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Abstract

Identity-based signature (IBS) is a specific type of public-key signature (PKS) where any identity
string ID can be used for the public key of a user. Although an IBS scheme can be constructed from any
PKS scheme by using the certificate paradigm, it is still important to construct an efficient IBS scheme
with short signature under the standard assumption without relying on random oracles. Recently, Kwon
proposed an IBS scheme and claimed its strong unforgeability under the computational Diffie-Hellman
(CDH) assumption. In this paper, we show that the security proof of Kwon is seriously flawed. To
show the flaws, we first show that there exists a distinguisher that can distinguish the distribution of
simulated signature from that of real signatures. Next, we also show that the simulator of Kwon’s
security argument cannot extract the solution of the CDH assumption even if there exists an adversary
that forges the signature. Therefore, the security of the Kwon’s IBS scheme is not related to the hardness
of the CDH assumption.
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1 Introduction

Identity-based signature (IBS) is a specific type of public-key signature (PKS) such that an identity string
ID can be used for the public key of a user. The concept of IBS and the first IBS scheme were proposed by
Shamir [8]. The main advantage of IBS is that the problem of certificate management problem in PKS can
be solved by replacing a public key with an identity string. Although an identity-based encryption (IBE)
scheme requires a strong primitive like bilinear maps, an IBS scheme can be easily derived from any PKS
scheme by using the certificate paradigm [1, 4]. However, the signature size of this general IBS scheme
derived from a PKS scheme is long since the signature should contain a public key and a certificate on
the public key and an identity string. Gentry and Silverberg [5] showed that an IBS scheme (with short
signature) can be derived from a two-level hierarchical IBE scheme. Although many IBS schemes were
proposed without random oracles [3, 7], it is still important work to construct an efficient IBS scheme with
short signature that is secure under the standard assumption without random oracles.

Recently, Kwon [6] proposed an IBS scheme that is strongly unforgeable under the computational
Diffie-Hellman (CDH) assumption without random oracles. The IBS scheme of Kwon is a hierarchical
combination of the PKS scheme of Waters [11] and the weakly secure (modified) PKS scheme of Boneh
and Boyen [2]. Kwon also devised a new mechanism to provide the strong unforgeability. Compared with
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IBS schemes that are secure under the CDH assumption without random oracles [3, 7], the IBS scheme of
Kwon has shorter public parameters and provides the strong unforgeability.

In this paper, we show that the security argument of Kwon is flawed. In a correct security argument,
the distribution of simulated private keys and simulated signatures should be indistinguishable from that of
original one, and a simulator could extract the solution of the CDH assumption from the forged signature
of an adversary. We first show that there exists an algorithm than can distinguish whether signatures are
generated from the real signing algorithm or not with high probability if the algorithm requests a polynomial
number of signature queries. Next, we show that the simulator of Kwon cannot extract the solution of the
CDH assumption even if there exists an adversary that outputs a forged signature. Therefore, the security
argument of Kwon is not valid since the distribution of simulated game is distinguishable and the security
argument is not related with the hardness of the CDH assumption.

The paper is organized as follows: We first review the IBS scheme of Kwon and its security argument
in Section 2. After that, we present our security analysis in Section 3.

2 The Review of Kwon’s Identity-Based Signature

In this section, we review the IBS scheme of Kwon and its security proof under the CDH assumption.

2.1 Bilinear Groups and Complexity Assumption

Let G and GT be two multiplicative cyclic groups of same prime order p and g be a generator of G. The
bilinear map e : G×G→GT has the following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ Zp, e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: ∃g such that e(g,g) has order p, that is, e(g,g) is a generator of GT .

We say that G is a bilinear group if the group operations in G and GT as well as the bilinear map e are all
efficiently computable. Furthermore, we assume that the description of G and GT includes generators of G
and GT respectively.

Assumption 2.1 (Computational Diffie-Hellman, CDH). Let (p,G,GT ,e) be a description of the bilinear
group of prime order p. Let g be generators of subgroups G. The CHD assumption is that if the challenge
tuple D =

(
(p,G,GT ,e),g,ga,gb

)
is given, no PPT algorithm A can output gab ∈ G with more than a

negligible advantage. The advantage ofA is defined as AdvCDH
A (λ ) = Pr[A(D) = gab] where the probability

is taken over random choices of a,b ∈ Zp.

2.2 The Original IBS Scheme

The IBS scheme consists of Setup, GenKey, Sign, and Verify algorithms. The IBS scheme of Kwon [6]
has the same private key structure with that of Waters [11] and it uses the modified structure of Boneh and
Boyen [2] for signature generation.

Let χ(d) be a mapping from an element d ∈G to γ ∈ {0,1} where γ is the rightmost bit of x coordinate
of d. Let H : {0,1}∗×G×G→ Zp be a collision-resistant hash function. The IBS scheme is described as
follows:
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Setup(1λ ): This algorithm takes as input a security parameter 1λ . It generates bilinear groups G,GT of
prime order p. Let g be the generator of G. It chooses random elements g2,u0,u1, . . . ,un,v0,v1,w ∈G
and a random exponent α ∈Zp where n= 2λ . It outputs a master key MK = gα

2 and public parameters
PP =

(
(p,G,GT ,e), g, g1 = gα , g2, u0,u1, . . . ,un, v0,v1,w

)
.

GenKey(ID,MK,PP): This algorithm takes as input an identity string ID = (I1, . . . , In) ∈ {0,1}n where Ii

is a bit string of ID at ith position, the master key MK, and the public parameters PP. It selects a
random exponent r ∈ Z∗p and outputs a private key SKID =

(
K1 = gα

2

(
u0 ∏

n
i=1 uIi

i

)r
, K2 = gr

)
.

Sign(M,SKID,PP): Let SKID = (K1,K2). It obtains γ by computing χ(K2). Next, it selects a random expo-
nent s ∈ Z∗p and computes h = H(M‖ID,K2,gs). It outputs a signature σ =

(
S1 = K1 ·

(
vγwh

)s
, S2 =

K2, S3 = gs
)
.

Verify(σ , ID,M,PP): Let σ =(S1,S2,S3). It obtains γ by computing χ(S2). It computes h=H(M‖ID,S2,S3)

and verifies that e(S1,g)
?
= e(g2,g1) · e(S2,u0 ∏

n
i=1 uIi

i ) · e(S3,vγwh). If this equation holds, then it out-
puts 1. Otherwise, it outputs 0.

2.3 The Security Proof

In this subsection, we briefly review the simulator in the security proof of Kwon [6] that solves the CDH
assumption by using an adversary.

Suppose there exists an adversary A that requests qk number of private key queries and outputs a forged
signature for the above IBS scheme with a non-negligible advantage. A simulator B that solves the CDH
assumption using A is given: a challenge tuple D = ((p,G,GT ,e),g,ga,gb). Then B that interacts with A
is described as follows:
Setup: Let m = 2qk. B first picks k ∈ {1, . . . ,n}. It chooses random values x0,x1, . . . ,xn ∈ {0, . . . ,m− 1}
and random exponents u′0,u

′
1, . . . ,u

′
n,v
′
0,v
′
1,h
∗,w′ ∈ Zp. It implicitly sets α = a and publishes the public

parameters PP as

g, g1 = ga, g2 = gb, u0 = (gb)−mk+x0gu′0 , ui = (gb)xigu′i ∀i ∈ {1, . . . ,n},

v0 = gv′0 , v1 = gh∗
2 gv′1 , w = gw′ .

We define F(ID) =−mk+ x0 +∑
n
i=1 xiIi and J(ID) = u′0 +∑

n
i=1 u′iIi.

Private-Key Query: B handles a private key query for an identity ID as follows: If F(ID) ≡ 0 mod p,
then it aborts the simulation since it cannot create a private key. If F(ID) 6≡ 0 mod p, then it selects random
exponents r′ ∈ Zp and creates a private key by implicitly setting r =−a/F(ID)+ r′ as

K1 =
(
ga)−J(ID)/F(ID)(u0

n

∏
i=1

uIi
i

)r′
, K2 =

(
ga)−1/F(ID)gr′ .

Note that the probability of F(ID)≡ 0 mod p is 1
m = 1

2qk
from the analysis of Waters [11].

Signature Query: B handles a signature query on a message M for an identity ID as follows:

• Case F(ID) 6≡ 0 mod p: It first generates a private key for ID as the same as the private key sim-
ulation and creates a signature on M for ID by running the normal signing algorithm since it has a
private key. In this case, we have that Pr[χ(S2) = 0] = 1

2 and Pr[χ(S2) = 1] = 1
2 since the exponent r′

is randomly selected.
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• Case F(ID)≡ 0 mod p: It first selects random exponents r,s′ ∈ Zp such that χ(gr) = 1. It computes
h = H(M‖ID,gr,(ga)−1/h∗gs′) and creates a signature by implicitly setting s =−a/h∗+ s′ as

S1 =
(
u0

n

∏
i=1

uIi
i

)r(ga)−(v′1h+w′)/h∗
(v1wh)s′ , S2 = gr, S3 =

(
ga)−1/h∗gs′ .

In this case, a signature with χ(S2) = 0 is not generated since the exponent r with χ(gr) = 1 is always
selected.

Note that we re-organized the description of the signature generation of Kwon to simplify the simulation of
signatures. We should note that a signature with F(ID) ≡ 0 mod p and χ(S2) = 0 cannot be generated by
the simulator of Kwon.
Output: A finally outputs a forged signature σ∗ = (S∗1,S

∗
2,S
∗
3) on a message M∗ for an identity ID∗ =

(I∗1 , . . . , I
∗
n ). If F(ID∗)≡ 0 mod p and χ(S∗2) = 0, then B computes h = H(M∗‖ID∗,S∗2,S

∗
3) and outputs the

CDH value by calculating

gab = S∗1 · (S∗2)−J(ID∗) · (S∗3)−(v
′
0h+w′).

Otherwise, B fails to extract the CDH value and stops.

2.4 A Modified IBS Scheme

The simulator B in the security proof of Kwon creates a signature by selecting a random S2. However, the
signature algorithm of the Kwon’s IBS scheme just creates a signature by using the element K2 of a private
key for the element S2 of the signature without randomization. To remove this difference, the signature
algorithm of the IBS scheme should be modified to create a signature after randomizing a private key. If
the signature algorithm does not randomize the private key, then the security proof goes wrong since an
adversary can easily distinguish two games by examining the distribution of the signature element S2. The
modified signature algorithm is described as follows:

Sign(M,SKID,PP): Let SKID = (K1,K2). It first re-randomizes the private key components as K′1 = K1 ·
(u0 ∏uIi

i )
r′ ,K′2 = K2 · gr′ by selecting r′ ∈ Zp. It obtains γ by computing χ(K′2). Next, it selects

a random exponent s ∈ Z∗p and computes h = H(M‖ID,K′2,g
s). It outputs a signature σ =

(
S1 =

K′1 ·
(
vγwh

)s
, S2 = K′2, S3 = gs

)
.

3 Our Security Analysis

In this section, we first review the overall structure of a general security proof by using hybrid games, and
then we present two lemmas that claim there are serious flaws in the security proof of Kwon [6] by showing
two algorithms that attack the security proof.

3.1 Overview of Hybrid Games

To proving the security of a cryptographic scheme is relatively complex. A security proof that uses hybrid
games can reduce the complexity of the security proof by presenting the proof as a sequence of games [9].
We briefly overview the structure of a valid security proof for IBS. Security for IBS is defined as an attack
game between a challenger and an adversary (or a forger). Note that the formal security game of the strongly
unforgeability under chosen-message attacks for IBS is defined in [6]. The security proof of IBS that uses
hybrid games consists of the following games.
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Game G0. This game is the original security game. That is, a challenger generates a master key and public
parameter by itself, and handles the private key and signature queries of an adversary by running the
normal algorithms with the master key. Let S0 be the event that the adversary wins the game.

Game G1. In this game, a challenger (or a simulator) is given a challenge tuple of a complexity assumption
and handles the private key and signature queries of an adversary by simulating private keys and
signatures without knowing the master key. Finally the simulator extracts a solution of the complexity
assumption from the forged signature of the adversary. Let S1 be the event that the adversary wins the
game.

To argue the security of an IBS scheme, we should show that Pr[S0] that is the probability of S0 in the
real game G0 is negligible. This can be achieved if we can show the security proof satisfies the following
two conditions: 1) There is no polynomial-time algorithm than can distinguish the real game G0 and the
simulated game G1 with non-negligible probability; 2) In the simulated game G1, if there is an adversary that
forges a signature, then a simulator can extract a solution for the assumption from the forged signature with
non-negligible probability. If a security argument satisfies two conditions, then we have Pr[S0]−Pr[S1] ≤
neg1 from the first condition and Pr[S1] ≤ neg2 from the second condition since the probability of solving
the assumption is negligible where neg1 and neg2 are negligible values in a security parameter. Therefore,
we obtain Pr[S0]≤ neg1 +neg2.

3.2 Attacking Algorithms

By presenting two lemmas, we show that the security argument of Kwon [6] does not satisfy the two condi-
tions of hybrid games that were mentioned before. At first, we show that there is a probabilistic polynomial-
time (PPT) algorithm that can distinguish the real game G0 from the simulated game G1 with non-negligible
probability.

Lemma 3.1. There exists a PPT algorithm D that can distinguish whether it interacts with the real game
G0 or the simulated game G1 of Kwon with probability 1−δ if D makes at most O(log(δ−1)q2

k) number of
signature queries.

Proof. The basic idea is that if an adversary request a signature σ = (S1,S2,S3) on a message M for an
identity ID, then there is a difference between the distribution of χ(S2)= 0 and χ(S2)= 1 since the simulator
of Kwon [6] cannot create a signature with χ(S2) = 0 if F(ID) ≡ 0 mod p. Although this difference is
small, the adversary can distinguish this difference by requesting a polynomial number of signature queries
since the difference probability of two distribution is non-negligible. Let L be an integer value that is
determined later. A distinguishing algorithm D is described as follows:

1. It sets c = 0.

2. For i = 1 to L, D performs the following steps:

(a) It selects a random identity IDi and a random message Mi.

(b) It requests a signature on Mi for IDi and receives a signature σi = (Si,1,Si,2,Si,3).

(c) If χ(Si,2) = 1, then it increases c by one.

3. If c
L ≤

1
2 +

1
8qk

, then D outputs 0. Otherwise, it outputs 1.
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Note that the above algorithmD is a valid adversary since it only requests a polynomial number of signature
queries.

We now analyze the success probability of D. If D interacts with the real game G0, then Pr[χ(Si,2) =
0] = 1

2 and Pr[χ(Si,2) = 1] = 1
2 since the signing algorithm uses a re-randomized private key to create a

signature in the real game. However, if D interacts with the simulated game G1 of Kwon, then Pr[χ(Si,2) =
0] = 1

2 ·
(
1− 1

2qk

)
and Pr[χ(Si,2) = 1] = 1

2 ·
(
1+ 1

2qk

)
since the simulator of Kwon cannot create a signature

with χ(Si,2) = 0 and F(ID) ≡ 0 mod p. The reason is that the probability of F(ID) ≡ 0 mod p in the
simulated game G1 is 1

2qk
for a random identity ID.

Let Xi be a random variable such that Xi = 1 if χ(Si,2) = 1 and Xi = 0 if χ(Si,2) = 0 for ith signature
σi = (Si,1,Si,2,Si,3). We know that {Xi} are mutually independent since a signature is generated for a random
identity IDi and a random message Mi. From the above analysis, we have that there is a difference between
two games such as Pr[Xi = 1] = 1

2 in the game G0 and Pr[Xi = 1] = 1
2 +

1
4qk

in the simulated game G1. To
distinguish two games, D estimates the probability of Xi = 1 by sampling L signatures and guess that it is
the real game G0 if the estimated value is less than the middle value 1

2 +
1

8qk
. However, this guess cannot be

always correct since there could be an error. To increase the confidence of this guessing, we can calculate
the minimum number of signature samples by using the Chernoff bound [10]. Let δ be an error of guessing.
From the Chernoff bound, we have δ = e−L(1/8qk)

2/2. Thus we have L = O(log(δ−1) ·q2
k).

Therefore, D can correctly guess the game with 1− δ probability if it makes at most O(log(δ−1) · q2
k)

number of signature queries. For instance, if δ = 1
4 , then it can guess the game with probability 3

4 just
making O(q2

k) number of signature queries. This completes our proof.

Next, we show that if there is an adversary algorithm for the IBS scheme of Kwon, then there exists
another algorithm such that the simulator of Kwon cannot extract the CDH value from the forged signature.

Lemma 3.2. If there is a PPT algorithm A that can forge the IBS scheme of Kwon with probability ε , then
there is another PPT algorithmF can forge a signature with almost the same probability ε , but the simulator
of Kwon in the simulated game G1 cannot extract the CDH value from the forged signature of F .

Proof. The basic idea is that an adversary easily can check the condition of the simulator that leads to extract
the CDH value. LetA be an adversary for the IBE scheme of Kwon with ε probability. Let λ be the security
parameter of the IBS scheme. A modified adversary F that uses A is described as follows:

1. F is first given PP, and it runs A by giving PP. F handles the query of A as follows: If this a private
key query for ID, then it uses its own oracle to response the query. If this is a signature query for ID
and M, then it uses its own oracle to response the query.

2. A finally outputs a forged signature σ∗ = (S∗1,S
∗
2,S
∗
3) on a message M∗ for an identity ID∗.

3. F additionally requests signatures on random messages M1, . . . ,Mλ for the identity ID∗, and then it
receives signatures σ1, . . . ,σλ where λ is a security parameter.

4. If there is at least one signature σi = (Si,1,Si,2,Si,3) such that χ(Si,2) = 0, then F outputs the forged
signature σ∗ = (S∗1,S

∗
2,S
∗
3) of A on the message M∗ for the identity ID∗. Otherwise, it just stops

without outputting the signature.

Note that F is a valid adversary since the additional signature queries for the identity ID∗ are allowed in the
security model of IBS.

6



We first analyze the success probability of F . Suppose that A can forge a signature for the identity ID∗

with ε probability. In the game G0, F can forge a signature with probability (1− 1
2λ
) ·ε since the probability

of at least one signature has χ(S2) = 0 is 1− 1
2λ

. In the simulated game G1 of Kwon, we consider two cases.
If F(ID∗) 6≡ 0 mod p, then F outputs a forged signature with (1− 1

2λ
) · ε probability since the simulator B

of Kwon can create a signature regardless of χ(S2). If F(ID∗)≡ 0 mod p, then F does not output a forged
signature since B cannot create a signature with χ(S2) = 0. Thus, F outputs a forged signature with at least
the probability of (1− 1

2qk
) · (1− 1

2λ
) · ε in the game G1 since Pr[F(ID∗)≡ 0] = 1

2qk
.

We finally show that B cannot extract a CDH value from σ∗ of F . From the description of B, we
know that B can extract a CDH value if F(ID∗)≡ 0 mod p and χ(S∗2) = 0 are satisfied. However, B never
outputs σ∗ with F(ID∗) ≡ 0 mod p since it can check this condition by requesting additional signature
queries. This completes our proof.

3.3 Discussions

From the above two lemmas, we showed that a PPT algorithm can distinguish two games and the security in
G1 is not related with the hardness of the CDH assumption. Thus the security in G0 that directly corresponds
to the security of the IBS scheme of Kwon is not related with the hardness of the CDH assumption. The main
reason of the errors that falsify the argument of Kwon is that an adversary can easily obtain the information
F(ID) that is set by a simulator if it interacts with a simulated game by requesting additional signature
queries. To hide the information F(ID) from the adversary, we may use the PKS scheme of Waters [11]
for message signing instead of using the weak modified PKS scheme of Boneh and Boyen [2], but this IBS
scheme without strong unforgeability is similar to previous IBS schemes in [3, 7].

4 Conclusion

In this paper, we analyzed the security argument of the Kwon’s IBS scheme. Although we didn’t present a
forgery attack, we showed that the security argument of Kwon is seriously flawed. The flaws of Kwon are
that the distribution of signatures in the simulated game is easily distinguished from that of the real game,
and the simulator of Kwon cannot extract the solution of the CDH assumption from the forged signature of
an adversary. Therefore, the security of the Kwon’s IBS scheme is not related with the hardness of the CDH
assumption.

References

[1] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security proofs for identity-based identi-
fication and signature schemes. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of Lecture Notes in Computer Science, pages 268–286. Springer, 2004.

[2] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random
oracles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 223–238. Springer, 2004.

[3] Sanjit Chatterjee and Palash Sarkar. Hibe with short public parameters without random oracle. In
Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer
Science, pages 145–160. Springer, 2006.

7



[4] David Galindo, Javier Herranz, and Eike Kiltz. On the generic construction of identity-based signatures
with additional properties. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006, volume 4284 of
Lecture Notes in Computer Science, pages 178–193. Springer, 2006.

[5] Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Yuliang Zheng, editor,
ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages 548–566. Springer,
2002.

[6] Saeran Kwon. An identity-based strongly unforgeable signature without random oracles from bilinear
pairings. Inf. Sci., 2014. http://dx.doi.org/10.1016/j.ins.2014.02.041.

[7] Kenneth G. Paterson and Jacob C. N. Schuldt. Efficient identity-based signatures secure in the standard
model. In Lynn Margaret Batten and Reihaneh Safavi-Naini, editors, ACISP 2006, volume 4058 of
Lecture Notes in Computer Science, pages 207–222. Springer, 2006.

[8] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and David Chaum,
editors, CRYPTO ’84, volume 196 of Lecture Notes in Computer Science, pages 47–53. Springer, 1984.

[9] Victor Shoup. Sequences of games: A tool for taming complexity in security proofs. Cryptology ePrint
Archive, Report 2004/332, 2004. http://eprint.iacr.org/2004/332.

[10] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge University
Press, 2009.

[11] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 114–127. Springer,
2005.

8

http://dx.doi.org/10.1016/j.ins.2014.02.041
http://eprint.iacr.org/2004/332

	Introduction
	The Review of Kwon's Identity-Based Signature
	Bilinear Groups and Complexity Assumption
	The Original IBS Scheme
	The Security Proof
	A Modified IBS Scheme

	Our Security Analysis
	Overview of Hybrid Games
	Attacking Algorithms
	Discussions

	Conclusion

