Cryptanalysis and Improvement on Robust Three-Factor Remote User Authentication Scheme with Key Agreement for Multimedia System

Younsung Choi and Dongho Won*

Affiliation College of Information and Communication Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea

{yschoi, dhwon}@security.re.kr

ABSTRACT

A three-factor authentication combines biometrics information with user password and smart card to provide security-enhanced user authentication. An proposed user authentication scheme improved Das's scheme. But An's scheme is not secure against denial of service attack in login phase, forgery attack. Li et al. pointed out them and proposed three-factor remote user authentication scheme with key agreement. However, Li et al's scheme still has some security problem. In this paper, we present a cryptanalysis and improvement of Li et al.'s remote user authentication scheme.

KEYWORDS

Three-factor authentication, Key agreement scheme, Cryptanalysis, Smart card, Biometrics information

1 INTRODUCTION

Recently, internet technology is growing up. The system providing various multimedia service consists of many different servers around the world. Since various servers providing access for the user are usually greater than one, authentication schemes for multiple server environments are required for the high level of security. And the protection of digital data becomes a significant issue in networkbased remote application systems [1, 2].

Lamport [3] firstly proposed a password-based authentication scheme for communication via insecure channels but the server has to store a password table. Lamport's scheme has critical vulnerability on stolen-verifier attack. So, some researchers proposed the security enhanced

password authentication schemes but those are easily broken by dictionary attacks. Thus, a lot of research have combined a user's biometrics with a password and a smart card to design the remote user authentication scheme for multiserver [4, 5]. Hwang et al. proposed ElGamalbased remote user authentication scheme using smart card [6]. Kim et al. introduce an ID-based password authentication scheme using smart card and fingerprints, which is one of biometric information [7]. And Lin and Lai proposed a fingerprint-based user authentication scheme for multimedia systems [8]. Yang and Yang and Yoon and Yoo proposed biometric-based multiserver authentication schemes. Yang and Yang's scheme needs to perform exponential operations that have high computational cost. And He and Diabao was demonstrated that Yoon and Yoo's scheme is vulnerable to privileged insider attack, masquerade attack and stolen smart card attack. To solve these problems, Chuang and Chen proposed an anonymous multi-server authenticated key agreement scheme using smart card, password and biometrics [9-12]. Li et al. and Das indicated design flaws and security problem of Li and Hwang's scheme [13, 14]. In 2012, An pointed out the security problems of Das's scheme and proposed security enhanced user authentication scheme [15]. But Li et al analyzed the security of An's authentication scheme and figure out that An's scheme is not secure against various attack and proposed robust three-factor remote user authentication scheme with key agreement for multimedia system[1]. But Li et al.'s scheme still has various security problems. So we analyze the Li et al.'s scheme and point out the vulnerability of this scheme.

The remainder of this paper is organized as follows. Section 2 provides some related work for understanding this paper. And section 3 describes the Li et al.'s authentication scheme. In section 4, we performs cryptanalysis on Li et al.'s authentication scheme. And section 5 proposes the requirement for enhancing the security of authentication scheme. Section 6 concludes the paper.

2 RELATED WORKS

In this section, we introduce the related works to understand this paper.

2.1 Three-factor authentication

The three classes of human authentication factors are as follows, something you know (as secret password), something you have (as a secure device with a secret key, smartcard), and something you are (as a biometric). Two-factor authentication scheme requires the combination of two authentication factors (as password and smartcard). But it has various vulnerability like offline password attack and stolen smart card attack. To enhance security of authentication scheme, the three-factor authentication is introduced. In client-server system, it uses three -factor as user password, smartcard, and biometrics. Biometrics information are difficult to forge or distribute. And it cannot be lost or forgotten. Recently, various researchers study the efficiency and security of three-factor authentication schemes [16, 17].

2.2 Fuzzy extraction

Fuzzy extractor converts biometric information into random strings. So it makes it possible to apply cryptographic techniques for biometric security. It consist of a pair of efficient randomized procedures, *Gen* and *Rep*. They mean "generate" and "reproduce". In Li et al's scheme, Gen(B) = (R, P) and R = Rep(B', P) are used. Fuzzy extractor *Gen* generates *R* and *P* using user's biometric in registration phase. *R* is uniform and random string. *P* is helper string, so *R* can be same under the assistance of auxiliary information *P* even if inputted the biometric information is changed, so long as it maintain reasonably similar status with original biometric information. So fuzzy extraction is error-tolerant. Fuzzy extractor *Rep* reproduces the *R* using new inputted biometric information *B'* and *P* in login phase. To reproduce the same *R*, the metric space distances between *B* and *B'* have to meet the verification threshold [18, 19].

2.3 Elliptic curve cryptography

ECC is one of public-key cryptography and based on the algebraic structure of elliptic curves over finite fields. Also, elliptic curves are used in several integer factorization algorithms. The important benefit of ECC is a smaller key size, So ECC can maintains the same degree of security with the smaller key size than other public-key cryptography such as RSA, DH and DSA. Therefore, ECC is especially useful for wireless devices which are typically limited in terms of their CPU, power and network connectivity. Table 1 shows NIST guidelines on choosing the computationally equivalent symmetric and public key size [20].

Table 1 Equivalent symmetric and public key size					
Symmetric	ECC	RSA/DH/DSA			
80	160	1024			
112	224	2048			
128	256	3072			
192	384	7680			
256	512	15360			

Table 1 Equivalent symmetric and public key size

In ECC, there are three mathematical problems. Elliptic Curve Discrete Logarithm Problem (ECDLP), Elliptic Curve Computational Diffie-Hellman Problem (ECCDHP), Elliptic Curve Decisional Diffie-Hellman Problem (ECDDHP). There is no polynomial time algorithm to solve the ECDDHP, ECCDHP and ECDDLP with non-negligible probability. ECDLP means that given a point element Q in **G**, find an integer x, such that Q = xP, where xP indicates that the point P is added to itself for x times by the elliptic curves operation. ECCDHP means that given two point elements aP, bP in **G**, compute abP in **G**. ECDDLP means given three point elements aP, bP and cP in **G**, decide whether cP = abP.

2.4 An's authentication scheme

An's authentication scheme improved Das's scheme using security analysis. Das's scheme is not secure against user impersonation attack, sever masquerading attack, password guessing attack, and insider attack. Also it does not provide mutual authentication between the user and the server. So An proposed the security enhanced effective biometric-based remote user authentication scheme. But Li et al point out the security problems of An's authentication scheme. An's scheme is not secure against denial of service attack in login phase, forgery attack. And in An's scheme, wrong password cannot be quickly detected and it does not support session key agreement.

3. Review of Li et al.'s authentication scheme

To solve the security problems of An's scheme, Li et al proposes robust three-factor remote user authentication scheme with key agreement using ECC. It uses the fuzzy extractor method for biometric authentication in order to solve the hash function problem of An's scheme. Table 2 shows the notations used throughout this paper.

3.1 Registration phase

Before the legitimacy user (C_i) starts login and authentication phase, C_i and R should perform the registration phase as follows. Fig 1 describes the detailed steps of registration phase.

Table 2 Notation		
Symbol	Description	
R	Trusted registration center	
S_i	Server i	
C_i	User i	
A_i	An attacker	
ID_i	Identity of the user C_i	
PW_i	Password of the user C_i	
B_i	Biometric information of the user C_i	
Р	A point on elliptic curve $E_p(a, b)$ With order <i>n</i>	
$E_p(a, b)$	An elliptic curve defined on finite field F_p with prime order n	
h(·)	A secure hash function	
X_s	The master secret key of R and server	
R_c	A secret random number chosen by C_i	
R_s	A secret random number chosen by S_i	
	Concatenation operation	
\oplus	Exclusive or operation	

(1) C_i chooses user's ID_i , PW_i and generates random number K. Then, C_i inputs the user's personal biometric information B_i to the fuzzy extractor. C_i sends the user's ID_i , B_i , and RPW_i = $h(PW_i||K)$ to registration center R through secure communication channel.

C_i		R
0	PW_i andom number K $W_i = h(PW_i K)$	
	$\langle ID_i, B_i, RPW_i \rangle$	
	computes $Gen(B_i) = Gen(B_i) = f_i = h(I)$ $f_i = h(ID_i X_S) \oplus h(f_i $ $r_i = h(ID_i $	$ \begin{array}{l} D_i \ R_i \\ RPW_i \end{array} $
<	smart card $\langle e_i, f_i, r_i, P_i, h(\cdot) \rangle$	

stores K into the smart card

Fig. 1 Registration phase of Li et al.'s scheme

(2) *R* computes $Gen(B_i)$, f_i , e_i , and r_i using user's message and secret key *X*.

$$Gen(B_i) = (R_i, P_i)$$

$$f_i = h(ID_i || R_i)$$

$$e_i = h(ID_i || X_s) \bigoplus h(f_i || RPW_i)$$

$$r_i = h(ID_i || RPW_i)$$

(3) R stores $\langle e_i, f_i, r_i, P_i, h(\cdot) \rangle$ on smart card and send it to C_i through secure communication channel.

(4) C_i inputs K to the smart card

3.2 Login phase

Before C_i performs the authentication phase with S_i , C_i need to execute the following steps to generate a legitimacy login request message. Fig 2 shows the detail steps of login phase.

(1) C_i inserts C_i 's smart card into reader and inputs ID_i and PW_i . And then, C_i imprints B_i at specific device with fuzzy extractor and computes $R_i = Rep(B_i', P_i)$.

(2) Next, the smart card computes $f_i' = h(ID_i||R)$ and compare it with f_i which is stored in C_i 's smart card. If they are same, C_i passes the biometric verification. And then, smart card executes next steps. If not, login phase is terminated.

 C_i

 S_i

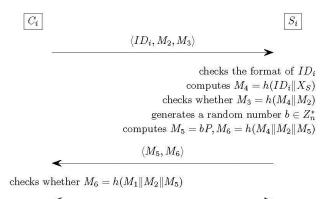
inputs ID_i and PW_i inputs biometric information B'_i gets $R_i = Rep(B'_i, P_i)$ computes $f'_i = h(ID_i || R_i)$, and checks $f'_i ? = f_i$ computes $RPW_i = h(PW_i || K)$, $r'_i = h(ID_i || RPW_i)$ checks whether $r'_i = r_i$ generates a random number $a \in Z_n^*$ computes $M_1 = e_i \oplus h(f'_i || RPW_i), M_2 = aP$ computes $M_3 = h(M_1 || M_2)$

 $\langle ID_i, M_2, M_3 \rangle$

Fig. 2 Login phase of Li et al.'s scheme

(3) The smart card calculates $RPW_i = h(PW_i||K)$, $r_i' = h(ID_i||RPW_i)$ and verifies whether r_i' is same to r which is stored in smart card. If they are same, C_i passes the ID_i and PW_i checking steps. And then, smart card executes the next steps. If not, the session is stopped.

(4) The smart card calculates $M_1 = e_i \bigoplus h(f_i'||RPW_i)$ and generates a random number a $\in \mathbb{Z}_n^*$. Also, the smart card computes $M_2 = aP$, $M_3 = h(M_1||M_2)$. Next, C_i sends login request message $< ID_i, M_2, M_3 > \text{to } S_i$.


3.3 Authentication phase

 S_i receives the C_i 's request message and then, S_i and C_i start to perform the steps to authenticate each other and establish session key using key agreement step. Fig 3 describes the detail steps of authentication phase.

(1) S_i checks and verifies the format of ID_i .

(2) If the ID_i is correct, S_i computes $M_4 = h(ID_i||X_s)$ and verifies whether $M_3 = h(M_4||M_2)$. If they are same, S_i accepts the C_i 's login message and confirms the validity of C_i . If not, the session is terminated.

(3) S_i generates a random number $b \in Z_n^*$ and calculates $M_5 = bP$, $M_6 = h(M_4||M_2||M_5)$. And then, S_i submits the message $\langle M_5, M_6 \rangle$ to C_i for mutual authentication.

 $SK = h(aM_5) = h(bM_2) = h(abP)$

Fig. 3 Authentication phase of Li et al.'s scheme

(4) When C_i receives the reply message $\langle M_5, M_6 \rangle$, C_i verifies whether $M_6 = h(M_1||M_2||M_5)$. If they are same, S_i is authenticated by C_i . S_i and C_i are authenticated with each other. So this scheme provides the mutual authentication. Otherwise, this session is terminated.

(5) C_i and S_i can compute the session key using shared information and message.

$$SK = h(aM_5) = h(bM_2) = h(abP)$$

This session key is used for the future confidentiality communication

3.4 Password change phase

When C_i wants to change user's ID_i and PW_i with a new password PW_i^{new} , the user can easily change user's password. And also, C_i can be finished the password change phase without assistance of registration center R. So C_i can update the password freely.

(1) C_i inserts C_i 's smart card into a card reader and inputs ID_i and PW_i . And then, user requests to change user's password. C_i imprints user's biometric information B_i at specific device. C_i computes $R_i = Rep(B_i', P_i)$ using fuzzy extractor. C_i calculates $f_i' = h(ID_i||R_i)$ and compares f_i stored in the smart card. If f_i and f_i' are equal, C_i passes the biometric verification. The smart card calculates $RPW_i = h(PW_i||K)$, r_i' $= h(ID_i||RPW_i)$ and then, checks whether r_i ' and r_i are same. If they are no same, password change phase is terminated. Otherwise, the user can input a new password PW_i^{new} .

(2) The smart card computes RPW_i ', e_i ' and r_i '.

 $RPW_i' = h(PW_i^{new}||K)$ $e_i' = e_i \bigoplus h(f_i||RPW_i') \bigoplus h(f_i||RPW_i')$ $r_i' = h(ID_i||RPW_i')$

(3) The smart card replaces e_i and r_i by using e_i ' and r_i '. And then, password change phase is completed.

4 Cryptanalysis of Li et al's scheme

This section presents the cryptanalysis about offline password attack, authentication without biometrics, denial-of-service and Insider attack

4.1 Offline password attack

Various studies pointed out that the confidential information stored in all existing smart cards could be extracted by physically monitoring its power consumption. Therefore, if the user lost his smart card, all information in the smart card could be revealed by attacker [21-23]. In Li et al.'s scheme, attacker can figure out the user's password using revealed information. Fig 4 describes the detailed steps of off-line password attack on Li et al.'s scheme.

Attacker

obtains ID_i in communication between C_i and S_i gets(steals) user's smart card obtains information from smart card using SPA and DPA \rightarrow gets $e_i, f_i, r_i, P, h(\cdot)$ and KAttacker knows $r_i, h(\cdot), ID_i$ and K $\rightarrow r_i = h(ID_i||h(PW_i||K))$ attacker don't know only user's password attacker executes off-line password attack \rightarrow figures out user's password PW_i **Fig. 4 Offline password attack** In Li et al.' scheme, the smart card includes various information for the login and authentication between C_i and S_i . Firstly, the attacker monitors the communication between C_i and S_i . And then, attacker obtains the user

 ID_i and steal the user's smart card. The smart card for C_i stores e_i , f_i , r_i , P, $h(\cdot)$, and K. The attacker can obtain them using attacks such as simple power analysis (SPA), differential power analysis (DPA). After the attacker combines these information (especially r_i , $h(\cdot)$, ID_i , K), the attacker can make the following formula.

$$r_i = h(ID_i||h(PW_i||K))$$

In this formula, attack don't know only user's password PW_i . So attacker can executes off-line password attack using dictionary attack, brute-force attack, rainbow table etc. If PW_i is not long enough, the attacker can figure out PW_i . It is possible for the attacker to abuse the PW_i in a variety of ways because the user generally set up the similar password.

4.2 Authentication without biometrics

In Li et al's authentication scheme, legitimacy user needs to know user's ID_i and password and to have the user's biometric information and

Attacker

smart card. Therefore, when all of three-factor $(ID_i/PW_i, B_i, \text{smart card})$ are confirmed, user can authenticated with server. But Li et al's scheme has vulnerability. If an attacker get or steal user's smart card, the attacker can be authenticated to server without the user's biometrics information. Fig 5 describes the detailed steps of authentication without the biometrics on Li et al.'s scheme.

An attacker can get user ID_i in the public communication between C_i and S_i . And as we discussed in section 4.1, the attacker can figure out user password PW_i if the attacker get the user's smart card. The attacker can perform the login and authentication phase using only ID_i and PW_i without B_i . It is reason that B_i is not

 S_i

obtains ID_i in communication between C_i and S_i gets(steals) user's smart card obtains information from smart card using SPA and DPA \rightarrow gets $r_i, e_i, h(\cdot), ID_i, K, P, h(\cdot)$ attacker can produce this formula $\rightarrow r_i = h(ID_i || h(PW_i || K))$ attacker don't know only user's password attacker executes off-line password attack \rightarrow figures out user's password PW_i \rightarrow attacker knows ID_i and PW_i generates a random number $a_A \in Z_n^*$ computes $RPW_i = h(PW_i || K)$ computes $M_{A1} = e_i \oplus h(f_i || RPW_i), M_{A2} = a_A P$ computes $M_{A3} = h(M_{A1} || M_{A2})$

 $\langle ID_i, M_{A2}, M_{A3} \rangle$

checks the format of ID_i computes $M_4 = h(ID_i || X_S)$ checks whether $M_3 = h(M_4 || M_{A2})$ generates a random number $b \in Z_n^*$ computes $M_5 = bP, M_6 = h(M_4 || M_{A2} || M_5)$

 $\langle M_5, M_6 \rangle$

checks whether $M_6 = h(M_{A1} || M_{A2} || M_5)$

$$SK = h(a_A M_5) = h(bM_{A2}) = h(a_A bP)$$

Fig. 5 Authentication without biometrics

necessary to make the message for login and authentication between C_i and S_i . The attacker can compute RPW_i using PW_i and K. K, e_i , f_i and P are stored information in smartcard.

$$RPW_i = h(PW_i||K)$$

Using RPW_i , e_i and f_i , the attacker can M_{AI} ,

$$M_{A1} = e_i \bigoplus h(f_i || RPW_i)$$

And then, the attacker generates a random number a_A and computes M_{A2} using a_A and P,

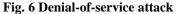
$$M_{A2} = a_A P$$

Using M_{A1} and M_{A2} , the attacker computes M_{A3} = $h(M_{A1}||M_{A2})$ and send IDi, M_{A1} and M_{A3} to S_i S_i checks and verify the message whether it is correct or not. S_i cannot find out that the message is made by the attacker. So the attacker is authenticated by S_i . And then, computes M_5 and M_6 . Next, S_i send M_5 and M_6 to the attacker. The attacker make session key SK using this message.

$$SK = h(a_A M_5)$$

Finally, the attacker is authenticated with S_i and can communicate with S_i using SK.

4.3 Denial-of-service


In Li et al.'s protocol, S_i only checks user ID_i and M_3 . When S_i verifies the message M_3 , S_i uses only ID_i , X_s and M_2 . So, S_i cannot check whether $\langle ID_i, M_2, M_3 \rangle$ is previous message or not. Thus, after the attacker monitors sniffing attack and obtains ID_i , M_2 , and M_3 , the attacker can make a lots of same message and send them to S_i . It makes server S_i denial-of-service. Fig 6 describes the detailed steps of denial-of-service on Li et al.'s scheme. When Si receives A_1 , A_2 , $A_3...$ and A_n , S_i perform various action per each message. S_i performs generating the random number once and the scalar multiplication once. A

executes sniffing attack in public communication \rightarrow obtains ID_i, M_2, M_3 betweent C_i and S_i

$A_1 = \langle ID_i, M_2, M_3 \rangle$	->
$A_2 = \langle ID_i, M_2, M_3 \rangle$	
$A_3=\langle ID_i,M_2,M_3 angle$	
$A_n = \langle ID_i, M_2, M_3 \rangle$	_

 $|S_i|$

checks the format of ID_i
computes $M_4 = h(ID_i X_S)$
checks whether $M_3 = h(M_4 M_2)$
generates a random number $b\in Z_n^*$
computes $M_5 = bP, M_6 = h(M_4 M_2 M_5)$
Per 1 attacker's login messages, S_i executes
\rightarrow generating random number [once]
$ ightarrow { m scalar}$ point multiplication [once]
\rightarrow hash function [3 times]
\rightarrow generating reply message [once]
$\langle M_5, M_6 angle$

And S_i executes a one-way hash function 3 times and generates reply message once. The one-way hash function is less important for S_i , but generating a random number and executing the scalar multiplication requires to consume a lot of computational cost of the server.

4.4 Insider attack

In Li et al, an insider attacker of the server S_i can know secret information X_s and ID_i using S_i 's database and obtain ID_i in public communication between C_i and S_i . Using these information, the attacker can authenticated with all of server, which associated with registration center R. Fig 7 describes the detailed steps of insider attack on Li et al.'s scheme An inside attack can make login message $\langle ID_{ci}, M_2, M_3 \rangle$ using ID_{ci} , X_s , P, $h(\cdot)$, and random number a generated by attacker. ID_{ci} means one of legitimacy user's ID. The inside attacker can compute $M_1 = e_i \bigoplus h(f_i \ || RPW_i)$ using ID_c and X_s because $M_1 = h(ID_c || X_s)$. $M_1 = e_i \bigoplus h(f_i' || RPW_i) = h(ID_c || X_s)$ And the attacker generates random number a and computes M_2 and M_3 . Next, the attacker send $\langle ID_{Ci}, M_2, M_3 \rangle$ to any server like S_{S1} and S_{S2} , which the attacker wants to login and authenticate.

S_i (insider attacker)

ŀ

When S_{S1} and S_{S2} receive $\langle ID_{Ci}, M_2, M_3 \rangle$, they checks and verify the accuracy of message but they cannot figure out that the message is made by the inside attacker. So S_{S1} and S_{S2} compute < M^{S1}_{5}, M^{S1}_{6} and $< M^{S2}_{5}, M^{S2}_{6}$ and send to the inside attacker. The attacker can calculate the session key, which is used for communication

 S_{S_1}

knows
$$X_S$$
 and ID_{C_1} using S'_1 diabase
for obtains ID_{C_1} in public communication
computes $M_1 = h(ID_{C_1}|X_S), M_2 = aP$
computes $M_2 = h(M_1|M_2)$

$$(ID_{C_1}, M_2, M_3)$$

$$(ID_{C_1}, M_2, M_3)$$

$$(M_2^{S_1} - h(M_1^{S_1}|M_2||M_2^{S_1})$$

$$(M_2^{S_1} - h(M_2^{S_1}) - h(h_2, M_2) - h(ab_3, P)$$

$$(ID_{C_1}, M_2, M_3)$$

$$(ID_{C_1}, M_2, M_3)$$

$$(ID_{C_2}, M_2, M_3)$$

$$(M_2^{S_1} - h(M_1|M_2||M_2^{S_1})$$

$$(M_2^{S_1}, M_2^{S_1}) - h(h_3, M_2) - h(ab_3, P)$$

$$(ID_{C_2}, M_2, M_3)$$

$$(M_2^{S_1} - h(M_1|M_2||M_2^{S_1}) - h(h_3, M_2) - h(ab_3, P)$$

$$(ID_{C_2}, M_2, M_3)$$

$$(ID_{C_1}, M_2, M_3)$$

 $\rightarrow\rightarrow$ insider attacker is authenticated with all of the server

Fig. 7 Insider attack

with the servers. The session key between the attacker and S_{S1} is as follows,

$$SK = h(aM^{S1}_5P) = h(b_{S1}M_2P) = h(abS1P)$$

The session key between the attacker and S_{S2} is as follows,

$$SK = h(aM^{S2}_{5}P) = h(b_{S2}M_{2}P) = h(ab_{S2}P)$$

Thus, inside attacker can login and authenticate with any server including S_1 and S_2 .

4.5 Absence of anonymity

To provide secure communication between Ci and Si, anonymity is a desirable security feature in addition to providing secure user identification and key agreement during a user's login and authentication procedure.

5 Requirement for enhancing security

Li et al's proposes efficient remote user authentication scheme using ECC and hash function. But it has various vulnerability, so it is necessary to enhance the security of scheme. To resist off-line password attack, all formulas related with PW_i needs to be protected by B_i . Otherwise, PW_i and Bi need to be used together as follows,

$r_i = h(ID_i||h(PW_i||B_i||K))$

To solve authentication without biometric problem, it is necessary to use B_i for making the message of login and authentication between C_i and S_i . Otherwise, it is needed that M_2 , M_3 and SK are made by not only user ID_i and PW_i but also B_i like as follows. To resist denial-ofservice, S_i has to check the freshness of user's messages. Thus, it is necessary to add current timestamp to the login and authentication message of the users. To solve insider attack, it is necessary to add the secret information the only legitimate user can know or compute. Otherwise, user C_i has to know the secret information, which cannot be known or computed by server S_i .

6 Proposed scheme

In this section, to solve Li et al's security problem, we propose security enhanced robust three-factor remote user authentication scheme with key agreement for multimedia system.

6.1 Registration phase

The registration procedure of proposed scheme is described in Fig. 8

C_i	R
chooses ID_i, PW_i	
inputs B_i	
generates a random number K	
computes $RPW_i = h(PW_i K)$	
$\langle ID_i, B_i, RPW_i \rangle$	
computes $Gen(B_i) =$	(R_i, P_i)
$f_i = h($	$ID_i \ R_i)$
$e_i = h(ID_i \ X_S) \oplus h(f_i \ RPW_i)$	$\oplus h(R_i)$
$r_i = h(ID_i)$	$ RPW_i\rangle$
$z_i = h(R_i)$	$)\oplus h(Y)$

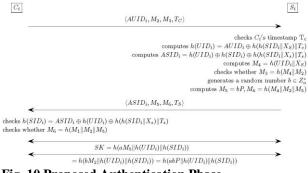
smart card $\langle e_i, f_i, r_i, z_i, P_i, h(\cdot) \rangle$

stores K into the smart card Fig. 8 Proposed Registration phase

6.2 Login phase

The Login procedure of proposed scheme is described in Fig. 9

C_i	S_i
inputs UID_i and PW_i	
inputs biometric information B'_i	
gets $R_i = Rep(B'_i, P_i)$	
computes $f'_i = h(UID_i R_i)$, and checks $f'_i ? = f_i$	
computes $RPW_i = h(PW_i K), \ r'_i = h(UID_i RPW_i)$	
checks whether $r'_i = r_i$	
generates a random number $a \in Z_n^*$	
computes $h(Y) = z_i \oplus h(R_i)$	
computes $AUID_i = h(UID_i h(h(SID_i X_s) T_c)$	
computes $M_1 = e_i \oplus h(f_i' \ RPW_i) \oplus h(R_i)$	


computes $M_2 = aP$ computes $M_3 = h(M_1 || M_2)$

 $\langle ID_i, M_2, M_3 \rangle$

Fig. 9 Proposed Login Phase

6.3 Authentication phase

The Authentication procedure of proposed scheme is described in Fig. 10

6.4 Password change phase

The password change procedure of proposed scheme is described in Fig. 10

User (U)

inserts smart card enters UID_i, PW_i, B'_i gets $R_i = Rep(B'_i, P_i)$ computes $f'_i = h(ID_i || R_i)$, and checks $f'_i ? = f_i$ computes $RPW_i = h(PW_i || K), r'_i = h(ID_i || RPW_i)$ checks whether $r'_i = r_i$ enters PW_i^{new} computes $RPW'_i = h(PW_i^{new} || K)$ computes $RPW'_i = h(PW_i^{new} || K)$ computes $e'_i = e_i \oplus h(f_i || RPW_i) \oplus h(f'_i || RPW_i)$ computes $r'_i = h(UID_i || RPW'_i)$ replaces $r \leftarrow r', e \leftarrow e'$

7 Conclusion

To improve An's authentication scheme, Li et al. proposed robust three-factor remote user authentication scheme with key agreement for multimedia system using ECC, but it has various problem. In this paper, we analyze the authentication scheme of Li et al. and executes cryptanalysis of security vulnerability. Last, we introduce requirement of authentication scheme for enhancing security and proposed security enhanced robust three-factor remote user authentication scheme with key agreement and anonymity

7 REFERENCES

- [1] Li, Xiong, et al. "Robust three-factor remote user authentication scheme with key agreement for multimedia systems." Security and Communication Networks (2014).
- [2] Liao, Yi-Pin, and Shuenn-Shyang Wang. "A secure dynamic ID based remote user authentication scheme for multi-server environment." Computer Standards & Interfaces 31.1 (2009): 24-29.
- [3] Lamport, Leslie. "Password authentication with insecure communication." Communications of the ACM 24.11 (1981): 770-772.
- [4] Chang, Chin-Chen, and Jung-San Lee. "An efficient and secure multi-server password authentication scheme using smart cards." Cyberworlds, 2004 International Conference on. IEEE, 2004.
- [5] Khan, Muhammad Khurram, and Jiashu Zhang. "An efficient and practical fingerprint-based remote user authentication scheme with smart cards." Information Security Practice and Experience. Springer Berlin Heidelberg, 2006. 260-268.
- [6] Hwang, Min-Shiang, and Li-Hua Li. "A new remote user authentication scheme using smart cards." IEEE Transactions on Consumer Electronics 46.1 (2000): 28-30.
- [7] Kim, Hyun-Sung, Sung-Woon Lee, and Kee-Young Yoo. "ID-based password authentication scheme using smart cards and fingerprints." ACM SIGOPS Operating Systems Review 37.4 (2003): 32-41.
- [8] Lin, Chu-Hsing, and Yi-Yi Lai. "A fingerprint-based user authentication scheme for multimedia systems." Multimedia and Expo, 2004. ICME'04. 2004 IEEE International Conference on. Vol. 2. IEEE, 2004.
- [9] Yang, Dexin, and Bo Yang. "A biometric passwordbased multi-server authentication scheme with smart card." Computer Design and Applications (ICCDA), 2010 International Conference on. Vol. 5. IEEE, 2010.
- [10] Yoon, Eun-Jun, and Kee-Young Yoo. "Robust biometrics-based multi-server authentication with key agreement scheme for smart cards on elliptic curve cryptosystem." The Journal of Supercomputing (2010): 1-21.
- [11] He, Debiao. "Security flaws in a biometrics-based multi-server authentication with key agreement scheme." IACR Cryptology ePrint Archive 2011.

- [12] Chuang, Ming-Chin, and Meng Chang Chen. "An anonymous multi-server authenticated key agreement scheme based on trust computing using smart cards and biometrics." Expert Systems with Applications 41.4 (2014): 1411-1418.
- [13] Li, Xiong, et al. "Cryptanalysis and improvement of a biometrics-based remote user authentication scheme using smart cards." Journal of Network and Computer Applications 34.1 (2011): 73-79.
- [14] Das, Ashok Kumar. "Analysis and improvement on an efficient biometric-based remote user authentication scheme using smart cards." Information Security, IET 5.3 (2011): 145-151.
- [15] An, Younghwa. "Security analysis and enhancements of an effective biometric-based remote user authentication scheme using smart cards." BioMed Research International 2012 (2012).
- [16] Pointcheval, David, and Sébastien Zimmer. "Multifactor authenticated key exchange." Applied Cryptography and Network Security. Springer Berlin Heidelberg, 2008.
- [17] Abu-Nimeh, Saeed. "Three-Factor Authentication." Encyclopedia of Cryptography and Security. Springer US, 2011. 1287-1288.
- [18] Dodis, Yevgeniy, Leonid Reyzin, and Adam Smith. "Fuzzy extractors: How to generate strong keys from biometrics and other noisy data." Advances in cryptology-Eurocrypt 2004. Springer Berlin Heidelberg, 2004.
- [19] Boyen, Xavier. "Reusable cryptographic fuzzy extractors." Proceedings of the 11th ACM conference on Computer and communications security. ACM, 2004.
- [20] Muthukuru, Jayabhaskar, and Bachala Sathyanarayana. "A Survey of Elliptic Curve Cryptography Implementation Approaches for Efficient Smart Card Processing." Global Journal of Computer Science and Technology 12.1 (2012).
- [21] Kocher, P.; Jaffe, J.; Jun, B. Differential power analysis. the 19th Annual International Cryptology Conference on Advances in Cryptology, 388-397
- [22] Messerges, T. S.; Dabbish, E. A.; Sloan, R. H. Examining smart-card security under the threat of power analysis attacks. Computers. IEEE Transactions on Computers, 2002, 51(5), 541-552
- [23] Joye, Marc, Pascal Paillier, and Berry Schoenmakers. "On second-order differential power analysis." Cryptographic Hardware and Embedded Systems-CHES 2005. Springer Berlin Heidelberg, 2005. 293-308.