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Abstract

The Discrete Logarithm Problem is at the base of the famous Diffie Hellman key agreement algorithm and many
others. The key idea behind Diffie Helmann is the usage of the Discrete Logarithm function in (Z/pZ)∗ as a trap door
function. The Discrete Logarithm function output in (Z/pZ)∗ seems to escape to any attempt of finding some sort of
pattern. Nevertheless some new characterization will be introduced together with a novel and more efficient trial multi-
plication algorithm.

The Discrete Logarithm Problem
The Discrete Logarithm Problem (DLP) is at the base of many cryptographic techniques. This paper will focus only on
DLP for finite cyclic group G in (Z/pZ)∗ (prime moduli) of order p − 1 with generator g. Having a finite cyclic group G
and a generator g, the DLP of α, denoted dloggα, is the unique integer x, 0 ≤ x ≤ (p − 1), such that α = gx. The finite
cyclic group can also be denoted by G = {g0,g1,...,gp−2} where gi = gi (mod p) for 0 ≤ i ≤ p − 2. Using as example g =

2 and p = 53 we can try to plot G = {1, 2, 4, 8, 16, 32, 11, 22, 44, 35, 17,....,27} having Cartesian coordinates xi = i and
yi=gi for 0 ≤ i ≤ (p − 2). This draws the plot:

Figure 1: xi = i and yi=gi for 0 ≤ i ≤ (p − 2)
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Another way to plot is to have xi = i and yi=dloggi for 0 ≤ i ≤ (p − 2).

Figure 2: xi = i and yi=dloggi for 0 ≤ i ≤ (p − 2)

As shown in Figure 1 and Figure 2 the plots seem to bounce at random around the numbers. Some kind of order seems
to emerge though if we calculate the Cartesian coordinate as follow: xi = gi and yi = g(i+1) 0 ≤ i ≤ (p − 1)/2.

Figure 3: xi = gi and yi = g(i+1) 0 ≤ i ≤ (p − 1)/2, p = 53 and g = 2

In the Figure 3 the � indicate the first (p − 1)/4 coordinates while the _ indicate the last (p − 1)/4 coordinates.
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This sort of symmetry is maybe more clear for p = 17 and g = 3, see below:

Figure 4: xi = gi and yi = g(i+1) 0 ≤ i ≤ (p − 1)/2, p = 17 and g = 3

As per Figure 3 also in the Figure 4 the � indicate the first (p−1)/4 coordinates while the _ indicate the last (p−1)/4
coordinates. Moreover the line (—) indicates the connections between the first (p − 1)/4 coordinates and the dotted line
(- - -) indicates the connections between the last (p− 1)/4 coordinates. This kind of structured order is as well present for
bigger p and bigger g but it is just harder to see plotted in a graphic. Hence this visual symmetry yells that some kind of
formula should exists on the cyclic group G. This is indeed represented by:

Proposition 1.1 (finite cyclic groups symmetry). For 1 ≤ i ≤ (p − 1)/2 ,

gi+(p−1)/2 = gi−1+(p−1)/2 − gi + gi−1

Proof. By Fermat’s Little Theorem we can derive that given a finite cyclic group G in (Z/pZ)∗ (prime moduli) we have

g((p−1)/2) = −1 = −g(−1) + g(−1) − 1 = g((p−1)/2−1) + g(−1) − 1

multiplying both sides with gi the proposition follows. �

Example 1.2. As an example for p = 53, g = 2 and i = 1 we have

g1+(53−1)/2 = g1−1+(53−1)/2 − g1 + g1−1

hence
g27 = g26 − g1 + g0 = 52 − 2 + 1 = 51

indeed
227 (mod 53) = 51

Trial multiplication algorithm
The trivial way to compute dloggα is using brute force (this algorithm is called trial multiplication or exhaustive search).
This obvious algorithm looks like:

Algorithm 1.3 (Calculate Discrete Log). Compute g0,g1,g2... until α is obtained

1. [Initialize] Set i =0

2. [Power] Set a = gi (mod p).

3. [Step equals ?] If a is equal to α output i and terminate .

4. [Try next] Set i =i + 1 and go to Step 2

This algorithm is clearly inefficient for large value of p and it requires O(p) multiplications and more efficient algo-
rithms exist (e.g. number field sieve, index calculus, etc.)
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We can try to leverage the Proposition 1.1 in order to see if we can obtain a more efficient version of the trial multi-
plication algorithm.

Algorithm 1.4 (Calculate Discrete Log using symmetry). Compute g0,g1,g2... until α is obtained leveraging the Propo-
sition 1.1

1. [Initialize] Set i = 0, previous = 0, b = n.

2. [Power] Set a = gi (mod p).

3. [Step equals ?] If a is equal to α output i and terminate .

4. [symmetry] Set b = b − a + previous.

5. [Symmetry equals ?] if b is equal to α output i + (p − 1)/2 and terminate .

6. [Try next] Set i = i + 1, previous = a and go to Step 2

Algorithm 1.4 is still inefficient compared to the number field sieve, index calculus algorithms but it is more effi-
cient than the naive trial multiplication algorithm. Indeed Algorithm 1.4 requirs O(p/2) multiplications and O(2 ∗ p/2)
additions.

Conclusions
A new Proposition on finite cyclic groups has been proposed together with an improved trial multiplication algorithm to
solve the Discrete Logarithm Problem. The benefits of the new algorithm are not of a big magnitude compared to the
number field sieve, index calculus algorithms but it might open a new breach in the stagnant Discrete Logarithm Problem.
The introduced Proposition might have some further applications but is not yet clear from the results here.
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