random string ξ, adds
the tuple (p, i, ξ) to L, and resonds with ξ.

Pair(ξk, ξ`): B looks for tuples (pk, ik, ξk), (p`, i`, ξ`) ∈ L. If one or both tuples do not exist, then B
responds with ⊥. If both tuples are found, but i ≡ ik + i` > n+ 1, then B responds with ⊥.
Otherwise, B computes the polynomial p = pk · p`, and looks for a tuple (p, i, ξ) ∈ L. If the
tuple is found, then B responds with ξ. Otherwise, B generates a random string ξ, adds the
tuple (p, i, ξ) to L, and responds with ξ.

KeyGen(u): B creates a new formal variable ru. It adds the tuple (ru, 1, ξ) to L for a randomly
generated ξ ∈ {0, 1}m. It also adds tuples (ruβi,1−ui , 1, ξi) for i = 1, . . . , n, where the ξi are
generated at random in {0, 1}m. Finally, it adds the tuple (α+ ru ·

∏n
i=1 βi,ui , n, ξ) for another

randomly generated ξ ∈ {0, 1}m. B responds with the list of ξ values generated in this step.

Enc(S): B creates new formal variables t, k0, k1. It adds several tuples to L:

(t, 1, ξ1) , (t ·
∑
v∈S

n∏
i=1

βi,vi , n , ξ2) , (k0 , n+ 1 , ξ3) , (k1 , n+ 1 , ξ4)

Where the ξi are randomly generated. B gives A the strings ξ1, ξ2, ξ3, ξ4.

B can increase m arbitrarily, thus making strings ξ hard to guess. Therefore, we can assume
without loss of generality that A only makes Mult and Pair queries on strings obtained from B.

After a polynomial number of queries, A returns a guess c′ ∈ {0, 1}. Now, B chooses a random
c ∈ {0, 1}. If also chooses random values for βi,b, α, t ∈ Zp, ru. It also chooses a random k ∈ Zp. B
sets kc = αt and k1−c = k.

The simulation provided by B is perfect unless out choices for the variables βi,b, α, t, k0, k1 results
in an equality between values for two values pk, p` that is not an equality for polynomials. More
precisely the simulation is perfect unless for some k, ` the following hold:
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• ik = i`

• pk(βi,b, . . . )− p`(βi,b, . . . ) = 0, yet the polynomials pk, p` are not equal.

Let Fail be the event that these conditions hold for some k, `. We need to bound the probability
that Fail occurs. First, prior to choosing values for all the variables, consider setting kb = αt as
polynomials. We claim that this does not create any new polynomial equalities.

Claim B.2. Substituting the formal variable kb with the polynomial αt does not create any new
polynomial equalities. That is, if pk 6= p` before the substitution, the same is true after the substitution

Before proving Claim B.2, we use it to finish the proof of Theorem B.1. Notice that each of the
polynomials has degree at most 2n+ 2. For any pair k, `, the Swartz-Zippel lemma then shows that,
for pk 6= p`, the probability (pk − p`)(βi,b, . . . ) = 0 is at most (2n+ 2)/p.

Let qe, qm, qp, qk be the total number of encode, Mult,Pair, and KeyGen queries made by A. Then
the total length of L is at most

|L| ≤ qe + qm + qp + (n+ 2)qk + (2n+ 5)

Therefore, the number of pairs is at most(
|L|
2

)
≤ (qe + qm + qp + (n+ 2)qk + (2n+ 5))2/2

Therefore, Fail happens with probability at most

(qe + qm + qp + (n+ 2)qk + (2n+ 5))2(2n+ 2)/2p

If Fail does not occur, B’s simulation is perfect, and in this case c is independent from A’s
view (in particular, c was chosen after the simulation). It is straightforward to show that the A’s
advantage in winning the broadcast encryption experiment is at most

(qe + qm + qp + (n+ 2)qk + (2n+ 5))2(n+ 1)/2p

For polynomial qe, qm, qp, qk, n, this is negligible provided 1/p is negligible, as desired.
It remains to prove Claim B.2. Suppose there are two polynomials pk 6= p` such that, when we

replace the variable kc with αt, pk = p`. This means pk − p` = 0. Moreover, pk − p` must have
contained a kc term, and this term cannot have been multiplied by any other variables. Therefore,
we can write pk − p` as

pk − p` = C0kc + C1k1−c (B.1)

+ C2α+ t
∑
u∈S

n∏
i=1

βi,ui · poly0(t, {rv}v/∈S , {rvβi,1−vi}v/∈S,i∈[1,n], {βi,b}i∈[1,n],b∈{0,1}) (B.2)

+
∑
u/∈S

(α+ ru

n∏
i=1

βi,ui)(Cut+ polyu({rv}v/∈S , {rvβi,1−vi}v/∈S,i∈[1,n], {βi,b}i∈[1,n],b∈{0,1})

(B.3)
+ poly1(t, {rv}v/∈S , {rvβi,1−vi}v/∈S,i∈[1,n], {βi,b}i∈[1,n],b∈{0,1}) (B.4)
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Where poly0 has degree 1, each of the polyu has degree 1, and poly1 has degree n + 1, and
C0, C1, C2, Cu are constants. If pk − p` is non-zero, but substituting kc as αt makes the difference
zero, we can conclude the following:

• C0 6= 0, C1 = 0

•
∑

u6=S Cu = −C0. In particular, there is a u /∈ S with Cu 6= 0.

Now pick some u /∈ S with Cu 6= 0 and expand out all of the polynomials, looking for monomials
M = tru

∏n
i=1 βi,ui . Clearly, Line B.1 gives no such monomials. All monomials in Line B.2 involving

t contain a product
∏n
i=1 βi,vi for some v ∈ S — in particular, v 6= u. Therefore, Line B.2 gives no

such monomials either. Line B.3 gives exactly one, with a coefficient of Cu. Now, suppose Line B.4
(that is, poly1) contained the monomial M . This means we can build M by taking the product of a
subset of the terms t, {rv}v/∈S , {rvβi,1−vi}v/∈S,i∈[1,n], {βi,b}i∈[1,n],b∈{0,1}. We can infer the following:

• t must be included exactly once in the product

• rvβi,1−vi for any v /∈ S, i ∈ {0, 1} cannot be included in the product. Otherwise, if v = u,
there will be some βi,1−ui with positive exponent, and if v 6= u, then rv will have a positive
exponent.

• ru must therefore be included exactly once in the product. rv for v 6= u cannot be included.

• βi,ui must be included for each i.

This means we must multiply n+ 2 of the terms together, exceeding the maximum degree of
poly1. Therefore, We conclude that Line B.4 does not have any monomial M . This means that the
total coefficient for M is Cu 6= 0. This is true even after substituting kb with αt, contradicting the
assertion that pk − p` = 0. This completes the proof of Theorem B.1.
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