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Abstract. Traditional cryptographic hash functions allow one to easily check whether the original
plaintexts are equal or not, given a pair of hash values. Probabilistic hash functions extend this concept
where given a probabilistic hash of a value and the value itself, one can efficiently check whether the
hash corresponds to the given value. However, given distinct probabilistic hashes of the same value it
is not possible to check whether they correspond to the same value. In this work we introduce a new
cryptographic primitive called Relational Hash using which, given a pair of (relational) hash values,
one can determine whether the original plaintexts were related or not. We formalize various natural
security notions for the Relational Hash primitive - one-wayness, twin one-wayness, unforgeability and
oracle simulatibility.
We develop a Relational Hash scheme for discovering linear relations among bit-vectors (elements
of Fn2 ) and Fp-vectors. Using the linear Relational Hash schemes we develop Relational Hashes for
detecting proximity in terms of hamming distance. The proximity Relational Hashing schemes can
be adapted to a privacy preserving biometric identification scheme, as well as a privacy preserving
biometric authentication scheme secure against passive adversaries.
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1 Introduction

Traditional cryptographic hash functions, like MD-5 and SHA-3, enable checking for equality while hiding
the plaintexts. Since these are deterministic functions, this just involves checking if the hashes are identical.
The notion of probabilistic hash functions was developed in [Can97,CMR98]. In this setting, the computa-
tion of hashes is randomized and thus no two independently generated hashes of the same plaintext look
same. However, given the plaintext and a hash, it can be checked efficiently if the hash corresponds to the
plaintext. Probabilistic hashes can provably enable strong privacy guarantees in standard model, like oracle
simulatability, which deterministic hash functions cannot provide. Oracle simulatability captures the notion
that a hash reveals nothing about the value except enabling equality checking. This typically has come at
the price of efficiency. In addition, the property of compression, which is desirable for deterministic hash
functions, is no longer at the forefront.

However, probabilistic hashes suffer from the drawback that for verification of equality the plaintext has
to be provided in the clear, which deterministic hashes do not require. Probabilistic hashes do not allow
checking whether the plaintexts are equal, given two distinct hash values. This drawback can preclude use of
probabilistic hashes in certain scenarios where it is desirable to hide the plaintext from the verifier as well.
For example, consider a scenario where password equality is to be checked by a server. If the server uses
deterministic hashes, then only the hash of the password could be transmitted to the server. However, with
probabilistic hashes, the actual password has to be sent to the server for verification1. Therefore question
arises whether we can build probabilistic hashes which allow verification given two distinct hashes of the
plaintexts.

? This is the full version of the article “Relational Hash: Probabilistic Hash for Verifying Relations, Secure against
Forgery and More”, which appears in proceedings of CRYPTO 2015 [MR15], c© IACR 2015.

1 We need additional protocol steps to ensure security against replay attacks and so on. However, for now, we focus
on the core property of the hashes themselves.



So suppose we had a probabilistic hash function ph which allows efficient checking of equality of plaintexts
x1 and x2, given ph(x1, r1) and ph(x2, r2), where the ri’s are randomnesses used for hashing. Now we run
into a different problem. The existence of such a functionality implies that a secrecy property called 2-value
perfect one-wayness (2-POW) [CMR98] would no longer hold. This property states that the distribution
of two probabilistic hashes of the same value is computationally indistinguishable from the distribution of
probabilistic hashes of two independent values. The property trivially breaks down if we have an efficient
mechanism for checking if two hashes correspond to the same plaintext. In addition to being a strong security
notion, this property also implies oracle simulatability [CMR98]. So now the question is:

How do we develop probabilistic hashes which enable equality checking just given hashes but at the
same time preserve 2-value perfect one-wayness?

Our Contributions. We propose a cryptographic primitive called Relational Hash which attempts to model
the question above. One of the key ideas is to have distinct, but related, hashing systems for the individual

co-ordinates, i.e., have two probabilistic hash functions ph1 and ph2 and enable checking of x1
?
= x2, given

ph1(x1, r1) and ph2(x2, r2). Having two hashing systems leaves open the possibility that they can individ-
ually be 2-POW. Extending equality, we define Relational Hash with respect to a relation R, such that
given two hashes ph1(x1, r1) and ph2(x2, r2), we can efficiently determine whether R(x1, x2) holds. It may
also be desirable to compute ternary relations R′ on x1, x2 and a third plaintext parameter z, so that given
ph1(x1, r1), ph2(x2, r2) and z, we can efficiently determine whether R′(x1, x2, z) holds. For any Relational
Hash primitive, we formalize a few natural and desirable security properties, namely one-wayness, unforge-
ability, twin one-wayness and oracle simulatability. The notion of oracle simulatability was introduced in
[Can97,CMR98] for the equality relation. Here we extend this concept for arbitrary relations.

For the equality relation, there is a simple construction which extends Canetti’s scheme in [Can97].
While the [Can97] probabilistic hash on a plaintext m and randomness r is (gr,grm), one can consider
bilinear groups G1 and G2 with a pairing e : G1 × G2 → GT and define ph1(x1, r1) := (gr1 ,gr1x1) and
ph2(x2, r2) := (hr2 ,hr2x2) with g ∈ G1 and h ∈ G2. Plaintext equality of two hashes (c1, c2) and (d1, d2)

of different types can be done as: e(c1, d2)
?
= e(c2, d1). We do not develop this construction formally in the

body of the paper, additionally relegating some proof sketches to Appendix I2.
For hamming proximity relations among vectors, especially low characteristic ones, the constructions turn

out to be far more sophisticated and form the main thrust of our paper. Towards that end, we first develop
a construction for a linear Relational Hash scheme. In our scheme, for any x, y, z ∈ Fn2 , given just the hashes

of x and y and the plaintext z, it is possible to verify whether x+ y
?
= z. A linear Relational Hash scheme is

also trivially an equality Relational Hash scheme, by taking z to be all 0’s. We also extend our construction
to verify linear relations over Fnp . We show that our linear Relational Hash constructions satisfy all four
security notions: one-wayness, unforgeability, twin one-wayness and oracle simulatability. Next we show that
using a linear Relational Hash and error correcting codes it is possible to build Relational Hashing schemes
which can verify proximity relations and enjoy one-wayness, unforgeability and a stronger version of twin
one-wayness. It remains open to build a proximity Relational Hash scheme which is oracle simulation secure.

Application. A motivating application of the proximity relation hash primitive is a privacy preserving bio-
metric identification scheme. Consider a scenario where there is a database of fingerprints of known criminals.
The database should not reveal the actual fingerprints, even internally. An investigative officer might want
to check, whether a candidate fingerprint digest matches with the database. Using a Relational Hash scheme
for proximity relation, one can build a biometric identification scheme which guarantees complete template
privacy (to the server, as well as to the investigating officer). While storing the fingerprints in the database,
hashes of type 1 are used. On the other hand, the officer gets access to type 2 hash of the fingerprint template.
The Relational Hash scheme will guarantee that, with access to a relational secret key the server can only
verify whether the original templates are close to each other or not. To construct authentication schemes,
rather than identification schemes, additional protocol layers are needed to address replay attacks and so

2 We thank Mehdi Tibouchi for observing this example.
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on. Merely providing a type 2 hash of the challenge biometric template does not suffice as that can easily
be replayed. We leave open the construction of such protocols building on the Relational Hash primitive.
However, we show that for the case of a passive adversary attempting to recover the biometric template, a
Relational Hash can be seen as a biometric authentication mechanism (Section 4).

Relation to Fuzzy Extractor/ Secure Sketch based schemes. Existing biometric authentication schemes, e.g.
fuzzy vault [JS02], fuzzy commitment [JW99] and secure sketch [DRS04,DS05] based schemes guarantee
template privacy only during the registration phase. Boyen solved this issue in [Boy04], by constructing a
“Zero Storage remote biometric authentication scheme”, which provides complete template privacy. Boyen’s
construction only assumes that the biometric template comes from a high entropy distribution. Compared
to that, we only achieve a passive adversary secure biometric authentication scheme assuming uniform
distribution of biometric templates. On the positive side, our biometric authentication scheme is much
simpler, in particular during authentication the client generates the authentication token on its own, without
requiring any intervention from the server. Moreover, for our primary application - the non-interactive
biometric identification mechanism, the advantage becomes more apparent. It is not readily clear whether
one can build such identification mechanism based on fuzzy extractors/ secure sketches.

Relation to Multi-Input Functional Encryption (MIFE). Goldwasser et al proposed the concept of MIFE
in [GGG+14], which is a functional encryption which enables the computation of f(x1, x2, · · · , xn) given
the encryptions of x1, x2, · · · , xn. The paper [GGG+14] is a merge of two independent and concurrent
works [GGJS13,GKL+13]. While a Relational Hash scheme for a relation R can be considered an MIFE for
evaluating the relation R, there are several important differences between the MIFE work of [GGG+14] and
Relational Hash. We only consider the fully public key model where encryption keys for all the co-ordinates
are given to the adversary.

We first remark that an indistinguishability based functional encryption security definition (FE-IND) for
the equality relation is a rather trivial notion. The FE-IND notion asks the adversary to query two sets of
n-tuples, and the challenger randomly selects which set to encrypt. We observe that even a standard CPA
secure public-key encryption scheme satisfies this notion, where the functional key is simply the secret key
for decryption. The FE-IND security notion is satisfied for equality because the restriction on the adversary’s
queries forces it to choose equal sets of messages to the challenger. So in the end the adversary has information
theoretically no clue about which of the messages was chosen for encryption by the challenger. In a Relational
Hash scheme, even when given the relational key, the encryption of the plaintexts is required to be at least
one-way secure. No such guarantee is provided by the standard CPA scheme, since giving the full decryption
key fully exposes the plaintext to the functional key recipient.

Thus we have to resort to the simulation based security notion (FE-SIM) for any meaningful assurance
of security. The only possibility result in the fully public key setting is given by [GKL+13], who give a
construction of FE-SIM secure encryption scheme for a class of functionalities they call “learnable” functions.
They also prove that if an FE-SIM secure scheme exists for a class of functionalities, then this class must be
learnable. Briefly, a 2-ary function f(., .) is learnable if, given a description of f and oracle access to f(x, .),
one can output the description of a function that is indistinguishable from fx(.), which is the restriction of
f on fixing the first input to x. This has to hold true with high probability even if the distinguisher is given
x. One can immediately see that equality is not a learnable function. When x comes from high min-entropy
distribution, it is not possible to learn the value of x efficiently by querying f(x, .) on various inputs. A
distinguisher can immediately thwart any such ‘learnt’ function by simply testing it on x.

Thus these work(s) effectively show that there is no FE-SIM secure functional encryption scheme for the
function testing equality. How does our construction get around this impossibility? The reason is that the
security properties that we consider: one-wayness and unforgeability do not imply FE-SIM. The property
closest to FE-SIM is oracle simulatability, but it differs from FE-SIM in that the adversary does not choose
the messages to be encrypted, rather they are sampled from a distribution and only their encryption is given
to the adversary.
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Relation to Property Preserving (Tagged) Encryption (PPE). PPE [PR12] is a special case of MIFE in the
symmetric key setting. PPE offers IND based security guarantees, where attacker queries are constrained
such that the preserved property values cannot be trivially used for distinguishing purposes. Moreover, PPE
involves a secret key, whereas for Relational Hashes all the keys are public. For our public key case, the
trivial construction which makes the functional key the same as the decryption key, is IND secure and does
not provide any meaningful security guarantee. On the other hand, for the symmetric key PPE schemes,
chosen message security is non-trivial.

Relation to Perceptual Image Hashing (PIH). PIH [KVM04] is a related technique which aims to construct
hash of images invariant under geometric transformations which preserve perceptual similarity. There are
several differences, most importantly: (1) the primary objective of PIH is the detection of similar inputs,
however privacy of the inputs may not be preserved, (2) generating hashes requires a secret key, and (3) while
for PIH the hashes are required to be equal for similar images, we require that the hashes are randomized
and a verification algorithm is given which uses a key to perform the relation check.

Organization of the paper. In Section 2, we formally define the notion of Relational Hash and its desired
security properties. In Section 3, we construct a Relational Hash for linearity over Fn2 , with extension to
Fnp . In Section 4, we show how to construct a proximity (in terms of hamming distance) Relational Hash
using a linear Relational Hash and a linear error correcting code. In Section 5, we describe relations among
notions of security for constructing Relational Hashes for various relations. Standard hardness assumptions
are summarized in Appendix A.

Notations. We denote a sequence xj , · · · , xk as 〈xi〉ki=j . We treat Fnp as an Fp vector space and write x ∈ Fnp
also as 〈xi〉ni=1. Group elements are written in bold font: g, f. The security parameter is denoted as λ.

2 Relational Hash

The concept of Relational Hash is an extension of regular probabilistic hash functions. In this work, we only
consider 3-tuple relations. Suppose R ⊆ X × Y × Z be a 3-tuple relation, that we are interested in. We
abuse the notation a bit, and often use the equivalent functional notation R : X × Y × Z → {0, 1}. The
Relational Hash for the relation R, will specify two hash algorithms Hash1 and Hash2 which will output
the hash values Hash1(x) and Hash2(y) for any x ∈ X and y ∈ Y . Any Relational Hash must also specify
a verification algorithm Verify, which will take Hash1(x), Hash2(y) and any z ∈ Z as input and output
R(x, y, z). Formally, we define the notion of Relational Hash as follows.

Definition 1 (Relational Hash). Let {Rλ}λ∈N be a relation ensemble defined over set ensembles {Xλ}λ∈N,
{Yλ}λ∈N and {Zλ}λ∈N such that Rλ ⊆ Xλ×Yλ×Zλ. A Relational Hash for {Rλ}λ∈N consists of four efficient
algorithms:

– A randomized key generation algorithm: KeyGen(1λ) outputs key pk from key space Kλ.
– The hash algorithm of first type (possibly randomized): Hash1 : Kλ ×Xλ → RangeXλ, here RangeXλ

denotes the range of Hash1 for security parameter λ.
– The hash algorithm of second type (possibly randomized): Hash2 : Kλ×Yλ → RangeYλ, here RangeYλ

denotes the range of Hash2 for security parameter λ.
– The deterministic verification algorithm:

Verify : Kλ ×RangeXλ ×RangeYλ × Zλ → {0, 1}.

Treating the third parameter z differently from the first two might strike as odd. Our reason behind the
choice of this asymmetric definition is to convey the intention that we are not trying to hide z and that the
verifier or attacker can choose the value of z to test relations.

In the rest of the paper we will drop the subscript λ for simplicity and it will be implicitly assumed in
the algorithm descriptions. Often, we will also denote the 1 output of Verify as Accept, and the 0 output
as Reject. The definition of Relational Hashing consists of two requirements: Correctness and Security (or
Secrecy).
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Correctness: Informally speaking, the correctness condition is, if an honest party evaluates Verify(Hash1(
pk, x),Hash2(pk, y), z) for some key pk which is the output of KeyGen and any (x, y, z) ∈ X × Y × Z,
the output can differ from R(x, y, z) only with negligible probability (the probability is calculated over the
internal randomness of KeyGen, Hash1 and Hash2). Formally,

Definition 2 (Relational Hash - Correctness). A Relational Hash scheme (KeyGen,Hash1,Hash2,
Verify) for a relation R ⊆ X×Y ×Z satisfies correctness if the following holds for all (x, y, z) ⊆ X×Y ×Z:

Pr

 pk ← KeyGen(1λ)
hx← Hash1(pk, x)
hy ← Hash2(pk, y)

: Verify(pk, hx, hy, z) ≡ R(x, y, z)

 ≈ 1

Security: The notion of security for a Relational Hash will depend on the context where the Relational Hash
is going to be used and also on the a priori information available to the adversary. Recall that for a regular
hash function one of the weakest form of security is one-wayness. We will consider Probabilistic Polynomial
Time (PPT) adversaries for our security definitions.

Definition 3 (Security of Relational Hash - One-way). Let X and Y be (independent) probability
distributions over X and Y . We define a Relational Hash scheme (KeyGen,Hash1,Hash2,Verify) to be
one-way secure for the probability distributions X and Y, if the following hold:

– pk ← KeyGen(1λ), x← X , y ← Y, hx← Hash1(pk, x), hy ← Hash2(pk, y)

– For any PPT adversary A1, there exists a negligible function negl(), such that Pr[A1(pk, hx) = x] <
negl(λ).

– For any PPT adversary A2, there exists a negligible function negl(), such that Pr[A2(pk, hy) = y] <
negl(λ).

Here the probabilities are calculated over the internal randomness of KeyGen, Hash1 and Hash2, internal
randomness of the adversarial algorithms A1 and A2 as well as the probability distributions X and Y.

The above definition captures the security notion in case the adversary has access to either type 1 or
type 2 hash values. We observe that if the distributions X and Y remain independent, Relational Hash still
remains one-way secure, even if the adversary has access to both type of hash values. However for correlated
x and y, sampled from a joint probability distribution Ψ over X × Y , the previous security notion does not
provide sufficient security guarantee when the attacker has access to both types of hash values. For these
kind of distributions we define a stronger security notion called twin one-wayness as follows.

Definition 4 (Security of Relational Hash - Twin One-way). Let Ψ be a probability distribution over
X × Y . We define a Relational Hash scheme (KeyGen,Hash1,Hash2,Verify) to be twin one-way secure
for the probability distribution Ψ , if the following hold:

– pk ← KeyGen(1λ), (x, y)← Ψ , hx← Hash1(pk, x), hy ← Hash2(pk, y)

– For any PPT adversary A1, there exists a negligible function negl(), such that Pr[A1(pk, hx, hy) = x] <
negl(λ).

– For any PPT adversary A2, there exists a negligible function negl(), such that Pr[A2(pk, hx, hy) = y] <
negl(λ).

Here the probabilities are calculated over the internal randomness of KeyGen, Hash1 and Hash2, internal
randomness of the adversarial algorithms A1 and A2 as well as the probability distribution Ψ .

Note that the twin one-wayness property is actually a stronger version of correlated input security due
to Rosen and Segev [RS09]. We require each coordinate to be one-way, whereas correlated input security
requires the input involving all coordinates should be one-way.
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Remark 1. For our application scenarios: biometric identification and authentication, the twin one-wayness
property plays a key role. Intuitively, this guarantees that even if the server has access to both type of hashes
coming from biometric templates (possibly generated at different times) of the same person, the template
still remains one-way to the server3.

In this work, we are mostly interested in sparse relations (Definition 7). Informally speaking, for a sparse
relation R ⊆ X × Y × Z and unknown x it is hard to output y and z such that (x, y, z) ∈ R. A Relational
Hash scheme is called unforgeable if given hx = Hash1(pk, x) and pk it is hard to output hy, z, such that
Verify(pk, hx, hy, z) outputs 1. Formally,

Definition 5 (Security of Relational Hash - Unforgeable). Let X and Y be (independent) probability
distributions over X and Y . A Relational Hash scheme (KeyGen,Hash1,Hash2, Verify) is unforgeable
for the probability distributions X and Y, if the following holds:

– pk ← KeyGen(1λ), x← X , y ← Y, hx← Hash1(pk, x), hy ← Hash2(pk, y)
– For any PPT adversary A1, there exists a negligible function negl(), such that:

Pr[(hy′, z)← A1(pk, hx) ∧Verify(pk, hx, hy′, z) = 1] < negl(λ)

– For any PPT adversary A2, there exists a negligible function negl(), such that:

Pr[(hx′, z)← A2(pk, hy) ∧Verify(pk, hx′, hy, z) = 1] < negl(λ)

For Relational Hash functions, the strongest form of security notion is based on oracle simulations.
The concept of oracle simulation was introduced in [Can97]. However, over there the author was interested
in regular probabilistic hash functions. In case of Relational Hash functions, we want to say that: having
hx = Hash1(pk, x) gives no information on x, besides the ability to evaluate the value of R(x, y, z) for
any y, z chosen from their respective domains. Similarly, hy = Hash1(pk, y) should not provide any extra
information other than the ability to evaluate the value of R(x, y, z) for any x ∈ X and z ∈ Z. Also, having
access to both hx and hy, one should be able to only evaluate R(x, y, z) for any z ∈ Z.

For any relation R ⊆ X×Y ×Z and x ∈ X, y ∈ Y , let Rx(·, ·) : Y ×Z → {0, 1}, Ry(·, ·) : X×Z → {0, 1}
and Rx,y(·) : Z → {0, 1} be the oracles defined as follows:

– For any y′ ∈ Y, z′ ∈ Z,Rx(y′, z′) = 1 if and only if (x, y′, z′) ∈ R.
– For any x′ ∈ X, z′ ∈ Z,Ry(x′, z′) = 1 if and only if (x′, y, z′) ∈ R.
– For any z′ ∈ Z,Rx,y(z′) = 1 if and only if (x, y, z′) ∈ R.

We note that giving oracle access to Rx,y on top of Rx and Ry is not superfluous as both x and y are
generated and kept unknown from the adversary.

Definition 6 (Security of Relational Hash - Oracle Simulation). Let Ψ be a probability distribution
over X × Y . A Relational Hash scheme (KeyGen, Hash1,Hash2,Verify) is said to be oracle simulation
secure with respect to the distribution Ψ if for any PPT adversary C, there exists a PPT simulator S such
that for any predicate P (·, ·, ·) : K × X × Y → {0, 1} (where K is the range of KeyGen), there exists a
negligible function negl(), such that∣∣∣∣Pr[C(pk,Hash1(pk, x),Hash2(pk, y)) = P (pk, x, y)]

−Pr[SRx,Ry,Rx,y (pk) = P (pk, x, y)]

∣∣∣∣ < negl(λ),

where (x, y)← Ψ and pk ← Keygen(1λ).

3 Strictly speaking, we need a stronger a security criterion, i.e. not only the server should be able to recover exact
x or y, it should not be able to recover any nearby x′ from x or y. Theorem 4 in Section 4, in fact guarantees this
stronger security notion.
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3 Relational Hash for Linearity in Fn
2

We now construct a Relational Hash scheme for the domains X,Y, Z = Fn2 and the relation R = {(x, y, z) | x+
y = z ∧ x, y, z ∈ Fn2}.

KeyGen: Given the security parameter, bilinear groups G1,G2,GT are generated of prime order q, expo-
nential in the security parameter, and with a bilinear pairing operator e. Now we sample generators g0 ← G1

and h0 ← G2. Next we sample 〈ai〉n+1
i=1 and 〈bi〉n+1

i=1 , all randomly from Z∗q . Define gi = gai0 and hi = hbi0 .
Now we define the output of KeyGen as pk := (pk1, pk2, pkR), defined as follows:

pk1 := 〈gi〉
n+1
i=0 , pk2 := 〈hi〉n+1

i=0 , pkR :=

n+1∑
i=1

aibi

Hash1: Given plaintext x = 〈xi〉ni=1 ∈ Fn2 and pk1 = 〈gi〉
n+1
i=0 , the hash is constructed as follows: Sample a

random r ∈ Z∗q and then compute the following:

hx :=
(
gr0,
〈
g
(−1)xir
i

〉n
i=1

,grn+1

)
Hash2: Given plaintext y = 〈yi〉ni=1 ∈ Fn2 and pk2 = 〈hi〉n+1

i=0 , the hash is constructed as follows: Sample a
random s ∈ Z∗q and then compute the following:

hy :=
(
hs0,
〈
h
(−1)yis
i

〉n
i=1

,hsn+1

)
Verify: Given hashes hx = 〈hxi〉n+1

i=0 and hy = 〈hyi〉n+1
i=0 , the quantity z = 〈zi〉ni=1 ∈ Fn2 and pkR, the

algorithm Verify checks the following equality:

e(hx0, hy0)pkR
?
= e(hxn+1, hyn+1)

n∏
i=1

e(hxi, hyi)
(−1)zi

Correctness. Correctness of the scheme follows from standard algebraic manipulation of pairing operations.
Details are given in Appendix B.

One-wayness. This Relational Hash can be shown to be one-way secure based on the SXDH assumption, and
a new hardness assumption we call Binary Mix DLP. The assumption says if we choose a random x from Fn2
(for sufficiently large n), n random elements g1, · · · ,gn from group G then given the product

∏n
i=1 g

(−1)xi
i

it is hard to find any candidate x.

Assumption 1. (Binary Mix DLP) : Assuming a generation algorithm G that outputs a tuple (n, q,G)
such that G is a group of prime order q, the Binary Mix DLP assumption asserts that given random elements

〈gi〉
n
i=1 from the group G and

∏n
i=1 g

(−1)xi
i , for a random x← Fn2 , it is computationally infeasible to output

y ∈ Fn2 such that
n∏
i=1

g
(−1)xi
i =

n∏
i=1

g
(−1)yi
i .

There is an interesting parallel between the Binary Mix DLP assumption and the Discrete Log hardness
assumption which may appeal to the appreciation of its hardness at an intuitive level. The Discrete Log
problem asks to find w ∈ Z∗q given a random element g ∈ G and gw. Consider the sequence of elements

g1 = g,g2 = g2, · · · ,gλ = g2λ , where λ = lg q. When we think of the binary expansion of w = wλ · · ·w0

and interpret the vector W = wλ · · ·w0 in Fλ+1
2 , then equivalently we are asking for computing W , given

the product
∏λ
i=0 gwii .
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In the Binary Mix DLP problem, the difference is that the gi’s are independently random and that instead
of raising the gi’s to the powers 0 or 1, we raise them to the powers ±1. This is, of course, not a formal proof
of its hardness. In Appendix E.1, we show that the Binary Mix DLP assumption can actually be reduced to the
more standard Random Modular Subset Sum assumption [Lyu05]. As an added assurance, in Appendix E.2,
we show that the Binary Mix DLP assumption is also secure in the Generic Group Model [Sho97].

The Binary Mix DLP assumption is similar to [BGG95], where Bellare et al define a hash function to be a
subset product of publicly given random group elements based on the bits of the plaintext. In our case, we
either use a random group element or its inverse depending on the bit. They achieve reduction from DLP to
collision resistance. In contrast, this does not work for one-wayness, as for certain admissible values of (q, n)
our function (as also [BGG95]) may turn out to be collision-free.

Theorem 1. The above algorithms (KeyGen,Hash1,Hash2,Verify) constitute a Relational Hash scheme
for the relation R = {(x, y, z) | x+ y = z∧x, y, z ∈ Fn2}. The scheme is one-way secure under the SXDH and
Binary Mix DLP(Assumption 1) assumptions, when x and y are sampled uniformly from Fn2 .

The proof is given in Appendix C.

Twin one-wayness. Until now, we have shown this Relational Hash is one-way when the adversary has access
to only one type of hash values. However, an important scenario to consider is the case when adversary has
access to both type of hash values for any x uniformly drawn from Fn2 . The following theorem claims our
scheme is indeed twin one-way secure in this case and is proved in Appendix E.3.

Theorem 2. The above algorithms (KeyGen,Hash1,Hash2,Verify) constitute a Relational Hash scheme
for the relation R = {(x, y, z) | x+ y = z ∧ x, y, z ∈ Fn2}. The scheme is twin one-way secure in the generic
group model, when x is sampled uniformly from Fn2 and y = x.

Unforgeability and Oracle Simulation Security. In Section 5, we show this Relational Hash is in fact a 2-value
perfectly one-way function, albeit under a stronger hardness assumption. By Theorem 8 from Section 5, that
will imply this Relational Hash construction is also unforgeable and oracle simulation secure.

Remark 2. This linear Relational Hash construction is weakly homomorphic, in the sense that, given

Hash2(y) = (hy0, 〈hyi〉ni=1 , hyn+1) =
(
hs0,
〈
h
(−1)yis
i

〉n
i=1

,hsn+1

)
,

it is easy to construct

Hash2(y + t) =
(
hy0,

〈
hy

(−1)ti
i

〉n
i=1

, hyn+1

)
=
(
hs0,
〈
h
(−1)yi+tis
i

〉n
i=1

,hsn+1

)
for any t ∈ Fn2 . Hash1 is also homomorphic in a similar manner. However, this does not really refute any
of our security claims. In fact, in next section we will see this linear homomorphism gives us strong security
guarantee for relation hash construction for hamming proximity (Theorem 4).

Remark 3. Theorem 2 and Remark 2 imply that given Hash1(x), Hash2(y) and x+ y it is hard to output
either of x or y, for uniformly sampled x and y from Fn2 .

Relational Hash for Linearity in Fnp : For any prime p, we can choose the order q of the bilinear
groups to be exponential in the security parameters as well as equal to 1 (mod p). This means the group
Z∗q has a subgroup Jp of prime order p. Let ω be an arbitrary generator of Jp. We can publish this ar-
bitrary generator as part of the public key. For Hash1 evaluation (similarly in Hash2), we can simply

calculate hxi as gω
xir
i (instead of g

(−1)xir
i ). Similarly during verification, instead of checking e(hx0, hy0)pkR

?
=

e(hxn+1, hyn+1)
∏n
i=1 e(hxi, hyi)

(−1)zi , we can just check e(hx0, hy0)pkR
?
= e(hxn+1, hyn+1)

∏n
i=1 e(hxi, hyi)

ω−zi .
We provide the details in Appendix D.
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4 Relational Hash for Hamming Proximity

In this section we construct a Relational Hash for the domains X,Y = Fn2 and the relation4 Rδ = {(x, y) |
dist(x, y) ≤ δ ∧ x, y ∈ Fn2}, where dist is the hamming distance and δ is a positive integer less than
n. Specifically, we construct a Relational Hash for proximity from a family of binary (n, k, d) linear er-
ror correcting codes (ECC) C and a Relational Hash for linearity in Fk2 : (KeyGenLinear,HashLinear1,
HashLinear2,VerifyLinear).

For any C ∈ C, Encode and Decode are the encoding and decoding algorithms of the (n, k, d) error
correcting code C. For any x ∈ Fn2 , weight(x) is the usual hamming weight of x, denoting the number of
one’s in the binary representation of x. For any error vector e ∈ Fn2 , with weight(e) ≤ d/2 and m ∈ Fk2 we
have,

Decode(Encode(m) + e) = m.

If weight(e) > d/2, the decoding algorithm Decode is allowed to return ⊥.

KeyGen: Given the security parameter, choose a binary (n, k, 2δ+ 1) linear error correcting code C, where
k is of the order of the security parameter. Run KeyGenLinear and let pklin be its output. Publish,

pk := (Encode,Decode, pklin)

Hash1: Given plaintext x ∈ Fn2 and pk = (Encode,Decode, pklin), the hash value is constructed as follows:
Sample a random r ← Fk2 and then compute the following:

hx1 := x+ Encode(r)

hx2 := HashLinear1(pklin, r)

Publish the final hash value hx := (hx1, hx2).

Hash2 is defined similarly.

Verify: Given the hash values hx = (hx1, hx2), hy = (hy1, hy2) and pk = (Encode,Decode, pklin)
verification is done as follows.

– Recover z as z := Decode(hx1 + hy1).

– Output Reject if Decode returns ⊥ or dist(Encode(z), hx1 + hy1) > δ

– Output VerifyLinear(pklin, hx2, hy2, z).

Theorem 3. The above algorithms (KeyGen,Hash1,Hash2,Verify) constitute a Relational Hash for the
relation Rδ = {(x, y) | dist(x, y) ≤ δ ∧ x, y ∈ Fn2}. The scheme is one-way secure with respect to the
uniform distributions on Fn2 if the linear Relational Hash is a one-way secure with respect to the uniform
distributions on Fk2 . The scheme is unforgeable for the uniform distributions on Fn2 if the linear Relational
Hash is unforgeable with respect to the uniform distributions on Fk2 .

The proof is given in Appendix F.

4 Note that Relational Hash is defined over 3-tuple relations (Definition 2). However, here proximity encryption is
defined over 2-tuple relations. 2-tuple relations can be regarded as special cases of 3-tuple relations, where the third
entry does not matter. E.g. the relation R′

δ ⊆ Fn2 × Fn2 × Z (where Z is any non empty domain) and (x, y, z) ∈ R′
δ

if and only if (x, y) ∈ Rδ.
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Twin one-wayness. For our target application scenarios (biometric identification / authentication), we need
a slightly stronger security property compared to the Twin one-wayness as defined in Definition 4. We only
consider a passive adversary looking at the communication transcripts between the entities. Consideration of
active adversaries would require an additional challenge-response mechanism which we do not develop in this
paper. In particular, we should show that if an attacker has access to Hash1(x) and a number of samples of
Hash2(yi) (where x and the yi’s are biometric templates generated by same individual), the attacker cannot
output any other biometric template z near to x. If we assume that every individual’s biometric template
has full entropy we can model the scenario as follows:

x← Fn2 , yi = x+ ei,

where the ei’s are sampled from some known noise distribution Ξ, such that with high probability we have
weight(ei) ≤ δ. We now show that, given Hash1(x) and any number of samples5 Hash2(yi), the attacker
cannot output z, such that dist(x, z) ≤ δ. The proof, which is a reduction to twin one-wayness of the linear
Relational Hash is given in Appendix F.

Theorem 4. If the above Relational Hash for Rδ = {(x, y) | dist(x, y) ≤ δ∧x, y ∈ Fn2}, is instantiated by the
twin one-way secure linear Relational Hash in Section 3, then for a random x← Fn2 and for any polynomially
bounded number of error samples e1, · · · , et ← Ξ, given (Hash1(x),Hash2(x+ e1), · · · ,Hash2(x+ et)) it is
hard to output x′ ∈ Fn2 such that dist(x′, x) ≤ δ.

Privacy Preserving Biometric Authentication Scheme. Suppose we have a biometric authentication
scheme, where during registration phase a particular user generates a biometric template x ∈ {0, 1}n and
sends it to the server. During authentication phase the user generates a new biometric template y ∈ {0, 1}n
and sends y to server. The server authenticates the user if dist(x, y) ≤ δ. The drawback of this scheme
is the lack of template privacy. However, if we have a Relational Hash (KeyGen,Hash1,Hash2,Verify)
for the relation Rδ = {(x, y) | dist(x, y) ≤ δ ∧ x, y ∈ Fn2}, we readily get a privacy preserving biometric
authentication scheme as follows: 1. A trusted third party runs KeyGen and publishes pk ← KeyGen. 2.
During Registration, the client generates biometric template x ∈ {0, 1}n and sends hx = Hash1(pk, x) to
the server. 3. During Authentication, the client generates biometric template y ∈ {0, 1}n and sends hy =
Hash2(pk, y) to the server. 4. The server authenticates the client iff Verify(pk, hx, hy) returns Accept.

If we assume that the biometric templates of individuals follow uniform distribution over {0, 1}n, then
Theorem 3 would imply that the server can never recover the original biometric template x. Moreover, the
unforgeability property guarantees that even if the server’s database gets leaked to an attacker then also the
attacker cannot come up with a forged hy′, which would authenticate the attacker. Theorem 4 will guarantee
that even with access to the registered hash and several authentication transcripts from the same individual,
the biometric template will remain private to the server.

In spite of these strong guarantees there is a significant drawback of our privacy preserving authentication
scheme. One basic premise of this scheme is that the biometric template x comes from a uniform distribution
over {0, 1}n. From a practical point of view this is really a strong assumption. One interesting open problem
in this direction is whether we can build a privacy preserving biometric authentication scheme when x comes
from a distribution with high min-entropy which is not necessarily uniform.

5 Relation among Notions of Security for Relational Hashes

In Section 2 we introduced three natural definitions of security for Relational Hash functions: one-wayness,
unforgeability and oracle simulation security. In this section we define the notion of sparse and biased
relations. We show, if a Relational Hash function is unforgeable, that implies the relation must be sparse.
Following [CMR98], we extend the notion of 2-value Perfectly One-Way (2-POW) function. We show if
a Relational Hash function is 2-POW, then the relation must be biased. We also show that the 2-POW

5 Limited only by the time complexity of the attacker.
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property is actually a sufficient condition for oracle simulation security, as well as unforgeability (when the
relation is sparse).

We begin by asking the question: What kind of relations can support the existence of an unforgeable
Relational Hash? It is easy to see that certain relations cannot support unforgeability. Take, for example,
the relation R(x, y, z), where x, y ∈ Fn2 and z ∈ F2 which returns 1 iff the parity of x+ y is equal to the bit
z. One cannot construct an unforgeable hash for this relation because given the type 1 hash of a random x,
it is easy to construct a type 2 hash of a y such that the relational verification outputs 1, without knowing
x: We just pick an arbitrary y, compute a type 2 hash of the arbitrary y and verify with the relational key
with the type 1 hash of x for both z values 0 and 1.

So the intuitive property of relations supporting unforgeability is that without knowing x, it should be
hard to come up with (y, z), such that R(x, y, z) holds. We formalize this intuition below in defining sparse
relations.

Relations with
Unforgeable Relational

Hash
Biased Relations

Sparse Relations

Relations with 2-POW
Relational Hash

Relations with Oracle
Simulation Secure
Relational Hash

∧
Theorem 5

Remark 7

Theorem 6

Theorem 8

Theorem 7

Remark 6

Fig. 1. Relationship among Types of Relations. Arrowhead indicates direction of implication. Strike on an arrow
indicates the existence of a counter-example.

Definition 7. A relation R ⊆ X × Y × Z is called a sparse relation in the first co-ordinate with respect to
a probability distribution X over X, if for all PPTs A:

Pr[x← X , (y, z)← A(λ) : (x, y, z) ∈ R] < negl(λ)

Similarly, we can define a sparse relation in the second co-ordinate with respect to a probability distribution
Y over Y . A relation R ⊆ X × Y × Z is called a sparse relation with respect to probability distributions
X over X and Y over Y , if it is a sparse relation in first coordinate with respect to X , as well as a sparse
relation in second coordinate with respect to Y.

Remark 4. Similar to Section 2, the definitions given in this sections are actually defined with respect to
ensemble of probability distributions Xλ,Yλ,Kλ, ensemble of sets Xλ, Yλ, Zλ,Kλ and ensemble of relation
Rλ. However, for simplicity we drop the subscript λ.

Now, we show if a Relational Hash function is unforgeable, that implies the relation must be sparse.

Theorem 5. If a Relational Hash scheme (KeyGen,Hash1,Hash2,Verify) for a relation R is unforgeable
for probability distributions X over X and Y over Y , then the relation R is sparse with respect to X and Y.
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Proof. Suppose, the relation R is not sparse over first coordinate, and there exists an PPT attacker A
such that Pr[x ← X , (y, z) ← A(λ) : (x, y, z) ∈ R] is non-negligible. Now, given an unforgeability challenge
(pk, cx), such that pk ← KeyGen(1λ) and cx← Hash1(pk, x) for some x← X ; we can just get (y, z)← A(λ)
and output (Hash2(pk, y), z). From the correctness of the Relational Hash function, it follows that this output
is a valid forgery with non-negligible probability. ut

Following [CMR98], we recall the definition of 2-value perfectly one-way (POW) functions. Intuitively,
this property states that the distribution of a two probabilistic hashes of the same value is computationally
indistinguishable from the distribution of probabilistic hashes of two independent values. This is a useful
property, because if we can show a Relational Hash function is 2-POW, we show that it would immediately
imply the Relational Hash function is oracle simulation secure, as well as unforgeable (if the relation is
sparse).

Definition 8 (2-value Perfectly One-Way function). Let X be a probability distribution over X. Let
H = {hk}k∈K be a keyed probabilistic function family with domain X and randomness space U , where the
key k gets sampled from a probability distribution K over K. H is 2-value perfectly one-way (POW) with
respect to X and K if for any PPT distinguisher D,∣∣∣∣ Pr[D(k, hk(x, r1), hk(x, r2)) = 1]

−Pr[D(k, hk(x1, r1), hk(x2, r2)) = 1]

∣∣∣∣ < negl(λ),

where x, x1, x2 are drawn independently from X , k is drawn from K and r1, r2 are generated uniformly at
random from the randomness space U .

Remark 5. In [CMR98], the key k was universally quantified, and the function family H was called 2-POW
if the inequality was true for all k ∈ K. However, for our purpose it is sufficient if we consider random k
coming from the distribution K (or KeyGen).

Now we ask what kind of relations can support the existence of 2-POW Relational Hashes? Intuitively,
we require that it should be hard to distinguish two distinct samples x and w from the distribution X by
testing relations with a (y, z) tuple which is efficiently computable without knowing the samples. That is we
should have R(x, y, z) and R(w, y, z) come out equal most of the time. This intuition is formalized in the
following definition of biased relations.

Definition 9. A relation R ⊆ X × Y × Z is called a biased relation in the first co-ordinate with respect to
a probability distribution X over X, if for all PPTs A:

Pr[x,w ← X , (y, z)← A(λ) : R(x, y, z) 6= R(w, y, z)] < negl(λ)

Similarly, we can define a biased relation in the second co-ordinate with respect to a probability distribution
Y over Y . A relation R ⊆ X × Y × Z is called a biased relation with respect to independent probability
distributions X over X and Y over Y , if it is a biased relation in first coordinate with respect to X , as well
as a biased relation in second coordinate with respect to Y.

Remark 6. We observe that if a relation R is biased, then its complement R̄ is also biased. Now one might
begin to think that maybe for a biased relation R, either R or R̄ is sparse. However, the following counterex-
ample shows that this is not the case. Consider the relation R(x, y, z) which outputs the first bit of y. This
is a biased relation, but neither R, nor its complement R̄ is sparse.

Remark 7. The other direction is actually an implication, that is, if a relation R is sparse then it is also
biased. The proof intuition is as follows: Given an algorithm A breaking the biased-ness of R, we construct
an algorithm breaking the sparse-ness of R. Let A output (y, z), such that with probability p over the choice
of x ← X , R(x, y, z) = 1 and therefore with probability 1 − p, R(x, y, z) = 0. The probability of breaking
the biased-ness of R is thus 2p(1−p) which should be non-negligible. Hence p should be non-negligible. Now
observe that p is the probability of breaking the sparse-ness of R.

12



Now, we show if a Relational Hash is 2-POW, then the relation must be biased.

Theorem 6. For a Relational Hash scheme (KeyGen,Hash1,Hash2,Verify) for a relation R, if Hash1

is 2-value Perfectly One-Way with respect to X and KeyGen, then R is a biased relation in the 1st co-
ordinate with respect to X .

Proof. We are given that,

∀ PPT D :

∣∣∣∣ Pr[D(k,Hash1(k, x, r1),Hash1(k, x, r2)) = 1]
−Pr[D(k,Hash1(k, x1, r1),Hash1(k, x2, r2)) = 1]

∣∣∣∣ < negl(λ)

Suppose R is not a biased relation in the 1st co-ordinate. Then, there exists an efficient algorithm A, which
outputs (y, z) ∈ Y × Z, such that Pr[x← X, (y, z)← A(λ) : R(x, y, z) 6= R(w, y, z)] is non-negligible in the
security parameter. So now given (k,Hash1(k, x, r1),Hash1(k,w, r2)), we generate (y, z)← A(λ), compute
Hash2(k, y, r′) and then compute Verify(k,Hash1(k, x, r1), Hash2(k, y, r′), z) and Verify(k,Hash1(k,w,
r2),Hash2(k, y, r′), z). By the correctness of the Relational Hash scheme, these boolean results are R(x, y, z)
and R(w, y, z) respectively. In the case R(x, y, z) = R(w, y, z), the distinguisher D outputs 1, else 0. By the
non-sparseness of R, D will have a non-negligible chance of distinguishing the distributions. Hence we get a
contradiction. ut

Theorem 7, stated below, shows that if a Relational Hash is 2-POW, then it is also oracle simulation
secure. The proof is given in Appendix G.

Theorem 7. For a Relational Hash scheme (KeyGen,Hash1,Hash2,Verify), if the algorithms Hash1

and Hash2 are individually 2-value Perfectly One-Way for distributions (X ,KeyGen) and (Y,KeyGen) re-
spectively, then the Relational Hash scheme is Oracle Simulation Secure for the distribution X ×Y. Formally,
for all PPT C, there exists a PPT S, such that:∣∣∣∣Pr[C(pk,Hash1(pk, x),Hash2(pk, y)) = P (pk, x, y)]

−Pr[SRx,Ry,Rx,y (pk) = P (pk, x, y)]

∣∣∣∣ < negl(λ),

where pk ← KeyGen, x← X , y ← Y.

Finally, we show that if a Relational Hash is 2-POW as well as sparse, then it must be unforgeable.

Theorem 8. If (KeyGen,Hash1,Hash2,Verify) is a Relational Hash scheme for a sparse relation R with
respect to independent probability distributions X and Y and Hash1 (Hash2) is 2-value Perfectly One-Way
for distribution X (Y) and KeyGen, then the Relational Hash scheme is unforgeable for the distribution X
(Y).

Proof. Assume that the scheme is not unforgeable. This means that given (pk, Hash1(pk, x, r)) for x← X ,
there is an attacker A, which outputs Hash2(pk, y, s) and z, such that R(x, y, z) = 1, with non-negligible
probability. Using A, we now build an attacker B which distinguishes the distributions (pk,Hash1(pk, x, r1),
Hash1(pk, x, r2)) and (pk,Hash1(pk, x, r1),Hash1(pk, x′, r2)) with non-negligible probability. Given (pk,
Hash1(pk, x, r1),Hash1(pk,w, r2)), B sends Hash1(pk, x, r1) to A. With non-negligible probability A out-
puts Hash2(pk, y, s) and z, such that R(x, y, z) = 1. Now since R is a sparse relation, if w 6= x, then
with non-negligible probability R(w, y, z) = 0, whereas if w = x, then R(w, y, z) = 1. Now R(w, y, z) can
be efficiently evaluated by computing Verify(pk,Hash1(pk,w, r2), Hash2(pk, y, s), z). Thus, B will have a
non-negligible probability of breaking the 2-value POW security of Hash1. ut

Stronger Security Properties for the Relational Hash Constructions. In Theorem 9, we show that
the Relational Hash construction for linearity over Fn2 from Section 3 is actually a 2-value perfectly one-way
function. This property is based on a stronger hardness assumption called Decisional Binary Mix(Assumption
2). In Appendix E.2(Theorem 13) we show that this assumption holds in the Generic Group Model [Sho97].
One can easily verify that the linearity relation over Fn2 , R = {(r, s, z) | r + s = z ∧ r, s, z ∈ Fn2} is actually
a sparse relation with respect to uniform distributions over Fn2 . Hence, by Theorem 7 and Theorem 8 we
get that the Relational Hash construction from Section 3 is actually oracle simulation secure as well as
unforgeable with respect to the independent uniform distributions over Fn2 .
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Assumption 2 (Decisional Binary Mix). Assuming a generation algorithm G that outputs a tuple (n, q,G)
such that G is a group of prime order q, the Decisional Binary Mix assumption asserts that for random
x, y ← Fn2 , given random elements 〈gi〉

n
i=1, 〈fi〉ni=1 from the group G it is hard to distinguish the following

distributions: (
n∏
i=1

g
(−1)xi
i ,

n∏
i=1

f
(−1)xi
i

)
and

(
n∏
i=1

g
(−1)xi
i ,

n∏
i=1

f
(−1)yi
i

)
.

Theorem 9. The algorithms (KeyGen,Hash1,Verify) in Section 3 constitute a 2-value Perfectly One
Way Function for the uniform distribution on Fn2 , under the Decisional Binary Mix (Assumption 2) and DDH
assumptions.

The proof is given in Appendix H.

On Stronger Security Properties for the Proximity Hash Constructions. We observe that our
proximity hash construction is not 2-POW secure. This is readily seen by considering the first component of
the proximity hash, which is x+c, where x is the plaintext and c is a codeword. Two independent hashes of x
will have first components x+c and x+c′, and therefore adding them will lead to c+c′, which is a codeword.
However for the hash of an independently randomly generated y, the first component will be y + c′′. If we
add the first components we get x + y + c + c′′, which is unlikely to be a codeword. Therefore there is an
efficient distinguisher for the 2-POW distributions. Our construction is also not Oracle Simulation secure,
because it reveals the syndrome of the plaintext with respect to the ECC used - this is more information
than what the simulation world can provide. We leave it as an open problem to construct 2-POW and Oracle
Simulation secure Relational Hashes for proximity.
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A Hardness Assumptions

We summarize the standard hardness assumptions used in this paper.

Assumption 3 (DLP). Assuming a generation algorithm G that outputs a tuple (q,G,g) such that G is
of prime order q and has generator g, the DLP assumption asserts that given (g,gx)it is computationally
infeasible to output x for random x← Zq. More formally, for all PPT adversaries A there exists a negligible
function negl() such that

Pr[(q,G,g)← G(1λ);x← Zq : A(g,gx) = x] < negl(λ)

Assumption 4 (DDH [DH76]). Assuming a generation algorithm G that outputs a tuple (q,G,g) such
that G is of prime order q and has generator g, the DDH assumption asserts that it is computationally
infeasible to distinguish between (g,ga,gb,gc) and (g,ga,gb,gab) for a, b, c ← Z∗q . More formally, for all
PPT adversaries A there exists a negligible function negl() such that∣∣∣∣Pr[(q,G,g)← G(1λ); a, b, c← Z∗q : A(g,ga,gb,gc) = 1]−

Pr[(q,G,g)← G(1λ); a, b← Z∗q : A(g,ga,gb,gab) = 1]

∣∣∣∣ < negl(λ)

Assumption 5 (SXDH [BBS04]). Consider a generation algorithm G taking the security parameter as
input, that outputs a tuple (q,G1,G2,GT , e,g1,g2), where G1,G2 and GT are groups of prime order q with
generators g1,g2 and e(g1,g2) respectively and which allow an efficiently computable Z∗q-bilinear pairing map
e : G1 ×G2 → GT . The Symmetric eXternal decisional Diffie-Hellman (SXDH) assumption asserts that the
Decisional Diffie-Hellman (DDH) problem is hard in both the groups G1 and G2.

Assumption 6 (Random Modular Subset Sum [Lyu05]). Assuming a generation algorithm G that out-
puts a tuple (n, q),where q is prime,the Random Modular Subset Sum assumption asserts that given random
elements 〈ai〉ni=1 from the group Zq and c =

∑n
i=1 εiai for a random ε ← {0, 1}n, it is hard to output

η ∈ {0, 1}n such that
n∑
i=1

ηiai = c (mod q).

More formally, for all PPT A, there exists a negligible function negl() such that

Pr

 (n, q)← G(1λ), 〈ai〉ni=1 ← Zq
ε← {0, 1}n, c =

∑n
i=1 εiai

η ← A(〈ai〉ni=1 , c)
:

n∑
i=1

ηiai = c (mod q)

 < negl(λ).
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B Correctness of the Fn
2 Linear Relational Hash

For any, x, y ∈ Fn2 we have

Hash1(x) = (hx0, 〈hxi〉ni=1 , hxn+1) =
(
gr0,
〈
g
(−1)xir
i

〉n
i=1

,grn+1

)
Hash2(y) = (hy0, 〈hyi〉ni=1 , hyn+1) =

(
hs0,
〈
h
(−1)yis
i

〉n
i=1

,hsn+1

)
Hence,

e(hxn+1, hyn+1)

n∏
i=1

e(hxi, hyi)
(−1)(xi+yi) = e(grn+1,h

s
n+1)

n∏
i=1

e
(
g
(−1)xir
i ,h

(−1)yis
i

)(−1)(xi+yi)

=

n+1∏
i=1

e (gri ,h
s
i ) =

n+1∏
i=1

e
(
gair0 ,hbis0

)
= e (gr0,h

s
0)

∑n+1
i=1 aibi = e(hx0, hy0)pkR

This shows that our relational hash scheme correctly verifies tuples of the form (x, y, x+y) for any x, y ∈ Fn2 .
On the other hand, if the verification equation gets satisfied for some z ∈ Fn2 , we must have

e (gr0,h
s
0)

∑n+1
i=1 aibi = e(grn+1,h

s
n+1)

n∏
i=1

e
(
g
(−1)xir
i ,h

(−1)yis
i

)(−1)zi
=⇒

n∑
i=1

aibi =

n∑
i=1

(−1)xi+yi+ziaibi

Let Q ⊆ {1, · · · , n} be the set of indices, such that i ∈ Q if and only if xi + yi 6= zi. Now, the above equation
reduces to ∑

i∈Q
aibi = 0.

If x+ y 6= z, then Q is non empty and we can consider a fixed i∗ ∈ Q and we have

ai∗bi∗ = −
∑

i∈Q\{i∗}

aibi.

Now, if we fix ai’s and bi’s for i ∈ Q \ {i∗} and consider only the randomness of ai∗ and bi∗ , the above
equation holds with probability at most 1/q when

∑
i∈Q\{i∗} aibi 6= 0 and with probability at most 2/q when∑

i∈Q\{i∗} aibi = 0. This implies for any tuple (x, y, z) with z 6= x+ y, the verification equation gets satisfied

with probability at most 2/q. Hence the above algorithms in fact constitute a correct relational hash for
linearity over Fn2 . ut

C One-wayness of Fn
2 Linear Relational Hash: Proof of Theorem 1

In this section we go through a sequence of lemmas, leading to proof of Theorem 1.

Lemma 1. (DDH) : For random g,h← G and r ← Z∗q , the following tuples are computationally indistin-
guishable under the DDH assumption:

(g,h,gr,hr) ≈DDH (g,h,gr,h−r).

Proof. We have,

(g,h,gr,hr) ≈DDH (g,h,gr,hr
′
) ≈statistical (g,h,gr,h−r

′
) ≈DDH (g,h,gr,h−r),

where r, r′ are generated independently randomly from Z∗q . ut
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Lemma 2. Under the Binary Mix DLP assumption(Assumption 1), given random elements g, 〈gi〉
n
i=1 from

a group G and gr,v =
∏n
i=1 g

(−1)xir
i , 〈zi〉ni=1 = 〈gri 〉

n
i=1 for random r ← Z∗q and random x ← Fn2 it is hard

to output y ∈ Fn2 such that

v =

n∏
i=1

z
(−1)yi
i .

Formally, for all PPT adversaries A there exists a negligible function negl() such that

Pr

[
G← G(1λ); g, 〈gi〉

n
i=1 ← G; r ← Z∗q ;x← Fn2 ;

y ← A
(
g, 〈gi〉

n
i=1 ,g

r,v =
∏n
i=1 g

(−1)xir
i , 〈zi〉ni=1 = 〈gri 〉

n
i=1

) : v =

n∏
i=1

z
(−1)yi
i

]
< negl(λ)

Proof. Suppose there exists an adversary A∗ for which the above probability is non negligible. We will

show, using the adversary A∗ we can break Lemma 2 challenge. Let (〈gi〉
n
i=1 ,w =

∏n
i=1 g

(−1)xi
i ) be the

Binary-Mix-DLP (Assumption 1) challenge. We choose random g ← G and random r ← Z∗q . We send(
g, 〈gi〉

n
i=1 ,g

r,wr, 〈gri 〉
n
i=1

)
to the adversary A∗. We publish the output of A∗ to the Binary-Mix-DLP

challenger. Clearly, the success probability of breaking the Binary-Mix-DLP assumption is same as success
probability of the adversary A∗. Hence, under Binary-Mix-DLP assumption the success probability of A∗

can not be non-negligible. ut

Lemma 3. Under the DDH assumption, given random elements g, 〈gi〉
n
i=1 from a group G, random r ← Z∗q

and any x ∈ Fn2 the following tuples are computationally indistinguishable.(
g, 〈gi〉

n
i=1 ,g

r,

n∏
i=1

gri ,
〈
g
(−1)xir
i

〉n
i=1

)
≈DDH

(
g, 〈gi〉

n
i=1 ,g

r,

n∏
i=1

g
(−1)xir
i , 〈gri 〉

n
i=1

)

Proof. We define a sequence of games 〈Gamej〉nj=1. We argue, in Gamej , for random g, 〈gi〉
n
i=1 from a

group G, random r ← Z∗q and any x ∈ Fn2 the following tuples are computationally indistinguishable under
DDH assumption

g, 〈gi〉
n
i=1 ,g

r,

j−1∏
i=1

g
(−1)xir
i

n∏
i=j

gri , 〈gri 〉
j−1
i=1 ,

〈
g
(−1)xir
i

〉n
i=j


≈DDHg, 〈gi〉

n
i=1 ,g

r,

j∏
i=1

g
(−1)xir
i

n∏
i=j+1

gri , 〈gri 〉
j
i=1 ,

〈
g
(−1)xir
i

〉n
i=j+1

 .

If xj = 0, then the above two distributions are in fact identical. So, we can only consider the case xj = 1. In
this case we need to show the following distributions are computationally indistinguishable under DDH.g, 〈gi〉

n
i=1 ,g

r,grj

j−1∏
i=1

g
(−1)xir
i

n∏
i=j+1

gri , 〈gri 〉
j−1
i=1 ,g

−r
j ,
〈
g
(−1)xir
i

〉n
i=j+1

 (1)

≈DDHg, 〈gi〉
n
i=1 ,g

r,g−rj

j−1∏
i=1

g
(−1)xir
i

n∏
i=j+1

gri , 〈gri 〉
j−1
i=1 ,g

r
j ,
〈
g
(−1)xir
i

〉n
i=j+1

 . (2)

Suppose there exists an adversary A∗, which can distinguish between the above two distributions within
non-negligible advantage. We will show using the adversary A∗, we can break a DDH challenge (g,h,gr, χ)

17



(where χ is either hr or h−r with probability 1/2 each). Given a DDH challenge (g,h,gr, χ), we take random

〈ui〉j−1i=1 ← Z∗q and random 〈ui〉ni=j+1 ← Z∗q and invoke adversary A∗ with inputg, 〈gui〉j−1i=1 ,h, 〈g
ui〉ni=j+1 ,g

r, χ

j−1∏
i=1

g(−1)xiuir
n∏

i=j+1

guir, 〈guir〉j−1i=1 , χ
−1,
〈
g(−1)xiuir

〉n
i=j+1

 .

Depending on whether χ takes the value hr or h−r, the above expression is identically distributed as expres-
sion (1) or expression (2). So, using the output of A∗, we can break the DDH challenge. In other words, there
is no such adversary A∗, which breaks Gamej with non-negligible probability, for xj = 1. Now, transitioning
through the sequence of games 〈Gamej〉nj=1 we can argue the validity of this lemma. ut

Lemma 4. Under the Binary Mix DLP(Assumption 1) and DDH Assumptions, given random elements

g, 〈ĝi〉
n
i=1 from a group G and gr, v̂ =

∏n
i=1 ĝri , 〈ẑi〉

n
i=1 =

〈
ĝ
(−1)xir
i

〉n
i=1

for a random r ← Z∗q , and ran-

dom r ← Fn2 it is hard to output y ∈ Fn2 , such that

v̂ =

n∏
i=1

ẑ
(−1)yi
i .

Formally, for all PPT adversaries A there exists a negligible function negl() such that

Pr

[
G← G(1λ); g, 〈ĝi〉

n
i=1 ← G; r ← Z∗q ; r ← Fn2 ;

y ← A
(
g, 〈ĝi〉

n
i=1 ,g

r, v̂ =
∏n
i=1 ĝri , 〈ẑi〉

n
i=1 =

〈
ĝ
(−1)xir
i

〉n
i=1

) : v̂ =

n∏
i=1

ẑ
(−1)yi
i

]
< negl(λ)

Proof. Suppose we are given a Lemma 2 challenge(
g, 〈gi〉

n
i=1 ,g

r,v =

n∏
i=1

g
(−1)xir
i , 〈zi〉ni=1 = 〈gri 〉

n
i=1

)
,

for some random g, 〈gi〉
n
i=1 ← G, random r ← Z∗q and random x← Fn2 . Lemma 2 says, it is hard to output

y ∈ Fn2 such that

v =

n∏
i=1

z
(−1)yi
i .

We will show if there exists an adversary A∗ which breaks Lemma 4 with non-negligible probability; we can
use the adversary A∗ to break Lemma 2 challenge with non-negligible probability. A∗ takes input(

g, 〈gi〉
n
i=1 ,g

r, v̂ =

n∏
i=1

gri , 〈ẑi〉
n
i=1 =

〈
g
(−1)xir
i

〉n
i=1

)
and outputs y. Whenever, A∗ succeeds we have

v̂ =

n∏
i=1

ẑ
(−1)yi
i .

Lemma 3 says, Lemma 4 and Lemma 2 challenges are indistinguishable for all x ∈ Fn2 (hence, for random
x← Fn2 as well) under DDH assumption. Hence we can give the Lemma 2 challenge(

g, 〈gi〉
n
i=1 ,g

r,v =

n∏
i=1

g
(−1)xir
i , 〈zi〉ni=1 = 〈gri 〉

n
i=1

)
to A∗ and with non-negligible probability A∗’s output y will satisfy the relation

v =

n∏
i=1

z
(−1)yi
i ,

which is a contradiction to Lemma 2. ut
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Proof of Theorem 1 Now we show that if the relational hash from Section 3 is not one-way secure (and
we have a one-wayness adversary B), then we can construct an adversary A breaking Lemma 4. To achieve

that, consider that the adversary A is given a Lemma 4 challenge
(
g, 〈ĝi〉

n
i=1 ,g

r,
∏n
i=1 ĝri ,

〈
ĝ
(−1)xir
i

〉n
i=1

)
.

We now construct the one-wayness challenge as follows: We sample u, s and 〈ui〉ni=1, all randomly from Z∗q .
Sample h0 randomly from G2. Now we define the output of KeyGen to be pk := (pk1, pk2, pkR) defined as
follows:

pk1 :=

(
g,
〈
ĝ
u−1
i
i

〉n
i=1

,gu
n∏
i=1

ĝ−1i

)
, pk2 :=

(
h0, 〈huis0 〉

n
i=1 ,h

s
0

)
, pkR := us

Observe that g,
〈
ĝ
u−1
i
i

〉n
i=1

,h0, 〈huis0 〉
n
i=1 ,h

s
0 and us are all uniformly random and independent elements of

their respective domains 6. The group element gu
∏n
i=1 ĝ−1i is determined given the other elements. Hence

(pk1, pk2, pkR) has identical distribution as the output of the original KeyGen.
A publishes (pk1, pk2, pkR) to the adversary B and then also gives a challenge hash:

hx :=

gr,
〈
ĝ
(−1)xir·u−1

i
i

〉n
i=1

,gr·u

(
n∏
i=1

ĝri

)−1 .

Once B outputs an element y ∈ Fn2 , A just relays that to the Lemma 4 challenger. Now, observe that hx
is identically distributed as Hash1(x) for a random x← Fn2 . Therefore, the probability that y = x is same as
the advantage of B against the security of the relational hash scheme. Therefore the scheme is secure given
Lemma 4. ut

D Relational Hash for Linearity in Fn
p

For any prime p, we now construct a Relational Hash scheme for the domains X,Y, Z = Fnp and the relation
R = {(x, y, z) | x+ y = z ∧ x, y, z ∈ Fnp}.

KeyGen: Given the security parameter, bilinear groups G1,G2,GT are generated of prime order q, expo-
nential in the security parameter and equal to 1 (mod p). This means the group Z∗q has a subgroup Jp of
prime order p. Let ω be an arbitrary generator of Jp. Now we sample generators g0 ← G1 and h0 ← G2.

Next we sample 〈ai〉n+1
i=1 and 〈bi〉n+1

i=1 , all randomly from Zq. Define gi = gai0 and hi = hbi0 . Now we define
the output of KeyGen as pk := (ω, pk1, pk2, pkR) defined as follows:

pk1 := 〈gi〉
n+1
i=0 , pk2 := 〈hi〉n+1

i=0 , pkR :=

n+1∑
i=1

aibi

Hash1: Given plaintext x = 〈xi〉ni=1 ∈ Fnp , ω and pk1 = g0, 〈gi〉
n
i=1, the hash is constructed as follows: Sample

a random r ∈ Z∗q and then compute the following:

hx :=
(
gr0,
〈
gω

xir
i

〉n
i=1

,grn+1

)
Hash2 is analogously defined in the group G2.

Verify: Given hashes hx = 〈hxi〉n+1
i=0 and hy = 〈hyi〉n+1

i=0 , the parameter z = 〈zi〉ni=1 ∈ Fnp and pkR and ω,
the algorithm Verify checks the following equality:

e(hx0, hy0)pkR
?
= e(hxn+1, hyn+1)

n∏
i=1

e(hxi, hyi)
ω−zi

6 Roughly, ĝ
u−1
i
i ’s are randomized by the ĝi’s; h

uis
0 ’s are randomized by the ui’s; h

s
0 is randomized by s and us is

randomized by u.
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Correctness. The correctness property of the scheme can be proven similar to the correctness of the Fn2 linear
relational hash from Section 3. For any, x, y ∈ Fnp we have

Hash1(x) = (hx0, 〈hxi〉ni=1 , hxn+1) =
(
gr0,
〈
gω

xir
i

〉n
i=1

,grn+1

)
Hash1(y) = (hy0, 〈hyi〉ni=1 , hyn+1 ) =

(
hs0,
〈
hω

yis
i

〉n
i=1

,hsn+1

)
Hence,

e(hxn+1, hyn+1)

n∏
i=1

e(hxi, hyi)
ω−(xi+yi)

= e(grn+1,h
s
n+1)

n∏
i=1

e
(
gω

xir
i ,hω

yis
i

)ω−(xi+yi)

=

n+1∏
i=1

e (gri ,h
s
i ) =

n+1∏
i=1

e
(
gair0 ,hbis0

)
= e (gr0,h

s
0)

∑n+1
i=1 aibi = e(hx0, hy0)pkR

This shows that our relational hash scheme correctly verifies tuples of the form (x, y, x+y) for any x, y ∈ Fnp .
On the other hand, if the verification equation gets satisfied for some z ∈ Fnp , we must have

e (gr0,h
s
0)

∑n+1
i=1 aibi = e(grn+1,h

s
n+1)

n∏
i=1

e
(
gω

xir
i ,hω

yis
i

)ω−zi
=⇒

n∑
i=1

aibi =

n∑
i=1

ωxi+yi−ziaibi

Let U ⊆ {1, · · · , n} be the set of indices, such that j ∈ U if and only if xi+yi 6= zi. Now, the above equation
reduces to ∑

i∈Q
(1− ωxi+yi−zi)aibi = 0.

If x+ y 6= z, then Q is non empty and we can consider a fixed i∗ ∈ Q and we have

ai∗bi∗ = −(1− ωxi∗+yi∗−zi∗ )−1
∑

i∈Q\{i∗}

(1− ωxi+yi−zi)aibi.

Now, if we fix ai’s and bi’s for i ∈ Q\{i∗} and consider only the randomness of ai∗ and bi∗ , the above equation
holds with probability at most 1/q when

∑
i∈Q\{i∗}(1−ωxi+yi−zi)aibi 6= 0 and with probability at most 2/q

when
∑
i∈Q\{i∗}(1− ωxi+yi−zi)aibi = 0. This implies for any tuple (x, y, z) with z 6= x+ y, the verification

equation gets satisfied with probability at most 2/q. Hence the above algorithms in fact constitute a correct
relational hash for linearity over Fnp . ut

Security. We assume n log p is at least in the order of security parameter and the p-ary Mix DLP assumption
(stated below) holds. This is a generalized version of Binary Mix DLP(Assumption 1). For p = 2 the assump-
tions are equivalent. This assumption also incorporates the case when n is small (constant), but p is large
(exponential in security parameter λ).

Assumption 7 (p-ary Mix DLP). Assuming a generation algorithm G that outputs a tuple (n, q, ω,G)
such that G is a group of prime order q = 1 (mod p), for some prime p and ω is an arbitrary element from
Z∗q of order p, the p-ary Mix DLP assumption asserts that given random elements 〈gi〉

n
i=1 from the group G

and
∏n
i=1 gω

xi

i , for a random x← Fnp , it is computationally infeasible to output y ∈ Fnp such that,

n∏
i=1

gω
xi

i =

n∏
i=1

gω
yi

i .
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Remark 8. Similar to proof of Binary Mix DLP(Assumption 1) in the Generic Group Model in Section E.2,
we can also prove the above assumption is secure in the Generic Group Model. We skip the proof for brevity.

Theorem 10. The above algorithms (KeyGen,Hash1,Hash2,Verify) constitute a relational hash scheme
for the relation R = {(x, y, z) | x + y = z ∧ x, y, z ∈ Fnp}. The scheme is one-way secure under the SXDH
assumption and p-ary Mix DLP assumption (Assumption 7), when x and y’s are sampled uniformly from Fnp .

Proof. We prove the theorem starting with a similar lemma as the Fn2 case. We skip the proof of this lemma
as it is almost identical to the Fn2 lemma.

Lemma 5. Under the p-ary Mix DLP(Assumption 7) and DDH Assumptions, given random elements g, 〈ĝi〉
n
i=1

from a group G and gr, v̂ =
∏n
i=1 ĝri , 〈ẑi〉

n
i=1 =

〈
ĝω

xir
i

〉n
i=1

for a random r ← Z∗q , and random x← Fnp it is

hard to output y ∈ Fnp , such that

v̂ =

n∏
i=1

ẑω
−yi
i .

Formally, for all PPT adversaries A there exists a negligible function negl() such that

Pr

[
G← G(1λ); g, 〈ĝi〉

n
i=1 ← G; r ← Z∗q ;x← Fnp ;

y ← A
(
g, 〈ĝi〉

n
i=1 ,g

r, v̂ =
∏n
i=1 ĝri , 〈ẑi〉

n
i=1 =

〈
ĝω

xir
i

〉n
i=1

) : v̂ =

n∏
i=1

ẑω
−yi
i

]
< negl(η)

Now we show that if the relational hash is not one-way secure (and we have a one-wayness adversary
B), then we can construct an adversary A breaking Lemma 5. To achieve that, consider that the adversary

A is given a Lemma 5 challenge
(
g, 〈ĝi〉

n
i=1 ,g

r,
∏n
i=1 ĝri ,

〈
ĝω

xir
i

〉n
i=1

)
. We now construct the one-wayness

challenge as follows: We sample u, s and 〈ui〉ni=1, all randomly from Z∗q . Sample h0 randomly from G2. Now
we define the output of KeyGen to be pk := (pk1, pk2, pkR) defined as follows:

pk1 :=

(
g,
〈
ĝ
u−1
i
i

〉n
i=1

,gu
n∏
i=1

ĝ−1i

)
, pk2 :=

(
h0, 〈huis0 〉

n
i=1 ,h

s
0

)
, pkR := us

Observe that g,
〈
ĝ
u−1
i
i

〉n
i=1

,h0, 〈huis0 〉
n
i=1 ,h

s
0 and us are all uniformly random and independent elements

of their respective domains. The group element gu
∏n
i=1 ĝ−1i is fixed given the other elements. Hence

(pk1, pk2, pkR) has identical distribution as the output of the original KeyGen.

A publishes (pk1, pk2, pkR) to the adversary B and then also gives a challenge hash:

hx :=

gr,
〈
ĝ
ωxir·u−1

i
i

〉n
i=1

,gr·u

(
n∏
i=1

ĝri

)−1 .

Once B outputs an element y ∈ Fnp , A just relays that to the Lemma 4 challenger. Now, observe that hx
is identically distributed as Hash1(x) for a random x← Fnp . Therefore, the probability that y = x is same as
the advantage of B against the security of the relational hash scheme. Therefore the scheme is secure given
Lemma 5. ut

Unforgeability and Oracle Simulation Security. This relational hash is also in fact a 2-value perfectly one-
way function, albeit under a stronger hardness assumption. The hardness assumption and proof of 2-value
perfectly one-wayness is analogous to the Fn2 case. By Theorem 8 from Section 5, that will imply this relational
hash construction is also unforgeable and oracle simulation secure.
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Relational Hash for Hamming Proximity in Fn
p . As in the case for Fn2 , we can also construct a

relational hash for the domains X,Y = Fnp and the relation Rδ = {(x, y) | dist(x, y) ≤ δ ∧ x, y ∈
Fnp}, where dist is the p-ary hamming distance and δ is a positive integer less than n. We use a family
of (n, k, d) linear error correcting codes (ECC) C of alphabet size p and a relational hash for linearity
in Fkp: (KeyGenLinear,HashLinear1,HashLinear2,VerifyLinear). The construction, correctness and
security are analogous to the binary case.

E Justification of New Hardness Assumptions

In this section we justify the new hardness assumptions proposed in this paper by either showing each as an
implication of a more standard assumption or by proving it in the Generic Group Model [Sho97].

E.1 Binary Mix DLP is as Hard as Random Modular Subset Sum

We recall the Binary Mix DLP assumption (Assumption 1) from Section 3.

Assumption 1. (Binary Mix DLP) : Assuming a generation algorithm G that outputs a tuple (n, q,G)
such that G is a group of prime order q, the Binary Mix DLP assumption asserts that given random elements

〈gi〉
n
i=1 from the group G and

∏n
i=1 g

(−1)xi
i , for a random x← Fn2 , it is computationally infeasible to output

y ∈ Fn2 such that
n∏
i=1

g
(−1)xi
i =

n∏
i=1

g
(−1)yi
i .

Theorem 11. The Binary-Mix-DLP assumption (Assumption 1) is implied by the Random-Modular-Subset-
Sum assumption (Assumption 6).

Proof. We show, given a Binary-Mix-DLP attacker A, we can solve any Random-Modular-Subset-Sum chal-
lenge (〈ai〉ni=1 , c). Suppose, the Binary-Mix-DLP attacker A works in a group G of order q, which has a
generator g. We invoke A on input (

〈gai〉ni=1 ,g
−2c+

∑n
i=1 ai

)
.

If A successfully outputs τ ∈ Fn2 as a solution to the above Binary-Mix-DLP problem, τ is also a solution to
the Random-Modular-Subset-Sum challenge. ut

E.2 Hardness of Binary Mix DLP and Decisional Binary Mix: Proof in the Generic Group Model

In this section we show Binary Mix DLP(Assumption 1) and Decisional Binary Mix(Assumption 2) hold in the
Generic Group Model. Let A be a probabilistic polynomial time (PPT) generic group adversary. Following
[Sho97], the generic group model is implemented by choosing a random encoding σ : G → {0, 1}m (where
m >> log q). Instead of working directly with group elements, A works with images of group elements under
σ. This implies, all A can do, is test for elemental equality. A is also given access to following two oracles:

– Group Action Oracle : Given σ(g1) and σ(g2), it returns σ(g1g2).

– Group Inversion Oracle : Given σ(g), it returns σ(g−1).

We also assume, A queries the oracles with encoding of the elements it has previously seen. This assumption
holds, because the probability of choosing a string which is also a image of σ is negligible (as m >> log q).

Theorem 12. The Binary Mix DLP assumption (Assumption 1) holds in the Generic Group Model.
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Proof. We consider an algorithm B playing the following game with A. Algorithm B chooses n bit strings
uniformly in {0, 1}m:

〈
σig
〉n
i=1

, σg

and gives them to A. Internally, B keeps track of the encoded elements using polynomials in the ring

Fq[R1, · · · , Rn, Tg].

To maintain consistency with the bit strings given to A, B creates a list L of pairs (F, σ) where F is a
polynomial in the ring specified above and σ is the encoding of a group element. The polynomial F represents
the exponent of the encoded element. Initially, L is set to,

L0 = {
〈
(Ri, σ

i
g)
〉n
i=1

, (Tg, σg)}.

Algorithm B simulates the oracles as follows.

– Group Action : Given two strings σi, σj , B recovers the corresponding polynomials Fi, Fj and computes
Fi +Fj . If Fi +Fj is already in L, B returns the corresponding bit string; otherwise it returns a uniform
bit string σ ∈ {0, 1}m and stores (Fi + Fj , σ) in L.

– Group Inversion : Given an element σ, B recovers the corresponding polynomial representation F and
computes −F . If the polynomial −F is already in L, B returns the corresponding bit string; otherwise
it returns a uniform bit string σ ∈ {0, 1}m and stores (−F, σ) in L.

After A queried the oracles, it outputs a y ∈ Fn2 . At this point, B chooses random x ← Fn2 and 〈ri〉ni=1

from Zq at random. B sets:

〈Ri〉ni=1 = 〈ri〉ni=1

Tg =

n∑
i=1

(−1)xiri

A wins the game if one of the following is true.

– Case - I : Tg =
∑n
i=1(−1)yiRi

– Case - II : Simulation of B is inconsistent.
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Suppose x is the random variable corresponding to random choice of x. Now, we find an upper bound for
the Case - I probability.

Pr

[
Tg =

n∑
i=1

(−1)yiRi

]
= Pr

[
n∑
i=1

(−1)xiRi =

n∑
i=1

(−1)yiRi

]

= Pr

[
n∑
i=1

(−1)xiRi =

n∑
i=1

(−1)yiRi
∣∣x = y

]
Pr[x = y]

+
∑
η∈Fn2
η 6=0n

Pr

[
n∑
i=1

(−1)xiRi =

n∑
i=1

(−1)yiRi
∣∣x = y + η

]
Pr[x = y + η]

=
1

2n
+

1

2n

∑
η∈Fn2
η 6=0n

Pr

[
n∑
i=1

(−1)yi((−1)ηi − 1)Ri = 0
∣∣x = y + η

]

=
1

2n
+

1

2n

∑
η∈Fn2
η 6=0n

Pr

−2
∑
i:ηi=1

(−1)yiRi = 0


=

1

2n
+

1

2n

∑
η∈Fn2
η 6=0n

1

q

≤ 1

2n
+

1

q

The list L, is initially set to L0. New polynomials get added to the list, because of invocation of Group
Action and Group Inversion oracles by A. However, the operations of these two oracles never increase the
degree of the polynomials present in the list L. In other words, any polynomial Fi ∈ L is of the form:

Fi =

n∑
k=1

aikRk + +ciTg,

where
〈
aik
〉n
k=1

, ci are some constants from Zq.
We need to show, two distinct polynomials Fi and Fj can collide after substituting random values of

〈ri〉ni=1 , x only with negligible probability. In other words, we need to find an upper bound of the probability
that the polynomial

Fi − Fj =

n∑
k=1

(aik − a
j
k)Rk + (ci − cj)Tg

hits a zero.
Lemma 6 shows, this upper bound is actually 1

q + 1
2n . Now, if an adversary makes t queries, the size of

the list L can be upper bounded by |L0|+ t = n + t + 1. Hence, the probability that the B ’s simulation is
inconsistent is at most

(n+ t+ 1)2
(

1

q
+

1

2n

)
.

After adding the upper bound of the probability of Case-I along with it, we get an upper bound of A’s
advantage as, (

(n+ t+ 1)2 + 1
)(1

q
+

1

2n

)
.

ut
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Lemma 6. For any nonzero polynomial

F =

n∑
i=1

aiRi + cTg,

in Fq[R1, · · · , Rn, Tg] the probability that the polynomial hits a zero is at most

1

q
+

1

2n
,

where 〈ri〉ni=1 are chosen from Zq at random, x is chosen from Fn2 at random and 〈Ri〉ni=1, Tg are substituted
as follows:

〈Ri〉ni=1 = 〈ri〉ni=1

Tg =

n∑
i=1

(−1)xiri.

Proof. x be the random variables corresponding to the random choices of x from Fn2 .

Pr[F = 0] = Pr

[
n∑
i=1

(ai + (−1)xic)Ri = 0

]

Now we evaluate an upper bound for the right hand expression in various cases, depending on the values of
the constants 〈ai〉ni=1 , c.

Case I - (c 6= 0): For any u ∈ Fn2 ,

Pr

[
n∑
i=1

(ai + (−1)xic)Ri = 0

]
≤ (1− 1

2n
)
1

q
+

1

2n
.

Note, the (1 − 1
2n ) factor comes from the fact that, all ai’s might take the values ±c, and in that case all

coefficients of Ri’s becomes zero with probability 1
2n .

Case II - (c = 0) : There erists i∗, s.t. ai∗ 6= 0 (otherwise, F becomes a zero polynomial).

Pr

[
n∑
i=1

(ai + (−1)xic)Ri = 0

]
=

1

q
.

Combining both the cases, we get

Pr

[
n∑
i=1

(ai + (−1)xic)Ri = 0

]
≤ 1

q
+

1

2n
.

ut

Theorem 13. The Decisional Binary Mix assumption (Assumption 2) holds in the Generic Group Model.

Proof. We consider an algorithm B playing the following game with A. Algorithm B chooses 2n + 1 bit
strings uniformly in {0, 1}m: 〈

σig
〉n
i=1

,
〈
σif
〉n
i=1

, σg, σ
0
f , σ

1
f ,

and gives them to A. Internally, B keeps track of the encoded elements using polynomials in the ring

Fq[R1, · · · , Rn, S1, · · · , Sn, Tg, Tf,0, Tf,1].
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To maintain consistency with the bit strings given to A, B creates a list L of pairs (F, σ) where F is a
polynomial in the ring specified above and σ is the encoding of a group element. The polynomial F represents
the exponent of the encoded element. Initially, L is set to,

L0 = {
〈
(Ri, σ

i
g)
〉n
i=1

,
〈
(Si, σ

i
f )
〉n
i=1

, (Tg, σg), (Tf,0, σ
0
f ), (Tf,1, σ

1
f )}.

Algorithm B simulates the oracles as follows.

– Group Action : Given two strings σi, σj , B recovers the corresponding polynomials Fi, Fj and computes
Fi +Fj . If Fi +Fj is already in L, B returns the corresponding bit string; otherwise it returns a uniform
bit string σ ∈ {0, 1}m and stores (Fi + Fj , σ) in L.

– Group Inversion : Given an element σ, B recovers the corresponding polynomial representation F and
computes −F . If the polynomial −F is already in L, B returns the corresponding bit string; otherwise
it returns a uniform bit string σ ∈ {0, 1}m and stores (−F, σ) in L.

After A queried the oracles, it outputs a bit b′. At this point, B chooses a bit b at random and
〈ri〉ni=1 , 〈si〉

n
i=1 from Zq at random. B also chooses x, y from Fn2 at random. B sets:

〈Ri〉ni=1 = 〈ri〉ni=1

〈Si〉ni=1 = 〈si〉ni=1

Tg =

n∑
i=1

(−1)xiri

Tf,b =

n∑
i=1

(−1)xisi

Tf,1−b =

n∑
i=1

(−1)yisi

If the simulation provided by B is consistent, it reveals nothing about b. This means A can only guess
the correct value of b with probability 1/2. The simulation can be inconsistent, only if the random choices of
b, 〈ri〉ni=1 , 〈si〉

n
i=1 , x, y by B produce a collision(i.e. two different polynomials taking the same value) in the

list L.
The list L, is initially set to L0. New polynomials get added to the list, because of invocation of Group

Action and Group Inversion oracles by A. However, the operations of these two oracles never increase the
degree of the polynomials present in the list L. In other words, any polynomial Fi ∈ L is of the form:

Fi =

n∑
k=1

aikRk +

n∑
k=1

bikSk + ciTg + diTf,0 + eiTf,1,

where
〈
aik
〉n
k=1

,
〈
bik
〉n
k=1

, ci, di, ei are some constants from Zq.
We need to show, two distinct polynomials Fi and Fj can collide after substituting random values of

b, 〈ri〉ni=1 , 〈si〉
n
i=1 , x, y only with negligible probability. In other words, we need to find an upper bound of

the probability that the polynomial

Fi − Fj =

n∑
k=1

(aik − a
j
k)Rk +

n∑
k=1

(bik − b
j
k)Sk + (ci − cj)Tg + (di − dj)Tf,0 + (ei − ej)Tf,1

hits a zero.
Lemma 7 shows, this upper bound is actually 1

q + 1
2n . Now, if an adversary makes t queries, the size of

the list L can be upper bounded by |L0|+ t = 2n+ t+ 3. Hence, the probability that the B ’s simulation is
inconsistent is at most

(2n+ t+ 3)2
(

1

q
+

1

2n

)
,

which is an upper bound of the advantage of any generic group adversary such as A. ut
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Lemma 7. For any nonzero polynomial

F =

n∑
i=1

aiRi +

n∑
i=1

biSi + cTg + dTf,0 + eTf,1,

in Fq[R1, · · · , Rn, S1, · · · , Sn, Tg, Tf,0, Tf,1] the probability that the polynomial hits a zero is at most

1

q
+

1

2n
,

where bit b is chosen at random, 〈ri〉ni=1 , 〈si〉
n
i=1 are chosen from Zq at random, x, y are chosen from Fn2 at

random and 〈Ri〉ni=1, 〈Si〉ni=1, Tg, Tf,0, Tf,1 are substituted as follows:

〈Ri〉ni=1 = 〈ri〉ni=1

〈Si〉ni=1 = 〈si〉ni=1

Tg =

n∑
i=1

(−1)xiri

Tf,b =

n∑
i=1

(−1)xisi

Tf,1−b =

n∑
i=1

(−1)yisi.

Proof. At first we upper bound the probability Pr[F = 0|b = 0]. x and y be the random variables corre-
sponding to the random choices of x and y from Fn2 .

Pr[F = 0|b = 0] = Pr

[
n∑
i=1

(ai + (−1)xic)Ri +

n∑
i=1

(bi + (−1)xid+ (−1)yie)Si = 0

]
Now we evaluate an upper bound for the right hand expression in various cases, depending on the values of
the constants 〈ai〉ni=1 , 〈bi〉

n
i=1 , c, d, e.

Case I - (c 6= 0): For any u ∈ Fn2 ,

Pr

[
n∑
i=1

(ai + (−1)xic)Ri = u

]
≤ (1− 1

2n
)
1

q
+

1

2n
.

Note, the (1 − 1
2n ) factor comes from the fact that, all ai’s might take the values ±c, and in that case all

coefficients of Ri’s becomes zero with probability 1
2n . The additive 1

2n term comes for the special case u = 0.

Case II - (c = 0 and there exists i∗, s.t. ai∗ 6= 0): For any u ∈ Fn2 ,

Pr

[
n∑
i=1

(ai + (−1)xic)Ri = u

]
=

1

q
.

Case III - (c = 0 , ai = 0 for all i, d 6= 0, e 6= 0): For any u ∈ Fn2 ,

Pr

[
n∑
i=1

(bi + (−1)xid+ (−1)yie)Si = u

]
≤ (1− 1

4n
)
1

q
+

1

4n
.

Note, the (1− 1
4n ) factor comes from the fact that, all bi’s might take the values (±d±e), and in that case all

coefficients of Si’s becomes zero with probability 1
4n . The additive 1

4n term comes for the special case u = 0.
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Case IV - (c = 0 , ai = 0 for all i, d = 0, e 6= 0): For any u ∈ Fn2 ,

Pr

[
n∑
i=1

(bi + (−1)xid+ (−1)yie)Si = u

]
≤ (1− 1

2n
)
1

q
+

1

2n
.

Note, the (1 − 1
2n ) factor comes from the fact that, all bi’s might take the values ±e, and in that case all

coefficients of Si’s becomes zero with probability 1
2n . The additive 1

2n term comes for the special case u = 0.

Case V - (c = 0 , ai = 0 for all i, d 6= 0, e = 0): For any u ∈ Fn2 ,

Pr

[
n∑
i=1

(bi + (−1)xid+ (−1)yie)Si = u

]
≤ (1− 1

2n
)
1

q
+

1

2n
.

Note, the (1 − 1
2n ) factor comes from the fact that, all bi’s might take the values ±d, and in that case all

coefficients of Si’s becomes zero with probability 1
2n . The additive 1

2n term comes for the special case u = 0.

Case VI - (c = 0 , ai = 0 for all i, d = 0, e = 0): There exists j∗, s.t. bj∗ 6= 0 (otherwise, F becomes the
zero polynomial). Hence, for any u ∈ Fn2 ,

Pr

[
n∑
i=1

(bi + (−1)xid+ (−1)yie)Si = u

]
=

1

q
.

Hence, combining all cases together we have,

Pr[F = 0|b = 0] = Pr

[
n∑
i=1

(ai + (−1)xic)Ri +

n∑
i=1

(bi + (−1)xid+ (−1)yie)Si = 0

]

≤ 1

q
+

1

2n

With a similar analysis, we can also show

Pr[F = 0|b = 1] ≤ 1

q
+

1

2n
.

ut

E.3 Twin One-wayness of Fn
2 Linear Relational Hash: Proof of Theorem 2

Below, Assumption 8 is the twin one-way security requirement of Theorem 2 and of our scheme.

Assumption 8. Assuming a generation algorithm G that outputs a tuple (n, q,G1,G2,GT , e) such that
G1,G2,GT are groups of prime order q and e is a bilinear pairing mapping elements of G1 × G2 to GT ,
then for random g← G1,h← G2, 〈ai〉n+1

i=1 , 〈bi〉
n+1
i=1 , r, s← Zq, x← Fn2 , given access to

g, 〈gai〉n+1
i=1 ,g

r,
〈
g(−1)xiair

〉n
i=1

,gan+1r

h,
〈
hbi
〉n+1

i=1
,hs,

〈
h(−1)xibis

〉n
i=1

,hbn+1s,

k =
∑n+1
i=1 aibi, e

 ,

it is hard to output x.

In this section we show Assumption 8 holds in the generic group model. In particular we show,
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Theorem 14. For random g ← G1,h ← G2, 〈ai〉n+1
i=1 , 〈bi〉

n+1
i=1 , r, s ← Zq, x ← Fn2 , if an adversary A is

given access to 
g, 〈gai〉n+1

i=1 ,g
r,
〈
g(−1)xiair

〉n
i=1

,gan+1r

h,
〈
hbi
〉n+1

i=1
,hs,

〈
h(−1)xibis

〉n
i=1

,hbn+1s,

k =
∑n+1
i=1 aibi

 ,

then in the generic group model the adversary A can output x with probability at most 1/2n + 1/q +(
(2n+ 4 + q1)2 + (2n+ 4 + q2)2 + q2T

)
(2/(q − 1) + 5/q + 1/2n), where q1, q2, qT are the number oracle queries

by made by A to G1,G2 and GT oracles.

For a proof in the generic group model, following the techniques of Boneh et al. [BBS04] and Appendix
E.2, we can give 2n+4 random encodings for elements in each of the groups G1 and G2 to the adversary. We

also need to provide a random integer k ← Zq as the relational key
∑n+1
i=1 aibi.

〈
σ1
i

〉2n+4

i=1
,
〈
σ2
i

〉2n+4

i=1
be those

random encodings corresponding to the elements in G1 and G2. We need to keep track of these encoded
elements using functions F 1

i , F
2
i , F

T
i in variables A1, · · · , An+1, B1, · · · , Bn, R, S,X1, · · · , Xn. We need to

maintain three lists L1, L2, LT (one each for the groups G1 and G2, and one for the target group GT ). The
lists would be initialized as follows:

L1 L2 LT
(F 1

1 = 1, σ1
1) (F 2

1 = 1, σ2
1)

(F 1
2 = A1, σ1

2) (F 2
2 = B1, σ2

2)
...

...
(F 1
n+1 = An, σ1

n+1) (F 2
n+1 = Bn, σ2

n+1)
(F 1
n+2 = An+1, σ1

n+2) (F 2
n+2 = A−1n+1 (k −

∑n
i=1AiBi) , σ2

n+2)
(F 1
n+3 = R, σ1

n+3) (F 2
n+3 = S, σ2

n+3)
(F 1
n+4 = (−1)X1A1R, σ1

n+4) (F 2
n+4 = (−1)X1B1S, σ2

n+4)
...

...
(F 1

2n+3 = (−1)XnAnR, σ
1
2n+3) (F 2

2n+3 = (−1)XnBnS, σ2
2n+3)

(F 1
2n+4 = An+1R, σ1

2n+4) (F 2
2n+4 = A−1n+1 (k −

∑n
i=1AiBi)S, σ

2
2n+4)

Now as the adversary will make queries to the group action oracles (in G1, G2 and GT ) , group inversion
oracles (in G1, G2 and GT ) and the pairing oracle. We will be adding more elements to the above lists. Any
new function F 1

i in L1 would be linear in Zq in terms of F 1
1 , · · · , F 1

2n+4. Similarly any new function F 2
i in L2

would be linear in Zq in terms of F 2
1 , · · · , F 2

2n+4. Moreover, any function FTi in LT would be linear in Zq in
terms of

〈
F 1
j1
F 2
j2

〉
1≤j1,j2≤2n+4

. If the adversary makes q1 many group action and group inversion queries to

G1 oracle, q2 many group action and group inversion queries to G2 oracle and qT many queries to GT oracle
(i.e. pairing queries as well as group action and inversion queries), we know size of the lists L1, L2, LT can
be upper bounded as follows:

|L1| ≤ (2n+ 4) + q1, |L2| ≤ (2n+ 4) + q2, |LT | ≤ qT .

In the end, the adversary will return some x′ ∈ Fn2 and we will randomly assign values to

A1, · · · , An+1, B1, · · · , Bn, R, S ← Zq

and
X1, · · · , Xn ← {0, 1}.

Clearly X1 · · ·Xn will take the value x′ only with probability 1/2n. We will also abort the simulation, if the
random assigned value of An+1 is zero which makes A−1n+1 undefined.

However, we also need show our simulation is consistent with high probability. That is after assigning
random values to the variables the functions in L1,

〈
F 1
i1

〉
1≤i1≤|L1|

should not collide (also in L2 and LT ).
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We follow an approach similar to Appendix E.2 to upper-bound collision probability in LT . Any difference
function FTi1 − F

T
i2

(for 1 ≤ i1, i2 ≤ |LT |) can take the following form:

FTi1 − F
T
i2 =

∑
1≤j1,j2≤2n+4

`j2j1F
1
j1F

2
j2 ,

where
〈
`j2j1

〉
1≤j1,j2≤2n+4

are constants in Zq. We need to show for all possible constants
〈
`j2j1

〉
1≤j1,j2≤2n+4

∈

Zq. either FTi1 − F
T
i2

attains zero with negligible probability or FTi1 − F
T
i2

is a trivially zero polynomial. We

also observe, this upper-bound of Pr[FTi1 − F
T
i2

= 0] for all possible constants is also an upper-bound on
Pr[F 1

i1
− F 1

i2
= 0], as well as Pr[F 2

i1
− F 2

i2
= 0]. This is true because, for 1 ≤ i1, i2 ≤ |L1|, F 1

i1
− F 1

i2
can be

written as
∑

1≤j1≤2n+4 `
1
j1
F 1
j1
F 2
1 .

We observe, FTi1 − F
T
i2

is a trivially zero polynomial, if for some c1, c2 ∈ Zq

`11 = −kc1, `n+3
n+3 = −kc2

`22 = `33 = · · · = `n+2
n+2 = c1

`n+4
n+4 = `n+5

n+5 = · · · = `2n+4
2n+4 = c2

if(j1 6= j2), `j1
j2 = 0.

We have already mentioned, if An+1 becomes zero, then A−1n+1 is undefined and we abort the simulation.
For rest of the analysis, we will assume An+1 is randomly sampled from Zq \ {0}.

For 1 ≤ i, j ≤ n, i 6= j, let Coeff(FTi1 − F
T
i2
, AiBj) be the coefficient of AiBj in FTi1 − F

T
i2

. We have,

Coeff(FTi1 − F
T
i2 , AiBj) =

(
`j+1
i+1 − `

n+2
i+1 AjA

−1
n+1

)
+
(
`n+j+3
i+1 (−1)Xj − `2n+4

i+1 AjA
−1
n+1

)
S

+
(
`j+1
n+i+3(−1)Xi − `n+2

n+i+3AjA
−1
n+1(−1)Xi

)
R

+
(
`n+j+3
n+i+3 (−1)Xi⊕Xj − `2n+4

n+i+3(−1)XiAjA
−1
n+1

)
RS

Unless `j+1
i+1 = `n+2

i+1 = `n+j+3
i+1 = `2n+4

i+1 = `j+1
n+i+3 = `n+2

n+i+3 = `n+j+3
n+i+3 = `2n+4

n+i+3 = 0, Coeff(FTi1 − F
T
i2
, AiBj)

can be a zero polynomial over R and S with probability at most 1/q (randomness over choice of Aj and any
fixed An+1, Xi, Xj). With probability at least 1−1/q, Coeff(FTi1 −F

T
i2
, AiBj) is a non-zero polynomial over

R and S with maximum total degree 2. For a random choice of R ans S, it can attain zero with probability at
most 2/q. Hence, for random choice of Aj , R and S, Coeff(FTi1 − F

T
i2
, AiBj) becomes zero with probability

at most 3/q. In other words, (FTi1 −F
T
i2

)[Ai, Bj ] is a non-zero polynomial over Ai, Bj (maximum total degree
2) with probability at least (1 − 3/q) (for a random choice of other variables). For random choice of Ai
and Bj , this quadratic non-zero polynomial can attain zero with probability at most 2/q. Hence, unless

`j+1
i+1 = `n+2

i+1 = `n+j+3
i+1 = `2n+4

i+1 = `j+1
n+i+3 = `n+2

n+i+3 = `n+j+3
n+i+3 = `2n+4

n+i+3 = 0 for 1 ≤ i, j ≤ n, i 6= j, FTi1 − F
T
i2

attains zero with probability at most 5/q.

Case A: Figure 2 Let us consider the case when `j+1
i+1 = `n+2

i+1 = `n+j+3
i+1 = `2n+4

i+1 = `j+1
n+i+3 = `n+2

n+i+3 =

`n+j+3
n+i+3 = `2n+4

n+i+3 = 0 for 1 ≤ i, j ≤ n, i 6= j. Figure 2 shows the `ji values, where darkened squares denote
zero.

For 1 ≤ i ≤ n, let Coeff(FTi1 −F
T
i2
, Ai) be the coefficient of Ai in FTi1 −F

T
i2

. Now, ignoring the darkened

zero `ji values as per Figure 2 we have,

Coeff(FTi1 − F
T
i2 , Ai) =

(
`1i+1 +

(
`i+1
i+1 − `

n+2
n+2 − `

n+2
1 A−1n+1

)
Bi
)

+
(
`n+3
i+1 +

(
`n+i+3
i+1 (−1)Xi − `2n+4

n+2 − `
2n+4
1 A−1n+1

)
Bi
)
S

+
(
`1n+i+3(−1)Xi +

(
`i+1
n+i+3(−1)Xi − `n+2

2n+4 − `
n+2
n+3A

−1
n+1

)
Bi
)
R

+
(
`n+3
n+i+3(−1)Xi +

(
`n+i+3
n+i+3 − `

2n+4
2n+4 − `

2n+4
n+3 A

−1
n+1

)
Bi
)
RS
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Fig. 2. Case A: Grid of `ji values, darkened squares denote zero

Unless, `1i+1 = `n+3
i+1 = `1n+i+3 = `n+3

n+i+3 = 0, for a random choice of Bi and any choice of A−1n+1 and

Xi, Coeff(FTi1 − F
T
i2
, Ai)[R,S] will be a non zero polynomial (of maximum total degree 2) over R,S with

probability at least 1− 1/q.

Now, if we consider the case `1i+1 = `n+3
i+1 = `1n+i+3 = `n+3

n+i+3 = 0, unless `n+2
1 = `2n+4

1 = `n+2
n+3 = `2n+4

n+3 = 0

for any choice of Xi and random choice of A−1n+1 and Bi, Coeff(FTi1 − FTi2 , Ai)[R,S] will be a non zero
polynomial (of maximum total degree 2) over R,S with probability at least 1− (1/(q − 1) + 1/q).

In the case `1i+1 = `n+3
i+1 = `1n+i+3 = `n+3

n+i+3 = `n+2
1 = `2n+4

1 = `n+2
n+3 = `2n+4

n+3 = 0, unless `i+1
i+1 = `n+2

n+2 and

`n+i+3
n+i+3 = `2n+4

2n+4 for any choice of Xi and random choice of Bi, Coeff(FTi1 −F
T
i2
, Ai)[R,S] will be a non zero

polynomial (of maximum total degree 2) over R,S with probability at least 1− (1/q).

All together, we have unless `1i+1 = `n+3
i+1 = `1n+i+3 = `n+3

n+i+3 = `n+2
1 = `2n+4

1 = `n+2
n+3 = `2n+4

n+3 = 0, `i+1
i+1 =

`n+2
n+2 and `n+i+3

n+i+3 = `2n+4
2n+4 for any choice of Xi and random choice of Bi and A−1n+1, Coeff(FTi1 −F

T
i2
, Ai)[R,S]

is a non zero polynomial (of maximum total degree 2) over R,S with probability at least 1−(1/(q−1)+1/q).
For random choices of R and S, the non zero polynomial Coeff(FTi1 − F

T
i2
, Ai)[R,S] can attain zero with

probability at most 2/q. Hence, with probability at least 1 − (1/(q − 1) + 3/q), (FTi1 − FTi2 )[Ai] is a non
zero polynomial over Ai (the probability is taken over all the random variables except Ai). This non-zero
polynomial has degree at most 2, and for random choice of Ai this can attain zero with probability at most
2/q. Hence, unless `1i+1 = `n+3

i+1 = `1n+i+3 = `n+3
n+i+3 = `n+2

1 = `2n+4
1 = `n+2

n+3 = `2n+4
n+3 = 0, `i+1

i+1 = `n+2
n+2 and

`n+i+3
n+i+3 = `2n+4

2n+4 for 1 ≤ i ≤ n, FTi1 − F
T
i2

can attain zero with probability at most 1/(q − 1) + 5/q.

Case B: Figure 3 Let us consider the case when

`1i+1 = `n+3
i+1 = `1n+i+3 = `n+3

n+i+3 = `n+2
1 = `2n+4

1 = `n+2
n+3 = `2n+4

n+3 = 0

`i+1
i+1 = `n+2

n+2 = c1, `
n+i+3
n+i+3 = `2n+4

2n+4 = c2
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for 1 ≤ i ≤ n and arbitrary constants c1, c2. Figure 3 shows the `ji values, where darkened squares denote
zero.
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Fig. 3. Case B: Grid of `ji values, darkened squares denote zero

In this case, we can simplify Coeff(FTi1 − F
T
i2
, Ai), as follows

Coeff(FTi1 − F
T
i2 , Ai) =

((
`n+i+3
i+1 (−1)Xi − `2n+4

n+2

)
S +

(
`i+1
n+i+3(−1)Xi − `n+2

2n+4

)
R
)
Bi.

Unless, `n+i+3
i+1 = `i+1

n+i+3 = `2n+4
n+2 = `n+2

2n+4 = 0 for 1 ≤ i ≤ n, for random choices of X1, · · · , Xn with

probability at least 1 − 1/2n, there exists i∗ ∈ {1, · · · , n} such that Coeff(FTi1 − F
T
i2
, Ai∗) is a non-zero

polynomial over R,S and Bi∗ , with maximum total degree 2. For random choices of R,S and Bi∗ the non-
zero polynomial Coeff(FTi1 −F

T
i2
, Ai∗)[R,S,Bi∗ ] can attain zero with probability at most 2/q, which would

imply FTi1 − F
T
i2

can attain zero with probability at most 1/2n + 4/q.

Case C: Figure 4 Let us consider the case

`n+i+3
i+1 = `i+1

n+i+3 = `2n+4
n+2 = `n+2

2n+4 = 0 for 1 ≤ i ≤ n.

Figure 4 shows the `ji values, where darkened squares denote zero.

For 1 ≤ j ≤ n, let Coeff(FTi1 −F
T
i2
, Bj) be the coefficient of Bj in FTi1 −F

T
i2

. Now, using `ji values as per
Figure 4 we have,

Coeff(FTi1 − F
T
i2 , Bj) =

(
`j+1
1 + `j+1

n+2An+1

)
+
(
`j+1
n+3 + `j+1

2n+4An+1

)
R

+
(
`n+j+3
1 + `n+j+3

n+2 An+1

)
(−1)XjS +

(
`n+j+3
n+3 + `n+j+3

2n+4 An+1

)
(−1)XjRS
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Fig. 4. Case C: Grid of `ji values, darkened squares denote zero

With a similar argument as before, we can show unless for 1 ≤ j ≤ n, `j+1
1 = `j+1

n+2 = `j+1
n+3 = `j+1

2n+4 =

`n+j+3
1 = `n+j+3

n+2 = `n+j+3
n+3 = `n+j+3

2n+4 = 0, FTi1 −F
T
i2

can attain zero with probability at most 1/(q− 1) + 3/q.

Case D: Figure 5 Let us consider the case

`j+1
1 = `j+1

n+2 = `j+1
n+3 = `j+1

2n+4 = `n+j+3
1 = `n+j+3

n+2 = `n+j+3
n+3 = `n+j+3

2n+4 = 0,

for 1 ≤ j ≤ n. Figure 5 shows the `ji values, where darkened squares denote zero.

Let Coeff(FTi1 − F
T
i2
, S) be the coefficient of S in FTi1 − F

T
i2

. Now, using `ji values as per Figure 5 we
have,

Coeff(FTi1 − F
T
i2 , S) = `n+3

1 + `n+3
n+2An+1 +

(
`n+3
n+3 + kc2

)
R+ `n+3

2n+4An+1R

With a similar argument as before, we can show unless `n+3
1 = `n+3

n+2 = `n+3
2n+4 = 0 and `n+3

n+3 = −kc2, FTi1 −F
T
i2

can attain zero with probability at most 1/(q − 1) + 2/q.

Case E: Figure 6 Let us consider the case

`n+3
1 = `n+3

n+2 = `n+3
2n+4 = 0 and `n+3

n+3 = −kc2.

Figure 6 shows the `ji values, where darkened squares denote zero.

Let Coeff(FTi1 − F
T
i2
, R) be the coefficient of R in FTi1 − F

T
i2

. Now, using `ji values as per Figure 6 we
have,

Coeff(FTi1 − F
T
i2 , R) = `1n+3 + `12n+4An+1.

With a similar argument as before, we can show unless `1n+3 = `12n+4 = 0, FTi1 − F
T
i2

can attain zero with
probability at most 1/(q − 1) + 1/q.
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Fig. 5. Case D: Grid of `ji values, darkened squares denote zero
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Fig. 6. Case E: Grid of `ji values, darkened squares denote zero
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Fig. 7. Case F: Grid of `ji values, darkened squares denote zero
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Fig. 8. Case G: Grid of `ji values, darkened squares denote zero
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Case F: Figure 7 Let us consider the case

`1n+3 = `12n+4 = 0.

Figure 7 shows the `ji values, where darkened squares denote zero.

Let Coeff(FTi1 − F
T
i2
, An+1) be the coefficient of An+1 in FTi1 − F

T
i2

. Now, using `ji values as per Figure
7 we have,

Coeff(FTi1 − F
T
i2 , An+1) = `1n+2.

Hence, unless `1n+2 = 0, FTi1 − F
T
i2

being quadratic polynomial in An+1 can attain zero with probability at
most 2/(q − 1).

Case G: Figure 8 Let us consider the case, `1n+2 = 0. Figure 8 shows the `ji values, where darkened squares
denote zero.

Finally, using `ji values as per Figure 8 we have,

FTi1 − F
T
i2 = `11 + kc1.

If `11 6= −kc1, FTi1 − F
T
i2

can never attain zero, otherwise we have

`11 = −kc1, `n+3
n+3 = −kc2

`22 = `33 = · · · = `n+2
n+2 = c1

`n+4
n+4 = `n+5

n+5 = · · · = `2n+4
2n+4 = c2

if(j1 6= j2), `j1
j2 = 0,

the condition for trivial zero.
Hence for non-trivial choice `ji constants, Pr[FTi1 − F

T
i2

= 0] can be bounded by
(
2/(q− 1) +5/q+ 1/2n

)
,

and collision probability in either of the lists L1, L2 or LT gets bounded by
(
(2n+ 4 + q1)2 +(2n+ 4 + q2)2

+q2T
)(

2/(q− 1) + 5/q+1/2n
)
. Our simulator also aborts when An+1 is zero, which happens with probability

1/q. X1 · · ·Xn can match the attackers guess x′ only with probability 1/2n. Hence, all together attacker A’s
success probability gets bounded by 1/2n+1/q+

(
(2n+4+q1)2+(2n+4+q2)2+q2T

)(
2/(q−1)+5/q+1/2n

)
.
ut

F Correctness and Security of the Proximity Relational Hash: Proofs of
Theorem 3 and Theorem 4

Correctness. For any x, y ∈ Fn2 , we have

Hash1(x) = (hx1, hx2) = (x+ Encode(r),HashLinear1(pklin, r)) for some random r ∈ Fk2
Hash2(y) = (hy1, hy2 ) = (y + Encode(s),HashLinear2(pklin, s)) for some random s ∈ Fk2

If dist(x, y) ≤ δ, Decode(hx1 + hy1) will output (r + s) and the tuple

(HashLinear1(pklin, r),HashLinear2(pklin, s), r + s)

will get verified by VerifyLinear. This shows the above proximity hash correctly verifies tuples (x, y), for
any x, y ∈ Fn2 and dist(x, y) ≤ δ.

On the other hand, if dist(x, y) > δ and Verify outputs Accept, then the output of z = Decode(hx1
+hy1) can never be same as (r + s), because dist(Encode(r + s), hx1 + hy1) = dist(x, y) > δ. Also, from
correctness of linear relational hash we know VerifyLinear(pklin, hx2, hy2, z) outputs Accept only with
negligible probability (for any z 6= r + s). Hence the above algorithms constitute a correct relational hash
for proximity over Fn2 .
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One-wayness. We show that if there exists an attacker A breaking one-way security (Definition 3) for the
proximity hash scheme with non-negligible probability, then we can build an attacker which breaks the
one-way security for the linear relational hash scheme with non-negligible probability.

Let (pklin, hxlin = HashLinear1(pklin, r)) be the linear relational hash challenge for some random
r ← Fk2 . We choose random x′ ← Fn2 , and give

pk := (Encode,Decode, pklin)

hx := (x′, hxlin)

to the attacker A. Clearly hx is indistinguishable from a proximity hash of a random m ← Fn2 . If A breaks
one-wayness of the proximity hash with non-negligible probability and outputs m′, then we can output

Decode(m′ + x′).

With non-negligible probability this value will be same as r, breaking one-wayness of linear relational hash.

Unforgeability. We show if there exists an attacker A breaking unforgeability (Definition 5) for the proximity
hash scheme with non-negligible probability, then we can build an attacker which breaks the unforgeability
security property for the linear relational hash scheme with non-negligible probability.

Let (pklin, hxlin = HashLinear1(pklin, r)) be the linear relational hash challenge for some random
r ← Fk2 . We choose random x′ ← Fn2 , and give

pk := (Encode,Decode, pklin)

hx := (x′, hxlin)

to the attacker A. Clearly hx is indistinguishable from a proximity hash of a random m ← Fn2 . If A breaks
unforgeability of the proximity hash with non-negligible probability and outputs (m′, hylin), then we know
VerifyLinear must accept the input (pklin, hxlin, hylin,Decode(x′ +m′)). Hence,

(hylin,Decode(x′ +m′))

will be a valid forgery breaking the linear relational hash challenge. ut

Proof (of Theorem 4). For x ← Fn2 and e1, · · · , et ← Ξ, suppose there exists an attacker A, such that
given (Hash1(x), Hash2(x+ e1)), · · · ,Hash2(x+ et)), A can output x′ ∈ Fn2 with non-negligible probability
satisfying the condition dist(x′, x) ≤ δ. Theorem 2 says the linear relation hash is twin one-way secure if
Assumption 8 holds. Now we show, using A, we can construct another attacker B, which breaks Theorem 2
in Section 3. Attacker B has access to Theorem 2 challenge

(pklin, hxlin = HashLinear1(pklin, r), hylin = HashLinear2(pklin, r)),

for some random r ∈ Fk2 . B needs to output r with non-negligible probability. Attacker B chooses random
x0 ← Fn2 , random s1, · · · , st ← Fk2 and error samples e1, · · · , et ← Ξ. In Remark 2 (Section 3), we observed
that attacker B can easily construct HashLinear2(pklin, r + s) from s and HashLinear2(pklin, r). Let us
denote the implicit (to B) quantity x0 + Encode(r) by x̃. Attacker B, sends the following challenge to A,

pk := (Encode,Decode, pklin)

Hash1(x̃) := (x0,HashLinear1(pklin, r))

Hash2(x̃+ e1) := (x0 + e1 + Encode(s1),HashLinear2(pklin, r + s1)).

· · ·
Hash2(x̃+ et) := (x0 + et + Encode(st),HashLinear2(pklin, r + st)).
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If attacker A outputs m′ ∈ Fn2 , with non-negligible probability we have

dist(m′, x̃) ≤ δ,

or equivalently dist(m′ + x0,Encode(r)) ≤ δ. Hence, with non-negligible probability Decode(m′ + x0)
will be same as r. ut

G 2-POW implies Oracle Simulation: Proof of Theorem 7

We, recall in Definition 6 Oracle Simulation Security implies having access to hash value Hash1( pk, x) is
not more useful than a relational oracle Rx(·, ·) for predicting P (pk, x), for all predicates P . At first, we
prove Lemma 8, which says having access to a relational hash value, which is 2-POW is not really helpful
for predicting the value of any predicate.

Lemma 8. If a probabilistic function family {hk}k∈K with domain X and randomness space U is 2-value
perfectly One-Way with respect to probability distributions X (over X) and K (over K), then for all predicates
P (·, ·) and all PPTs A:

|Pr[A(k, hk(x, r)) = P (k, x)]− Pr[A(k, hk(x′, r)) = P (k, x)]| ≤ negl(λ).

Here, x and x′ are independently sampled from X , k ← K and r comes from a uniform distribution over
randomness space U

Proof. Let D(k, y0, y1) be the distinguisher that outputs 1 iff A(y0) = A(y1). For every x and k define

Qx,k
def
= Pr[A(k, hk(x, r)) = 1]. Now we have,

|Pr[A(k, hk(x, r)) = P (k, x)]− Pr[A(k, hk(x′, r)) = P (k, x)]|
≤ ∆( 〈A(k, hk(x, r)), k, x〉 , 〈A(k, hk(x′, r)), k, x〉 )

= Expx,k[|Qx,k − Expx[Qx,k]|]

≤ Expk

[√
Varx[Qx,k]

]
≤
√

Expk [Varx[Qx,k]]

=

√
Expk,x

[
Q2
x,k

]
− Expk[Expx[Qx,k]2]

=

√
1

2
|Pr[D(k, hk(x, r1), hk(x, r2)) = 1]− Pr[D(k, hk(x1, r1), hk(x2, r2)) = 1]|

ut
Now we prove Theorem 7. Let C be an adversary which given pk,Hash1(pk, x),Hash2(pk, y) outputs

a single bit. Let S be the adversary that, given pk, randomly selects x′ ← X and y′ ← Y, and outputs
C(pk,Hash1(pk, x′),Hash2(pk, y′)).

We now have, ∣∣∣∣Pr[C(pk,Hash1(pk, x),Hash2(pk, y)) = P (pk, x, y)]
−Pr[SRx,Ry,Rx,y (pk) = P (pk, x, y)]

∣∣∣∣
=

∣∣∣∣ Pr[C(pk,Hash1(pk, x),Hash2(pk, y)) = P (pk, x, y)]
−Pr[C(pk,Hash1(pk, x′),Hash2(pk, y′)) = P (pk, x, y)]

∣∣∣∣
≤
∣∣∣∣ Pr[C(pk,Hash1(pk, x),Hash2(pk, y)) = P (pk, x, y)]
−Pr[C(pk,Hash1(pk, x),Hash2(pk, y′)) = P (pk, x, y)]

∣∣∣∣+ negl(λ)

(Since Hash1 is a 2-value POW and by Lemma 8.)

≤ negl(λ)

(Since Hash2 is a 2-value POW and by Lemma 8.)
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ut

H 2-POW Property of the Linear Relational Hash: Proof of Theorem 9

We want to show that, for randomly chosen g0 ← G1,h0 ← G2, 〈ai〉n+1
i=1 , 〈bi〉

n+1
i=1 ← Z∗q , if we define

gi = gai0 , hi = hbi0 , pkR =
∑n+1
i=1 aibi and pk = (〈gi〉

n+1
i=0 , 〈hi〉

n+1
i=0 , pkR), then under the Decisional Binary

Mix(Assumption 2) and DDH assumptions, the following distributions are computationally indistinguishable
given random r, s← Z∗q and random x, y ← Fn2 :(

pk, gr0,
〈
g
(−1)xir
i

〉n
i=1

,grn+1, gs0,
〈
g
(−1)xis
i

〉n
i=1

,gsn+1

)
and (

pk, gr0,
〈
g
(−1)xir
i

〉n
i=1

,grn+1, gs0,
〈
g
(−1)yis
i

〉n
i=1

,gsn+1

)
.

We start with the following lemma.

Lemma 9. Under the Decisional Binary Mix(Assumption 2) and DDH assumptions, the following distri-
butions are computationally indistinguishable given random elements g0, 〈gi〉

n
i=1 ← G and r, s ← Z∗q and

random x, y ← Fn2 :(
g0, 〈gi〉

n
i=1 , gr0,

〈
g
(−1)xir
i

〉n
i=1

,

n∏
i=1

gri , gs0,
〈
g
(−1)xis
i

〉n
i=1

,

n∏
i=1

gsi

)

and (
g0, 〈gi〉

n
i=1 , gr0,

〈
g
(−1)xir
i

〉n
i=1

,

n∏
i=1

gri , gs0,
〈
g
(−1)yis
i

〉n
i=1

,

n∏
i=1

gsi

)
.

Proof. We show that the following distributions are indistinguishable:

Dist0
def
=

(
g0, 〈gi〉

n
i=1 , gr0,

〈
g
(−1)xir
i

〉n
i=1

,

n∏
i=1

gri , gs0,
〈
g
(−1)xis
i

〉n
i=1

,

n∏
i=1

gsi

)

and

Dist′0
def
=

(
g0, 〈gi〉

n
i=1 , f0, 〈fi〉ni=1 ,

n∏
i=1

f
(−1)xi
i , h0, 〈hi〉ni=1 ,

n∏
i=1

h
(−1)xi
i

)
,

where the gi, fi and hi’s are sampled independently randomly.
Let

Dist0,k
def
=


g0, 〈gi〉

n
i=1 ,

gr0,
〈
g
(−1)xir
i

〉k−1
i=1

, 〈fi〉ni=k ,
∏k−1
i=1 gri ·

∏n
i=k f

(−1)xi
i ,

gs0,
〈
g
(−1)xis
i

〉k−1
i=1

, 〈hi〉ni=k ,
∏k−1
i=1 gsi ·

∏n
i=k h

(−1)xi
i


Suppose a DDH instance (u,v,ur,w) is given, where the challenge is to decide whether w is vr or

random. We construct the following distribution, after choosing s and ui’s randomly from Z∗q , fi and hi’s
randomly from G and x randomly from Fn2 :

Dist0,k,DDH
def
=

 u, 〈uui〉k−1i=1 ,v, 〈uui〉
n
i=k+1 ,

ur,
〈
ur(−1)

xiui
〉k−1
i=1

,w(−1)xk , 〈fi〉ni=k+1 ,
∏k−1
i=1 urui ·w ·

∏n
i=k+1 f

(−1)xi
i ,

us,
〈
us(−1)

xiui
〉k−1
i=1

, 〈hi〉ni=k ,
∏k−1
i=1 usui ·

∏n
i=k h

(−1)xi
i


Now, note that Dist0,k,DDH is identical to Dist0,k when w is random and is otherwise identical to:
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Dist0,k+1/2
def
=


g0, 〈gi〉

n
i=1 ,

gr0,
〈
g
(−1)xir
i

〉k
i=1

, 〈fi〉ni=k+1 ,
∏k
i=1 gri ·

∏n
i=k+1 f

(−1)xi
i ,

gs0,
〈
g
(−1)xis
i

〉k−1
i=1

, 〈hi〉ni=k ,
∏k−1
i=1 gsi ·

∏n
i=k h

(−1)xi
i


By a similar reduction, Dist0,k+1/2 ≈DDH Dist0,k+1, leading to the conclusion Dist0,k ≈DDH Dist0,k+1.

Completing the chain, we have, Dist0 = Dist0,n+1 ≈DDH · · · ≈DDH Dist0,1 = Dist′0.

By doing an analogous proof, we have that the following distributions are indistinguishable as well:

Dist1
def
=

(
g0, 〈gi〉

n
i=1 , gr0,

〈
g
(−1)xir
i

〉n
i=1

,

n∏
i=1

gri , gs0,
〈
g
(−1)yis
i

〉n
i=1

,

n∏
i=1

gsi

)

and

Dist′1
def
=

(
g0, 〈gi〉

n
i=1 , f0, 〈fi〉ni=1 ,

n∏
i=1

f
(−1)xi
i , h0, 〈hi〉ni=1 ,

n∏
i=1

h
(−1)yi
i

)
,

where the gi, fi and hi’s are sampled independently randomly.

Finally observe that Dist′0 and Dist′1 are indistinguishable by the Decisional Binary Mix assumption
(Assumption 2). Hence we have: Dist0 ≈DDH,Decisional Binary Mix Dist1. ut

Now we proceed to prove Theorem 9. Specifically, we show that an adversary for distinguishing the
distributions (Let’s call them ∆0 and ∆1) in Theorem 9 can be used to build an adversary for distinguishing
Dist0 and Dist1. So suppose we are given a sample:(

g0, 〈gi〉
n
i=1 , gr0,

〈
g
(−1)xir
i

〉n
i=1

,

n∏
i=1

gri , gs0,
〈
g
(−1)zis
i

〉n
i=1

,

n∏
i=1

gsi

)
,

where the task is to decide if z = x or independently random.

We now construct a∆0/∆1 distinguishing adversaryB as follows: We sample u, s and 〈ui〉ni=1, all randomly
from Z∗q . Sample h0 randomly from G2. Now we define pk as (pk1, pk2, pkR):

pk1 := g0,
〈
g
u−1
i
i

〉n
i=1

,gu0

n∏
i=1

g−1i

pk2 := h0, 〈huis0 〉
n
i=1 ,h

s
0

pkR := us

Observe that g0,
〈
g
u−1
i
i

〉n
i=1

,h0, 〈huis0 〉
n
i=1 ,h

s
0 and us are all uniformly random and independent elements

of their respective domains. The group element gu0
∏n
i=1 g−1i is fixed given the other elements. Hence

(pk1, pk2, pkR) has identical distribution as the original protocol.

A then publishes the following Tuple to the adversary B:

Tuple
def
=


pk,

gr0,
〈
g
(−1)xir·u−1

i
i

〉n
i=1

,gr·u0 (
∏n
i=1 gri )

−1
,

gs0,
〈
g
(−1)zis·u−1

i
i

〉n
i=1

,gs·u0 (
∏n
i=1 gsi )

−1

 .

A then relays the response of B. In the case that z = x, Tuple is from the distribution ∆0. In the case
that z is random, Tuple is from the distribution ∆1. ut
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I Relational Hash for Equality

We now construct a Relational Hash scheme for the domains X,Y = Zq and the relation R = {(x, y, z) | x =
y ∧ x, y ∈ Zq}. There is no public input z.

KeyGen: Given the security parameter, bilinear groups G1,G2,GT are generated of prime order q, expo-
nential in the security parameter, and with a bilinear pairing operator e. Now we sample generators g← G1

and h← G2. Now we define the output of KeyGen as pk := (pk1, pk2), defined as follows:

pk1 := g, pk2 := h,

Hash1: Given plaintext x ∈ Zq and pk1 = g, the hash is constructed as follows: Sample a random r ∈ Zq
and then compute the following:

hx := (gr,grx)

Hash2: Given plaintext y ∈ Z∗q and pk2 = h, the hash is constructed as follows: Sample a random s ∈ Z∗q
and then compute the following:

hx := (hr,hry)

Verify: Given hashes hx = (hx1, hx2) and hy = (hy1, hy2), the algorithm Verify checks the following
equality:

e(hx1, hy2)
?
= e(hx2, hy1)

Theorem 15. The above equality relational hash is one-way secure under the DLP assumption (Assumption
3) when the plaintext comes from the uniform distribution over Zq.

Proof. For random r ← Zq, x← Zq, let EqHash1(x) = (gr,grx) be the challenge to an one-way attacker A,
which outputs x with non-negligible probability. Now, given a DLP challenge (g,gy) we can simply choose
a random r ← Zq and give (gr,gry) to A. We send A’s output as it is to the DLP challenger. Whenever A
is successful, we can also successfully break the DLP challenge. ut

Theorem 16. The above equality relational hash is oracle simulation secure as well as unforgeable with
respect to the independent uniform distributions over Zq, under the SXDH assumption (Assumption 5).

Proof. Following [Can97,CMR98], we can show EqHash1 and EqHash2 are individually 2-value Probabilis-
tic One-Way for uniform distributions over Zq. For random x, y, r, s← Zq we have

(EqHash1(x),EqHash1(x)) = ((gr,grx), (gs,gsx))

≈DDH ((gr,grx), (gs,gsy)) = (EqHash1(x),EqHash1(y))

The same argument holds for EqHash2 as well. Moreover, for independent uniform distributions equality is
a sparse relation. Hence, by Theorem 7 and Theorem 8 from Section 5, we have the equality relational hash
is oracle simulation secure as well as unforgeable. ut
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