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Abstract—In this paper, we present fault attack on Grain
family of stream ciphers, an eStream finalist. The earlier fault
attacks on Grain work on LFSR whereas our target for fault
induction is the NFSR. Our attack requires a small number of
faults to be injected; 150 only for Grain v1 and only 312 and
384 for Grain-128 and Grain-128a, respectively. The number of
faults are much lesser than the earlier reported fault attacks;
1587 for Grain-128 and 1831 for Grain-128a.
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I. INTRODUCTION

Fault attack is a practical form of side channel attack. Here,
the adversary induces faults in states or operations of the
cipher and analyze fault-free and faulty ciphertexts/keystreams
to break the system. Both block ([10], [11]) and stream ([16],
[17], [18]) ciphers have been shown very weak under fault
analysis. However, practically inducing faults according to
certain models are still challenging and widely researched area,
with few successes ([19], [20]).

The final portfolio of eStream [1] includes three hardware-
efficient and four software-efficient stream ciphers [3]. Grain
[13] proposed by Martin Hell et al. is one of the three hardware
based ciphers enlisted in the portfolio. A mathematical attack
based on dynamic cube attack [12] and few fault attacks ([4],
[7], [8], [9]) are only known weaknesses of Grain. These
attacks employ a reasonable fault model, induces faults cipher
state and analyses fault-free and faulty keystreams to deduce
secret key of the cipher using small number of faults and few
minutes of computation in practical scenario.

The reported fault analysis ([4], [7], [8], [9]) target LFSR
of Grain. The first fault attack on Grain family targeting LFSR
was [4], which targets Grain-128. While [7], [8], [9] extends
this work to other ciphers of the Grain family, Grain v1 and
Grain128a targeting LFSR. In [9] the authors have discussed
a few modifications so as to adapt these attacks under less
restricted assumptions, such as incorporating multiple bit faults
etc.

In this paper, faults are assumed to be induced at the NFSR
of Grain. As already mentioned most of the research on fault
analysis of Grain family of stream ciphers targets LFSR. This
opens the question if only protecting LFSR will secure it
from fault attacks. We show that the NFSR needs also be
protected. Since, this means that both LFSR and NFSR can
be targeted, the adversary essentially works on a less restricted
fault model. LFSR and NFSR targeted attacks need to be
modified to make it work on the entire state. We follow certain
algorithms to deduce secret key of the cipher following fault
induction respecting our assumed model. The attack is applied

Fig. 1. Design of Grain family of ciphers

and reported here against Grain v1, Grain-128 and Grain-128a.
We require reasonable number of faults and solution of at most
2nd degree equations (mostly linear) to break the systems. A
preliminary version of this work is published in [6] which
analyzes Grain-128 only, the complete fault analysis of all the
members of Grain family, Grain v1, Grain-128 and Grain-128a
is presented in this paper.

This paper is organized as follows. Following this in-
troduction, section II briefly discusses the specification of
Grain family. We present our fault model in section III . The
proposed attack against Grain family is presented in section
IV . Section V summarizes performance analysis. Finally,
section V I concludes the paper.

II. BACKGROUND

In this section, we briefly discuss the specification of the
Grain family of stream ciphers.

Grain family of stream ciphers were introduced with Grain
v1 ([14]). Grain-128 ([13]) is the latest member of the family.

The structure of Grain family of stream ciphers is shown
in figure 1. Two left shift registers one linear, LFSR and one
nonlinear, NFSR of equal length, n store internal state of the
cipher. The LFSR and NFSR of Grain v1 is of 80 bits, while
both Grain-128 and Grain-128a are of 128 bits. The LFSR
and NFSR are updated by linear function f and nonlinear
function g, respectively. A nonlinear filter function h along
with few linear terms, both defined with input bits from both
NFSR and LFSR produces the output keystream zi at ith cycle.
Throughout this paper + refers to + modulo 2.

For Grain v1 these functions are defined as,

f = si+62 + si+51 + si+38 + si+23

+si+13 + si (1)
g = si + bi+62 + bi+60 + bi+52 + bi+45

+bi+37 + bi+33 + bi+28 + bi+21 + bi+14
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+bi+9 + bi + bi+63bi+60 + bi+37bi+33 +

bi+15bi+9 + bi+60bi+52bi+45 + bi+33bi+28bi+21

+bi+63bi+45bi+28bi+9 + bi+60bi+52bi+37bi+33

+bi+63bi+60bi+21bi+15 + bi+63bi+60bi+52bi+45bi+37

+bi+33bi+28bi+21bi+15bi+9

+bi+52bi+45bi+37bi+33bi+28bi+21 (2)
h = si+25 + bi+63 + si+3si+64 + si+46si+64 + si+64bi+63

+si+3si+25si+46 + si+3si+46si+64 + si+3si+46bi+63

+si+25si+46bi+63 + si+46si+64bi+63 (3)
zi = bi+1 + bi+2 + bi+4 + bi+10 + b31

+b43 + b56 + h (4)

For Grain-128 these functions are defined as,

f = si + si+7 + si+38 + si+70

+si+81 + si+96 (5)
g = si + bi + bi+26 + bi+56 + bi+91 + bi+96

+bi+3bi+67 + bi+11bi+13

+bi+17bi+18 + bi+27bi+59 + bi+40bi+48

+bi+61bi+65 + bi+68bi+84 (6)
h = bi+12si+8 + si+13si+20 + bi+95si+42

+si+60si+79 + bi+12bi+95si+95 (7)
zi = bi+2 + bi+15 + bi+36 + bi+45 + bi+64

+bi+73 + bi+89 + h+ si+93 (8)

Grain-128a was proposed to adapt Grain-128 in authentica-
tion [15]. For Grain-128a these functions are defined as,

f = si + si+7 + si+38 + si+70

+si+81 + si+96 (9)
g = si + bi + bi+26 + bi+56 + bi+91 + bi+96

+bi+3bi+67 + bi+11bi+13 + bi+17bi+18

+bi+27bi+59 + bi+40bi+48 + bi+61bi+65

+bi+68bi+84 + bi+88bi+92bi+93bi+95

+bi+22bi+24bi+25

+bi+70bi+78bi+82 (10)
h = bi+12si+8 + si+13si+20 + bi+95si+42

+si+60si+79 + bi+12bi+95si+94 (11)
yi = si+93 + bi+2 + bi+15 + bi+36 + bi+45

+bi+64 + bi+73 + bi+79 + h (12)
zi = y64+2i (13)

It can be seen that in Grain-128a all output bits are not
available for inspection, every second bit following 64th

output bit (yi) are actually visible to the user. This certainly
complicates the attack.

An initialization phase is carried out before generation of
keystream bits. The n bit key, k = (k0, k2, . . . , kn) and the
m bit initialization vector IV = (IV0, IV2, . . . , IVm−1) are
loaded in the NFSR and the LFSR respectively as, bi =
ki, 0 ≤ i ≤ n and si = IVi, 0 ≤ i ≤ m, rest of the LFSR
bits, (sm, sm+1, . . . , sn−1) are loaded with 1. m has value

64 for Grain v1 and 96 for Grain-128 and Grain-128a. During
initialization, the cipher is run for 2n rounds without producing
any keystream. The output bit, zi is XOR-ed with feedback
bit of both the LFSR and the NFSR.

III. FAULT ANALYSIS MODEL

Our fault model creates faults in the NFSR. The following
features are required for the attack.

1) The adversary is able to induce faults at random
positions of the NFSR of the Grain implementation
(hardware or software). Hence, exact fault position is
not known beforehand.

2) The fault affects exactly one bit of the NFSR at any cycle
of operation. So, the fault amounts to flipping exactly
one bit of the NFSR of the implementation.

3) A fault to an NFSR bit can be reproduced at any cycle
of operation, once, it is created.

4) The attacker is able to determine and control the cycles
of operation of the implementation, i.e., the timing of
the implementation is under control of the attacker.

Flipping exactly one bit of the NFSR may seem to be a
strong assumption, but can be achieved by triggering laser
shots through the I/O signal for hardware implementations
([19], [20]). Also reproducing a fault at a particular location
may seem difficult, but keeping parameters intact this can
possibly be achieved.

IV. FAULT ANALYSIS OF GRAIN FAMILY OF STREAM
CIPHERS

We inject faults at the NFSR of Grain ciphers and use
differences in normal (znormal)and faulty (zfaulty) keystreams
to determine state of the cipher (i.e. b0, b1, . . . , bn, s0, s1,
. . . , sn) at a target cycle T (referred to as base point) of
operation following initialization. Output difference of faulty
and fault-free keystream at iteration t after T is denoted by
δt, i.e., ztnormal + ztfaulty = δt.

We will follow the following five steps:
1) Determine fault position in the NFSR.
2) Pre-compute fault traces.
3) Determine NFSR bits, b0, b1, . . . , bn.
4) Determine LFSR bits, s0, s1, . . . , sn.
5) Invert states from cycle T to 0 to obtain the key.

The details of each step is described next.

A. Determine Fault Location in the NFSR

Basic Idea: The output zi are given by equations 4, 8
and 13. A fault induced in the NFSR will according to
equation of zi produce different δt depending on the fault
location at different t. For example, for Grain-128, faulting
b89 will produce δt = 1 for t = 0, 16, 25 etc. The ob-
servation is that a linear term of zi will always produce
δt = δ(zi) = 1, while nonlinear terms lead to δt = δ(zi) =
non−constant 6= 1 for some input values following standard
finite difference rules, when fault is moved to corresponding
bits in the term, without affecting other bits in zi in the
process. It turns out that this constant δt pattern is unique
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Algorithm 1 FormDeltaPattern(f)
stateSize← n;
Grain v1
outputPos[]← {1, 2, 4, 10, 31, 43, 56, 63};
Grain-128 and Grain-128a
outputPos[]← {2, 15, 36, 45, 64, 73, 79};
for f=0 to stateSize do
σf = Φ
for linearTerm ∈ outputPos do

if f ≥ linearTerm then
mov ← (f − linearTerm);
if onlyContains(outputPos,mov, linearTerm, f)
then
σf ← σf ∪ {mov};

end if
end if

end for
end for

for faults in NFSR bits. This gives us algorithm 1 to find this
unique pattern versus fault locations. During simulation, we
check the distance(mov) of linear terms of zi from induced
fault locations and check that no other zi input is corrupt
(onlyContains), thus determining the pattern of δt. Al-
gorithm onlyContains(array,movement, location, f) (al-
gorithm 7) returns true if only location is corrupt after
movement cycles of operation, among the elements of array
for fault at f at base point. The δt = 1, (t = 0, 1, . . . , n)
pattern for faults at different NFSR positions is shown in tables
I, III and II.

Once σi’s are known, during online attack phase, using
algorithm 2 we determine the fault location by varying IV
only randomly and reproducing the fault. For Grain-128a, the
corresponding visible cycles of constant output are also given
alongside δ(yi). Note that no fault location can be obtained
up to location 67.

B. Pre-compute Fault Traces

The purpose of this phase is to store all possible indices of
corrupted b-bits at cycle t following fault injection at location
f .

Basic Idea: Algorithm 3 is used to store fault traces at tth

cycle from fault induction at location f (FaultTraces(f)[t]).
The idea here is that the a corruption in b bit positions of
the feedback (equation of bi+n−1) (FeedbackPositions) may
corrupt bi+n−1 next cycle. Also, a corruption at bi shifts left
following cycle. Other locations remain fault-free. Note that s
bits remain uncorrupted throughout by design.

C. Determine NFSR Bits

We now exploit the difference of fault-free and faulty output
bits to determine values of NFSR bits. Both feedback and
output equations are used in this phase. It is observed that
output bit equation, z (equations 4, 8, 15) has nonconstant
monomials with b-bits that always contain s-bits. Hence, linear

Algorithm 2 DetermineFaultlocation()
FaultLocation← {};
NumIV s← 0;
inc← 100;
while size(FaultLocation) 6= 1 do
NumIV s← NumIV s+ inc;
for i = 0 to NumIV s do

initialize Grain with random IV, with that fixed key;
fault at the same location;
form δt, t = 0, 1, 2, . . . , n;

end for
for i = 0 to n do
FaultLocation← {}
if all positions of δt = 1 ∀ j = 0, 1, 2, . . . , NumIV s
is in σi then
FaultLocation ← FaultLocation ∪ {i}

end if
end for

end while
return FaultLocation

TABLE I
FAULT LOCATION VS. δt = 1 (σ), FAULT LOCATIONS 0 TO 79 OF GRAIN

V1

Fault t = Fault t =
Loc. Loc.

0 40 39, 38, 36, 30, 9
1 0 41 40, 39, 37, 31, 10
2 1, 0 42 41, 40, 38, 32, 11
3 2,1 43 42, 41, 39, 33, 12, 0
4 3, 2, 0 44 43, 42, 40, 34, 13, 1
5 4, 3, 1 45 44, 43, 41, 35, 14, 2
6 5, 4, 2 46 45, 44, 42, 36, 15, 3
7 6, 5, 3 47 46, 45, 43, 37, 16, 4
8 7, 6, 4 48 47, 46, 44, 38, 17, 5
9 8, 7, 5 49 48, 47, 45, 39, 18, 6

10 9, 8, 6, 0 50 49, 48, 46, 40, 19, 7
11 10, 9, 7, 1 51 50, 49, 47, 41, 20, 8
12 11, 10, 8, 2 52 51, 50, 48, 42, 21, 9
13 12, 11, 9, 3 53 52, 51, 49, 43, 22, 10
14 13, 12, 10, 4 54 53, 52, 50, 44, 23, 11
15 14, 13, 11, 5 55 54, 53, 51, 45, 24, 12
16 15, 14, 12, 6 56 55, 54, 52, 46, 25, 13, 0
17 16, 15, 13, 7 57 56, 55, 53, 47, 26, 14, 1
18 17, 16, 14, 8 58 57, 56, 54, 48, 27, 15, 2
19 18, 17, 15, 9 59 58, 57, 55, 49, 28, 16, 3
20 19, 18, 16, 10 60 59, 58, 56, 50, 29, 17, 4
21 20, 19, 17, 11 61 60, 59, 57, 51, 30, 18, 5
22 21, 20, 18, 12 62 61, 60, 58, 52, 31, 19, 6
23 22, 21, 19, 13 63 62, 61, 59, 53, 32, 20, 7, 0
24 23, 22, 20, 14 64 63, 62, 60, 54, 33, 21, 8, 1
25 24, 23, 21, 15 65 64, 63, 61, 55, 34, 22, 9, 2
26 25, 24, 22, 16 66 65, 64, 62, 56, 35, 23, 10, 3
27 26, 25, 23, 17 67 66, 65, 63, 57, 36, 24, 11, 4
28 27, 26, 24, 18 68 67, 66, 64, 58, 37, 25, 12, 5
29 28, 27, 25, 19 69 68, 67, 65, 59, 38, 26, 13, 6
30 29, 28, 26, 20 70 69, 68, 66, 60, 39, 27, 14, 7
31 30, 29, 27, 21, 0 71 70, 69, 67, 61, 40, 28, 15, 8
32 31, 30, 28, 22, 1 72 71, 70, 68, 62, 41, 29, 16, 9
33 32, 31, 29, 23, 2 73 72, 71, 69, 63, 42, 30, 17, 10
34 33, 32, 30, 24, 3 74 73, 72, 70, 64, 43, 31, 18, 11
35 34, 33, 31, 25, 4 75 74, 73, 71, 65, 44, 32, 19, 12
36 35, 34, 32, 26, 5 76 75, 74, 72, 66, 45, 33, 20, 13
37 36, 35, 33, 27, 6 77 76, 75, 73, 67, 46, 34, 21, 14
38 37, 36, 34, 28, 7 78 77, 76, 74, 68, 47, 35, 22, 15
39 38, 37, 35, 29, 8 79 78, 77, 75, 69, 48, 36, 23, 16
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TABLE III
FAULT LOCATION VS. δt = 1 (σ)OF GRAIN-128

Fault t = Fault t =
Location Location

0 1 39,55,70,75,86,91,106,110,111,122,127
2 0,40,56,71,76,87,92,107,111,112,123,128 3 1,41,57,72,77,88,93,108,112,113,124
4 2,42,58,73,78,89,94,109 5 3,43,59,74,79,90,95,110
6 4,44,60,75,80,91,96,111 7 5,45,61,76,81,92,97,112
8 6,46,62,77,82,93,98,113 9 7,47,63,78,83,94,99,114

10 8,48,64,79,84,95,100,115 11 9,49,65,80,85,96,101,116
12 10,50,66,81,97,102 13 11,51,67,82,98,103
14 12,52,68,83 15 0,13,53,69,84
16 1,14,54,70,85 17 2,15,55,71,86
18 3,16,56,72,87 19 4,17,57,73,88
20 5,18,58,74,89 21 6,19,59,75,90
22 7,20,60,76,91 23 8,21,61,77,92
24 9,22,62,78,93 25 10,23,63,79,94
26 11,24,64,80,95 27 12,25,39,55,65,75,81,86,96
28 13,26,40,56,66,87,97 29 14,27,41,57,67,88,98
30 15,28,42,58,68,89,99 31 16,29,43,59,69,90,100
32 17,30,44,60,70,91,101 33 18,31,45,61,71,92,102
34 19,32,46,62,72,93,103 35 20,33,47,63,73,94,104
36 0,21,34,48,64,74,95,105 37 1,22,35,49,65,75,96,106
38 2,23,36,50,66,76,97,107 39 3,24,37,51,67,77,98,108
40 4,25,38,52,68,78,99,109 41 5,26,53,79
42 6,27,54,80 43 7,28,55,81
44 8,29,56,82 45 9,30,57,83
46 10,31,58,84 47 11,32,59,85
48 12,33,60,86 49 13,34,61,87
50 14,35,62,88 51 15,36,63,89
52 16,37,64,90 53 17,38,65,91
54 18,39,66,92 55 19,40,67,93
56 20,41,68,94 57 21,39,42,70,75,110
58 22,40,43,71,76,111 59 23,41,44,72,77,112
60 24,42,45,73,78 61 25,43,46,74,79
62 26,44,47,80 63 27,45,48,81
64 0,28,46,49,82 65 1,29,47,50,83
66 2,30,48,51,84 67 3,31,49,52,85
68 4,32,50,53 69 5,51,54
70 6,52,55 71 7,53,56
72 8,54,57 73 0,9,55,58
74 1,10,56,59 75 2,11,57,60
76 3,12,58,61 77 4,13,59,62
78 5,14,60,63 79 6,15,61,64
80 7,16,62,65 81 8,17,63,66
82 9,18,64,67 83 10,19,65,68
84 11,20,66,69 85 12,21,67
86 13,22,68 87 14,23,69
88 15,24,70 89 0,16,25,71
90 1,17,26,72 91 2,18,27,73
92 3,19,28,39,55,70,74,75,86,91 93 4,20,29,40,56,71,75,76,87,92
94 5,21,30,41,57,72,76,77,88,93 95 6,22,31,42,58,73,77,78,89,94
96 7,23,32,43,59,74,78,79,90,95 97 8,24,39,44,55,60,75,79,80,91,96
98 9,25,40,45,56,61,76,80,81,92,97 99 10,26,41,46,57,62,77,81,82,93,98
100 11,27,42,47,58,63,78,82,83,94,99 101 12,28,43,48,59,64,79,83,84,95,100
102 13,29,44,49,60,65,80,84,85,96,101 103 14,30,45,50,61,66,81,85,86,97,102
104 15,31,46,51,62,67,82,86,87,98,103 105 16,32,47,52,63,68,83,87,88,99,104
106 17,33,48,53,64,69,84,88,89,100,105 107 18,34,49,54,65,70,85,89,90,101,106
108 19,35,50,55,66,71,86,90,91,102,107 109 20,36,51,56,67,72,87,91,92,103,108
110 21,37,52,57,68,73,88,92,93,104,109 111 22,38,53,58,69,74,89,93,94,105,110
112 23,39,54,59,70,75,90,94,95,106,111 113 24,40,55,60,71,76,91,95,96,107,112
114 25,41,56,61,72,77,92,96,97,108,113 115 26,42,57,62,73,78,93,97,98,109,114
116 27,43,58,63,74,79,94,98,99,110,115 117 28,44,59,64,75,80,95,99,100,111,116
118 29,45,60,65,76,81,96,100,101,112,117 119 30,46,61,66,77,82,97,101,102,113,118
120 31,47,62,67,78,83,98,102,103,114,119 121 32,48,63,68,79,84,99,103,104,115,120
122 33,49,64,69,80,85,100,104,105,116,121 123 34,50,65,70,81,86,101,105,106,117,122
124 35,51,66,71,82,87,102,106,107,118,123 125 36,52,67,72,83,88,103,107,108,119,124
126 37,53,68,73,84,89,104,108,109,120,125 127 38,54,69,74,85,90,105,109,110,121,126
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TABLE II
FAULT LOCATION VS. δyt = 1 (σ), FAULT LOCATIONS 68 TO 127 OF

GRAIN-128A

Fault t: Visible Fault t : Visible
Loc. Cycle Loc. Cycle
68 66:1 69
70 68:2 71
72 70:3 73
74 72:4 75
76 74:5 77
78 76:6, 66:1 79
80 78:7, 68:2 81 66:1
82 80:8, 70:3 83 68:2
84 82:9, 72:4 85 70:3
86 84:10, 74:5 87 72:4
88 86:11, 76:6 89 74:5
90 88:12, 78:7 91 76:6
92 90:13, 80:8 93 78:7
94 92:14, 82:9 95 80:8
96 94:15, 84:10 97 82:9
98 96:16, 86:11 99 84:10

100 98:17, 88:12 101 86:11
102 100:18, 90:13, 66:1 103 88:12
104 102:19, 92:14, 68:2 105 90:13
106 104:20, 94:15, 70:3 107 92:14
108 106:21, 96:16, 72:4 109 94:15
110 108:22, 98:17, 74:5 111 96:16, 66:1
112 110:23, 100:18, 76:6 113 98:17, 68:2
114 112:24, 102:19, 78:7 115 100:18, 70:3
116 114:25, 104:20, 80:8 117 102:19, 72:4
118 116:26, 106:21, 82:9 119 104:20, 74:5
120 118:27, 108:22, 84:10 121 106:21, 76:6
122 120:28, 110:23, 86:11 123 108:22, 78:7
124 122:29, 112:24, 88:12 125 110:23, 80:8
126 124:30, 114:25, 90:13 127 112:24, 82:9

Algorithm 3 FaultTrace(f)
Grain-128
FeedbackPositions ← {0, 3, 11, 13, 17, 18, 26, 27, 40,
48, 56, 59, 61, 65, 67, 68, 84, 91, 96};
Grain-128a
FeedbackPositions ← {
0,26,56,91,96,3,67,11,13,17,18,27,59,40,48,61,
65,68,84,88,92,93,95,22,24,25,70,78,82 };
Grain v1
feedBackPositions ←
{62, 60, 52, 45, 37, 33, 28, 21, 14, 9, 0, 63, 15};
FaultTrace[0] ← {f};
for i = 0 to 127 do
FaultTrace[i] ← {};
for element ∈ FaultTrace[i− 1] do
FaultTrace[i] ← FaultTrace[i] ∪ {element - 1}
if element ∈ FeedbackPositions then
FaultTrace[i] ← FaultTrace[i] ∪ {n-1}

end if
end for

end for

equations in b-bits are not obtainable. So we utilize linear b
terms of z and feedback equation bn (equations 2, 6 and 10)
to determine values of b-bits.

Basic Idea: The idea is to move the induced fault to bp or bq
if bpbq is a term in bi+n by movement iterations. The obser-
vation is that if bn is not faulted through any other feedback
tap (seen by consulting FaultTraces table) at T + movement
cycle, δmovement = bq or bp, respectively. However, if fault
into bn is due to multiple linear or nonlinear taps of g, we get,
δmovement = a polynomial in b-bits = P . This polynomial will
be affine if at most degree 2 monomials were corrupt. Thus,
essentially we can have an affine difference in feedback. The
target is now to move this difference uncorrupted to z.

We utilize linear b terms of z for this purpose. That is the
feedback difference is moved to a linear b term of z, which
is different for different versions of Grain. Note that here also
we need to be sure that corruption of z comes through this
term only (using onlyContains).

So, we use FaultTraces table first time during feedback
through degree-2 monomial and the second time for output
through linear b terms. We can determine P (Left Hand Side)
during simulation, the actual output difference δt is obtained
during online phase. P will now equal the difference of output
bits (δt) after the movement to corresponding linear b term.
These b values have actually moved from another locations.
So, if we need to move the fault c cycles from the original
location to effect bp of bn, we obtained bn+c at base point.
It can be executed for each degree-2 monomial in g and each
linear term in z.

This procedure is summarized and parameterized according
to equations in algorithm 4. Algorithm 5 constructs P through-
out the process. Note that fault need to be moved from f , after
movement shifts, to feedbacklocation b. It output a single
b position or a linear equation in b according as single or
multiple taps corrupt bn.

For Grain-128, the base point fault locations and number
of bits obtained from that location in single b-bit is tabulated
in table IV. The NFSR bits obtained for Grain-128a are
tabulated in table V. The equations obtained for Grain v1 are
tabulated in table VI.

Grain-128:The number of faults which give linear equa-
tions is, 125. Single bit P ’s obtainable are b3, b4, . . . , b127.
Other 3 bits, b0, b1, b2 need to be brute-forced. On an average
of 0×3+1×8+2×23+3×31+4×26+5×37

128 = 3.40 b-bits can be
obtained from a single fault at the NFSR and 56 faults are
required to determine state bits, b0, b1, . . . , b127 of the NFSR.
Number of induced faults can be reduced by injecting them at
consecutive cycles. For example, from the fault at b67 at base
point, we can obtain value of bit b3. A fault at the previous
cycle at b67 will give value of b3 at that cycle, which is the
value of b2 at base point.

Grain-128a:In algorithm 4 note the check (movement −
64)%2 == 0 for Grain-128a. This guarantees that correspond-
ing output bit is visible. However, this means we need the
value of (movement − 64)/2, which gives the cycle of the
corresponding output bit. In this case it turns out that all the
output bits are at cycle 0 for the equations obtained in table
V. So, for faults at 7 locations of NFSR we obtain 7 b bits
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Algorithm 4 DetermineNFSRBits(f)
Grain-128
feedBack b[] ← {0, 26, 56, 91, 96, 3, 11, 13, 17, 18, 27, 40,
48, 59, 61, 65, 67, 68, 84}
Double feedBack b[] ←
{3, 11, 13, 17, 18, 27, 40, 48, 59, 61, 65, 67, 68, 84}
Double feedBack b corr[] ←
{67, 13, 11, 18, 17, 59, 48, 40, 27, 65, 61, 3, 84, 68}
Single output b[]← {2, 15, 36, 45, 64, 73, 89}
Grain-128a
feedBack b[]←
{0, 26, 56, 91, 96, 3, 67, 11, 13, 17, 18, 27, 59, 40, 48, 61, 65,
68, 84, 88, 92, 93, 95, 22, 24, 25, 70, 78, 82}
Double feedBack b[]← {3, 11, 17, 27, 40, 61, 68}
Double feedBack b corr[]← {67, 13, 18, 59, 48, 65, 84}
Single output b[]← {2, 15, 36, 45, 64, 73, 89}
Grain v1
feedBack b[]←
{62, 60, 52, 45, 37, 33, 28, 21, 14, 9, 0, 63, 15}
Double feedBack b[]← {63, 37, 15}
Double feedBack b corr[]← {60, 33, 9}
Single output b[]← {1, 2, 4, 10, 31, 43, 56}
movement← 0
for i = 0 to length(Double feedBack b) do

if f ≥ Double feedBack b[i] then
movement← (f −Double feedBack b[i])
eqnLHS ← ConstructFeedbackDiffEqn(f,
Double feedBack b[i]− f,
Double feedBack b[i])
for j = 0 to length(Single output b) do
movement ← movement + 127 −
Single output b[j];
movement ← disp + 79 − Single output b[j];
//Grain v1
if condition then
Grain-128
condition = onlyContains(feedBack b,
movement, Single output b[j], f)
&& (Double feedBack b corr[i] +
movement ≤ 127)
Grain-128a
condition = (movement − 64)%2 == 0
&& OnlyCorrupt(feedBack b,movement,
Single output b[j], f)
&& (Double feedBack b corr[i] +
movement ≤ 127)
Grain v1
condition = OnlyCorrupt(feedBack b,
movement, Single output b[j], f)
&& (Double feedBack b corr[i] +
movement ≤ 79)
obtained eqnLHS = δmovement

Grain-128a
Cycle = (movement− 64)/2;

end if
end for

end if
end for

Algorithm 5 ConstructFeedbackDiffEqn(f,movement,
feedbacklocation)
linearTerms = {};
for element ∈ FaultTrace(f)[movement] do

for i = 0 to length(feedBack b) do
if element == feedBack b[i] then

if element == Double feedBack b[k] for some
k then
linearTerms = linearTerms ∪
{Double feedBack b corr[k]};

else
linearTerms = linearTerms ∪ {1};

end if
end if

end for
end for
return XOR of linearTerms;

at base point, say, T . Among the fault location 68 is only
identifiable, so, 1 fault at b68 gives value of 1 b bit at cycle=T ,
corresponding to faults at T − disp cycle. Therefore, a fault
at 68 in cycle T − disp− 1, gives value of b84 at cycle T − 1
which equals b83 at cycle T . This explains column 2 of table
V with indices between 0 and 127. Note that i of table VI
may be both positive and negative. It is seen experimentally
that bi for 0 ≤ i ≤ 84 can be obtained in this way for Grain-
128a. Rest 43 bits require a positive shift T − disp + i, the
argument being similar. b bits are obtained from difference of
this visible output in fault-free and faulty forms. Therefore,
after this step we are able to find values of all b bits.

Grain v1: It is verified experimentally that there are fault-
positions which could give linear equations involving b bits
only (table VI). Therefore, a fault at b15 in cycle T −disp−1,
gives value of b9 at cycle T − 1 which equals b8 at cycle T .
This explains column 2 of table VI with indices between 0
and 79 similar to Grain-128a and Grain-128. Note that i of
table VI may be both positive and negative like Grain-128a.
It is seen experimentally that with positive i, b0 to b33 may
be determined, while with negative i, up to b33+36 = b69 can
be obtained. Rest 10 b bits are to be determined brute-force,
with complexity O(210).

D. Determine LFSR bits

Basic Idea: Here we need to obtain equations involving s-
bits alone or s and b bits. The idea is to target terms of z
containing both s and b indices. Now move fault to the one
of the b locations in the term and find output difference as an
equation involving s and b bits, provided other terms are not
corrupted.

We explain it using Grain-128. The induced fault is prop-
agated to any of the locations b12 or b95 without corrupting
other b-bits of zi (equation 8). It is an equation of the form,
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TABLE IV
FAULT LOCATION VS. NFSR BITS OBTAINED FOR GRAIN-128

Fault NFSR Bits Obtained Fault NFSR Bits Obtained
Location Location
b0 b43 b41, b44, b45, b51, b75
b1 b44 b42, b45, b46, b52, b76
b2 b45 b43, b46, b47, b53, b77
b3 b67 b46 b44, b47, b48, b54, b78
b4 b68 b47 b45, b48, b49, b55, b79
b5 b69 b48 b40, b46, b49, b56, b80
b6 b70 b49 b41, b47, b50, b57, b81
b7 b71 b50 b42, b48, b51, b58, b82
b8 b72 b51 b43, b49, b52, b59, b83
b9 b73 b52 b44, b50, b53, b60, b84
b10 b74 b53 b45, b51, b54, b61, b85
b11 b13, b75 b54 b46, b52, b55, b62, b86
b12 b14, b76 b55 b47, b53, b56, b63, b87
b13 b11, b15, b77 b56 b48, b88
b14 b12, b16, b78 b57 b49, b89
b15 b13, b17, b79 b58 b50, b90
b16 b14, b18, b80 b59 b27, b51
b17 b15, b18, b19, b81 b60 b28, b52
b18 b16, b17, b19, b20, b82 b61 b29, b53, b65
b19 b17, b18, b20, b21, b83 b62 b30, b54, b66
b20 b18, b19, b21, b22, b84 b63 b31, b55, b67
b21 b19, b20, b22, b23, b85 b64 b32, b56, b68
b22 b20, b21, b23, b24, b86 b65 b33, b61, b69
b23 b21, b22, b24, b25, b87 b66 b34, b62, b70
b24 b22, b23, b25, b26, b88 b67 b3, b35, b63, b71
b25 b23, b24, b26, b27, b89 b68 b4, b36, b64, b84
b26 b24, b27, b28, b90 b69 b5, b37, b65, b85
b27 b25, b28, b29, b59, b91 b70 b6, b38, b66, b86
b28 b26, b29, b30, b60, b92 b71 b7, b39, b67, b87
b29 b27, b30, b31, b61, b93 b72 b8, b40, b68, b88
b30 b28, b31, b32, b62, b94 b73 b9, b41, b69, b89
b31 b29, b32, b33, b63, b95 b74 b10, b42, b70, b90
b32 b30, b33, b34, b64, b96 b75 b11, b43, b71, b91
b33 b31, b34, b35, b65, b97 b76 b12, b44, b72, b92
b34 b32, b35, b36, b66, b98 b77 b13, b45, b73, b93
b35 b33, b36, b37, b67, b99 b78 b14, b46, b74, b94
b36 b34, b37, b38, b68, b100 b79 b15, b47, b75, b95
b37 b35, b38, b39, b69, b101 b80 b16, b48, b76, b96
b38 b36, b39, b40, b70, b102 b81 b17, b49, b77, b97
b39 b37, b40, b41, b71, b103 b82 b18, b50, b78, b98
b40 b38, b41, b42, b48, b72 b83 b19, b51, b79, b99
b41 b39, b42, b43, b49, b73 b84 b52, b68, b80, b100
b42 b40, b43, b44, b50, b74 b85 b53, b69, b81, b101
b86 b54, b70, b82, b102 b87 b55, b71, b83, b103
b88 b56, b72, b84, b104 b89 b57, b73, b85, b105
b90 b58, b74, b86, b106 b91 b75, b87, b107
b92 b76, b88, b108 b93 b77, b89, b109
b94 b78, b90, b110 b95 b79, b91, b111
b96 b80, b92, b112 b97 b81, b93, b113
b98 b82, b94, b114 b99 b83, b95, b115
b100 b84, b96, b116 b101 b85, b97, b117
b102 b86, b98, b118 b103 b87, b99, b119
b104 b88, b100, b120 b105 b89, b101, b121
b106 b90, b102, b122 b107 b91, b103, b123
b108 b92, b104, b124 b109 b93, b105, b125
b110 b94, b106, b126 b111 b95, b107, b127
b112 b96, b108 b113 b97, b109
b114 b98, b110 b115 b99, b111
b116 b100, b112 b117 b101, b113
b118 b102, b114 b119 b103, b115
b120 b104, b116 b121 b105, b117
b122 b106, b118 b123 b107, b119
b124 b108, b120 b125 b109, b121
b126 b110, b122 b127 b111, b123

TABLE V
FAULT LOCATION VS. NFSR BITS OBTAINED FOR GRAIN-128A

Fault Location NFSR Bit Obtained
ith Shift from T

3 b67
11 b13
17 b18−i

27 b59−i

40 b48−i

61 b65−i

68 b84−i

TABLE VI
FAULT LOCATION VS. NFSR BITS OBTAINED FOR GRAIN V1

Fault Location NFSR Bit Obtained
ith Shift from T

15 b9−i

37 b33−i

sp + sqbr = δt. So, if this br bit is 0, we have an equation in
sp, otherwise, we have a linear equation in s-bits.

Algorithm 6 describes and conditionally parameterizes the
process.

Grain-128:Only 66 faults (at locations 12, 13, . . . , 44,
95, 96, . . . , 127) in the NFSR gives equations. 33 equations
on an average will involve a single s-bit. Other equations are
stored. The equations obtained from faults in the NFSR are
tabulated in table VII. LFSR bits are updated according to
a linear feedback relation (equation 1). So, all s-bits at any
cycle t after/before the base point can be written as linear
combinations of the base point LFSR bits s0, s1, . . . , s127.
So, essentially we need 128 linearly independent equations
from faults at different cycles after/before the base point. We
obtain equations involving LFSR bits following algorithm 6
after inducing faults at later/earlier cycles of operation. This
process is continued till we obtain 128 linearly independent
equations involving 128 s-bits at the base point. On an average,
(128/33) ∗ 66 = 256 faults need to be injected to obtain all
LFSR bits. 128 linearly independent equations can be solved
through Gaussian elimination in time 1283 = O(221).

Grain-128a:Here, the terms involving b as well as s bits in
zi are exactly same as Grain-128. The equations in LFSR
bits obtained from faults in NFSR bit will be same as
that tabulated in table VIII following algorithm 6. Again, the
corresponding visible output bit is tabulated alongside.

Since, all b bits are known these equations are essen-
tially linear equations at base point say, T . So, a fault at
T −movement − 1 cycle at location 102 gives the value of
s8+b95s94 at cycle T−1, which is equal to s8−1+b95−1s94−1

at cycle T . This is tabulated alongside in table VIII 2nd column
with indices between 0 and 127. It is seen experimentally that
this yields 128 linear equations in s bits when both + and −
shifts from T are allowed with 256 faults in NFSR following
same argument as Grain-128. It can be solved with about 221

time complexity using Guassian elimination.
Grain v1:The terms involving b as well as s bits

are, si+64bi+63, si+3si+46bi+63, si+25si+46bi+63 and
si+46si+64bi+63. Hence, δt = zt + zft with a bit-flip at
bi+63 after movement gives the nonlinear equation for some
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Algorithm 6 DetermineLFSRBits(f)
Grain-128, Grain-128a
Output b double s[] = {12, 95};
Output s double b[] = {8, 42};
outputPos[] = {12, 95, 2, 15, 36, 45, 64, 73, 89};
Grain v1
Output b double s[] = {63};
Output s double b[] = {64};
outputPos[] = {1, 2, 4, 10, 31, 43, 56, 63};
movement← 0;
for i = 0 to 1 do
movement← f −Output b double s[i];
if condition then
Grain-128
condition = OnlyContains(outputPos,movement,
Output b double s[i], f) &&
(Output s double b[i] +movement <= 127) &&
(Output b double s[1−i]+movement) <= 127 &&
(95 +movement) <= 127
Grain-128a
condition = OnlyContains(outputPos,movement,
Output b double s[i], f) &&
(Output s double b[i] +movement <= 127) &&
(Output b double s[1−i]+movement) <= 127 &&
(95 + movement) <= 127 && (movement-64)%2
==0
&& (movement-64)/2 ¿ 0
Grain v1
condition = OnlyContains(outputPos,movement,
Output b double s[i], f) &&
(Output s double b[i] +movement <= 79) &&
(Output b double s[1− i] +movement) <= 79
Grain v1
obtained equation,
1 + s64 + s46(s25 + s64)
= δmovement

Grain-128, Grain-128a
obtained equation,
sOutput s double b[i]+movement +
bOutput b double s[1−i]+movement.s95+movement

= δmovement

end if
end for

Algorithm 7 onlyContains(array, movement, location, f)
for element ∈ FaultTrace(f)[movement] do

for i = 0 to length(array) do
if element != location && element == array[i]
then

return false;
end if

end for
end for
return true;

TABLE VII
FAULT LOCATION VS. LFSR, NFSR EQUATIONS OBTAINED FOR

GRAIN-128

Fault Equations Fault Equations
Location Location
b12 s8 + b95.s95 b95 s42 + b12.s95
b13 s9 + b96.s96 b96 s43 + b13.s96
b14 s10 + b97.s97 b97 s44 + b14.s97
b15 s11 + b98.s98 b98 s45 + b15.s98
b16 s12 + b99.s99 b99 s46 + b16.s99
b17 s13 + b100.s100 b100 s47 + b17.s100
b18 s14 + b101.s101 b101 s48 + b18.s101
b19 s15 + b102.s102 b102 s49 + b19.s102
b20 s16 + b103.s103 b103 s50 + b20.s103
b21 s17 + b104.s104 b104 s51 + b21.s104
b22 s18 + b105.s105 b105 s52 + b22.s105
b23 s19 + b106.s106 b106 s53 + b23.s106
b24 s20 + b107.s107 b107 s54 + b24.s107
b25 s21 + b108.s108 b108 s55 + b25.s108
b26 s22 + b109.s109 b109 s56 + b26.s109
b27 s23 + b110.s110 b110 s57 + b27.s110
b28 s24 + b111.s111 b111 s58 + b28.s111
b29 s25 + b112.s112 b112 s59 + b29.s112
b30 s26 + b113.s113 b113 s60 + b30.s113
b31 s27 + b114.s114 b114 s61 + b31.s114
b32 s28 + b115.s115 b115 s62 + b32.s115
b33 s29 + b116.s116 b116 s63 + b33.s116
b34 s30 + b117.s117 b117 s64 + b34.s117
b35 s31 + b118.s118 b118 s65 + b35.s118
b36 s32 + b119.s119 b119 s66 + b36.s119
b37 s33 + b120.s120 b120 s67 + b37.s120
b38 s34 + b121.s121 b121 s68 + b38.s121
b39 s35 + b122.s122 b122 s69 + b39.s122
b40 s36 + b123.s123 b123 s70 + b40.s123
b41 s37 + b124.s124 b124 s71 + b41.s124
b42 s38 + b125.s125 b125 s72 + b42.s125
b43 s39 + b126.s126 b126 s73 + b43.s126
b44 s40 + b127.s127 b127 s74 + b44.s127

determinable t,

si+64 + si+3si+46 + si+25si+46 + si+46si+64 = δt

si+64 + si+46(si+3 + si+25 + si+64) = δt

This equation becomes linear if si+46 is known, otherwise,
we have few small nonlinear equations in s variables. The
equations in LFSR bits obtained from faults in NFSR bit
is tabulated in table IX. As in the case of NFSR changing
cycles of fault injection by i, gives a displacement of indices
of bit-positions of equations by i, with indices between 0 and
79, this explains column 2 of table IX. Total number of faults
required on average is, 80/5 ∗ 5 = 80, as 80 equations are
needed to solve 80 variables. The obtained small nonlinear
equations can be solved using Grobner basis mathod, XL etc.
with complexity at most O(803) < O(221), with about 160
faults required. Thus the complexity of the attack remains
same as Grain-128 and Grain-128a.

E. Inverting Internal States

Till this phase we have successfully obtained full
internal state of Grain ciphers at base pointi.e.,
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TABLE VIII
FAULT LOCATION VS. LFSR,NFSR BITS OBTAINED FOR GRAIN-128A

Fault Location NFSR Bit Obtained Output Cycle
/ith Shift from T

78 s8−i + b95−is94−i 1
80 s8−i + b95−is94−i 2
82 s8−i + b95−is94−i 3
84 s8−i + b95−is94−i 4
86 s8−i + b95−is94−i 5
88 s8−i + b95−is94−i 6
90 s8−i + b95−is94−i 7
92 s8−i + b95−is94−i 8
94 s8−i + b95−is94−i 9
96 s8−i + b95−is94−i 10
98 s8−i + b95−is94−i 11
100 s8−i + b95−is94−i 12
102 s8−i + b95−is94−i 13
104 s8−i + b95−is94−i 14
106 s8−i + b95−is94−i 15
108 s8−i + b95−is94−i 16
110 s8−i + b95−is94−i 17
112 s8−i + b95−is94−i 18
114 s8−i + b95−is94−i 19
116 s8−i + b95−is94−i 20
118 s8−i + b95−is94−i 21
120 s8−i + b95−is94−i 22
122 s8−i + b95−is94−i 23
124 s8−i + b95−is94−i 24
126 s8−i + b95−is94−i 25

TABLE IX
FAULT LOCATION VS. LFSR,NFSR BITS OBTAINED FOR GRAIN V1

Fault Location NFSR Bit Obtained
/ith Shift from T

63 1 + s64−i + s46−i(s25−i + s64−i)
64 1 + s64−i + s46−i(s25−i + s64−i)
65 1 + s64−i + s46−i(s25−i + s64−i)
66 1 + s64−i + s46−i(s25−i + s64−i)
67 1 + s64−i + s46−i(s25−i + s64−i)
68 1 + s64−i + s46−i(s25−i + s64−i)
69 1 + s64−i + s46−i(s25−i + s64−i)
70 1 + s64−i + s46−i(s25−i + s64−i)
71 1 + s64−i + s46−i(s25−i + s64−i)
72 1 + s64−i + s46−i(s25−i + s64−i)
73 1 + s64−i + s46−i(s25−i + s64−i)
74 1 + s64−i + s46−i(s25−i + s64−i)
75 1 + s64−i + s46−i(s25−i + s64−i)
76 1 + s64−i + s46−i(s25−i + s64−i)
77 1 + s64−i + s46−i(s25−i + s64−i)
78 1 + s64−i + s46−i(s25−i + s64−i)

(sT0 , s
T
1 , . . . , s

T
n , b

T
0 , b

T
1 , . . . , b

T
n ) are known. Now, we

describe the procedure of obtaining key by inverting this
state. This method is similar to that of [4]. We denote by f t

and gt the feedback values at tth cycle.
Step 1: When, t > 2n, let,
(st+1

0 , st+1
1 , . . . , st+1

n , bt+1
0 , bt+1

1 , . . . , bt+1
n ) be the full

internal state of Grain after (t+ 1) cycles of operation. Then,
according to Grain specification (refer to section 2),

st+1
i = sti+1; i = 0, 1, . . . , n− 2; (14)

st+1
n−1 = f t; (15)

bt+1
i = bti+1; i = 0, 1, . . . , n− 2; (16)

bt+1
n−1 = gt; (17)

TABLE X
FAULTS REQUIRED AND COMPUTING COST

Ciphers Grain v1 Grain-128 Grain-128a
Online Cost (#Faults,Cost) (#Faults,Cost) (#Faults,Cost)

Location (0,11) (0,14) (0,14)
Pre-computation (0, 212) (0, 215) (0, 215)

NFSR (70, 210) (56, 128) (128, 128)
LFSR (80, < 221) (256, 221) (256, 221)

Inversion (0, r(T )) (0, r(T )) (0, r(T ))
Total (150, < 221) (312, 221) (384, 221)

The above equations can be rewritten as follows.

sti+1 = st+1
i ; i = 0, 1, . . . , n− 2; (18)

st0 = st+1
n + f t + st0; (19)

bti+1 = bt+1
i ; i = 0, 1, . . . , n− 2; (20)

bt0 = bt+1
n−1 + gt + bt0; (21)

These equations hold as both f and g respectively contain st0
and bt0 in all the three versions. Thus we are able to invert the
full state up to initialization.
Step 2: When, t <= 2n, the output bits, zt are fed back at
st+1
n−1 and bt+1

n−1. Now, can in all three cases be written in terms
of variables,
st+1
i , i = 0, 1, . . . , n− 1 and
bt+1
i , i = 0, 1, . . . , n− 1. For example, st20 = st+1

21 and bt26 =
bt+1
27 etc.. Hence, once zt is computed,

st0 = st+1
n−1 + f t + st0 + zt; (22)

bt0 = bt+1
n−1 + gt + bt0 + zt; (23)

Thus, again being able to invert during initialization also.
This way inverting from iteration 2n to 0, we get back secret

key in b0, b1, . . . , bn−1.

V. COMPLEXITY, LIMITATIONS AND ACHIEVEMENTS

In this section, we measure the cost of our proposed attack
against three Grain ciphers. This complexity is approximated
by the average computing expenses of the process. We also
estimate the average number of fault inductions required to
completely break the system. Table X summarizes the cost.
In this table T refers to the base point of the attack, r(T )
represents the cost of reversing Grain for T cycles.

1) Fault Location Determination: It is divided into for-
mation of σ table during simulation (algorithm 1) and
determination of fault locations in online mode (algo-
rithm 2). The off-line mode requires a space overhead
of 128 ∗ 128 = 214 for Grain-128 and Grain-128a, and
80 ∗ 80 = 1600 for Grain v1. Following σ formation,
location determination is of logarithm complexity giving
cost of about 14 units of computations at most. No
online faults are required in this phase.

2) Pre-computation of Fault Traces: This phase stores pre-
computed traces for all n fault-locations for the follow-
ing 2n cycles. Hence, space required in n∗2n∗n = 2n3.
Time complexity of this phase is n ∗ 2n = 2n2 Grain
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TABLE XI
COMPARISON OF COST OF FAULT ATTACK AGAINST GRAIN

Paper Cipher Fault Model Faults
[4] Grain-128 Similar 1587
[8] Grain-128a Similar 1831

Current Grain v1 - 150
Current Grain-128 - 312
Current Grain-128a - 384

round operations. This is an off-line operation. Online
fault induction is not required in this phase also.

3) Determining NFSR Bits: We have faulted a particular
location in online mode and determined linear equations
by executing algorithm 4 in off-line mode. About 56
faults were required for Grain-128 and 128 units of com-
putation. For Grain-128a each fault yields one equation.
Allowing shifts, total number of online faults required
is 128 and total computing cost is 128 units. Grain v1
follows same pattern as Grain-128a, requiring 70 online
faults and 210 units of computation for brute-force.

4) Determining LFSR Bits: We obtained linear or small
nonlinear equations in this phase. Storing the equations
require linear space. Grain-128 and Grain-128a due to
same set of utilized equations, requires equal complexity,
which is 256 average online faults and computing of
about 221 units. Grain v1 requires 80 faults and less
than that amount of computing.

5) Inverting States: Inverting the state is constant computa-
tion per round and storage of 2n bits. Hence, r(T ) units
of computing is required and constant space is required
for this phase irrespective of the version.

It follows from table X, that Grain-128a is the strongest of
the three ciphers.

Clearly, the attack can be adapted to Grain-like ciphers.
Higher minimum degree g, z will increase attack complexity.
Multiple consecutive faults are a more realistic scenario,
exploiting this situation may lead to better attacks. Allowing
small higher degree equations may also decrease the complex-
ity.

Table XI compares costs of fault attack against Grain
presented in literatature with that presented here. It can be
noted that in comparison requirements of number of faults is
comparatively less in this paper.

In [5], the authors have proposed another attack on Grain
family with minimal assumptions. They use SAT solver and
non-reproduction of faults. The attack targets both LFSR and
NFSR of the cipher. It is claimed that the attack takes 10 or less
faults to break the system. However, one strong assumption in
the paper is rekeying of the cipher. Ideally, an attacker does
not have access to the pins for inputting key into the system.
Also the overhead of using a SAT solver is not negligible.

VI. CONCLUSION

In this paper, we have described a fault analysis on the
eStream cipher Grain family of stream ciphers. The earlier

fault attacks on Grain target LFSR of the cipher. We have
presented a fault attack that faults NFSR. The attack is applied
successfully against three Grain ciphers, Grain v1, Grain-128a
and Grain-128. It has been seen that a few number of faults
(at most 125% of state size) are required which is much
lesser than earlier works. Space and time requirements are also
minimal. We comment that this attack can be easily adapted
on Grain-like ciphers.
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