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Abstract. We evaluate the security of the recently proposed authenticated encryption scheme
POET with regard to weak keys when its universal hash functions are instantiated with finite
field multiplications. We give explicit constructions for weak key classes not covered by POET’s
weak key testing strategy, and demonstrate how to leverage them to obtain universal forgeries.

1 Introduction

POET is a recent proposal by Abed et al. for an online authenticated encryption scheme, and
has also been submitted to the ongoing CAESAR competition [1, 5]. It uses a combination
of Rogaway’s XEX construction with the AES as underlying block cipher and AXU hash
functions to produce the XOR masks. One recommended variant instantiates these hash
functions as multiplications with keys in F128

2 . In this case, the input to the block ciphers top
layer of masks in POET’s XEX structure basically consists of a polynomial hash evaluation
of the message inputs.

Polynomial hashing is known to have issues with weak key classes [3, 6, 7]. In this paper,
we analyze the impact of weak keys on POET.

2 The authenticated online cipher POET

In this section, we briefly describe the POET authenticated online cipher [1].
A schematic description of POET is given in Fig. 1. It uses a combination of Rogaway’s

XEX construction with a chain of AXU hash function evaluations Ft to update the first (top)
layer of masks, the bottom layer of masks being generated by applying another AXU Fb to the
previous output of the block cipher calls. Associated data (AD) and the nonce are processed
in a PMAC-like fashion to produce a value τ which is then used as the initial chaining value
for both top and bottom mask layers, as well as for generating the authentication tag T .
Five keys L,K,Ltop, Lbot and LT are derived from a user key as encryptions of the constants
1, . . . , 5. K denotes the block cipher key, L is used as the mask in the AD processing, and LT
is used as a mask for computing the tag. The “header” H encompasses the associated data (if
present) and includes the nonce in its last block. S denotes the encryption of the bit length
of the message M , i.e. S = EK(|M |). The inputs and outputs of the i-th block cipher call
during message processing are denoted by Xi and Yi, respectively.

In a recommended variant of POET, the functions Ft and Fb are given by Ft(x) = Ltop ·x
and Fb(x) = Lbot · x, with the multiplication taken in F128

2 . This is also the variant that we
consider in this paper. The top AXU hash chain then corresponds to the evaluation of a
polynomial hash in F128

2 :

gt(X) = τLtop
m +

m∑
i=1

XiLtop
m−i,
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Figure 6.1.: Schematic illustration of the encryption process with POET for an (ℓM )-block message
M = M1, . . . , MℓM , where S denotes the encrypted message length, i.e., S = EK(|M |), F is an
ǫ-AXU family of hash functions, and τα is taken from the most significant bits of the header
processing to pad the final message block. Note that the functions Ft and Fb use the keys Ltop

F

and Lbot
F , respectively.

6.1. Definition of POET

Definition 6.1 (POET). Let m, n, k ≥ 1 be three integers. Let POET = (K, E ,D) be an
AE scheme as defined in Definition 4.9, E : {0, 1}k ×{0, 1}n → {0, 1}n a block cipher and
F : {0, 1}k × {0, 1}n → {0, 1}n be a family of keyed ǫ-AXU hash functions. Furthermore,
let H be the header (including the public message number N appended to its end), M
the message, T the authentication tag, and C the ciphertext, with H, M, C ∈ {0, 1}∗ and
T ∈ {0, 1}n. Then, E is given by procedure EncryptAndAuthenticate, D by procedure
DecryptAndVerify, and K by procedure GenerateKeys, as shown in Algorithms 6.1
and 6.2, respectively.

Algorithm 6.1 EncryptAndAuthenticate and DecryptAndVerify.
EncryptAndAuthenticate(H, M)
101: ℓM ← ⌈|M |/n⌉
102: τ ← ProcessHeader(H)
103: (C, XℓM

, YℓM
)← Encrypt(M, τ)

104: (CℓM
, T α)← Split(CℓM

, |M | mod n)
105: T β ← GenerateTag(τ, XℓM

, YℓM
)

106: T ← T α || T β

107: return (C1 || . . . || CℓM
, T )

DecryptAndVerify(H, C, T )
201: ℓC ← ⌈|C|/n⌉
202: τ ← ProcessHeader(H)
203: (M, XℓC

, YℓC
)← Decrypt(C, τ)

204: (MℓC
, τ ′)← Split(MℓC

, |C| mod n)
205: if VerifyTag(T, XℓC

, YℓC
, τ, τ ′) then

206: return M
207: end if
208: return ⊥
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Fig. 1: Schematic description of POET [1]

with gt being evaluated at X = M1, . . . ,Mm−1,Mm ⊕ S.
For integral messages (i.e., with a length a multiple of the block size), the authentication

tag T then generated as T = T β with empty Z, as shown in Fig. 2. Otherwise, the tag T is
the concatenation of the two parts Tα and T β, see Fig. 1 and 2.
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Figure 6.3.: Schematic illustration of the tag-generation procedure in POET.

significant bits of C∗ℓC+1 are compared to the |MℓC
| least significant bits of T . If both

checks are valid, the decrypted ciphertext is output; otherwise, the decryption fails (cf.
lines 205 to 208 of Algorithm 6.1).

6.2. Instantiations for the ǫ-AXU Family of Hash Functions

We highly recommend to instantiate POET with AES-128 as a block cipher. For the ǫ-AXU
families of hash functions F , we propose three different instantiations in the following:

1. POET with Galois-Field multiplications in GF (2128),
2. POET with 4-round AES, and
3. POET with full-round AES.

POET with Galois-Field Multiplications. We recommend multiplications in GF (2128),
similar to the multiplication in AES-GCM [36] as universal hash function with an ǫ ≈
2−128. The family of hash functions F is then defined by Ft(X) = X · Ltop

F or Fb(X) =
X · Lbot

F , depending on whether it is applied to the top or the bottom row.
When using multiplications in GF (2128), one has to consider the risk of weak keys. As
stressed by Saarinen in [48], 2128 − 1 is not prime, so it produces some smooth-order
multiplicative groups. Thus, one can explore a weak key with a probability about 2−96.
To avoid the risk of having weak multiplication keys (one for processing the header and
two hash-function keys for processing the message), we propose to perform a checking on
the keys L, Ltop

F , and Lbot
F right after their generation phase. For each weak key, we choose

a fresh unique constant consti with 1 ≤ i ≤ 3, depending on which key is weak, re-generate
the corresponding key, and check it again. This procedure can be repeated until none of
the keys is weak. In addition, one can add a test function to assure that all keys are
pairwise independent, and none of them represents a multiple of another one. Since this
additional security measurement must be applied only at the time of key setup, and since
only a small fraction of keys are weak, the effort for this can be considered negligible in
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Fig. 2: Second-part tag generation in POET [1]

3 Weak Keys in Polynomial Hashing

We start by first describing polynomial hashing authentication schemes. Then we describe
the main observation on polynomial hashing authentication schemes made by Procter and
Cid in their FSE paper [6] which enables them to give a general forgery attack on polynomial
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hashing authentication schemes. As mentioned in [6], most of the previous attacks [2–4,7] on
the most well known polynomial hashing scheme, McGrew and Viega’s Galois/Counter Mode
(GCM), turned out to be a special case of their general forgery attack.

3.1 Polynomial Hashing Authentication Schemes

A polynomial hash-based authentication scheme processes an input consisting of a key H
and plaintext/ciphertext M = (M1||M2|| · · · ||Ml), where each Mi ∈ F128

2 , by evaluating the
polynomial

hH(M) =

t∑
i=1

MiH
i ∈ F128

2 .

The polynomial hH(M) is used to construct fast and secure MACs. For instance, the GCM
tag generation can be described as follows

MACH||k(M) = Ek(N)⊕ hH(M),

where M is the ciphertext produced using a counter mode block cipher Ek, N is the nonce
and H = Ek(0) and k is the secret key. One can see that by repeating the nonce N , one can
create forgeries if a hash collision is found on hH(M). For example, in [7], Saarinen created a
forgery on GCM when the hash key H generates a cyclic subgroup of order t, in other words
when Ht+1 = H. Hash keys satisfying this property are called weak keys since they allow the
attacker to create a valid forgery by simply swapping any two message blocks Mi and Mi+jt.
Next we describe a general version of Saarinen’s cycling attack which we will use throughout
the paper.

3.2 Procter and Cid’s Forgery Attack

The main observation of [6] can be described as follows. Let H be the unknown hash key.
Assume that q(x) =

∑r
i=1 qix

i and that q(H) = 0. Assume that M = (M1||M2|| · · · ||Ml) and
that l < r. Then

hH(M) =

r∑
i=1

MiH
i =

l∑
i=1

MiH
i +

r∑
i=1

qiH
i =

r∑
i=1

(Mi + qi)H
i = hH(M +Q)

where Q = q1|| · · · ||qr. Note that we need to pad M with zeros since l < r. Considering the
GCM scheme, if we know that (N,M, T ) is valid then (N,M + Q,T ) is valid if q(H) = 0

where H ∈ F128
2 . This gives a forgery probability p = #roots of q(x)

2128
. Therefore, in order to have

a forgery using the polynomial q(x) with high probability, q(x) should have a high degree and
preferably no repeated roots. Next we describe how to choose a forgery polynomial q(x) with
high forgery probability.

3.3 Weak keys and POET’s avoidance strategy

The specification of POET with F128
2 multiplications discusses the issue of weak keys and

proposes to perform a check on L,Ltop, Lbot during the key generation phase [1]. No precise
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description is given on how this check is performed, the reference to Saarinen’s cycling at-
tacks [7] and the suggested weak key probability of 2−96, however, imply that only some basic
cycling attacks (swapping of blocks) are excluded. This does not take into account the results
of [6], where it is demonstrated that arbitrary polynomials (not limited to two terms) can
be used as forgery polynomials. Moreover, in this general setting, any key can be considered
potentially weak. In any event, the description of POET does not allow for ruling out a class
of weak keys with more than 232 elements.

Even if POET’s weak key “detection” strategy were modified to only allow generators of
the multiplicative group of F128

2 , there would still be weak key classes, since any element of
F128
2 can be a root of some forgery polynomial. We further note that the order (as a group

element) of the weak key is not related to the degree of the forgery polynomial and thus the
query length. A high-degree polynomial is only needed to obtain a better success probability
with random keys.

3.4 Choosing Forgery Polynomials

Procter and Cid described three methods to construct a forgery polynomial [6]. The trivial
construction is to compute q(x) =

∏
i(x−Ki) for as many secret keys Ki as possible in order

to gain the desired forgery probability. The second method is to multiply distinct irreducible
polynomials in the subfields of F128

2 . As mentioned in [6], this method embodies the polyno-
mials used in Saarinen’s cycling attack [7]. However, it differs from Saarinen’s attack since
it contains roots from different subgroups’ elements while Saarinen’s attack uses polynomials
whose roots are in the same subgroup. The third method uses random polynomials in F128

2

which as noted in [6] might not split in F128
2 .

In this paper, we use the second method in order to build a forgery polynomial with
probability p, 232

2128
< p < 262

2128
.

Forgery Polynomials Suitable for POET Another possibility to construct a forgery
polynomial is to consider the subgroups with orders that are not prime. According to [1] the
maximum message length in POET is less than 264 blocks. This implies that the order of the
subgroup should be less than that as well. There are 240 subgroups with such orders out of the
total of 512 subgroups. Furthermore, in order to use keys which is not ruled out by POET’s
weak key avoidance test, which does not exclude more that 232 keys, we choose subgroups
with order more than 232. There are 163 subgroups out of the total of 512 subgroups that have
orders in the interval (232, 262). Using the polynomial q(x) = xn+1−x where n is the order of
the subgroup, we can get a forgery with probability n+1

2128
. Any of the corresponding polynomials

of those 163 subgroups will give us a forgery attack with probability p, 232

2128
< p < 262

2128
.

So more generally, q(x) can be defined as the polynomial resulting from multiplying a
number of subgroup polynomials among the previously mentioned 163 subgroups such that
the number of roots or the degree of the resulting polynomial lies in the interval (232, 262).
The largest subgroup with order less than 262 has order t1t2t4t5t7t8 ≈ 261.98 and its elements
are the roots of xt1t2t4t5t7t8 + 1. Choosing any product of subgroup polynomials qi(x) such
that q(x) =

∏
i qi(x) have a number of roots that lies in the interval (232, 262) will give us the

required forgery probability p needed for POET, 232

2128
< p < 262

2128
.

Weak Key Recovery By performing binary search on the roots of our forgery polynomial
q(x), we can easily recover the weak key by testing whether the hashing polynomial q(x) =
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∏j
i=1(x − αi), where {α1, · · · , αj} are the current binary searched roots of q(x), yields a

successful distinguisher on the polynomial hashing scheme under consideration. This will cost
only n queries to the POET scheme if the forgery polynomial q(x) has 2n roots.

4 Impact of weak keys on POET

Having seen that the classes of weak keys described in Section 3.4 are present in POET, we
discuss the implication of having one such key as the universal hash key Ltop. Since POET
allows nonce-reuse, we consider nonce-repeating adversaries, i. e. for our purposes, the nonce
will be fixed to some constant value for all encryption and verification queries.

4.1 Observations

Observation 1 (Collisions in gt imply tag collisions). Let M = M1, . . . ,Mm and
M ′ = M ′1, . . . ,M

′
m be two distinct messages of m blocks length such that gt(M) = gt(M

′)
or gt(M1, . . . ,M`) = gt(M

′
1, . . . ,M

′
`) with ` < m and Mi = M ′i for i > `. This implies a

collision on POET’s internal state Xi, Yi for i = m or i = ` respectively, and therefore equal
tags for M and M ′.

We note that such a collision also allows the recovery Ltop by means of the key search
procedure outlined in Sect. 3.4.

Observation 2 (Knowing Ltop implies knowing Lbot). Once the first hash key Ltop is
known, the second hash key Lbot can be determined with only two 2-block queries: Choose
arbitrary M1,M2,∇1 with ∇1 6= 0 and obtain the encryptions of the two 2-block messages
M1,M2 and M ′1,M

′
2 with M ′1 = M1 ⊕∇1,M

′
2 = M2 ⊕∇1 · Ltop. Denote ∆i = Ci ⊕ C ′i. Then

we have the relation ∆1 · Lbot = ∆2, so Lbot = ∆−11 ·∆2.

It is worth noting that this procedure works for arbitrary Lbot, and is in particular not
limited to Lbot being another root of the polynomial q.

We now describe the impact of these observations in detail. Concerning the concept of
weak keys, our attack scenario is based upon the universal approach of [6].

4.2 A generic forgery

In the setting of [6], consider an arbitrarily chosen polynomial q(x) =
∑m−1

i=1 qix
i of degree

m − 1 and some message M = M1‖ · · · ‖Mm−1‖Mm. Write Q = q1‖ · · · ‖qm−1 and define

M ′
def
= M + Q with Q zero-padded as necessary. For a constant nonce (1-block header) H,

denote ciphertext and tag corresponding to M by C = C1, . . . , Cm and T , and ciphertext and
tag corresponding to M ′ = M +Q by C ′ = C ′1, . . . , C

′
m and T ′, respectively.

If some root of q is used as the key Ltop, we have a collision between M and M ′ = M +Q
in the polynomial hash evaluation after m− 1 blocks:

τLtop
m +

m−1∑
i=1

MiLtop
m−i = τ ′Ltop

m +

m−1∑
i=1

M ′iLtop
m−i

This implies Xm−1 = X ′m−1 and therefore Ym−1 = Y ′m−1. Since the messages are of equal
length, S = S′ and we also have a collision in Xm and Ym. It follows that Cm = C ′m.
Furthermore, since τ = τ ′, the tag T is colliding as well. Since then M and M +Q have the
same tag, M +Q is a valid forgery whenever some root of q is used as Ltop.

Note that both M and the forged message will be m blocks long.
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4.3 Universal weak-key forgeries for POET

In this section, we describe that weak keys enable universal forgeries for POET under the
condition that the order of the weak key is smaller than the maximal message length in blocks.
Note that this is the case for all polynomials described in Section 3.4.

For obtaining universal forgeries, we first use the polynomial hash collision described above
to recover the weak keys Ltop and Lbot, and then recover τ , which is equal to the initial states
X0 and Y0, under the weak key assumption.

Recovering τ Suppose that we have recovered the weak keys Ltopand Lbot. Now our goal is
to recover the secret X0 = Y0 = τ . We know that

Xi = τLitop +M1L
i−1
top +M2L

i−2
top + · · ·+Mi

and

Xi+j = τLi+jtop +M1L
i+j−1
top +M2L

i+j−2
top + · · ·+Mi+j .

Now if Ltop has order j , i.e. Ljtop = Identity, then we get Xi = Xi+j by constructing
Mi+1, · · · ,Mi+j such that

Mi+1L
j−1
top +Mi+2L

j−2
top + ...+Mi+j = 0.

The easiest choice is to set Mi+1 = Mi+2 = · · · = Mi+j = 0. This gives us Yi = Yi+j . Now

equating the following two equations and assuming that Ljbot 6= Identity,

Yi = τLibot + C1L
i−1
bot + C2L

i−2
bot + · · ·+ Ci

and

Yi+j = τLi+jbot + C1L
i+j−1
bot + C2L

i+j−2
bot + · · ·+ Ci+j

we get

τ = (C1L
i−1
bot + C2L

i−2
bot + · · ·+ Ci + C1L

i+j−1
bot + C2L

i+j−2
bot + · · ·+ Ci+j)(L

i
bot + Li+jbot )−1.

Querying POET’s block cipher EK One can see from Fig. 3 that once we know Ltop,
Lbot and τ , we can directly query POET’s internal block cipher without knowing its secret
key K. internal block cipher, i.e. we want to compute EK(x). Now from Fig. 3, we see that
the following equation holds

EK(τLtop ⊕M1) = C1 ⊕ τLbot,

therefore

EK(x) = C1 ⊕ τLbot.

If M1 was the last message block, however, we would need the encryption S = EK(|M |).
Therefore we have to extend the auxiliary message for the block cipher queries by one block,
yielding the following:
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Observation 3 (Querying POET’s block cipher). Knowing Ltop, Lbot and τ enables us
to query POET’s internal block cipher without the knowledge of its secret key K. To compute
EK(x) for arbitrary x, we form a two-block auxiliary message M ′1 = (x ⊕ τLtop,M

′
2) for

arbitrary M ′2 and obtain its POET encryption as C ′1, C
′
2. Computing EK(x) := C ′1 ⊕ τLbot

then yields the required block cipher output.

This means that we can produce valid ciphertext blocks C1, . . . , C`M and (if necessary)
partial tags Tα for any desired messages, by simply following the POET encryption algo-
rithm using the knowledge of Ltop, Lbot, τ and querying POET with the appropriate auxiliary
messages whenever we need to execute an encryption EK . Note that this also includes the
computation of S = EK(|M |). A complete example is given in Sect. A in the appendix.

Generating the final tag In order to generate the second part of the tag T β (see Fig. 2),
which is the full tag T for integral messages, we use the following procedure.

We know the value of X`M for our target message M from the computation of C`M . If we
query the tag for an auxiliary message M ′ with the same X ′`M′ , the tag for M ′ will be the

valid tag for M as well, since having X ′`M′ = X`M means that Y ′`M′ = Y`M and consequently

T β
′
= T β.
Therefore, we construct an auxiliary one-block message M ′ = (X`M⊕EK(|M ′|)⊕τLtop and

obtain its tag as T ′ (computing the encryption of the one-block message length by querying
EK as above). By construction X ′1 = X`M , so T ′ is the correct tag for our target message M
as well.

By this, we have computed valid ciphertext blocks and tag for an arbitrary message M by
only querying some one- or two-block auxiliary messages. This constitutes a universal forgery.

We finish by noting that in case a one- or two-block universal forgery is requested, we
artificially extend our auxiliary messages in either the final tag generation (for one-block
targets) or the block cipher queries (for two-block messages) with one arbitrary block to
avoid having queried the target message as one of our auxiliary message queries.

4.4 Further forgery strategies

Since the universal forgery of the previous section relies on having a weak key Ltop with an
order smaller than the maximum message length for recovering τ , we describe two further
forgery strategies that are valid for any weak key, regardless of its order.

Constructing shorter (blind) forgeries Having generated a polynomial hash collision,
and therefore recovered the universal hash keys Ltop and Lbot, we can freely produce blind
forgeries for any ciphertext-tag pair of at least 2 blocks length. Suppose we have a ciphertext
C = C1, . . . , Cm with corresponding tag T for m ≥ 2. Then T is also a valid tag for C ′ =
(C1 ⊕∆,C2 ⊕∆ ·Lbot, C3, . . . , Cm) and the same nonce, since during the decryption process,
we have Y ′2 = C2 ⊕ ∆ · Lbot ⊕ (C1 ⊕ ∆ ⊕ τ · Lbot) · Lbot = C2 ⊕ (C1 ⊕ τ · Lbot) · Lbot = Y2.
Therefore X ′2 = X2 as well, and this collision is preserved by having C ′i = Ci for i > 2.

Constructing meaningful (targeted) forgeries We can also leverage collisions in the
polynomial hash to produce targeted forgeries with complete control over the differences in
the first m− 2 message blocks with a complexity of only two encryption queries per forgery.

7



The length of these queries is one block longer or shorter than the length of the message
we want to provide a forgery for, and can be as short as two blocks. Being able to produce
forgeries for arbitrary messages with chosen differences in the first m − 2 message blocks
already comes close to a universal forgery.

We first describe the procedure for the case of m-block messages with m ≥ 3 and deal
with m = 2 later.

Let m ≥ 3, M = M1, . . . ,Mm−1,Mm denote the target message, (C1, . . . , Cm;T ) its
encryption and tag and ∇1 6= 0, . . . ,∇m−2 6= 0 the desired differences in M1, . . . ,Mm−2. We
then produce a valid ciphertext with equal tag T forM1⊕∇1,M2⊕∇2, . . . ,Mm−1⊕∇m−1,Mm,
with uncontrollable ∇m−1.

Step 1: Recovering Ltop. We first note that the collisions in Cm and T from the generic forgery
can be used to detect the collision in gt(X) and therefore whether a root of q was used as
Ltop. We can then use the key search algorithm outlined in Sect. 3.4 to recover the value of
Ltop with about 128− log2(m) + 1 verification queries.

Step 2: Querying for prefix. Once Ltop is known, we can use this to query for a prefix of our
forged message as follows. Define

∇m−1
def
=

{
∇1 · Ltop if m = 3

∇1 · (Ltop)m−2 ⊕ · · · ⊕ ∇m−2 · Ltop if m > 3.

Form m − 1-block messages M1, . . . ,Mm−1 and M ′1, . . . ,M
′
m−1 with M ′i

def
= Mi ⊕ ∇i, and

obtain their encryptions C1, . . . , Cm−1 and C ′1, . . . , C
′
m−1. Denote the ciphertext differences

by ∆i
def
= Ci ⊕ C ′i. Note that ∇m−1 is chosen to eliminate the differences introduced by the

previous message blocks, yielding Xm−1 = X ′m−1 and therefore also Ym−1 = Y ′m−1, a collision
on the internal state of POET. This situation is illustrated in Fig. 3.

Step 3: Constructing the forgery. The knowledge of the “right pair” (M1, . . . ,Mm−1) and
(M ′1, . . . ,M

′
m−1) for our internal state collision differential now enables us to construct the

desired forgery. Query POET on the target message M = (M1, . . . ,Mm−1,Mm) and obtain
ciphertext C = (C1, . . . , Cm) and tag T . Then (C1 ⊕∆1, . . . , Cm−1 ⊕∆m−1, Cm;T ) is a valid
ciphertext-tag pair for (M1⊕∇1, . . . ,Mm−1⊕∇m−1,Mm). Since this message was not queried
before, this constitutes a valid forgery.

Constructing two-block forgeries. If the target message is two blocks long, we cannot use
the above procedure since we need at least a two-block prefix query to achieve the internal
state collision. For m = 2, we would then already have queried the message forged in Step 3
in Step 2. We can however follow an entirely analogous procedure by simply extending the
queries in Step 2 by one arbitrary block Z. Let ∇1 be the chosen difference for the first
message block. Compute Ltop as described in Step 1. In Step 2, we then obtain the encryption
of (M1,M2, Z) as (C1, C2, CZ) and (M1 ⊕ ∇1,M2 ⊕ ∇1 · Ltop, Z) as (C ′1, C

′
2, C

′
Z), and then

construct the forgery in Step 3 as (C ′1, C
′
2).

5 Weak keys and OPERM-CCA security

POET is designed as a decryption-misuse-resistant online cipher [5], meaning that modi-
fying the i-th ciphertext block Ci should result in random changes to all plaintext blocks
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Figure 6.1.: Schematic illustration of the encryption process with POET for an (ℓM )-block message
M = M1, . . . , MℓM , where S denotes the encrypted message length, i.e., S = EK(|M |), F is an
ǫ-AXU family of hash functions, and τα is taken from the most significant bits of the header
processing to pad the final message block. Note that the functions Ft and Fb use the keys Ltop

F

and Lbot
F , respectively.

6.1. Definition of POET

Definition 6.1 (POET). Let m, n, k ≥ 1 be three integers. Let POET = (K, E ,D) be an
AE scheme as defined in Definition 4.9, E : {0, 1}k ×{0, 1}n → {0, 1}n a block cipher and
F : {0, 1}k × {0, 1}n → {0, 1}n be a family of keyed ǫ-AXU hash functions. Furthermore,
let H be the header (including the public message number N appended to its end), M
the message, T the authentication tag, and C the ciphertext, with H, M, C ∈ {0, 1}∗ and
T ∈ {0, 1}n. Then, E is given by procedure EncryptAndAuthenticate, D by procedure
DecryptAndVerify, and K by procedure GenerateKeys, as shown in Algorithms 6.1
and 6.2, respectively.

Algorithm 6.1 EncryptAndAuthenticate and DecryptAndVerify.
EncryptAndAuthenticate(H, M)
101: ℓM ← ⌈|M |/n⌉
102: τ ← ProcessHeader(H)
103: (C, XℓM

, YℓM
)← Encrypt(M, τ)

104: (CℓM
, T α)← Split(CℓM

, |M | mod n)
105: T β ← GenerateTag(τ, XℓM

, YℓM
)

106: T ← T α || T β

107: return (C1 || . . . || CℓM
, T )

DecryptAndVerify(H, C, T )
201: ℓC ← ⌈|C|/n⌉
202: τ ← ProcessHeader(H)
203: (M, XℓC

, YℓC
)← Decrypt(C, τ)

204: (MℓC
, τ ′)← Split(MℓC

, |C| mod n)
205: if VerifyTag(T, XℓC

, YℓC
, τ, τ ′) then

206: return M
207: end if
208: return ⊥
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Fig. 3: Constructing targeted forgeries for POET. Freely chosen differences are indicated in
red, uncontrolled differences in blue.

Mi,Mi+1, . . . . This property is called OPERM-CCA security [5]. In the following we show
that if a weak key is used as Ltop, POET’s underlying online cipher POE does not provide
OPERM-CCA security (noting that, according to the results of [6], every key can be weak).
As outlined in the previous sections, use of a weak Ltop allows us to recover both Ltop and
Lbot. Furthermore, we assume that a fixed nonce is being used.

A distinguisher. Let M1 6= M2 two different message blocks. We obtain the encryption of
M1,M2 as C1, C2. We then choose an arbitrary difference ∆ 6= 0 and ask for the decryption
of the two-block ciphertext

C1 ⊕∆,C2 ⊕∆ · Lbot

which we denote M ′1,M
′
2. We then verify if

M2 ⊕M ′2
?
= (M1 ⊕M ′1) · Ltop (1)

If this equation is fulfilled, our distinguisher concludes that the POE online cipher has been
used, otherwise a random online permutation. The probability of a false positive in (1) is
around 2−n.

Constructing ciphertexts for specific plaintext blocks. Suppose we obtain the encryption of
a message M = M1,M2, . . . ,Mm as C = C1, C2, . . . , Cm with m ≥ 3. Analogous to the
distinguisher above, by constructing

C ′ = C1 ⊕∆,C2 ⊕∆ · Lbot, C3, . . . , Cm

for any ∆ 6= 0, we have constructed a new ciphertext with known message blocks starting
from m = 3, which would not be possible for a CCA-secure online permutation. We also note
that this strictly speaking only requires the knowledge of Lbot (which in the weak key scenario
however requires a weak Ltop).

9



References

1. Farzaneh Abed, Scott Fluhrer, John Foley, Christian Forler, Eik List, Stefan Lucks, David McGrew, and
Jakob Wenzel. The POET Family of On-Line Authenticated Encryption Schemes. Submission to the
CAESAR competition, 03 2014.

2. Neils Ferguson. Authentication weaknesses in GCM. Comments submitted to NIST Modes of Operation
Process, 2005.

3. Helena Handschuh and Bart Preneel. Key-Recovery Attacks on Universal Hash Function Based MAC
Algorithms. In David Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages
144–161. Springer, 2008.

4. Antoine Joux. Authentication Failures in NIST version of GCM. Comments submitted to NIST Modes of
Operation Process, 2006.

5. David McGrew, Scott Fluhrer, Stefan Lucks, Christian Forler, Jakob Wenzel, Farzaneh Abed, and Eik
List. Pipelineable On-Line Encryption. In Carlos Cid and Christian Rechberger, editors, Fast Software
Encryption, FSE 2014, Lecture Notes in Computer Science, page 24. Springer-Verlag, 2014. to appear.

6. Gordon Procter and Carlos Cid. On Weak Keys and Forgery Attacks against Polynomial-based MAC
Schemes. In Shiho Moriai, editor, Fast Software Encryption, FSE 2013, Lecture Notes in Computer Science,
page 14. Springer-Verlag, 2013. to appear.

7. Markku-Juhani Olavi Saarinen. Cycling Attacks on GCM, GHASH and Other Polynomial MACs and
Hashes. In Anne Canteaut, editor, FSE, volume 7549 of Lecture Notes in Computer Science, pages 216–
225. Springer, 2012.

A Universal forgeries: an example

Suppose that we want to generate the first ciphertext block C1 of the messageM = M1|| · · · ||MlM .
Then we query POET for a message M ′ = M ′1||M ′2 where M ′i are chosen as follows.

To find the ciphertext block C1, we need to query POET’s block cipher for the encryption
of M1⊕ τLtop. To do this we set X ′2 = M1⊕ τLtop. Now since X ′2 = τL2

top⊕M ′1Ltop⊕M ′2, then

M1 ⊕ τLtop = τL2
top ⊕M ′1Ltop ⊕M ′2

Setting M ′1 = 0 and M ′2 = M1 ⊕ τLtop ⊕ τL2
top gives us the ciphertext blocks C ′ = C ′1||C ′2.

Now C1 = τLbot ⊕ Y ′2 . But Y ′2 = τL2
bot ⊕ C ′1Lbot ⊕ C ′2. Therefore

C1 = τLbot ⊕ τL2
bot ⊕ C ′1Lbot ⊕ C ′2

To generate the other ciphertext blocks Ci’s, where i ≥ 2, we ask for the encryptions
yi = EK(Xi) where Xi = τLitop ⊕M1L

i−1
top ⊕M2L

i−2
top + · · · + Mi for each i by performing i

queries to the POET scheme on the message M ′ = M ′1||M ′2 where M ′1 = Xi ⊕ τLtop. Then
Ci = Yi−1Lbot ⊕ Yi.

For the generation of the final tag T β, we use the procedure of Sect. 4.3.
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