Enhanced Lattice-Based Signatures on Reconfigurable Hardware

Extended Version

Thomas Péppelmann!, Léo Ducas?, and Tim Giineysu'

! Horst Gortz Institute for IT-Security, Ruhr-University Bochum, Germany
thomas.poeppelmann@rub.de,tim. gueneysu@rub.de
2 University of California, San-Diego
lducas@eng.ucsd.edu

Abstract. The recent Bimodal Lattice Signature Scheme (BLISS) showed that lattice-based construc-
tions have evolved to practical alternatives to RSA or ECC. It offers small signatures of 5600 bits for a
128-bit level of security, and proved to be very fast in software. However, due to the complex sampling
of Gaussian noise with high precision, it is not clear whether this scheme can be mapped efficiently to
embedded devices. Even though the authors of BLISS also proposed a new sampling algorithm using
Bernoulli variables this approach is more complex than previous methods using large precomputed
tables. The clear disadvantage of using large tables for high performance is that they cannot be used
on constrained computing environments, such as FPGAs, with limited memory. In this work we thus
present techniques for an efficient Cumulative Distribution Table (CDT) based Gaussian sampler on
reconfigurable hardware involving Peikert’s convolution lemma and the Kullback-Leibler divergence.
Based on our enhanced sampler design, we provide a scalable implementation of BLISS signing and
verification on a Xilinx Spartan-6 FPGA supporting either 128-bit, 160-bit, or 192-bit security. For
high speed we integrate fast FFT/NTT-based polynomial multiplication, parallel sparse multiplica-
tion, Huffman compression of signatures, and Keccak as hash function. Additionally, we compare the
CDT with the Bernoulli approach and show that for the particular BLISS-I parameter set the improved
CDT approach is faster with lower area consumption. Our BLISS-I core uses 2,291 slices, 5.5 BRAMs,
and 5 DSPs and performs a signing operation in 114.1 s on average. Verification is even faster with a
latency of 61.2 ps and 17,101 supported verification operations per second.

Keywords: Ideal Lattices, Gaussian Sampling, Digital Signatures, FPGA

1 Introduction and Motivation

Virtually all currently used digital signature schemes rely either on the factoring (RSA) or the
discrete logarithm problem (DSA/ECDSA). However, with Shor’s algorithm [49] sufficiently large
quantum computers can solve these problems in polynomial time which potentially puts billions
of devices and users at risk. Although powerful quantum computers will certainly not become
available soon, significant resources are definitely spent by various organizations to boost their
further development [44]. Also motivated by further advances in classical cryptanalysis (e.g., [0,
27]), it is important to investigate potential alternatives now, to have secure constructions and
implementations at hand when they are finally needed.

In this work we deal with such a promising alternative, namely the Bimodal Lattice Signature
Scheme (BLISS) [17], and specifically address implementation challenges for constrained devices and
reconfigurable hardware. First efforts in this direction were made in 2012 by Giineysu et al. [21]
(GLP). Their scheme was based on work by Lyubashevsky [34] and tuned for practicability and
efficiency in embedded systems. This was achieved by a new signature compression mechanism, a
more ”aggressive”, non-standard hardness assumption, and the decision to use uniform (as in [33])

This article is based on an earlier article: Enhanced Lattice-Based Signatures on Reconfigurable Hardware, Thomas
Poppelmann, Léo Ducas, Tim Giineysu, CHES 2014 © IACR 2014 [40]

instead of Gaussian noise to hide the secret key contained in each signature via rejection sampling.
While GLP allows high performance on low-cost FPGAs [21,22] and CPUs [23] it later turned out
that the scheme is suboptimal in terms of signature size and its claimed security level compared to
BLISS. The main reason for this is that Gaussian noise, which is prevalent in almost all lattice-based
constructions, allows more efficient, more secure, and also smaller signatures. However, while other
techniques relevant for lattice-based cryptography, like fast polynomial arithmetic on ideal lattices
received some attention [3,41,45], it is currently not clear how efficient Gaussian sampling can be
done on reconfigurable and embedded hardware for large standard deviations. Results from electrical
engineering (e.g., [25,51]) are not directly applicable, as they target continuous Gaussians. Applying
these algorithms for the discrete case is not trivial (see, e.g., [12] for a discrete version of the Ziggurat
algorithm). First progress was recently made by Roy et al. [46] based on work by Galbraith and
Dwarakanath [18] but the implemented sampler is only evaluated for very low standard deviations
commonly used for lattice-based encryption. We would also like to note that for lattice-based
digital signature schemes large tables in performance optimized implementations might imply the
impression that Gaussian-noise based schemes are a suboptimal choice on constrained embedded
systems. A recent example is a microcontroller implementation [9] of BLISS that requires tables for
the Gaussian sampler of roughly 40 to 50 KB on an ATxmega64A3. Thus, despite the necessity of
improving Gaussian sampling techniques (which is one contribution of this work) BLISS seems to be
currently the most promising scheme with a signatures length of 5,600 bit, equally large public keys,
and 128-bit of equivalent symmetric security based on a reasonable security assumption. Signature
schemes with explicit reductions to weaker assumptions/standard lattice problems [19,32,37] seem
to be currently too inefficient in terms of practical signature and public key sizes (see [5] for an
implementation of [37]). There surely is some room for theoretical improvement, as suggested by the
new compression ideas developed by Bai and Galbraith [4]; one can hope that all those techniques
can be combined to further improve lattice-based signatures.

Contribution. A first contribution of this work are improved techniques for efficient sampling
of Gaussian noise that support parameters required for digital signature schemes such as BLISS
and similar constructions. First, we detail how to accelerate the binary search on a cumulative
distribution table (CDT) using a shortcut table of intervals (also known as guide table [14, 16])
and develop an optimal data structure that saves roughly half of the table space by exploiting
the properties of the Kullback-Leibler divergence. Furthermore, we apply a convolution lemma [38]
for discrete Gaussians that allows even smaller tables of less than 2.1 KB for BLISS-I parameters.
Based on these techniques we provide an implementations of the BLISS-I,BLISS-I11, and BLISS-IV
parameter set on reconfigurable hardware that are tweaked for performance and offer 128 bits to
192 bits of security. For practical evaluation we compare our improvements for the CDT-based
Gaussian sampler to the Bernoulli approach presented in [17]. Our implementation includes an
FFT/NTT-based polynomial multiplier (contrary to the schoolbook approach from [21]), more
efficient sparse multiplication, and the KECCAK-f[1600] hash function to provide the full picture
of the performance that can be achieved by employing latest lattice-based signature schemes on
reconfigurable hardware. Our BLISS-T implementation on a Xilinx Spartan-6 FPGA supports up to
8,761 signatures per second using 7,193 LUTs, 6,420 flip-flops, 5 DSPs, and 5.5 block RAMs, includes
Huffman encoding and decoding of the signature and outperforms previous work in time [22] and
area [21].

Table 1: BLISS parameter proposals from [17].

Name of the scheme

|| BLISS-I || BLISS-II [BLISS-III|BLISS-1V|

Security 128 bits 128 bits 160 bits 192 bits
Optimized for Speed Size Security Security
(n,q) (512,12289)((512,12289)((512,12289)|(512,12289)
Secret key densities d1, d2 03,0 03,0 0.42 , 0.03 | 0.45, 0.06
Gaussian std. dev. o 215.73 107.86 250.54 271.93
Max Shift/std. dev. ratio 1 5 7 .55
Weight of the challenge s 23 23 30 39
Secret key N.-Threshold C 1.62 1.62 1.75 1.88
Dropped bits d in z2 10 10 9 8
Verif. thresholds Ba, Boo ||12872, 2100({11074, 1563|10206,1760 | 9901, 1613
Repetition rate 1.6 7.4 2.8 5.2
Entropy of challenge ¢ € B:|| 132 bits 132 bits 161 bits 195 bits
Signature size 5.6kb 5kb 6kb 6.5kb
Secret key size 2kb 2kb 3kb 3kb
Public key size 7kb 7kb kb 7kb

Remark. In order to allow third-party evaluation of our results, source code, test-benches, and
documentation is available on our website®. This paper is an extended version of [40] which ap-
peared at CHES 2014 and focused on the BLISS-T (128-bit security) parameter set. The most im-
portant changes compared to the conference version are area improvements of the underlying NTT
multiplier, a full description of the Bernoulli sampler, Huffman encoding and decoding of BLISS-I
signatures, and additional support for BLISS-IIT (160-bit security), BLISS-IV (192-bit security), as
well as an extended comparison section.

2 The Bimodal Lattice Signature Scheme

The most efficient instantiation of the BLISS signature scheme [17] is based on ideal-lattices [35]
and operates on polynomials over the ring R, = Z4[x]/(z™ + 1). For quick reference, the BLISS
key generation, signing as well as verification algorithms are given in Figure 1 and implementation
relevant parameters as well as achievable signature and key sizes are listed in Table 1. Note that
for the remainder of this work, we will focus solely on BLISS-1. The BLISS key generation basically
involves uniform sampling of two small and sparse polynomials f, g, computation of a certain rejec-
tion condition (N,(S)), and computation of an inverse. For signature generation two polynomials
y1,y2 of length n are sampled from a discrete Gaussian distribution with standard deviation o.
Note that the computation of ay; can still be performed in the FFT-enabled ring R, instead of
Rag- The result u is then hashed with the message p. The output of the hash function is interpreted
as sparse polynomial c. The polynomials yi,y2 are then used to mask the secret keys s1,ss which
are multiplied with the polynomial ¢ and thus ”sign” the hash of the message. In order to prevent
any leakage of information on the secret key, rejection sampling is performed and signing might
restart. Finally, the signature is compressed and (z1, z5, c¢) returned. For verification the norms of
the signature are first validated, then the input to the hash function is reconstructed and it is
checked whether the corresponding hash output matches ¢ from the signature.

3 See http://www.sha.rub.de/research/projects/lattice/

http://www.sha.rub.de/research/projects/lattice/

Algorithm KeyGen()
1: Choose f, g as uniform polynomials with exactly di = [d1n] entries in {£1} and d2 = [d2n]
entries in {42}

2: S = (s1,82)" « (f,2g + 1)*
3: if No(S) > C? -5 ([81n] +4[62n]) -k then restart
4: ag = (2g+ 1)/f mod ¢ (restart if f is not invertible)
5: Return(pk = A, sk = S) where A = (a; = 2a4,¢ — 2) mod 2¢
Alg. Sign(p, pk = A, sk =8S) Alg. Verify(u, pk = A, (21,25, ¢))
CY1,Y2 <—Dzn 1: if H(Z1|2(i Z2)||2 > B> then Reject
u=/¢_-a; -y +y2 mod 2q 2: if ||(21|2? - 2})[loc > B then Reject
c + H(|u]q mod p, u) 3: Accept iffc=H(|¢-a1 -z +C-q-c]d+z£ mod p, i)

Choose a random bit b

z1 < y1+ (=1)’sic

D Zo < yo + (—1)bSQC

: Continue with probability
e (15 o (25)
otherwise restart

8: zd «+ (|uls — [u—22]4) mod p

9: Return (z1,z),c¢)

I v

Fig. 1: The Bimodal Lattice Signature Scheme [17].

3 Improving Gaussian Sampling for Lattice-Based Digital Signatures

Target distribution. We recall that the centered discrete Gaussian distribution Dz , is defined by

a weight proportional to p,(7) = exp(5.) for all integers z. Our goal is to efficiently sample from
that distribution for a constant value 0' ~ 215.73 as specified in BLISS-T (precisely o = 254 - oy
where oy, = 1/1/(21n2) is the parameter of the so-called binary-Gaussian; see Appendix C). This
can easily be reduced to sampling from a distribution over Z* proportional to p(z) for all z > 0
and to p(0)/2 for z = 0.

Overview. Gaussian sampling using a large cumulative distribution table (CDT) has been shown
to be an efficient strategy for the software implementation of BLISS given in [17]. In this section,
we further enhance CDT-based Gaussian sampling for use on constrained devices. For simplicity,
we explicitly refer to the parameter set BLISS-I although we remark that our enhancements can
be transferred to any other parameter set as well. To increase performance, we first analyze and
improve the binary search step to reduce the number of comparisons (cf. Section 3.1). Secondly, we
decrease the size of the precomputed tables. In Section 3.3 we therefore apply a convolution lemma
for discrete Gaussians adapted from [39] that enables the use of a sampler with much smaller
standard deviation ¢’ ~ ¢/11, reducing the table size by a factor 11. In Section 3.4 we finally
reduce the size of the precomputed table further by roughly a factor of two using floating-point
representation by introducing an adaptive mantissa size.

For those last two steps we require the “measure of distance” for a distribution, called Kullback-
Leibler divergence [15,30], that offers tighter proof than the usual statistical distance (cf. Sec-
tion 3.2). Kullback-Leibler is a standard notion in information theory and already played a role in
cryptography, mostly in the context of symmetric cryptanalysis [7,52].

4 Technically, Kullback-Leibler divergence is not a distance; it is not even symmetric.

3.1 Binary Search with Shortcut Intervals

The CDT sampling algorithm uses a table 0 = T'[0] < T[i] < --- < T[S + 1] = 1 to sample from
a uniform real r € [0,1). The unique result z is obtained from a binary search satisfying that
T[z] <r < T[z + 1] so that each output x has a probability T'[z + 1] — T'[x]. For BLISS-I we need
a table with S = 2891 ~ 13.40 entries to dismiss only a portion of the tail less than 27128, As
a result, the naive binary search would require C' € [|log, S|, [logy S| = [11, 12] comparisons on
average.

As an improvement we propose to combine the binary search with a hash map based on the first
bits of 7 to narrow down the search interval in a first step (an idea that is not exactly new [14,16],
also known as guide tables). For the given parameters and memory alignment reasons, we choose
the first byte of r for this hash map: the unique v € {0...255} such that v/256 < r < (v+1)/256.
This table I of intervals has length 256 and each entry I[v] encodes the smallest interval (a,, by)
such that T'[a,] < v/256 and T'[b,] > (v + 1)/256. With this approach, the search can be directly
reduced to the interval (ay, b,). By letting C' denote the number of comparison on average, we have
that >, W <C <Yy, %&;a”ﬂ. For this distribution this would give C' € [1.3,1.7]
comparisons on average.

3.2 Preliminaries on the Kullback-Leibler Divergence

We now present the notion of Kullback-Leibler (KL) divergence that is later used to further reduce
the table size. Detailed proofs of following lemmata are given in Appendix C.1.

Definition 1 (Kullback-Leibler Divergence). Let P and Q be two distributions over a common
countable set £2, and let S C §2 be the strict support of P (P(i) > 0 iff i € S). The Kullback-Leibler
divergence, noted Dy, of Q from P is defined as:

)P0

P(i)
Dr(PlQ) = Y (7
; Q(i)

The Kullback-Leibler divergence shares many useful properties with the more usual notion of
statistical distance. First, it is additive so that Dxr,(PoxP1]|Qox Q1) = Dkr(Pol| Qo)+ Dkr(P1] Q1)
and, second, non-increasing under any function Dxr,(f(P)|f(Q)) < DkL(P||Q) (see Lemmata 4
and 5 of Appendix C.1). An important difference though is that it is not symmetric. Choosing
parameters so that the theoretical distribution Q is at KL-divergence about 27 2% from the actually
sampled distribution P, the next lemma will let us conclude the following®: if the ideal scheme S<
(i.e. BLISS with a perfect sampler) has about 128 bits of security, so has the implemented scheme
SP (i.e. BLISS with our imperfect sampler).

with the convention that In(x/0) = 400 for any x > 0.

Lemma 1 (Bounding Success Probability Variations). Let EF be an algorithm making at
most q queries to an oracle sampling from a distribution P and returning a bit. Let € > 0, and Q be
a distribution such that Dgp(P||Q) < €. Let = (resp. y) denote the probability that EF (resp. £2)

outputs 1. Then, |z —y| < \/qe/2.

5 Apply the lemma to an attacker with success probability 3/4 against S” and number of queries < 227 (ampli-
fying success probability by repeating the attack if necessary), and deduce that it also succeeds against S € with
probability at least 1/4.

In certain cases, the KL-divergence can be as small as the square of the statistical distance. For
example, noting B, the Bernoulli variable that returns 1 with probability ¢, we have Dky, (Bi-c||B1) ~
2 2

€2/2. In such a case, one requires ¢ = O(1/€2) samples to distinguish those two distribution with
constant advantage. Hence, we yield higher security using KL-divergence than statistical distance
for which the typical argument would only prove security up to ¢ = O(1/e€) queries. Intuitively,
statistical distance is the sum of absolute errors, while KL-divergence is about the sum of squared
relative errors.

Lemma 2 (Kullback-Leibler divergence for bounded relative error). Let P and Q be two
distributions of same countable support. Assume that for any i € S, there exists some §(i) € (0,1/4)
such that we have the relative error bound |P(i) — Q(i)| < 6(¢)P(i). Then

Dir(P[Q) <2 6(i)°P(i).
€S

Using floating-point representation, it seems now possible to halve the storage ensuring a relative
precision of 64 bits instead of an absolute precision of 128 bits. Indeed, storing data with slightly
more than of relative 64 bits of precision (that is, mantissa of 64 bits in floating-point format)
one can reasonably hope to obtain relative errors 6(i) < 27% resulting in a KL-divergence less
than 27128, We further exploit this idea in Section 3.4. But first, we will also use KL-divergence to
improve the convolution Lemma of Peikert [39] and construct a sampler using convolutions.

3.3 Reducing Precomputed Data by Gaussian Convolution

Given that x1, 9 are variables from continuous Gaussian distributions with variances a%, a%, then
their combination x1 + cxg is Gaussian with variance o3 +c?03 for any c. While this is not generally
the case for discrete Gaussians, there exists similar convolution properties under some smoothing
condition as proved in [38,39]. Yet those lemmata were designed with asymptotic security in mind;
for practical purpose it is in fact possible to improve the O(e) statistical distance bound to a O(€?)
KL-divergence bound. We refer to [39] for the formal definition of the smoothing parameter n; for
our purpose it only matters that 7(Z) < /In(2 + 2/¢)/m and thus our adapted lemma allows to
decrease the smoothing condition by a factor of about /2.

Lemma 3 (Adapted from Thm. 3.1 from [39]). Let 21 < D7 4,, 2 < Dz, for some positive

reals 01,09 and let 032 = 072 + 052, and 0® = o} + 03. For any € € (0,1/2) if o1 > 1(Z)/v/ 2
and o3 > ne(kZ)/\/ 2w, then distribution P of x1 + xo verifies

Dg(P||Dz,) < 2(1 - (1 i 6)2>2 ~ 32¢2.

Remark. The factor 1/v/27 in our version of this lemma is due to the fact that we use the standard
deviation ¢ as the parameter of Gaussians and not the renormalized parameter s = v/27o often
found in the literature.

Proof. The proof is similar to the one of [39], with A} = Z, Ay = kZ, c¢; = co = 0; but for the last
argument of the proof where we replace statistical distance by KL-divergence. As in [39], we first
establish that for any & € Z one has the following relative error bound

Pacrle=al€ | (155" (125)] - Pacs, o =),

1+e 1—¢

It remains to conclude using Lemma 2. O

To exploit this lemma, for BLISS-1 we set k = 11, 0/ = o/V1+ k? ~ 19.53, and sample
x = x| + kaly for x|, zY < Dy, (equivalently k - 2, = x9 < Djz ko). The smoothness conditions
are verified for € = /27128 /32 and 7.(Z) < 3.860°. Due to usage of the much smaller ¢’ instead of
o the size of the precomputation table reduces by a factor of about k = 11 at the price of sampling
twice. However, the running time does not double in practice since the enhancement based on the
shortcut intervals reduces the number of necessary comparisons to C' € [0.22,0.25] on average. For
a majority of first bytes v the interval length b, — a, is reduced to 1 and x is determined without
any comparison.

Asymptotics cost. If one considers the asymptotic costs in ¢ our methods allow one to sample using
a table size of ©(y/0) rather than ©(c) by doubling the computation time. Actually, for much
larger o one could use O(logo) samples of constant standard deviation and thus achieve a table
size of O(1) for computational cost in O(log o).

3.4 CDT Sampling with Reduced Table Size

We recall that when doing floating-point error analysis, the relative error of a computed value v is
defined as |v — v,|/ve where v, is the exact value that was meant to be computed. Using the table
0=T[0] <T[i] <--- <T[S+1] =1, the output of a CDT sampler follows the distribution P
with P(i) = T[i + 1] — T[i]. When applying the results from KL-divergence obtained above, the
relative error of T'[i + 1] — T'[¢] might be significantly larger than the one of T'[¢]. This is particularly
true for the tail, where T[i] ~ 1 but P(i) is very small. Intuitively, we would like the smallest
probability to come first in the CDT. A simple workaround is to reverse the order of the table so
that 1 = T[0] > T[i] > --- > T[S + 1] = 0 with a slight modification of the algorithm so that
P(i) = T[i] — T[i + 1]. With this trick, the subtraction only increases the relative error by a factor
of roughly o. Indeed, leaving aside the details relative to discrete Gaussian, for x > 0 we have

/ Ps(y)dy/ps(:r) < o whereas / ps(y)dy/lgs(w) j) +00.
Y y=0 T—00

=T

The left term is an estimation of the relative-error blow-up induced by the subtraction with the
CDT in the reverse order and the right term the same estimation for the CDT in the natural order.
We aim to have a variable precision in the table T[i] so that §(i)?P(i) is about constant around
27128 /18| as suggested by Lemma 2 while 6(i) denotes the relative error §(i) = |P(i) — Q(3)|/P(4).
As a trade-off between optimal variable precision and hardware efficiency, we propose the following
data-structure. We define 9 tables My ... Mg of bytes for the mantissa with respective lengths
by > €1 > --- > {3 and another byte table F for exponents, of length ¢y. The value T[i] is defined
as

T[i] = 256~ F 2256 (k41 My]

where Mj[i] is defined as 0 when the index is out of bound i > ¢j. In other term, the value of T'[7]
is stored with p(i) = 9 — min{k|¢;, > i} bytes of precisions. More precisely, lengths are defined as
[lo, ..., 0] = [262,262,235,223,202,180, 157, 125,86] so that we store at least two bytes for each

6 In a previous version we stated 7.(Z) < 3.92 which is not accurate and has been fixed in this version.

0 50 100 150 200 250 128 -~~~ "~~~ ~"~"~"~-~-~- -~~~ ~— |
Ol T T T T T 112k |
-16 96 - |
32 80 |
48 64 |
64 48 - |
80 321 |
96 16 -
-112 L L L | L1
-128 50 100 150 200 250
Smooth line: Value of log, (P(%)) Storage precision of T'[¢] in bits: 8p(4)
Dashed line: —8E[i] = 8[logy56(3_;5; P(4))] |Dashed line: precision required for naive CDF
0 50 100 150 200 250 0 50 100 150 200 250
8 -128
-16
24 -136
-32
0 -144
48 R
56 152
-64 -160
-72
Relative error on P(z) in bits: log, §(%) Contribution to KL-div: log, (3(i)*P(4))

Fig. 2: Data of our optimized CDT sampler for discrete Gaussian of parameter o’ ~ 19.53.

entry up to i < 262, three bytes up to ¢ < 213 and so forth. Note that no actual computation is
involved in constructing 7'[i] following the plain CDT algorithm.

For evaluation, we used the closed formula for KL-divergence and measured Dy, (P| Q) < 2712,
The storage required by the table is 209+ ¢1+- - - +/¥g ~ 2.0 KB. The straightforward CDF approach
requires each entry up to ¢ < 262 to be stored with 128 + log, o bits of precisions and thus requires
a total of at least 4.4 KB. The storage requirements are graphically depicted by the area under the
curves in the top-right quadrant of Figure 2.

4 Implementation on Reconfigurable Hardware

In this section we provide details on our implementation of the BLISS signature scheme on a Xilinx
Spartan-6 FPGA. We include the enhancements from the previous section to achieve a design that
is tweaked for high-performance at moderate resource costs.

4.1 Gaussian Sampling

In this section we present implementation details on the CDT sampler and the Bernoulli sampler
proposed in previous work [17] to evaluate and validate our results in practice.

Enhanced CDT Sampling. Along the lines of the previous section our hardware implementation
operates on bytes in order to use the 1024x8-bit mode of operation of the Spartan-6 block RAMs.
The design of our CDT sampler is depicted in Figure 3 and uses the aforementioned convolution
lemma. Thus two samples with ¢’ ~ 19.53 are combined into a sample with standard deviation
o =~ 215.73. The BinSearch component performs a binary search on the table T" as described in
Section 3.4 for a random byte vector r to find a ¢ such that T'[c] > r > T[c+ 1]. It accesses T byte-
wise and thus T}[i] = M;_gp;[i] denotes the entry at index i € (0,261) and byte j where T}[i] = 0

Uniform BinSearch Table: T

T

Reverse
Table: R

TriviumH |I|—1__ Address | | Raw:8 x
8 Ring Bi |Exv°"e"‘s| ? g - 0 —
Trivium{— || e |] — = ®
! 128x8 [Comparator []] (o=
\‘ i Table: S 1993 198 11
max min

Trivium ||_||=o|._‘

Fig. 3: Block diagram of the CDT sampler which generates two samples 2, 2, of standard deviation
o’ ~ 19.53 which are combined to a sample x = 2| + 1124 with standard deviation o = 215.73. The
sampling is performed using binary search on the size optimized Table T'.

when j—E[i] < 0ori > ¢;_gp)- When a sampling operation is started in the BinSearch component
we set j = 0 and initialize the pointer registers min and max with the values stored in the reverse
interval table R[rp] where g is the first random byte. The reverse interval table is realized as 256x15-
bit single port distributed ROM (6 bits for the minimum and 9 bits for the maximum). The index
of the middle element of the search radius is 1 = (min+max)/2. In case Tj[i] > r; we set (min =
i,i = (i + max)/2,max = max, j = 0). Otherwise, for T;[i] < r; we set (i = (min + i)/2,min =
min,max = i,j = 0) until max — min < 2. In case of Tj[i] = rj we increase j = j + 1 and thus
compare the next byte. The actual entries of My ... Mg are consecutively stored in block memory
B and the address is computed as a = S[j — E[i] + i] where we store the start addresses of each
byte group in a small additional LUT-based table S = [0, 262, 524, 759, 982, 1184, 1364, 1521, 1646].
Some control logic takes care that all invalid/out of bound requests to S and B return a zero.

For random byte generation we use three instantiations of the Trivium stream cipher [13] (each
Trivium instantiation outputs one bit per clock cycle) to generate a uniformly random byte every
third clock cycle and store spare bits in a LIFO for later use as sign bits. The random values r; are
stored in a 128x8 bit ring buffer realized as simple dual-port distributed RAM. The idea is that
the sampler may request a large number of random bytes in the worst-case but usually finishes
after one or two comparisons due to the lazy search. As the BinSearch component keeps track of
the maximum number of accessed random bytes, it allows the Uniform sampler to refresh only the
used max(j)+ 1 bytes in the buffer. In case the buffer is empty, we stop the Gaussian sampler until
a sufficient amount of randomness becomes available. In order to compute the final sample x we
assign individual random signs to two samples 2}, 2, and finally output = = 2} + 112,

To achieve a high clock frequency, a comparison in the binary search step could not be performed
in one cycle due to the excessive number of tables and range checks involved. We therefore allow
two cycles per search step which are carefully balanced. For example, we precompute the indices
i’ = (min+1i)/2 and i” = (i+max)/2 in the cycle prior to a comparison to relax the critical paths.
Note also that we are still accessing the two ports of the block RAM holding B only every two clock
cycles which would enable another sampler to operate on the same table using time-multiplexing.
Note that the implementations of the CDT sampler for o ~ 250.54 and o = 271.93 just differ by
different tables and constants which are selected during synthesis using a generic statement.

Bernoulli Approach. In [17] Ducas et al. proposed an efficient Gaussian sampling algorithm
which can be used to lower the size of precomputed tables to Alog,(2.4702) bits without the need

for long-integer arithmetic and with low entropy consumption (~ 6+3log, o). A detailed description
and additional background on the sampler is contained in Appendix C. The general advantage of
this sampler is a new technique to reduce the probability of rejections by first sampling from an
(easy to sample) intermediate distribution and then from the target distribution.

LIFO |

LT
|Trivium|— LIFO H{LIFO J
[TTToto0i0.]
LIFO u {l—
L H |; [iToT0ti001700]
|
|

Bexp(—x/f)

D+

Obin

LIFO
Counter-1rl 1100100001000... LIFO
— LIFo

Extract ..

position '_'_I Si
ign
Ber-Eval 9

]

R oy 5 E—
din X
A{UFO} =KX — x HHH(X) [)
m Uniform . y| K u‘ | LIFo.
e Berlnput
Bexp(-x/)

Fig. 4: Block diagram of the Bernoulli sampler using two instantiations of Trivium as PRNG and
tWO Bexp(-x/¢) components (only one is shown in more detail).

The block diagram of the the implemented sampler is given in Figure 4. In the D;,"bm component
ax € Dj‘bin is sampled according to Algorithm 2. However, on-the-fly construction of the binary
distribution of p,., ({0,...,7}) = 1.1001000010000001... (see Algorithm 2 of Appendix C) is not
necessary as we use two 64-bit shift registers (LUTM) to store the expansion precomputed up to
a precision of 128 bits. Uniformly random values y € {0,...,k — 1} are sampled in the Uniform
component using rejection sampling (for k = 254 with % the probability of a rejection is low).
The pipelined BerInput component takes a (y,z) tuple as input and computes ¢t = kx and outputs
z=t+y as well as j = y(y + 2t). While z is retained in a register, the Beyp(-x/¢) module evaluates
the Bernoulli distribution of b <= Bgy,(—j/202)- Only if b = 1 the value 2 is passed to the output
and discarded otherwise. The evaluation of By, (—,/) requires independent evaluations of Bernoulli
variables. Sampling from B, is easy and can be done by just evaluating s < ¢ for a uniformly random
s € [0,1) and a precomputed c. The precomputed tables ¢; = exp(—2¢/f) for 0 < i < [, f = 202
where [is [logy(max(j))] are stored in a distributed RAM. The Beyp(-x/¢) module (Algorithm 1)
then searches for one-bit positions u in j and evaluates the Bernoulli variable B, . This is done in
a lazy manner so that the evaluation aborts when the first bit has been found that differs between
a random s and c¢. This techniques saves randomness and also runtime. As the chance of rejection
is larger for the most significant bits we scan them first in order to abort as quickly as possible. As
the last step the Sign component samples a sign bit and rejects half of the samples where z = 0.

The Bernoulli sampler is suitable for hardware implementation as most operations work on
single bits (mostly comparisons) only. However, due to the non-constant time behavior of rejection
sampling we had to introduce buffers between each element (see Figure 4) to allow parallel execu-
tion and maximum utilization of every component. This includes the distribution and buffering of

7 Rejection sampling could be avoided completely by setting k = 256 and thus by sampling using o = kopin ~ 217.43.
However, we decided to stick to the original parameter as the costs of rejection sampling are low.

10

random bits. In order to reduce the impact of buffering on resource consumption we included Last-
In-First-Out (LIFO) buffers that solely require a single port RAM and a counter as the ordering of
independent random elements does not need to be preserved by the buffer (what would be the case
with a FIFO). For maximum utilization we have evaluated optimal combinations of sub-modules
and finally implemented two Bexp(-x/¢) modules fed by two instantiations of the Trivium stream
cipher to generate pseudo random bits. A detailed analysis is given in Section 5.

4.2 Signing and Verification Architecture

The architecture of our implementation of a high-speed BLISS signing engine is given in Figure 5 and
the same for all supported parameter sets (I,II,IV). Similar to the GLP design [21] we implemented
a two stage pipeline for signing where the polynomial multiplication a;y; runs in parallel to the
hashing H(|u]g, 1) and sparse multiplication z; = sjc +y; and zy = sac + y»°.

Polynomial multiplication. For polynomial multiplication [3,41,45] of a;y; we rely on a pub-
licly available microcode engine that uses an FFT/NTT-based approach (PolyMul)?. However, the
implementation presented in [42] was designed for slightly more complex operations than required
for BLISS and as been used to realize Ring-LWE based public key encryption and a more efficient
implementation of the GLP signature scheme [22]. As the public key a; is already stored in NTT
format, for BLISS we just have to perform a sampling operation, a forward transformation, point-
wise multiplication, and one backward transformation. In contrast to the conference version [40]
we thus removed unnecessary flexibility of the core (e.g., polynomial addition or subtraction), fixed
some generic options to (n = 512, = 12289), and also support only one NTT enabled register
(instead of two). Special NTT registers are necessary in the multiplier implementation to provide
two write and two read ports required by the NTT butterfly (see [45] for an improvement of this
aspect). As the registers are comprised of two block RAMs which are only filled with n/2 coeffi-
cients (thus n/2 - logy(q) = 3584 bits) this saves one block memory. Moreover, we have optimized
the implemented polynomial reduction over the previous approach by using Barrett reduction (a
discussion of options can be found in [10]) where VHDL code was created using Vivado High-Level
Synthesis (HLS) for a special description of the operations written in C code. The microcode en-
gine also instantiates either the Bernoulli or the CDT Gaussian sampler (configurable by a VHDL
generic) and an intermediate FIFO for buffering.

Hash block. When a new triple (a1yi1,y1,y2) is available the data is transferred into the block
memories BRAM-U, BRAM-Y1 and BRAM-Y2 and the small polynomial u = (a;y; + y2 is computed
on-the-fly and stored in BRAM-U for later use. The lower order bits |u]s mod p of u are saved in
the RAM-U. As random oracle instantiation we have chosen the KECCAK-£[1600] hash function for
its security and speed in hardware [29,48]. A configurable hardware implementation'? is provided
by the KECCAK project and the mid-range core is parametrized so that the KECCAK state it split
into 16 pieces (INb = 16). To simplify control logic and padding we just hash multiples of 1024-bit

8 Another option would be a three stage pipeline with an additional buffer between the hashing and sparse multipli-
cation. As a tradeoff this would allows to use a slower and thus more area efficient hash function but also imply a
longer delay and require pipeline flushes in case of an accepted signature. See [22] for an implementation of GLP
where a three stage pipeline is used.

9 See http://www.sha.rub.de/research/projects/lattice/

10 See http://keccak.noekeon.org/mid_range_hw.html for more information on the core.

11

http://www.sha.rub.de/research/projects/lattice/
http://keccak.noekeon.org/mid_range_hw.html

blocks and rehash in case of a rejection. Storing the state of the hash function after hashing the
message (and before hashing |u]; mod p) would be possible but is not done due to the state size
of KECCAK. After hashing the ExtractPos component extracts the x positions of ¢ which are one
from the binary hash output and stores them in the 23x9-bit memory RAM-Pos.

Sparse multiplication. For the computation of z| = sjc and z), = syc we then exploited that ¢
has mainly zero coefficients and only k = 23 coefficients set to one. Moreover, only d; = [d1n] = 154
coefficients in s; are +1 and s9 has d; entries in +2 where the first coefficient is from {—1, 1, 3}.
The simplest and, in this case, also best suited algorithm for sparse polynomial multiplication is
the row- or column-wise schoolbook algorithm. While row-wise multiplication would benefit from
the sparsity of s12 and c, more memory accesses are necessary to add and store inner products.
Since memory that has more than two ports is extremely expensive, this also prevents efficient
and configurable parallelization. As a consequence, our implementation consists of a configurable
number of cores (C') which perform column-wise multiplication to compute z; and zg, respectively.
Each core stores the secret key (either s; or s9) efficiently in a distributed RAM and accumulates
inner products in a small multiply-accumulate unit (MAC). Positions of ¢ are fed simultaneously
into the cores. Another advantage of our approach is that we can compute the norms and scalar
products for rejection sampling parallel to the sparse multiplication. In Figure 5 a configuration
with C' = 2 is shown for simplicity but our experiments show that C' = 8 leads to an optimal

trade-off between speed and resource consumption.

...... P IMI ame secretkeyslgn SignHuff
olyhMu Compute-U :
. .
NTT ~| BRAM-U {
RO || R1 Hash SparseMul Compression |
[Ram-U || RamM | Core-52-1] [Core-s1-1 L,
Huffman
: Ram-S2| || |Ram-S1 H
: “sn‘:n 3‘5 -] BRAM-Y2 — 215 Encode [
H -MAC MAC '_-’ FIFO]
Keccak-f1600] b '
? Core-S2-2| | [Core-81-2 Sampling :
H X
[Gaussian L] BRAM-Y1 " re]efcl
WA
GaussSarrnplerCDT T

Fig. 5: Block diagram of the implemented BLISS-T signing engine.

Signature verification. Our verification engine uses only the PolyMul (without a Gaussian sam-
pler) and the Hash component and is thus much more lightweight compared to signing. The poly-
nomial ¢ stored as (unordered) positions is expanded into a 512x1-bit distributed RAM and the
input to the hash function is computed in a pipelined manner when PolyMul outputs a;yj.

12

4.3 Huffman Encoding

The Sign and Verify components described above operate on signatures (c, z1, zg) that consist of
k positions of bits that are one in the polynomial ¢, the Gaussian distributed polynomial z; (std.
deviation o), and the small polynomial Z; where most lower order bits have already been dropped.
Storing the signature in this format would require & £ -logy (n) +n-[(1+1logy (70))] +n- [(logy(3)]
bits which is ~ 8399 bits for BLISS-I1. However, in order to achieve the signature size stated in
Table 1 of 5600 bits for BLISS-T additional Huffman encoding of zl,z; is necessary (¢ does not
contain any easily removable redundancy). Savings are possible as small coefficients are much more
likely than large ones in a Gaussian distribution.

In order to perform the Huffman encoding efficiently, we aim at getting a small Huffman table
by not encoding too many values. Therefore, we focus on the higher-order bits of coefficients of
71,29 (for zy already given by zg), since the lower order bits are almost uniform and thus not
efficiently compressible. As the distributions are symmetric, we encode only absolute values, and
deal with the signs separately which further reduces the table size. To decrease the overhead between
theoretical entropy and actual efficiency of Huffman encoding we group two coefficients from z;
and two coefficients from zg together.

To encode a signature we thus split zl,zg into n/2 blocks of the form b[i] = (z1[2i],z1[2i +
1],z£[2i], zg [2¢ 4 1]) and focus from now on a single block b = (21, 2, 22, 25). The components z1,
and z], respectively, are then decomposed as a triple of higher-order bits h.,, lower-order bits I,,,
and sign s,, € {—1,0,1} where 21 = s, (-h,, - B+ 1,,) with B=2%and I, € [0,..., B — 1]. Note
that the value of s, is irrelevant in case the decomposed value is zero and that the coeflicients
from zy already have their lower-order bits dropped (thus h,, = z2 and hzé = z}). For possible
values of (h.,, hle, Pz s hzé) we have calculated the frequencies and accordingly a variable length
Huffman encoding where ¢ = ENCODE(h,,, by Bz, hzé). The sign bits are also stored as a variable
length § string where sign bits are only stored if the associated coefficient is non zero (maximum
four bits). As a consequence, the encoding of a whole block b[i] is the concatenation v = (e[l ; |L,.
During decoding the values of (h,,, hZi s Rz, hzé) have to be recovered from € and (z1, 2], 22, 2}) can
be computed using lzi,lz1 and the sign information.

For our FPGA implementation we have realized a separate encoder Huf fmanEncode and de-
coder Huf fmanDecode component exclusively for the BLISS-I parameter set and developed wrappers
SignHuff and VerifyHuff using them on top of Sign and Verify, respectively (see Figure 5). For
faster development time we relied on high-level synthesis to implement both cores'!. The encoder
requests pairs of zq, zg from a small fifo necessary for short term buffering and because zg coeffi-
cients are slightly more delayed dues to compression. The é = ENCODE(h,, , hle, Pz s hzé) function is
realized as a look-up table where the concatenated value h,, |hzi |hz, |hzé is used as an address for a
table with 64 entries (see Appendix B). The final encoded signature is then written to the top-level
component in 32-bit chunks. The maximum size of one v is 39 bits with a maximum length of € of
19 bits, 2 times 8 bits for the lz’l |l., and 4 bits for signs. It can happen that from a previous run at

1 While a hand-optimized plain VHDL implementation would probably be more efficient, we opted for the HLS
design flow mainly due to much higher development speed and faster verification using a C testbench. As Huffman
encoding is not a core component of the signature scheme and not a particularly new technique it did not seem
worthwhile to spend a large amount of time with low-level design of such a component. However, in order to provide
a complete implementation that achieves the theoretical signature size, Huffman encoding is required and by using
a HLS tool we can give good estimates for resource consumption and running time (or at least an upper bound).
However, in future work it would certainly be interesting to compare our implementation to a hand-optimized
low-level VHDL implementation.

13

maximum 31 bits stay in the internal buffer of the encoder (with 32 or more bits the buffer would
have been written to the output). For decoding we first request chunks of the encoded signature
into a shift register. The values of (h,,, By Bz, hzé) for a given e are recovered by linear searching
in a the Huffman table ordered by the size/probability of resulting bit strings. Using this infor-
mation the signature can be completely recovered and is stored in an internal dual-block memory
instantiated by the Huf fmanDecode component. In the VerifyHuff top-level component this buffer
is connected to the Verify component and the buffer allows parallel decoding of one signature and
verification of an already decoded signature after it has been read from the HuffmanDecode buffer.

5 Results and Comparison

In this section we discuss our results which were obtained post place-and-route (PAR) on a Spartan-
6 LX25 (speed grade -3) with Xilinx ISE 14.7.

Gaussian Sampling. Detailed results on area consumption and timing of our two Gaussian
sampler designs (SamplerBER/SamplerCDT) are given in Table 2. The results show that the enhanced
CDT sampler consumes less logic resources than the Bernoulli sampler at the cost of one 18k block
memory to store the table B. This is a significant improvement in terms of storage size compared
to a naive implementation without the application of the Kullback-Leibler divergence and Gaussian
convolution. A standard CDT implementation would require at least o7 A = 370 kbits (that is about
23 18K block RAMs) for the defined parameters matching a standard deviation o = 215.73, tailcut
7 = 13.4 and precision A = 128.

Regarding randomness consumption the CDT sampler needs on average 21 bits for one sample
(using two smaller samples and the convolution theorem) which are generated by three instanti-
ations of Trivium. The Bernoulli sampler on the other hand consumes 33 bits on average where
12% of the random bits are consumed by the D,,, module, 42% by the uniform sampler, 43% by
both Beyp(-x/¢) units and 2.8% for the final sign determination and zero rejection. As illustrated in
Figure 4, we feed the Bernoulli sampler with the pseudo-random output of two Trivium instances
and a significant amount of the logic consumption can be attributed to additional buffers to com-
pensate for possible rejections and distribution of random bits to various modules. With respect to
the averaged performance, 7.5 and 17.95 cycles are required by the CDT and the Bernoulli sampler
to provide one sample, respectively. We also provide results for instantiations of the CDT sampler
for larger standard deviations required by BLISS-TIT and BLISS-IV that show that the performance
impact caused by the increased standard deviation o is small. In general, the SamplerBER com-
ponent could also be instantiated for larger standard deviations but in this case random number
generation and distribution and thus the desing would have to be changed for a fair comparison
(e.g., sampling of k in Algorithm 3 requires more random bits for o > 217.34). As a consequence,
we just give results for the optimized and balanced instantiation with o ~ 215.

With regard to the SamplerCDT component, by combining the convolution lemma and KL-
divergence we were able to maintain the advantage of the CDT, namely high speed and relative
simple implementation, but significantly reduced the memory requirements (from ~ 23 18K block
RAMs to one 18K block RAM). The convolution lemma works especially well in combination
with the reverse tables as the overall table sizes shrink and thus the number of comparisons is
reduced. Thus, we do not expect a CTD sampler that samples directly from standard deviation o
to be significantly faster. Additionally, larger tables would require more complex address generation

14

which might lower the achievable clock frequency. The Bernoulli approach on the other hand does
not seem as suitable for an application of the convolution lemma as the CDT. The reason is that
the tables are already very small and thus a reduction would not significantly reduce the area usage.
Moreover, sampling from the binary Gaussian distribution opiy (Djbin component) is independent
of the target distribution and does not profit from a smaller o.

Previous implementations of Gaussian sampling for lattice-based public key encryption can
be found in [43,46]. However, both works target a smaller standard deviation of o = 3.3. The
work of Roy et al. [46] uses the Knuth-Yao algorithm (see [18] for more details), is very area-
efficient (47 slices on a Virtex-5), and consumes few randomness but requires 17 clock cycles for
one sample. In [43] Bernoulli sampling is used to optimize simple rejection sampling by using
Bernoulli evaluation instead of computation of exp(). However, without usage of the binary Gaussian
distribution (see [17]) the rejection rate is high and one sample requires 96 random bits and 144
cycles. This is acceptable for a relatively slow encryption scheme and possible due to the high
output rate (one bit per cycle) of the used stream cipher but not a suitable architecture for BLISS.
The discrete Ziggurat [12] performs well in software and might also profit from the techniques
introduced in this work but does not seem to be a good target for a hardware implementation due
to its infrequent rejection sampling operations and its costly requirement on high precision floating
point arithmetic.

BLISS Operations. Results for our implementation of the BLISS signing and verification engine
and sub-modules can be found in Table 2 including averaged cycle counts and possible operation
per second (sometimes considering pipelining). ' The SignHuff and VerifyHuff top-level modules
include the Huffman encoding for very short signatures which is just implemented for the BLISS-I
parameter set. The impact of Huffman encoding on the signing performance is negligible as the
encoding is performed in parallel to the signing process. For verification we save the decoded
signature obtained from the DecodeHuff component in a buffer which is then accessed by the
verification core. As a consequence, the latency of the verification operation is C'ycles(Verify) +
Cycles(DecodeHuff) but for high throughput a signature can be decoded while another signature
is verified. Thus the number of verification operations per second is not affected and similar to
the amount of operations possible without Huffman decoding. For BLISS-I one signing attempt
takes roughly 10,000 cycles and on average 1.6 trials are necessary using the BLISS-1 parameter
set. To evaluate the impact of the sampler used in the design, we instantiated two signing engines
(Sign) of which one employs a CDT sampler and the other one two Bernoulli samplers to match
the speed of the multiplier. For a similar performance of roughly 9,000 signing operations per
second, the signing instance based on the Bernoulli sampler has a higher resource consumption
(about 600 extra slices). Due to the two pipeline stages involved, the runtime of both instances
is determined by max(Cycles(PolyMul), Cycles(Hash)) + Cycles(SparseMul) where the rejection
sampling in Compression is performed in parallel. Further design space exploration (e.g., evaluating
the impact of a different number of parallel sparse multiplication operations or a faster configuration

12 We also give size, runtime, and achievable clock frequency estimates for sub modules. However, due to cross-module
optimization, different design strategies, and constraint options the resource consumption can not just be added
and varies slightly (e.g., achievable timing of a stand-alone instantiation might be lower than when instantiated by
a top-level module). Moreover, the target clock frequency in the constraints file can heavily influence the achievable
clock frequency (if too low, PAR optimization stops early, if too high, PAR optimization gives up too quickly),
and while we tried to find a good configuration for the top level modules we just synthesized the sub modules as
they are with a generic constraints file.

15

of KECCAK) always identified the PolyMul component as performance bottleneck or did not provide
significant savings in resources for reduced versions. In order to further increase the clock rate it
would of course also be possible to instantiate the Gaussian sampler in a separate clock domain.
The verification runtime is determined by Cycles(PolyMul) + Cycles(Hash) as no pipelining is
used inside of Verify. The PolyMul is slightly faster than for signing as no Gaussian sampling
is needed. It is also worth noting that for higher security parameter sets like BLISS-III (160-bit
security) and BLISS-IV (192-bit security) the resource consumption does not increase significantly.
Only the signing performance suffers due to a higher repetition rate (see Table 1). Verification
speed and area consumption are almost constant for all security levels.

Table 2: Performance and resource consumption of our BLISS implementation.

Configuration and Slices LUT BRAMI18/ MHz Cycles Operations per
Operation /FF DSP second (output)
SignHuff (BLISS-I, CDT, C = 8)|2,291 7,193/6,420 5.5/5 139 ~15,864 8,761(signature)
VerifyHuff (BLISS-I) 1,687 5,065/4,312 4/3 166 ~16,346 17,101* (valid/invalid)

Sign (BLISS-I, 2xBER, C = 8) 2,646 8,313/7,032 5/7 142 ~15840 ~8,964 (signature)
Sign (BLISS-I, CDT, C = 8) 2,047 6,309/6,127 6/5 140 ~15864 ~8,825 (signature)
Sign (BLISS-III, CDT, C =8) [2,079 6,397/6,179 6.5/5 133 ~27,547 ~4,828 (signature)
Sign (BLISS-IV, CDT, C' =8) |[2,141 6,438/6,198 7/5 135 ~A47528 =~2,840 (signature)

Verify (BLISS-I) 1,482 4,366/3,887 3/3 172 9,607 17,903 (valid/invalid)
Verify (BLISS-III) 1435 4,298/3,.867 3/3 172 9,628 17,760 (valid/invalid)
Verify (BLISS-IV) 1,309 4,356/3,886 3/3 171 9,658 17,809 (valid/invalid)
SamplerBER (BLISS-I) 452 1,269/1231 0/1 137 ~17.95 ~7,632,311 (sample)
SamplerCDT (BLISS-I) 209 928/1,121 1/0 129 ~7.5 ~17,100,00 (sample)
SamplerCDT (BLISS-IIT) 265 880/1,122 1.5/0 133 ~7.56 ~17,592,593 (sample)
SamplerCDT (BLISS-IV) 281 922/1,123 2/0 133 ~7.78 ~17,095,116 (sample)
PolyMul (CDT, BLISS-I) 835 2,557/2,707 4.5/1 145 9,307 15579 (a-y1)
Butterfly 127 410/213 0/1 195 6 195 - 10° [pipelined]
Hash (Nb = 16) 752 2461/2,134 0/0 149 1931 77,162 (c)

SparseMul (C' = 1) 64 162/125 0/0 274 15876 17,258 (c-s1,2)
SparseMul (C = 8) 308 918/459 0/0 267 2,436 109,605 (c - s1,2)
SparseMul (C = 16) 628 1,847/810 0/0 254 1,476 172,086 (c-s1.2)
Compression™* 232 700/626 0/4 150 - parallel to SparseMul
EncodeHuff (BLISS-I) 244 752/244 0/0 150 - parallel to Sign
DecodeHuff (BLISS-I) 259 795/398 0/0 159 ~5,639 28,196 (z1,z})

By ~ we denote averaged cycle counts. The post PAR results where synthesized on a Spartan-6 LX25-3 for a 1024
bit message. (*) Regarding throughput the cycle count of the Huffman enabled verification core is equal to the
standard core as the a decoded signature is saved in a buffer RAM and thus the decoding and verification can work in
parallel. However, the latency of VerifyHuff is Cycles(Verify)+ Cycles(DecodeHuff). (**) In the conference version
Compression also contained the area count of the Hash and SparseMul components. However, this does not match
the block diagram in Figure 5.

Comparison In comparison with the GLP implementations from [21,22], the design of this work
achieves higher throughput with a lower or equal number of block RAMs and DSPs. The structural
advantage of BLISS is a smaller polynomial modulus (GLP: ¢ = 8383489/BLISS-1: ¢ = 12289), less

16

iterations necessary for a valid signature (GLP: 7/BLISS-I: 1.6), and a higher security level (GLP: 80
bit/BLISS-I: 128 bit). Furthermore and contrary to [21], we remark that our implementation takes
the area costs and timings of a hash function (KECCAK) into account. The only advantage of the
implementation of [22] which improved [21] by using the NTT and the QUARK lightweight hash
function, is that one core is a signing/verification hybrid which might be useful for some application
scenarios. However, proving a signing/verification hybrid core (even supporting multiple security
levels) would also be possible for BLISS but would require a significant additional engineering and
testing effort. In summary, our implementation of BLISS is superior to [21] and also [22] in almost
all aspects.

Table 3: Signing or verification speed of comparable signature scheme implementations.

Operation Security Algorithm Device Resources Ops/s
Our work 128 BLISS-1 + Huffman XC6SLX25 7,193 LUT/ 6,420 FF 8,761
[SignHuff] 5 DSP/ 5.5 BRAM18
Our work 128 BLISS-I 4+ Huffman XC6SLX25 5,065 LUT/4,312 FF 17,101
[VerHuff] 3 DSP/ 4 BRAM18
Conf. version 128 BLISS-I XC6SLX25 7,491 LUT/7,033 FF 7,958
[Sign] [40] 6 DSP/ 7.5 BRAMIS
Conf. version 128 BLISS-I XC6SLX25 5,275 LUT/1,727 FF 14,438
[Verify] [40] 3 DSP/ 4.5 BRAM18
GLP [sign/ver] [22] 80 GLP-1 XC6SLX25 6,088 LUT/ 6,804 FF/ 1,627/7,438
4 DSP/ 19.5 BRAM18
GLP [sign] [21] 80 GLP-I XC6SLX16 7,465 LUT/ 8,993 FF/ 931
28 DSP/ 29.5 BRAM18
GLP [ver] [2]] 80 GLP-I XC6SLX16 6,225 LUT/ 6,663 FF/ 998
8 DSP/ 15 BRAM18
ECDSA [sign] [20] 128 Full ECDSA; secp256rl XC5VLX110T 32,299 LUT/FF pairs 139
ECDSA [ver] [20] 128 Full ECDSA; secp256r1 XC5VLX110T 32,299 LUT/FF pairs 110
ECDSA [sign/ver] [28] 80 Full ECDSA; B-163 Cyclone IT EP2C20 15,879 LE / 8,472 FF/ 1,063/621
36 M4K
RSA [sign] [50] 80/103 RSA-1024/2048 XC4VFX12-10 4190 slices 548,79
private key operation 17 DSP/7 BRAM18
ECDSA point mult® [2] 80 NIST-B163; XC4VLX200 7,719 LUT/ 1,502 FF 47,619
ECDSA point mult? [24] 112 NIST-P224; XC4VFX12-12 1,580 LS/ 26 DSP 2,739
ECDSA point mult® [36] 128 generic 256-bit XC5LX100 4,177 LUT/ 4,792 FF 2,631
prime curve 37 DSP/ 18 BRAM36
ECDSA point mult® [47] 128 Curve25519 XC7Z020 2,783 LUT/ 3,592 FF 2,518

20 DSP/ 2 BRAM36

(*) The overall cost of an ECDSA signing operation is dominated by one point multiplication but a full core would also
require a hash function, logic for arithmetic operations, and inversion. ECDSA verification requires one or two point
multiplications depending on the curve representation but also a hash function and logic for arithmetic operations.

In addition to that Glas et al. [20] report a vehicle-to-X communication accelerator based on
an ECDSA signature over 256-bit prime fields. With respect to this, our BLISS implementation
shows higher performance at less resource cost. An ECDSA implementation on a binary curve for

17

an 80-bit security level on an Altera FPGA is given in [28] and achieves similar speeds and area
consumption compared to our work. Other ECC implementations over 256-bit prime or binary fields
(e.g., such as [24] on a Xilinx Virtex-4) only implement the point multiplication operation and not
the full ECDSA protocol. Finally, a fast RSA-1024/2048 hybrid core was presented for Virtex-4
devices in [50] which requires more logic/DSPs and provides significantly lower performance (12.6
ms per 2048-bit private key operation) than our lattice-based signature instance. Implementations
of several post quantum multivariate quadratic (M Q) signature schemes (UOV, Rainbow, TTS)
were given in [§]

5.1 Conclusion and Future Work

With this work we have shown that lattice-based digital signature schemes supporting high security
level (128-bit to 192-bit security) can be implemented efficiently on low-cost FPGAs. Moreover, we
have given an approach for efficient and theoretically sound discrete Gaussian sampling using the a
small Cumulative Distribution Table (CDT) that might also be applicable in software or for other
schemes (e.g., [11]).

For future work it seems worthwhile to investigate the properties of other samplers (e.g., Knuth-
Yao [18]) and to implement different signature schemes like PASS [26] or NTRUsign with secure
rejection sampling [1]. Moreover, for practical adoption of BLISS protection against side-channels
is required. Using new compression techniques or other tricks it might also be possible to further
reduce the size of the signature BLISS signature. For practical applications an (open-source) BLISS
core supporting multiple security levels and signing as well as verification might be useful. In general,
also other configuration options could be explored (e.g., more piplining stages for the high-repetition
rate BLISS-IV parameter set), usage of different hash functions, or a faster NTT multiplier. As this
paper focuses on speed it is also not clear how small and fast a lightweight implementation of BLISS
would be.

Acknowledgment

We express our gratitude to David Xiao and Vadim Lyubashevsky for helpful conversations. We
also thank the anonymous CHES’14 reviewers for detailed comments. This research was supported
in part by the DARPA PROCEED program, NSF grant CNS-1117936, German Research Foun-
dation (DFG), DFG Research Training Group GRK 1817/1 and the German Federal Ministry of
Economics and Technology (Grant 01ME12025 SecMobil). Opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of DARPA, NSF, DFG, or German Federal Ministry of Economics and Technology.

References

1. C. Aguilar-Melchor, X. Boyen, J. Deneuville, and P. Gaborit. Sealing the leak on classical NTRU signatures.
Cryptology ePrint Archive, Report 2014/484, 2014. http://eprint.iacr.org/, to appear in PQCrypto’14. 18

2. B. Ansari and M. A. Hasan. High-performance architecture of elliptic curve scalar multiplication. IEEE Trans.
Computers, 57(11):1443-1453, 2008. 17

3. A. Aysu, C. Patterson, and P. Schaumont. Low-cost and area-efficient FPGA implementations of lattice-based
cryptography. In HOST, pages 81-86. IEEE, 2013. 2, 11

4. S. Bai and S. D. Galbraith. An improved compression technique for signatures based on learning with errors. In
J. Benaloh, editor, CT-RSA, volume 8366 of Lecture Notes in Computer Science, pages 28—47. Springer, 2014. 2

18

http://eprint.iacr.org/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

R. E. Bansarkhani and J. Buchmann. Improvement and efficient implementation of a lattice-based signature
scheme. In Lange et al. [31], pages 48-67. 2

R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. A heuristic quasi-polynomial algorithm for discrete logarithm
in finite fields of small characteristic. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT, volume 8441 of
Lecture Notes in Computer Science, pages 1-16. Springer, 2014. 1

C. Blondeau and B. Gérard. On the data complexity of statistical attacks against block ciphers (full version).
Cryptology ePrint Archive, Report 2009/064, 2009. http://eprint.iacr.org/2009/064. 4

A. Bogdanov. Multiple-differential side-channel collision attacks on AES. In E. Oswald and P. Rohatgi, editors,
CHES 2008, volume 5154 of LNCS, pages 30—44, Washington, D.C., USA, Aug. 10-13, 2008. Springer, Berlin,
Germany. 18

A. Boorghany and R. Jalili. Implementation and comparison of lattice-based identification protocols on smart
cards and microcontrollers. TACR Cryptology ePrint Archive, 2014:78, 2014. 2

A. Boorghany, S. B. Sarmadi, and R. Jalili. On constrained implementation of lattice-based cryptographic
primitives and schemes on smart cards. JACR Cryptology ePrint Archive, 2014:514, 2014. 11

J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange for the TLS protocol from the
ring learning with errors problem. TACR Cryptology ePrint Archive, 2014:599, 2014. 18

J. Buchmann, D. Cabarcas, F. Gopfert, A. Hiilsing, and P. Weiden. Discrete ziggurat: A time-memory trade-off
for sampling from a Gaussian distribution over the integers. In Lange et al. [31], pages 402-417. 2, 15

C. D. Cannieére. Trivium: A stream cipher construction inspired by block cipher design principles. In S. K.
Katsikas, J. Lopez, M. Backes, S. Gritzalis, and B. Preneel, editors, ISC, volume 4176 of Lecture Notes in
Computer Science, pages 171-186. Springer, 2006. 9

H.-C. Chen and Y. Asau. On generating random variates from an empirical distribution. AIIE Transactions,
6(2):163-166, 1974. 2, 5

T. M. Cover and J. Thomas. Elements of Information Theory. Wiley, 1991. 4

L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, 1986. http://luc.devroye.org/
rnbookindex.html. 2, 5

L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and bimodal gaussians. In R. Canetti
and J. A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 40-56, Santa Barbara, CA, USA,
Aug. 18-22, 2013. Springer, Berlin, Germany. 1, 2, 3, 4, 8, 9, 15, 21, 22

N. C. Dwarakanath and S. D. Galbraith. Sampling from discrete Gaussians for lattice-based cryptography on a
constrained device. Applicable Algebra in Engineering, Communication and Computing, pages 1-22, 2014. 2, 15,
18

C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions.
In R. E. Ladner and C. Dwork, editors, 40th ACM STOC, pages 197-206, Victoria, British Columbia, Canada,
May 17-20, 2008. ACM Press. 2

B. Glas, O. Sander, V. Stuckert, K. D. Miiller-Glaser, and J. Becker. Prime field ECDSA signature processing
for reconfigurable embedded systems. Int. J. Reconfig. Comp., 2011, 2011. 17

T. Giineysu, V. Lyubashevsky, and T. Poppelmann. Practical lattice-based cryptography: A signature scheme for
embedded systems. In E. Prouff and P. Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages 530-547,
Leuven, Belgium, Sept. 9-12, 2012. Springer, Berlin, Germany. 1, 2, 11, 16, 17, 19

T. Giineysu, V. Lyubashevsky, and T. Péppelmann. Lattice-based signatures: Optimization and implementation
on reconfigurable hardware. IEEE Transactions on Computers, 0(0):1-1, 0 2014. Journal version of [21]. 2, 11,
16, 17

T. Giineysu, T. Oder, T. Poppelmann, and P. Schwabe. Software speed records for lattice-based signatures. In
P. Gaborit, editor, PQCrypto, volume 7932 of LNCS, pages 67—82. Springer, 2013. 2

T. Giineysu and C. Paar. Ultra high performance ECC over NIST primes on commercial FPGAs. In E. Oswald
and P. Rohatgi, editors, CHES 2008, volume 5154 of LNCS, pages 62—78, Washington, D.C., USA, Aug. 10-13,
2008. Springer, Berlin, Germany. 17, 18

R. Gutierrez, V. Torres-Carot, and J. Valls. Hardware architecture of a Gaussian noise generator based on the
inversion method. IEEE Trans. on Circuits and Systems, 59-I1I1(8):501-505, 2012. 2

J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, and W. Whyte. Practical signatures from the partial
Fourier recovery problem. In I. Boureanu, P. Owesarski, and S. Vaudenay, editors, ACNS, volume 8479 of Lecture
Notes in Computer Science, pages 476-493. Springer, 2014. 18

A. Joux. A new index calculus algorithm with complexity [(1/4 + o(1)) in very small characteristic. Cryptology
ePrint Archive, Report 2013/095, 2013. http://eprint.iacr.org/2013/095. 1

T. M. K. Jrvinen and J. Skytt. Final project report: Cryptoprocessor for elliptic curve digital signature algorithm
(ECDSA), 2007. http://www.altera.com/literature/dc/2007/in_2007_dig_signature.pdf. 17, 18

19

http://eprint.iacr.org/2009/064
http://luc.devroye.org/rnbookindex.html
http://luc.devroye.org/rnbookindex.html
http://eprint.iacr.org/2013/095
http://www.altera.com/literature/dc/2007/in_2007_dig_signature.pdf

29.

30

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52

B. Jungk and J. Apfelbeck. Area-efficient FPGA implementations of the SHA-3 finalists. In P. M. Athanas,
J. Becker, and R. Cumplido, editors, ReConFig, pages 235—-241. IEEE Computer Society, 2011. 11

. S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Statist., 22(1):79-86, 1951. 4

T. Lange, K. Lauter, and P. Lisonek, editors. Selected Areas in Cryptography - SAC 2013 - 20th International
Conference, Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, volume 8282 of LNCS, Burnaby,
BC, Canada, August 14-16, 2013, 2014. Springer, Berlin, Germany. 19, 20

V. Lyubashevsky. Lattice-based identification schemes secure under active attacks. In R. Cramer, editor,
PKC 2008, volume 4939 of LNCS, pages 162-179, Barcelona, Spain, Mar. 9-12, 2008. Springer, Berlin, Ger-
many. 2

V. Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In M. Matsui,
editor, ASTACRYPT 2009, volume 5912 of LNCS, pages 598-616, Tokyo, Japan, Dec. 6-10, 2009. Springer,
Berlin, Germany. 1

V. Lyubashevsky. Lattice signatures without trapdoors. In D. Pointcheval and T. Johansson, editors, FU-
ROCRYPT 2012, volume 7237 of LNCS, pages 738-755, Cambridge, UK, Apr. 15-19, 2012. Springer, Berlin,
Germany. 1

V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings. In H. Gilbert,
editor, FEUROCRYPT 2010, volume 6110 of LNCS, pages 1-23, French Riviera, May 30 — June 3, 2010. Springer,
Berlin, Germany. 3

Y. Ma, Z. Liu, W. Pan, and J. Jing. A high-speed elliptic curve cryptographic processor for generic curves over
GF(p). In Lange et al. [31], pages 421-437. 17

D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In D. Pointcheval and
T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700718, Cambridge, UK, Apr. 15-19,
2012. Springer, Berlin, Germany. 2

D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parameters. In R. Canetti and J. A. Garay,
editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 21-39, Santa Barbara, CA, USA, Aug. 18-22, 2013.
Springer, Berlin, Germany. 2, 6

C. Peikert. An efficient and parallel Gaussian sampler for lattices. In T. Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 80-97, Santa Barbara, CA, USA, Aug. 15-19, 2010. Springer, Berlin, Germany. 4, 6

T. Péppelmann, L. Ducas, and T. Glineysu. Enhanced lattice-based signatures on reconfigurable hardware. In
E. Prouff and P. Schaumont, editors, CHES, volume 8731 of Lecture Notes in Computer Science. Springer, 2014.
1,3, 11, 17

T. Poppelmann and T. Giineysu. Towards efficient arithmetic for lattice-based cryptography on reconfigurable
hardware. In A. Hevia and G. Neven, editors, LATINCRYPT 2012, volume 7533 of LNCS, pages 139-158,
Santiago, Chile, Oct. 7-10, 2012. Springer, Berlin, Germany. 2, 11

T. Péppelmann and T. Giineysu. Towards practical lattice-based public-key encryption on reconfigurable hard-
ware. In Lange et al. [31], pages 68-85. 11

T. Poppelmann and T. Giineysu. Area optimization of lightweight lattice-based encryption on reconfigurable
hardware. In ISCAS, pages 2796-2799. IEEE, 2014. 15

S. Rich and B. Gellman. NSA seeks quantum computer that could crack most codes. The Washington Post,
2013. http://wapo.st/19DycJT. 1

S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede. Compact hardware implementation of
Ring-LWE cryptosystems. TACR Cryptology ePrint Archive, 2013:866, 2013. 2, 11

S. S. Roy, F. Vercauteren, and I. Verbauwhede. High precision discrete Gaussian sampling on FPGAs. In Lange
et al. [31], pages 383-401. 2, 15

P. Sasdrich and T. Giineysu. Efficient elliptic-curve cryptography using Curve25519 on reconfigurable devices.
In D. Goehringer, M. D. Santambrogio, J. M. P. Cardoso, and K. Bertels, editors, ARC, volume 8405 of Lecture
Notes in Computer Science, pages 25-36. Springer, 2014. 17

R. Shahid, M. U. Sharif, M. Rogawski, and K. Gaj. Use of embedded FPGA resources in implementations of 14
round 2 SHA-3 candidates. In R. Tessier, editor, FPT, pages 1-9. IEEE, 2011. 11

P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In 35th FOCS, pages
124-134, Santa Fe, New Mexico, Nov. 20-22, 1994. IEEE Computer Society Press. 1

D. Suzuki and T. Matsumoto. How to maximize the potential of FPGA-based DSPs for modular exponentiation.
IEICE Transactions, 94-A(1):211-222, 2011. 17, 18

D. B. Thomas, W. Luk, P. H. W. Leong, and J. D. Villasenor. Gaussian random number generators. ACM
Comput. Surv., 39(4), 2007. 2

. S. Vaudenay. Decorrelation: A theory for block cipher security. Journal of Cryptology, 16(4):249-286, Sept. 2003.
4

20

http://wapo.st/19DycJT

A Appendix
B Huffman Encoding

The Huffman table for parameter set BLISS-I is given in Table 4.

Table 4: Huffman table for the BLISS-I parameter set.
hzl I h’zi) hz27 hzé)

binary string H (hzy, hoyy by, hzé)

binary string

(

(0, 0, 0, 0) 100 (2,0, 0,0) 00011

(0, 0,0, 1) 01000 (2,0,0,1) 0000111

(0,0, 1, 0) 01001 (2,0, 1,0) 0000101

(0,0, 1, 1) 0011100 (2,0,1,1) 000001001

(0, 1, 0, 0) 110 (2,1, 0, 0) 00110

(0, 1,0, 1) 01101 (2,1,0,1) 0001000

(0, 1, 1, 0) 01011 (2,1,1,0) 0001011

(0,1,1, 1) 0011110 (2,1,1, 1) 000001101

(0, 2, 0, 0) 00100 (2,2,0,0) 0000001

(0,2,0,1) 0000100 (2,2,0,1) 0000011111

(0, 2, 1, 0) 0000110 (2,2,1,0) 000000000

0,2,1, 1) 000001010 (2,2,1,1) 000001111001

(0, 3, 0, 0) 000000011 (2, 3,0,0) 000001111000

(0, 3,0, 1) 00000000101 |[(2, 3, 0, 1) 00000001011010
(0, 3, 1, 0) 000001111011 {(2, 3, 1, 0) 00000001011000
(0,3,1,1) 000001111010001((2, 3, 1, 1) 00000111101011010
(1,0, 0, 0) 101 (3,0,0,0) 000001000

(1,0,0, 1) 01100 (3,0,0,1) 00000000100

(1,0, 1, 0) 01010 (3,0,1,0) 00000000110
(1,0,1, 1) 0011101 (3,0,1, 1) 00000001011011
(1,1, 0, 0) 111 (3,1,0,0) 000001011

(1,1,0, 1) 01110 (3,1,0, 1) 00000001010

(1,1, 1, 0) 01111 (3,1,1,0) 00000000111
(1,1,1, 1) 0011111 (3,1,1,1) 00000111101001

(1, 2,0, 0) 00101 (3,2,0,0) 000000010111
(1,2,0,1) 0001001 (3,2,0,1) 00000001011001
(1,2, 1, 0) 0001010 (3,2,1,0) 000001111010111
(1,2,1,1) 000001110 (3,2,1,1) 00000111101011011
(1, 3,0, 0) 000001100 (3,3,0,0) 00000111101011001
(1,3,0,1) 00000001000 |[(3, 3, 0, 1) 000001111010110000
(1, 3,1, 0) 00000001001 |[(3, 3, 1, 0) 0000011110101100011
(1,3,1,1) 000001111010101((3, 3, 1, 1) 0000011110101100010

Computed for standard deviation o ~ 215, with B = 2° for 8 = 8.

C Bernoulli Sampling

In this section we briefly recall the Bernoulli Sampling algorithms and refer to [17] for a detailed
analysis. The first tool for sampling in [17] is an algorithm to sample according to Bexp(—z/f) for
any positive integer x using logs x precomputed values as described in Algorithm 1.

21

Algorithm 1 Sampling Beyp(—/) for x € [0, 20)

Input: z € [0,2°) an integer in binary form = = z;_1 - - - o
Precomputation: ¢; = exp(—2°/f) for 0 <i<£—1
fori=¢—-1to0
if z; =1 then
sample A; < B,
if A; =0 then return 0
return 1

Next, this algorithm is used to transform a simple Gaussian distribution to discrete Gaussian of
arbitrary parameter o. This simple Gaussian (called the binary Gaussian because the probability
of each x is proportional to 27%°) has parameter opi, = 1/1/(2In2) ~ 0.849. It is straightforward
to apply (Alg. 2) because of the form of its (unnormalized) cumulative distribution

j
. o —i2
pabm({o,...,;})_22 =1.10010...010...01 ... 0...010...01.
i=0 4 6 2(-2) 2-1)

From there, one easily builds the distribution k- Dyt , +U({0...k—1}) as an approximation
of D+ ko, which is corrected using rejection sampling technique (Alg. 3). This rejection only
requires variables of the form By, (_,/r) for integers x. The last step is to extend the distribution
from Z* to the whole set of integers Z as done by Algorithm 4.

Algorithm 2 Sampling Dy+ ,, Algorithm 3 Sampling Dy+ i, for k € Z
Output: An integer z € Z" according to D}, Input: An integer k € Z (0 = kobin)
Generate a bit b < By /2 Output: An integer z € ZT according to D}
if b = 0 then return 0 sample x € Z according to D(fbin
for i =1 to co do sample y € Z uniformly in {0,...,k — 1}
draw random bits by ...bx for k=27 —1 z+ kx+y
if by...bk—1 #0...0 then restart sample b <= Bexp(—y(y+2ka)/(202))
if by = 0 then return 4 if —b then restart
end for return z
Algorithm 4 Sampling Dz i, for k € Z Algorithm 5 Sampling B, @ B
Generate an integer z D;:o'bin sample A < Bg; if A then return 1
if z = 0 restart with probability 1/2 sample B < Byp; if =B then return 0
Generate a bit b < By > and return (—1)°z restart

Final Rejection Step with By /cosn(x): To avoid explicit computation of 1/cosh for the final re-
jection step, the authors of [17] suggested the following algorithm: Bi/cosh(x) = Bexp(—|x|) @
(Bl 72V Bexp(~| X\))' It is shown that it requires at most 3 calls to Beyp(—|x|) on average.

C.1 Complements on the KL-Divergence

We now provides the essential properties and proofs for our KL-based statistical arguments.

22

Lemma 4 (Additivity of Kullback-Leibler Divergence). Let Py, P1, Qo, P1 be independent
distributions over some countable set §2. Then

Dkr(Po x P1]|Qo x Q1) = Dkr(Po||Qo) + Dkr(P1]|Q1)-

Lemma 5 (Data-Processing Inequality). Let P, Q be independent distributions over some
countable set (2. Then for any function f

Drr(f(P)IIf(Q)) < Drr(P|Q)
equality holds when f is injective over the support of P.

Lemma (restatement of Lemma 2). Let P and Q be two distribution of same countable support S.
Assume that for any i € S, there exists some 6(i) € (0,1/4) such that we have the relative error
bound |P(i) — Q(i)| < 6(i)P(i). Then

Dii(PIIQ) <2 46(i)°P(i).

€S
Proof. We rely on second order Taylor bounds. For any y > 0, we have

Y -y
—uyl = =—latx=0
da:yner:U rT+y e

d? Y Yy 2 2
——yln = < — if 4|z| < y since (4/3)° < 2.
dl'Qy y+z (z+y)? Y 2l <y (4/3)

Therefore, we conclude that for any x such that |x| < €|y| for e € (0,1/4),

Y
Yy+x

2
ly In + 2| < Ze¥y? = 2y€’.
Y

One now sets y = P(i) and x = Q(i) — P(i) and sums over ¢ € S

> P(i)In @ +(Q>0) — P(i)| <2 6(i)*P(i).

; Q(7) ;

ies ies

Since S is the support of both P and Q, we have) ;.4 P (i) = > ;. g (i) = 1, therefore we conclude
that

1 P(i) N2y -
Pli)ln —=2 <2 0(2)°P(7).
St G <20
€S i€S

O
Lemma (restatement of Lemma 1). Let EF being an algorithm making at most q queries an oracle

sampling from a distribution P and outputting a bit. Let € > 0, and Q be a distribution Dk (P[|Q) <
€. Let x (resp. y) denote the probability that EF (resp. £2) outputs 1. Then,

1
lz —y| < ﬁ\/q?

23

Proof. By the additive and non-increasing properties of the Kullback-Leibler divergence, we have
Dku (B, By) = Dit, (E7]1€9) < D, (P7]]Q) < ge.
We conclude using Taylor bounds; from the identities
Dxi(B.,By) =0 atz=y

d z 1—2
dZDKL(BZaBy) n (y) n(—y) 0=a; atz=y
d? 1

Dk (BoBy) =~ >4
dz? Ki(Bz, By) 2(1—2)

—_

ag when z € (0,1)

we obtain that a a a
0 1
DKL(BxaBy) > ﬁ + F(w - y) + 7($ - y)2 - 2('7} - y>2

and conclude 2(x — y)? < ge. O

24

	Enhanced Lattice-Based Signatures on Reconfigurable Hardware
	Introduction and Motivation
	Contribution.
	Remark.

	The Bimodal Lattice Signature Scheme
	Improving Gaussian Sampling for Lattice-Based Digital Signatures
	Binary Search with Shortcut Intervals
	Preliminaries on the Kullback-Leibler Divergence
	Reducing Precomputed Data by Gaussian Convolution
	CDT Sampling with Reduced Table Size

	Implementation on Reconfigurable Hardware
	Gaussian Sampling
	Enhanced CDT Sampling.
	Bernoulli Approach.

	Signing and Verification Architecture
	Polynomial multiplication.
	Hash block.
	Sparse multiplication.
	Signature verification.

	Huffman Encoding

	Results and Comparison
	Gaussian Sampling.
	BLISS Operations.
	Comparison

	Conclusion and Future Work

	Appendix
	Huffman Encoding
	Bernoulli Sampling
	Complements on the KL-Divergence

