
Collision Attack on 5 Rounds of Grøstl ?

Florian Mendel1, Vincent Rijmen2, and Martin Schläffer1

1 IAIK, Graz University of Technology, Austria
2 Dept. ESAT/COSIC, KU Leuven and Security Dept., iMinds, Belgium

Abstract. In this article, we describe a novel collision attack for up to
5 rounds of the Grøstl hash function. This significantly improves upon
the best previously published results on 3 rounds. By using a new type of
differential trail spanning over more than one message block we are able
to construct collisions for Grøstl-256 on 4 and 5 rounds with complexity
of 267 and 2120, respectively. Both attacks need 264 memory. Due to the
generic nature of our attack we can even construct meaningful collisions
in the chosen-prefix setting with the same attack complexity.

Keywords: hash functions, SHA-3 candidate, Grøstl, collision attack

1 Introduction

In the last few years the cryptanalysis of hash functions has become an important
topic within the cryptographic community. Especially the collision attacks on
the MD4 family of hash functions (MD5, SHA-1) have weakened the security
assumptions of these commonly used hash functions [26–28]. As a consequence
NIST has decided to organize a public competition in order to design a new hash
function, leading to the selection of Keccak as SHA-3 [19].

During the SHA-3 competition, the three classical security requirements
(collision-, preimage- and second-preimage resistance) were not the main target
of cryptanalytic attacks. Most results were published on building blocks such as
the compression function, block cipher or permutation used in a hash function.
Additionally, many distinguishers on these building blocks with minor relevance
in practice were considered. Although these results are important from a theo-
retical point of view, vulnerabilities that can be exploited for the hash function
are certainly more important.

In this work, we present new results on the collision resistance of the SHA-3
finalist Grøstl. Grøstl is an iterated hash function based on design principles
very different from those used in the MD4 family. The compression function of
Grøstl is built from two different permutations that follow the design strategy
of the Advanced Encryption Standard (AES) [3, 17]. The simple construction
of the compression function and the byte-oriented design of Grøstl facilitates
the security analysis. In the last years Grøstl has received a large amount of
cryptanalysis. However, most of the analysis focus on the building blocks of
Grøstl and only a few results have been published for the hash function so far.

? c© IACR 2014. This article is the final version submitted by the authors to the IACR
and to Springer-Verlag on 2014-04-30, which appears in the proceedings of FSE 2014.



Related Work. Grøstl is one of the SHA-3 candidates that has probably
received the largest amount of cryptanalysis during the competition. Security
analysis of Grøstl was initiated by the design team itself which led to the
rebound attack [15]. Since then, several improvements to the rebound attack
technique have been made, leading to new results on both the hash function [16]
and its underlying components [6, 14, 22]. For the final round, Grøstl was been
tweaked to thwart internal differential attacks [7, 21] and to reduce the impact
of the rebound attack and its extensions.

The best published attacks on the final version of both Grøstl-256 and
Grøstl-512 are collision attacks on 3 rounds of the hash function and on 6
rounds of the compression function [9, 23]. Preimage attacks for the compres-
sion function of Grøstl-256 and Grøstl-512 have been shown in [29] for 5 and
8 rounds, respectively. Additionally, non-random properties of the Grøstl per-
mutation have been discussed in [1, 8]. For a detailed overview of the existing
attacks on Grøstl we refer to the ECRYPT II SHA-3 Zoo [4].

Our Contribution. By using a new type of differential trail we are able to
show collision attacks on Grøstl for up to 5 rounds. The extension becomes
possible by considering differential trails spanning over more than one message
block to iteratively cancel differences in the chaining variable. Our new attack
combines ideas of the attack on SMASH [13] with the rebound attack [15] on
Grøstl. A similar approach has also been used in the attack on Grindahl [20].
The results are collision attacks on the Grøstl-256 hash function reduced to
4 and 5 rounds with a complexity of 267 and 2120, respectively. Both attacks
have memory requirements of 264. Note that the best previously known collision
attack on the Grøstl hash function was on 3 rounds with a complexity of 264 [23].
We want to note that the same attack also applies to 5 rounds of Grøstl-512.

Additionally, we show that due to the generic nature of our attack we can
construct collisions in the chosen-prefix setting with the same complexity. It
has been demonstrated in [24, 25] that chosen-prefix collisions can be exploited
to construct colliding X.509 certificates and a rogue CA certificate for MD5.
Note that in most cases constructing such collisions is more complicated than
constructing (random) collisions. Our results and related work for the Grøstl

hash function are shown in Table 1.

Table 1: Collision Attacks on the Grøstl-256 hash function.

rounds complexity memory reference

3 264 - [23]

4 267 264 this work

5 2120 264 this work

2



Outline. The paper is structured as follows. In Section 2, we give a short de-
scription of the Grøstl hash function. The basic attack strategy and the collision
attack for 4 rounds of the hash function is presented in Section 3. In Section 4,
we describe the extension of the attack to 5 rounds, and in Section 5 the con-
struction of meaningful collisions is discussed. Finally, we conclude in Section 6.

2 Short Description of Grøstl

The hash function Grøstl [5] was one of the 5 finalists in the SHA-3 competi-
tion [18]. Grøstl is an iterated hash function with a compression function built
from two distinct permutations P and Q, which are based on the AES design
principles. In the following, we describe the components of the Grøstl hash
function in more detail.

2.1 The Hash Function

The two main variants, Grøstl-256 and Grøstl-512 are used for hash output
sizes of n = 256 and n = 512 bits. The hash function first pads the input message
M and splits the message into blocks m1,m2, . . . ,mt of ` bits with ` = 512 for
Grøstl-256, and ` = 1024 for Grøstl-512. The message blocks are processed
via the compression function f(hi−1,mi) and output transformation Ω(ht). The
size of the chaining value hi is ` bits as well.

h0 = IV

hi = f(hi−1,mi) for 1 ≤ i ≤ t
h = Ω(ht).

The compression function f is based on two `-bit permutations P and Q (some-
times denoted by P` and Q`) and is defined as follows:

f(hi−1,mi) = P (hi−1 ⊕mi)⊕Q(mi)⊕ hi−1.

The output transformation Ω is applied to ht to give the final hash value h of
size n, where truncn(x) discards all but the least significant n bits of x:

Ω(ht) = truncn(P (ht)⊕ ht).

2.2 The Permutations P and Q

The two permutations P and Q are designed according to the wide trail strat-
egy [2] and their structure is very similar to the AES. In Grøstl-256 each per-
mutation updates an 8×8 state of 64 bytes in 10 rounds. In one round, the round
transformation updates the state by means of the sequence of transformations

MB ◦ SH ◦ SB ◦ AC .

In the following, we briefly describe the round transformations of P and Q used
in the compression function f in more detail.

3



AddRoundConstant (AC). In this transformation, the state is modified by com-
bining it with a round constant with a bitwise xor operation. Different constants
are used for the permutations P and Q.

SubBytes (SB). The SubBytes transformation is the same for P and Q and
is the only non-linear transformation of the permutations. It is a permutation
consisting of an S-box applied to each byte of the state. The 8-bit S-box is the
same as in the AES with good cryptographic properties against differential and
linear attacks. For a detailed description of the S-box, we refer to [17].

ShiftBytes (SH). The ShiftBytes transformation is a byte transposition that
cyclically shifts the rows of the state over different offsets. The ShiftBytes trans-
formation is different for the two permutations P and Q.

MixBytes (MB). The MixBytes transformation is a permutation operating on
the state column by column. To be more precise, it is a left-multiplication by
an 8 × 8 MDS matrix over F28 . The coefficients of the matrix are determined
in such a way that the branch number of MixBytes (the smallest nonzero sum
of active input and output bytes of each column) is 9, which is the maximum
possible for a transformation with these dimensions. This transformation is the
same for both permutations P and Q.

2.3 Alternative Description of Grøstl

To simplify the description of attack in the following sections, we use an equiv-
alent alternative description of Grøstl. Let P ′ and Q′ denote the permutation
P and Q without the last application of MixBytes. Then, by setting

h′0 = MB−1(IV)

h′i = P ′(MB(h′i−1)⊕mi)⊕Q′(mi)⊕ h′i−1 for 1 ≤ i ≤ t
h = Ω(MB(h′t))

with hi = MB(h′i), we get an equivalent description of Grøstl, where the last
MixBytes transformation of the permutations has been swapped with the XOR
operation of the feed-forward.

3 Collision Attack for 4 Rounds of Grøstl

To get improved attacks on the Grøstl hash function, we view Grøstl as a
strengthened variant of SMASH [10]. The essential difference between the two de-
signs is that Grøstl employs a second nonlinear permutation Q, where SMASH
employs a scaling by the constant θ, i.e. a linear map (see Fig. 1). The hash
function SMASH has been broken by subsequently controlling the output differ-
ence of the compression function using the linearity of θ. After the application

4



of 257 respectively 513 message blocks, a colliding output difference can be con-
structed [13]. In this section, we show how to achieve the same for 4 rounds of
Grøstl by having differences in only one permutation.

hi−1 hi
f

·θ
mi

n

n n

(a) SMASH

hi−1 hi
P

Q
mi

2n

2n 2n

(b) Grøstl

Fig. 1: The compression function of (a) SMASH and (b) Grøstl.

3.1 The Second-Preimage Attack on SMASH

The second-preimage attack on SMASH presented in [13] is based on the tech-
nique of controllable output differences for the compression function. By care-
fully selecting consecutive message blocks, an attacker can step-by-step convert
an arbitrary starting difference in the chaining variable into an arbitrary output
difference. The attack is deterministic and the number of consecutive controllable
message blocks is equal to the length of the chaining variable. The nonlinearity
of f is made ineffective by strictly controlling its input differences and values.
Controlling the input values of f implies that the input values of the linear map
are determined. Fortunately, for a linear map it suffices to know the input differ-
ence to compute the output difference. The output difference of the linear map
is controlled by the number of message blocks.

3.2 Application to Reduced Grøstl

At the first sight, the attack on SMASH does not apply to Grøstl, because the
strong nonlinearity of P and Q makes it difficult to control the output differences
of both permutations. However, by having no differences in Q, we can use the
whole freedom of the message block to control the differential propagation in P .
Since we cannot control the differences completely, we need to apply a variation
of the technique on SMASH, to get a zero output difference at the compression
function.

5



Our attack will start from an arbitrary difference in the chaining variable
and convert it into an output difference equal to zero after 9 steps. The first
message block can be selected arbitrarily. The only requirement is a difference
in the message. The next 8 message blocks are fully controlled by the attacker
and must not contain any differences. Then, each of the 8 message blocks is used
to cancel one eighth of the differences at the output of the compression function
to result in a collision at the end (see Fig. 2).

3.3 Details of the Attack

To simplify the description of the attack we use the alternative description of
Grøstl given in Section 2.3. Since the last MixBytes transformation is moved
out of the compression function, the limited set of differences at the output are
more clearly visible.

The core of our collision attack on the reduced hash function are truncated
differential trails with only 8 active bytes at the output of P ′. Two full active
states are placed at the beginning and the number of active bytes for the 4-round
trail are given as follows:

64
r1−→ 64

r2−→ 8
r3−→ 8

r4−→ 8. (1)

For such a truncated trail, we can construct a pair following the trail with an
amortized complexity of 1 (even for a given input differences). We postpone the
detailed explanation how to do so until Section 3.4.

The high-level overview of the 4-round attack is shown in Fig. 2. In each
iteration, the differences in 8 bytes are canceled. Since this has a probability
2−64, we need to compute 264 pairs for P ′ (for the given input differences) to
find a right pair that result in the desired output difference. The attack can then
be summarized as follows:

1. Choose arbitrary message blocks m1,m
∗
1 and compute h′1. Repeat this until

one gets a full active state in h′1. Note that randomly selected m1,m
∗
1 produce

a full active state in h′1 with probability at least 3/4.
2. Use a right pair for P ′ following the trail of (1) to cancel 8 bytes of the

difference in the state h′2, cf. Fig. 2.
3. Use a right pair for P ′ for a rotated variant of the trail of (1) to cancel

another 8 bytes of the difference in the state h′3.
4. Repeat steps 3-4 in total 8 times until a collision has been found in h′9.

The complexity of the attack is 8 times finding a right pair for P ′ to iteratively
cancel the difference in the state h′2, . . . , h

′
9. We will show in the following section

that such a right pair can be constructed with complexity of 264, resulting in a
total attack complexity of 8 · 264 = 267.

6



AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH

MB

h′
8 m9 Q′(m9) h′

9

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH

MB

h′
7 m8 Q′(m8) h′

8

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH

MB

h′
6 m7 Q′(m7) h′

7

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH

MB

h′
5 m6 Q′(m6) h′

6

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH

MB

h′
4 m5 Q′(m5) h′

5

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH

MB

h′
3 m4 Q′(m4) h′

4

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH

MB

h′
2 m3 Q′(m3) h′

3

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH

MB

h′
1 m2 Q′(m2) h′

2

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH

MB

h′
0 m1 Q′(m1) h′

1

Fig. 2: Overview of the attack on 4 rounds.

7



3.4 Finding a Right Pair for P ′

In this section, we show how to find a right pair for P ′ reduced to 4 rounds
following the truncated differential trail in (1) using the rebound attack [15].
Note that the input difference is fixed by MB(h′i−1) and we target an output
difference such that 8 bytes of the difference in h′i can be canceled. Unlike the
classical rebound attack, the inbound phase is placed at the beginning and covers
the first two rounds, while the outbound phase covers the last two rounds.

Using super-box matches [6, 11, 12], we can find 264 pairs (solutions) for the
inbound phase with a complexity of 264 in time and memory. In the outbound
phase, all these pairs will follow the 4 round truncated differential trail with a
probability of 1 and one of these 264 pairs will match the desired output difference
(condition on 64 bits). In other words, using the rebound attack we can find a
right pair for P ′ with a complexity of 264 in time and memory.

AC
SH

SB
MB
AC
SB

SH
MB

AC
SB
SH
MB

AC
SB
SH

P ′0 T ∗1 T ∗2 P ′2 P ′3 P ′4

average 1 probability 1

Fig. 3: Truncated differential trail for P ′ used in the attack on 4 rounds.

In order to make the subsequent description of the rebound attack easier, we
swap the SubBytes and ShiftBytes transformation in the first round of permu-
tation P ′ (see Fig. 3). Note that this can always be done without affecting the
output of the round. Then, the attack can be summarized as follows:

1. Compute the input difference of the permutation (P ′0) forward to state T ∗1 .
2. Compute all 264 differences of state P ′2 backward to state T ∗2 and store them

in a list L.
3. Connect the single difference of state T ∗1 with the 264 differences of state T ∗2

using independent super-box matches. For each column c = {0, 1, . . . , 7} we
proceed as follows:
(a) Take all 264 values for column c of state T ∗1 and compute both values

and differences forward to column c of state T ∗2 .
(b) Check for matching 8-byte column differences in list L. Since we compute

264 differences forward and have 264 entries in L, we get 264 solutions
(differences and values) for the match. We update L to contain these 264

solutions.
4. For each column and thus, for the whole inbound phase the number of re-

sulting solutions is 264. The total complexity is 264 in time and memory.

8



Since the truncated differential trail in the outbound part (the last 2 rounds)
has probability 1, we get in total 264 pairs following the truncated differential
trail and one of these pairs is expected to be a right pair, i.e. result in the desired
output difference (condition on 64 bits).

4 Extending the Attack to 5 Rounds

In this section, we present a collision attack for the Grøstl-256 hash function
reduced to 5 rounds with a complexity of about 2120 and memory requirements
of 264. The attack is an extension of the attack on 4 rounds. However, since
the freedom in finding right pairs for the 5-round trail is limited, we need more
message blocks for the attack to succeed. In the attack, we use the following
sequence of active bytes in P ′ (cf. Fig. 4):

64
r1−→ 64

r2−→ 8
r3−→ 1

r4−→ 8
r5−→ 8. (2)

However, it is important to note that for this truncated differential trail (with
a fixed input difference) only 28 pairs exist, in contrast to 264 for the 4 round
trail. This complicates the application of the attack. The complexity of finding
these 28 pairs is 264 using the rebound attack, as described in Section 3.4.

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH
MB

AC
SB
SH

P ′
0 P ′

1 P ′
2 P ′

3 P ′
4 P ′

5

average 1 probability 2−56

Fig. 4: Truncated differential trail for P ′ used in the attack on 5 rounds.

4.1 Details of the Attack

Since we can construct only 28 pairs following the truncated differential trail,
but need to cancel a 64-bit difference at the output of the compression function,
each step of the attack succeeds only with a probability of 2−56. However, this
can be compensated for by using more message blocks in each step of the attack.
Then, the attack can be summarized as follows:

1. Use the rebound attack (cf. Section 3.4) to find 28 pairs following the trun-
cated differential trail. This has a complexity of 264 in time and memory.

2. For each of these 28 pairs check if it can be used to cancel the corresponding
8 bytes of differences in state h′i. This has a probability of 2−56.

9



3. If no such right pair exists, then choose arbitrarily one of the 28 pairs and
compute the state h′i. This generates a new starting point with new differ-
ences for the next iteration, while keeping the same bytes inactive.

4. After 256 new starting points, we expect to find a right pair with the desired
output difference.

Since we need 256 new starting points to cancel the differences in 8 bytes of the
state, the complexity of the attack is equivalent to 8 · 264+56 = 2123 compression
function evaluations. Note that the length of such a colliding message is about
8 · 256 = 259 blocks.

4.2 Reducing the Length of the Colliding Message Pair

Beside the large time and memory complexity of the attack, one might also
see the length of the colliding message pair as a limiting factor of the attack.
However, the length of the colliding message pair can be significantly reduced
by using a tree-based approach. Instead of choosing only one of the 28 pairs to
generate a new starting point, we can continue with all pairs in parallel. By using

a huge tree with 8 levels and 28 branches at each level, we get (28)
8

= 264 nodes
at level 8. One of these 264 nodes will have the desired output difference. This
way, the length of the colliding message pair can be reduced to 8 · 8 + 1 = 65
message blocks.

4.3 Improving the Complexity of the Attack

The complexity of the attack can be slightly improved by using denser charac-
teristics except when canceling the last 8 bytes. Instead of using a truncated
differential trail with a 8→ 1 transition in round 3 of the trail, we can use trun-
cated differential trails with 8 → 8, 8 → 7,. . . ,8 → 2 which have a probability
greater than 2−48. The complexity of the attack is then dominated by the last
iteration where we still need an 8 → 1 transition. This will improve the attack
complexity by a factor of 8 resulting in a total complexity of 2120 compression
function evaluations and 264 memory.

5 Collisions in the Chosen-Prefix Setting

In a collision attack on a hash function an attacker has to find two arbitrary
messages M and M∗ such that H(M) = H(M∗). However, in practice it might
be required that the two messages contain some meaningful information, such
that it can be used to practically compromise a cryptographic system. Such
an example are, for instance, collisions in the chosen-prefix setting, where an
attacker searches for a pair (M,M∗) such that

H(Mpre‖M) = H(M∗pre‖M∗) (3)

10



for a chosen-prefix (Mpre,M
∗
pre). In [24,25], it was shown that such a more pow-

erful attack exists for MD5. Moreover, the application of the attack to construct
colliding X.509 certificates and the creation of a rogue certification authority
certificate has been shown.

However, in most cases constructing such collisions is more complicated than
constructing (random) collisions. In the case of MD5 the collision attack in the
chosen-prefix setting has a complexity of 249, while the currently best collision
attack on MD5 has a complexity of 216. However, in Grøstl the collision attack
in the chosen-prefix setting has the same complexity as the collision attack. Due
to the generic nature of the collision attack, differences in the chaining variables
can be canceled efficiently (cf. Section 3).

6 Conclusion

In this work, we have provided new and improved cryptanalysis results for the
Grøstl hash function, which significantly improving on previously known results.
To be more precise, by using a new type of differential trail we were able to show
collision attacks on Grøstl for up to 5 rounds. The extension becomes possible
by considering differential trails spanning over more than one message block.

Moreover, due to the generic nature of our attack we can also construct
meaningful collisions, i.e. collisions in the chosen-prefix setting with the same
complexity. It has been shown in the past that such collisions might be exploited
for instance to construct colliding X.509 certificates.

Although our results do not threaten the security of Grøstl, we believe that
they will lead to a better understanding of the security margin of the hash
function.

Acknowledgments. The work has been supported in part by the Austrian
Government through the research program COMET (Project SeCoS, Project
Number 836628) and through the research program FIT-IT Trust in IT Systems
(Project SePAG, Project Number 835919), by the Secure Information Technol-
ogy Center-Austria (A-SIT), and by the Research Fund KU Leuven, OT/13/071.

References

1. C. Boura, A. Canteaut, and C. De Cannière. Higher-Order Differential Properties
of Keccak and Luffa. In A. Joux, editor, FSE, volume 6733 of LNCS, pages 252–
269. Springer, 2011.

2. J. Daemen and V. Rijmen. The Wide Trail Design Strategy. In B. Honary, editor,
IMA Int. Conf., volume 2260 of LNCS, pages 222–238. Springer, 2001.

3. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Springer, 2002.

4. European Network of Excellence in Cryptology. ECRYPT II SHA-3 Zoo. http:

//ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo.

11

http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo


5. P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger,
M. Schläffer, and S. S. Thomsen. Grøstl – a SHA-3 candidate. Submission to
NIST (Round 3), January 2011. Available online: http://www.groestl.info.

6. H. Gilbert and T. Peyrin. Super-Sbox Cryptanalysis: Improved Attacks for AES-
Like Permutations. In S. Hong and T. Iwata, editors, FSE, volume 6147 of LNCS,
pages 365–383. Springer, 2010.

7. K. Ideguchi, E. Tischhauser, and B. Preneel. Improved Collision Attacks on the
Reduced-Round Grøstl Hash Function. In M. Burmester, G. Tsudik, S. S. Magliv-
eras, and I. Ilic, editors, ISC, volume 6531 of LNCS, pages 1–16. Springer, 2010.

8. J. Jean, M. Naya-Plasencia, and T. Peyrin. Improved Rebound Attack on the
Finalist Grøstl. In A. Canteaut, editor, FSE, volume 7549 of LNCS, pages 110–
126. Springer, 2012.

9. J. Jean, M. Naya-Plasencia, and T. Peyrin. Multiple Limited-Birthday Distin-
guishers and Applications. In T. Lange, K. Lauter, and P. Lisonek, editors, Selected
Areas in Cryptography, LNCS. Springer, 2013. (in press).

10. L. R. Knudsen. SMASH - A Cryptographic Hash Function. In H. Gilbert and
H. Handschuh, editors, FSE, volume 3557 of LNCS, pages 228–242. Springer, 2005.

11. M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, and M. Schläffer. Rebound
Distinguishers: Results on the Full Whirlpool Compression Function. In M. Matsui,
editor, ASIACRYPT, volume 5912 of LNCS, pages 126–143. Springer, 2009.

12. M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, and M. Schläffer. The Re-
bound Attack and Subspace Distinguishers: Application to Whirlpool. Cryptology
ePrint Archive, Report 2010/198, 2010. http://eprint.iacr.org/.

13. M. Lamberger, N. Pramstaller, C. Rechberger, and V. Rijmen. Second Preimages
for SMASH. In M. Abe, editor, CT-RSA, volume 4377 of LNCS, pages 101–111.
Springer, 2007.

14. F. Mendel, T. Peyrin, C. Rechberger, and M. Schläffer. Improved Cryptanalysis
of the Reduced Grøstl Compression Function, ECHO Permutation and AES Block
Cipher. In M. J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini, editors, Selected
Areas in Cryptography, volume 5867 of LNCS, pages 16–35. Springer, 2009.

15. F. Mendel, C. Rechberger, M. Schläffer, and S. S. Thomsen. The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In O. Dunkelman, editor, FSE,
volume 5665 of LNCS, pages 260–276. Springer, 2009.

16. F. Mendel, C. Rechberger, M. Schläffer, and S. S. Thomsen. Rebound Attacks on
the Reduced Grøstl Hash Function. In J. Pieprzyk, editor, CT-RSA, volume 5985
of LNCS, pages 350–365. Springer, 2010.

17. National Institute of Standards and Technology. FIPS PUB 197: Advanced En-
cryption Standard. Federal Information Processing Standards Publication 197,
U.S. Department of Commerce, November 2001. Available online: http://www.
itl.nist.gov/fipspubs.

18. National Institute of Standards and Technology. Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3)
Family. Federal Register, 27(212):62212–62220, November 2007. Available online:
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf.

19. National Institute of Standards and Technology. SHA-3 Selection Announcement,
October 2012. Available online: http://csrc.nist.gov/groups/ST/hash/sha-3/
sha-3_selection_announcement.pdf.

20. T. Peyrin. Cryptanalysis of Grindahl. In K. Kurosawa, editor, ASIACRYPT,
volume 4833 of LNCS, pages 551–567. Springer, 2007.

21. T. Peyrin. Improved Differential Attacks for ECHO and Grøstl. In T. Rabin,
editor, CRYPTO, volume 6223 of LNCS, pages 370–392. Springer, 2010.

12

http://www.groestl.info
http://eprint.iacr.org/
http://www.itl.nist.gov/fipspubs
http://www.itl.nist.gov/fipspubs
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/sha-3_selection_announcement.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/sha-3_selection_announcement.pdf


22. Y. Sasaki, Y. Li, L. Wang, K. Sakiyama, and K. Ohta. Non-full-active Super-Sbox
Analysis: Applications to ECHO and Grøstl. In M. Abe, editor, ASIACRYPT,
volume 6477 of LNCS, pages 38–55. Springer, 2010.

23. M. Schläffer. Updated Differential Analysis of Grøstl, 2011. Available online:
http://www.groestl.info/.

24. M. Stevens, A. K. Lenstra, and B. de Weger. Chosen-Prefix Collisions for MD5
and Colliding X.509 Certificates for Different Identities. In M. Naor, editor, EU-
ROCRYPT, volume 4515 of LNCS, pages 1–22. Springer, 2007.

25. M. Stevens, A. Sotirov, J. Appelbaum, A. K. Lenstra, D. Molnar, D. A. Osvik,
and B. de Weger. Short Chosen-Prefix Collisions for MD5 and the Creation of a
Rogue CA Certificate. In S. Halevi, editor, CRYPTO, volume 5677 of LNCS, pages
55–69. Springer, 2009.

26. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In R. Cramer, editor, EUROCRYPT, volume 3494 of LNCS,
pages 1–18. Springer, 2005.

27. X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In V. Shoup,
editor, CRYPTO, volume 3621 of LNCS, pages 17–36. Springer, 2005.

28. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In R. Cramer,
editor, EUROCRYPT, volume 3494 of LNCS, pages 19–35. Springer, 2005.

29. S. Wu, D. Feng, W. Wu, J. Guo, L. Dong, and J. Zou. (Pseudo) Preimage Attack
on Round-Reduced Grøstl Hash Function and Others. In A. Canteaut, editor, FSE,
volume 7549 of LNCS, pages 127–145. Springer, 2012.

13

http://www.groestl.info/

	Collision Attack on 5 Rounds of Grøstl   

