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Abstract. A popular effective countermeasure to protect block cipher implementations against
differential power analysis (DPA) attacks is to mask the internal operations of the cryptographic
algorithm with random numbers. While the masking technique resists against first-order (univari-
ate) DPA attacks, higher-order (multivariate) attacks were able to break masked devices. In this
paper, we formulate a statistical model for higher-order DPA attack. We derive an analytic success
rate formula that distinctively shows the effects of algorithmic confusion property, signal-noise-ratio
(SNR), and masking on leakage of masked devices. It further provides a formal proof for the centered
product combination function being optimal for higher-order attacks in very noisy scenarios. We
believe that the statistical model fully reveals how the higher-order attack works around masking,
and would offer good insights for embedded system designers to implement masking techniques.
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1 Introduction

Differential Power Analysis (DPA) and its variants, Correlation Power Attack (CPA) [1], Mutual Informa-
tion Attack (MIA) [2], and template attacks [3,4], have been invented to successfully attack cryptographic
implementations in many embedded systems [5]. Often these attacks exploit the correlation between the
observed measurements and one intermediate data, so-called univariate or first-order attacks. Masking
was proposed as an effective countermeasure to protect block cipher systems against first-order attacks.
In masking, a random mask M is generated for each execution of the cryptographic algorithm and ap-
plied to the internal operations. During the execution, any intermediate data Z is replaced by its masked
counterpart f(Z,M) with a carefully designed masking function f . Various masking methods for AES
have been investigated [6,7,8,9]. The boolean (exclusive OR) masking f(Z,M) = Z ⊕M is the most
commonly used one and will be considered in this paper.

Theoretically, the leakage at any time point of the execution on a boolean-masked device is indepen-
dent of the secret key, and therefore cannot leak the key. The boolean masking protects cryptosystems
against all first-order attacks that use only leakage measurements at one time point (or at multiple time
points all related to the same intermediate data). However, higher-order attacks using leakages at more
than one time points corresponding to multiple intermediate data are able to reveal the secret key. Par-
ticularly, let us consider the second-order attack that uses leakages L(t0) and L(t1) at two time points
t0 and t1 on the device protected by a single mask variable M . A second-order attack can break the pro-
tected system by selecting the key kg that maximizes the correlation between the guessed intermediate
data Zg (before the masking) and a combination function of the two leakages L(t0) and L(t1). Two com-
bination functions are studied most in previous literatures. The absolute difference combination function
|L(t0)−L(t1)| was first proposed by Messerges [10] and analyzed mathematically by Joye et al. [11]. The
centered product combination function [L(t0)−E(L(t0))]× [L(t1)−E(L(t1))] was proposed by Chari et
al. [12] and analyzed by Schramm and Paar [13]. Gierlichs et al. analyzed the higher-order MIA attack
using the centered combination function [14]. Oswald et al. compared several combination functions with
simulation studies [15]. Prouff et al. provided a mathematical analysis of the second-order attack [16].
They showed that the centered product combination function is the best among product combination
functions for CPA, and it is better than the absolute difference combination function in noisy situations.
This analysis, however, does not tell if there exists other kinds of combination functions better than the
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product combination function. Standaert et al. applied the information theoretical framework to analyze
second-order attacks [17]. They showed that when the noise increases, the information leakage of the
centered product combination function gets close to the upper bound (the information leakage of the
joint distribution), while for small noises, the information leakage of the absolute difference combination
function gets close to the upper bound.

Recently, Prouff and Rivain [18] provided a formal security proof for a mask refresh scheme by a
secure masking oracle as a leakage-resilient cryptographic primitive. Our work does not consider such
sophisticated mask refreshing scheme, but attempts to bound the success rate of higher-order attack
on standard and practical masking schemes. Previous side-channel modeling and analysis work [19]
derives a simple success rate formula for first-order DPA attack on unmasked devices, which is explicitly
dependent on the algorithmic confusion coefficients introduced in [20]. The formula shows the effect of
both implementation-determined signal-to-noise-ratio (SNR) and algorithmic confusion properties. They
demonstrated that the formula conforms with the empirical single-bit DPA attacks on DES and AES
algorithms.

Our contributions: In this paper, we adopt the algorithmic confusion analysis and apply it to
higher-order attacks on masked devices and derive an explicit success rate formula. The analytical formula
allows us to decouple and quantify the effect of the algorithmic confusion properties, SNR, and masking
on the effectiveness of power analysis attacks, which will be useful to system designers when designing,
implementing, and evaluating side-channel attack resistant cryptosystems. We will formally prove in this
paper, for the first time, that the centered product combination function (CPCF) attack is the best
possible combination function attack in noisy situations.

The rest of the paper is structured as follows. Section 2 presents some preliminaries on which our
statistical model for higher-order DPA is based. Section 3 derives an analytical model for second-order
DPAs and also extends to general higher-order attacks. We then use numerical studies on both real
measurement data and synthetic data in Section 4 to validate the derived model. More discussions and
conclusions are given in Section 5.

2 Preliminaries

2.1 Success Rate of Maximum Likelihood (ML) Attacks

SCA on a cryptographic system utilizes the correlation between the noisy physical leakage observation L
and a key-sensitive intermediate value Z(X, k) to reveal the secret key k, where X denotes a known input
plaintext (or ciphertext). We denote p(L|k) as the conditional probability density function (pdf) for L
given k is the true key. With n independent realizations of L, l1, ..., ln, the most powerful side-channel
statistical test is the maximum likelihood (ML) test [21]:

k̂ = argmax
kg∈S

1

n

n∑
i=1

log[p(li|kg)] (1)

Here kg denotes a guessed key and S = {k1, ..., kNk
} denotes the set of Nk candidate keys. The secret

key embedded in the system is denoted as kc. We define:

∆(kc, kg) =
1

n

n∑
i=1

[log p(li|kc)− log p(li|kg)] (2)

as the difference between the two likelihoods for kc and kg. With (Nk − 1) incorrect keys, we have a

(Nk−1)-dimensional vector, ∆̃, with an entry ∆(kc, kg) for each kg. The ML attack (1) succeeds when n

is large enough to yield all the entries of ∆̃ positive. We denote ∆̃1 as ∆̃ with only one leakage observation
l1, and the mean and variance of ∆̃1 are a vector, µ, and a (Nk − 1)× (Nk − 1) matrix, Σ, respectively.
With n independent realizations of L, l1, ..., ln, according to the Central Limit Theorem [22], ∆̃ converges
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in law to the (Nk − 1)-dimensional Gaussian distribution, N(µ,Σ/n). The overall success rate of the
ML attack, defined as the probability that ∆̃ is a non-negative vector given n, is therefore:

SR = ΦNk−1(
√
nΣ−1/2µ) (3)

where ΦNk−1(x) is a known function, the cumulative distribution function (cdf) of the (Nk − 1)-
dimensional standard Gaussian distribution. Equation (3) holds generally for most SCA, while the mean
vector and variance matrix would vary for different attacks. We found that the entries in the mean vector
µ are in fact the conditional entropies similar to those defined in the seminal work of mutual information
analysis [21]. However, the success rate formula in (3) considers not only the effect of the mean vector µ,
but also the variance matrix Σ on SCAs. The mean µ reflects the overall system side-channel signal and
Σ reflects the system noise. The term Σ−1/2µ can be taken as the system signal-to-noise ratio (SNR).

The higher-dimension Gaussian distribution ΦNk−1(x) in (3) is the asymptotic limit of ML-attack
statistics coming from the Central Limit Theorem, and is independent of the actual noise distribution
in the system leakage. Hence, formula (3) is general and does not require any assumption on the noise
distribution. When assuming Gaussian power noise as in [3,23], the µ and Σ can have analytic forms
constituted by algorithmic properties as defined in [19,20] and side-channel SNR. In this paper, we also
consider other noise distributions, like Laplace, in Section 4.3.

2.2 First-order Power Leakage Model on Unmasked Devices

For a cryptographic device, a commonly used linear power leakage model is:

L = c+ εV + σr (4)

with r as a standard Gaussian noise, N(0, 1), and V = V (X, kc) is the select function on the intermediate
data Z that depends on the known input X and the secret key kc. At a leakage time point corresponding
to Z’s switching, L is a univariate random variable. Here c is a constant, representing the base level
power consumption of the system, which is independent of both operations and data. The ε reflects the
side-channel signal strength and σ is the standard deviation of power measurements, i.e., noise from both
measurement and other parts of the device. The side channel signal-to-noise ratio (SNR) is defined as

δ = ε/σ. Under this model, the probability density function p(L|k) = φ(L−c−εV (X,k)
σ ) with φ(·) as the

pdf of the standard Gaussian distribution. For a single-bit DPA, V (X, k) is chosen as one bit of the non-
linear SBox output Z = SBox(X, k). The ML-attack with unknown parameters (c, ε, σ) is equivalent
to the distance-of-means (DoM) attack that selects the key kg to maximize the DoMs. For multi-bit
CPA, often V = H(Z) where H(Z) is the Hamming weight (or distance) of the SBox output Z. The
ML-attack with unknown parameters (c, ε, σ) is equivalent to choosing the key kg that maximizes the
Pearson’s correlation between L and V g = H(Zg) = H[SBox(X, kg)]. That is, the Hamming weight
power model results in the Correlation Power Attack (CPA).

2.3 First-order DPA and CPA Models on Unmasked Devices with Confusion Coefficients

In general, the physical power leakage L is affected by both the implementation and algorithm. To
measure the effect of the algorithm, Luo and Fei [20] introduced the notion of confusion coefficients for
single-bit DPA to reveal the distance between keys in terms of side-channel leakage. Let S = {k1, ..., kNk

}
denote the set of Nk candidate keys. The confusion coefficient κ over any two keys (ki, kj) is defined as:

κ = κ(ki, kj) = Pr [(V |ki) 6= (V |kj)] (5)

Here V is a chosen bit of the SBox output Z = SBox(X, k).
Fei et al. [19] further showed that the success rate of the DoM attack follows (3) and the mean vector

µ and variance matrix Σ can be explicitly expressed in confusion coefficients and the SNR δ = ε/σ as:

µ =
1

2
δ2κ; Σ = δ2K +

1

4
δ4(K − κκT ). (6)
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Here κ is a (Nk − 1)-dimensional confusion vector with elements κ(kc, kgi), i = 1, ..., Nk − 1, defined
in Equation (5), and K is a (Nk − 1)× (Nk − 1) confusion matrix that consists of three-way confusion
coefficients:

κij = κ(kc, kgi , kgj ) = Pr
[
V |kgi = V |kgj , V |kgc 6= V |kc

]
= 1

2 [κ(kc, kgi) + κ(kc, kgj )− κ(kgi , kgj )]. (7)

The confusion analysis is extended to CPA in [24]. For first-order CPA that exploits leakage by
multiple bits of an SBOX output, V in (4) is the Hamming weight (or distance) of the SBox output
Z = SBox(X, k). The ML-attack’s success rate also follows (3) but with:

µ =
1

2
δ2κ; Σ = δ2K +

1

4
δ4(K∗ − κκT ). (8)

where the definition of confusion vector κ is the same as before. However, its element, confusion coeffi-
cient, is more general:

κ(kc, kgi) = E[(V |kc − V |kgi)2] (9)

Here κ(kc, kgi) is no longer Pr(V |kc 6= V |kgi), because V = H[SBox(X, k)] takes values among {0, 1, 2, · · · , b}
for a b-bit SBox output. In the variance matrix, there are two (Nk − 1)× (Nk − 1) confusion matrices,
K and K∗, with elements:

κij = κ(kc, kgi , kgj ) = E[(V |kc − V |kgi)(V |kc − V |kgj )] =
1

2
[κ(kc, kgi) + κ(kc, kgj )− κ(kgi , kgj )], (10)

κ∗ij = κ∗(kc, kgi , kgj ) = E[(V |kc −
b

2
)2(V |kc − V |kgi)(V |kc − V |kgj )]. (11)

When b = 1, these two matrices are the same, i.e., the first-order K with elements in (7) for single-bit
DPA.

When δ is small, i.e., noisy situations, the higher-order δ4 term can be ignored and the variance in
(8) can be simplified to Σ = δ2K. Then the success rate becomes a simplified version as in [25]:

SR = ΦNk−1(

√
nδ

2
K−1/2κ). (12)

3 Statistical Model for Higher-order DPA on Masked Devices

In this section, we first present the second-order power leakage model for masked devices. We then derive
an approximation of the ML-test statistic under noisy situations to find the correspondingly equivalent
optimal second-order DPA. Under the Hamming Weight leakage model, this turns out to be the centered
product combination function (CPCF) attack. Finally, we derive the success rate formula for the optimal
second-order DPA with explicit constituent terms of algorithmic properties and SNR. In the end, these
derivations are generalized to higher J-th order masking models with J random masks.

3.1 Second-order Power Leakage Model on Masked Devices

We consider the boolean masking scheme where a secret intermediate data Z is masked by one random
mask M . The mask M takes value uniformly in the setM. Therefore, the masked variable Z⊕M follows
a uniform distribution on M, independent of Z = Z(X, kc), according to the property of the exclusive
OR operation. Hence, the leakage at any selected time point only leaks the random Z⊕M and no longer
leaks any key information, and therefore the first-order DPA will fail.

However, often the power consumption at another time point can leak the mask M , and can be
combined with the leakage on the masked intermediate variable Z ⊕M to break masked devices. We
assume that t0 and t1 are the peak leakage time points for V0 = V0(Z⊕M) and V1 = V1(M) respectively.
Note here V0 is key-sensitive and V1 is key-independent. We denote V gM,0 = V0(Zg ⊕M) with Zg =
Z(X, kg) under key guess kg. The ML-attack on the masked device is still of the same form as in (1)
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with the log-likelihood 1
n

∑n
i=1 log p(li|kg), taking a two-dimensional vector leakage input li = (li,0, li,1),

rather than a scalar one as in univariate (first-order) ML attack. Assuming the leakages at the two time
points are independent of each other, the log-likelihood becomes

1

n

n∑
i=1

log[p(li|kg)] =
1

n

n∑
i=1

log[
1

|M|
∑
m∈M

p0(li,0|kg,m)p1(li,1|m)]. (13)

The above log-likelihood expression involves an iteration of m over all possible mask values: 1
|M|

∑
m∈M.

We use the notation Em to denote such expectation over M . Hence we rewrite the ML-test statistic as:

T gML =
1

n

n∑
i=1

log p(li|kg) =
1

n

n∑
i=1

log{Em[p0(li,0|kg,m)p1(li,1|m)]}. (14)

The linear operation Em above prevents separating the factors inside the log into sums. This results in
a mixture distribution density function, and is computationally intensive.

Under the commonly used leakage power model, the power consumptions at the two time points in a
masked device are:

Lj = L(tj) = cj + εjVj + σjrj , j = 0, 1. (15)

where the noises r0 and r1 are independent standard Gaussian noise, N(0, 1). For n executions of the
cryptographic algorithm, each with a distinct input xi and a random mask mi, i = 1, ..., n, we denote
the n realizations of (Z, V0, V1, r0, r1, L0, L1) as (Zi, Vi,0, Vi,1, ri,0, ri,1, li,0, li,1). Then under model
(15), the ML-test statistic from Equation (14) results from the mixture distribution:

T gML =
1

n

n∑
i=1

log{Em[φ(rgm,i,0)φ(rm,i,1)]} (16)

where φ(x) = e−x
2/2/
√

2π is the pdf function of standard Gaussian distribution. rgm,i,0 =
li,0−c0−ε0V g

m,i,0

σ0
=

ri,0 + δ0(Vi,0 − V gm,i,0) is for time point t0, where Vi,0 = V0(Zci ⊕mi) is the correct select function at
the point with the specific mi, and V gm,i,0 = V0(Zgi ⊕m) is the guessed one under kg given a random m.

rm,i,1 =
li,1−c1−ε1Vm,1

σ1
= ri,1 + δ1(Vi,1 − Vm,1) is for time point t1 (key-independent), where Vi,1 is the

correct select function at the point with mi and Vm,1 = V1(m) is the select function given a random m.
δj = εj/σj denotes SNR for j = 0, 1.

The ML-attack select the key kg that maximizes the statistic T gML in (16). In contrast, the centered
product combination function (CPCF) attack select the key kg that maximizes the statistic

T̃ g =
1

n

n∑
i=1

C̃if(Zgi ), (17)

where f(Zgi ) = Em(V gm,i,0Vm,1), C̃i = l̃i,0 l̃i,1 with centered leakage measurements at the two time points
as

l̃i,j = [li,j − E(Li,j)]/σj = ri,j + δj [Vi,j − E(Vi,j)], for j = 0, 1. (18)

Here E(·) denotes the unconditional expectation over all three sources of random variation in the leak-
age model (15): (a) the random mask M , (b) the random input X, and (c) the random noise vector
r = (r0, r1). This is different from the Em(·) operation defined earlier, which is in fact a conditional
expectation integrating out the random variation from the first source (a) only.

In section 3.2, we prove the equivalence between the ML-attack (16) and the CPCF attack (17) in
noisy situations, summarized in the following Theorem 1. Then under the Hamming Weight model, the
prediction function f(Zgi ) can be simplified. We then derive an explicit success rate formula for the
equivalent attack in terms of the confusion coefficients in section 3.3.
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Theorem 1 Under the second-order leakage model (15), as the noises increase, δ → 0, the ML-attack
is asymptotically equivalent to the CPCF attack.

The main idea of the proof is to check the Taylor expansion of the T gML in (16) under noisy situations
(δ → 0). Many leading terms in the expansion are in fact key-independent constants. The first leading

key-dependent term turns out to be proportional to δ0δ1T̃
g in (17).

The previous work [26] also analyzes second-order ML attack, and approximates the Gaussian mixture
density (16) by a bivariate Gaussian distribution using the techniques in [27]. They show that CPCF
attack maximizes the likelihood for the best Gaussian approximation. However, there is no measure of
the information lost in using such a Gaussian approximation. We prove formally that the CPCF attack
approximation of ML-attack becomes exact in noisy situations (δ → 0), and would indeed provide the
same security bound asymptotically.

3.2 Approximate ML-attack Statistic Under Noisy Situations

While the ML-attack is the strongest statistical attack, the Em operation in calculating (16) is time-
consuming with complexity O(|M|). Particularly, the complexity increases exponentially with the order
J of masking, as O(|M|J). Hence, the exact ML-attack is computationally prohibitive in higher-order
masking, say, J = 8. In practice, adversaries can use attacks based on some combination functions to
avoid the Em operation. Since the Em of powers of rgm,i,0 and rm,i,1 can be known with explicit forms, we
wish to approximate the ML-attack statistic and therefore find practical but yet asymptotic equivalent
attack to the ML-test. This is achieved by taking a Taylor expansion of (16).

We aim to extract the key-dependent components from the ML test statistic. We set the base of
T gML as its value when the SNRs at both time points approach zero, which by model (15) becomes a
key-independent constant:

T0 =
1

n

n∑
i=1

log[
1

2π
e−

r2i,0+r2i,1
2 ]

with the noises ri,j = (li,j − cj)/σj for j = 0, 1. Removing this constant from (16), we get the rest
key-sensitive part of the test statistic:

T gML − T0 =
1

n

n∑
i=1

log(Sgi ) =
1

n

n∑
i=1

log{Em[eR
g
m,i ]} (19)

where Sgi = Em[eR
g
m,i ], Rgm,i = − 1

2 (Agm,i +Am,i,1) = O(δ) and δ = max(δ0, δ1) with

Agm,i = (rgm,i,0)2 − r2i,0 = 2δ0(Vi,0 − V gm,i,0)ri,0 + δ20(Vi,0 − V gm,i,0)2 = O(δ0);

Am,i,1 = r2m,i,1 − r2i,1 = 2δ1(Vi,1 − Vm,1)ri,1 + δ21(Vi,1 − Vm,1)2 = O(δ1).
(20)

When δ → 0, we have the Taylor expansion Sgi = Em[eR
g
m,i ] = 1 + Em(Rgm,i) +O(δ2). However, this

leading term Em(Rgm,i) = Em[− 1
2 (Agm,i + Am,i,1)] does not contribute to the key selection since it is a

key-independent constant. This comes from a simple but very useful fact summarized as:

Lemma 1 For any statistic Sg of the leakage measurements at a single time point, Em(Sg) is indepen-
dent of key kg.

The above Lemma is due to the fact that, as m iterates over the rangeM, Zg ⊕m also iterates overM.
So the sum over the range M would be independent of the actual value of Zg. Hence, after the Em(·)
operation, any statistic of Zg ⊕m becomes independent of Zg (hence independent of key kg).

Lemma 1 implies that Em(Rgm,i) is key-independent which is the sum of two statistics on two different
time points. We need to take in the next higher-order term in the Taylor expansion to find the leading
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key-sensitive term in the ML-attack statistic, Sgi = 1 + Em[Rgm,i] + 1
2Em[(Rgm,i)

2] + O(δ3). The key-

sensitive part in Em[(Rgm,i)
2] is (−1/2)2Em[2Agm,iAm,i,1] after applying Lemma 1 again. Combining this

with log(Sgi ) = (Sgi − 1)− (Sgi − 1)2 +O(δ3), we have

log(Sgi ) = Ai +
1

4
Em[Agm,iAm,i,1] +O(δ3), (21)

with a key-independent constant Ai. From (21), we get:

T gML = A+ T g +O(δ3), with T g =
1

4n

n∑
i=1

Em[Agm,iAm,i,1], (22)

where A is a constant, Agm,i and Am,i,1 are defined in (20). That is, the ML-attack asymptotically (when
δ → 0) is equivalent to selecting the key kg that maximizes the test statistic Tg in (22).

Remark 1: The error in the Taylor expansion of eR
g
m,i in (19) by 1 + Rgm,i + (Rgm,i)

2/2 is bounded by

max(1,e
R

g
m,i )

6 |Rgm,i|3. From the definition of Rgm,i in (20), considering that V is bounded and Rgm,i is linear

in ri, Em[max(1,e
R

g
m,i )

6 |Rgm,i|3] has finite moments for each i. By law of large numbers [28] there is a
constant Q such that, with probability one for large n,

1

n

n∑
i=1

Em[
max(1, eR

g
m,i)

6
|Rgm,i|

3] ≤ Qδ3

uniformly for small enough δ. Hence the above approximation (22) holds uniformly at the rate of O(δ3)
for small δ with probability one for large n.

Next we simplify the expression of test statistic T g. We can rewrite (20) as

Agm,i = Ai,0 − 2δ0 l̃i,0V
g
m,i,0 + δ20V

g
m,i,0[V gm,i,0 − 2E(Vi,0)];

Am,i,1 = Ai,1 − 2δ1 l̃i,1Vm,1 + δ21Vm,1[Vm,1 − 2E(Vi,1)],
(23)

where Ai,0 and Ai,1 are constants independent of guessed key kg and the random masks m. Using (23),
we find the leading key-sensitive term in Em[Agm,iAm,i,1] relates to the CPCF attack statistics (17),

Em[(−2δ0 l̃i,0V
g
m,i,0)(−2δj l̃i,jVm,j)] = 4δ0δ1C̃if(Zgi ) +O(δ3) = 4nT̃ g +O(δ3).

Plug this into (22), and the approximate ML-test statistic T g becomes T g = B + δ0δ1T̃
g + O(δ3), with

B as another key-independent constant. Hence we establish the equivalence between (16) and (17), i.e.,
prove Theorem 1.

Given specific V0(·) and V1(·) functions, f(Zgi ) = Em(V gm,i,0Vm,1) is a deterministic function and Em

operation can be skipped over using algebraic properties. We further simplify the test statistic T̃ g in
(17), eliminating the iteration over M and finding an explicit formula for f(Zgi ) under the Hamming
Weight power leakage model:

V0(Z,M) = H(Z ⊕M) and V1(M) = H(M). (24)

By Lemma 21 in [16], for any b-bits random mask M , Em[H(Z ⊕M)H(M)|Z] = − 1
2H(Z) + b/4.

Applying this formula to (24), we get

f(Zgi ) = Em(V gm,i,0Vm,1) = −1

2
H(Zgi ) + constant.

Therefore, under the Hamming Weight power leakage model, the CPCF attack maximizes

T̃ g = −δ0δ1
2n

n∑
i=1

C̃iH(Zgi ). (25)
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Remark 2: The above derivations for approximate ML attacks assume that the system parameters
(c, ε,σ) are all known, and therefore the theoretically strongest attack can just plug these parame-
ters into (18) with E(Li,j) = cj +εj

b
2 . The real applicable CPCF attack does not know these parameters

and needs to estimate E(Li,j) =
∑n
i=1 li,j/n and (c, ε,σ) just based on the power data. We therefore

consider such two attacks: (a) the theoretical strongest approximate ML attack and (b) the real second-
order attack. The real attack (b) should be less powerful due to parameter estimation using finite power
data. Similar to the previous work on DPA and CPA modeling, the second-order approximate ML attack
(a) provides a theoretical bound for the real CPCF attack (b). We will derive the success rate formula
for (a) only in Section 3.3, and will compare these two attacks in Section 4.2.

3.3 The Explicit Asymptotic Success Rate Formula for Second-order Attack

We now derive an explicit asymptotic success rate of the approximate second-order ML-attack, in terms
of algorithm confusion coefficients and SNRs. For the test selecting argmaxkg∈S T

g, the ∆(kc, kg) in
Equation (2) becomes:

∆(kc, kg) = T c − T g =
δ0δ1
n

(−1

2
)

n∑
i=1

C̃i(H(Zci )−H(Zgi )). (26)

As explained in Section 2, the asymptotic success rate of the ML-attack is ΦNk−1(
√
nΣ−1/2µ) given in

Equation (3). The mean µ and variance Σ are for the (Nk − 1)-dimensional vector according to (26).
Then i-th element in µ is

µi = (
1

2
)3(δ0δ1)2κ(kc, kgi). (27)

For the ij-th element of the covariance Σ, we keep the leading term and simplify it as:

σij = (
1

2
)2(δ0δ1)2κ(kc, kgi , kgj ). (28)

The detailed calculations for (27) and (28) are provided in Appendix A.

Therefore, under the power leakage model (15) and (24) for masked devices, the asymptotic success
rate for the second-order ML-attack is given by:

SR = ΦNk−1(

√
nδ0δ1
4

K−1/2κ). (29)

Here definitions of the confusion vector κ and the confusion matrix K are exactly the same as those
for CPA attack on unmasked devices with elements given in (9) and (10). Compared to the simplified
formula for CPA in (12), the second-order attack involves the same algorithmic confusion properties (κ
and K), and the product of two SNRs ( δ02 and δ1

2 at the two time points) introduced by the masking.

The success rate formula (29) provides a good approximation of the true success rates when the noise
is high. To also approximate well for moderate noises (δ ≤ 1), we keep all the terms in elements of the
variance matrix Σ without approximation (in Appendix B) and get the complete theoretical model:

µ =
1

8
δ20δ

2
1κ; Σ =

1

4
δ20δ

2
1(1 +

b

4
δ20)(1 +

b

4
δ21)K +

1

64
δ40δ

4
1(8K∗ − 2bK − κκT ), (30)

where K∗ is the higher-order confusion matrix in (11) for CPA attack on unmasked devices. Then the

general success rate ΦNk−1(
√
nΣ−1/2µ) in Equation (3) can be calculated with this full variance formula

(30). Numerical results in next section show that this complete SR model is very accurate in moderate
to high noise situations.
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3.4 Extension to Higher-order Masking Devices and Other Power Leakage Models

We now consider the J-th order masking scheme with J shares of masking variables, M1, M2, ..., MJ .
Each Mj takes value uniformly in the set M. The previous results can be extended to this general J-th

order masking setting. The (J + 1)-th order attack combines the leakage of V0 = V0(Z
J
⊕
j=1

Mj) at time t0

and the leakage of V1 = V1(M1), ..., VJ = VJ(MJ) at other J times points t1,...,tJ , respectively. Denote
M = (M1, ...,MJ). The leakage vector is li = (li,0, li,1, ..., li,J). The Gaussian leakage model is now:

Lj = L(tj) = cj + εjVj + σjrj , j = 0, ..., J. (31)

To discover the first key-dependent term in the Taylor series, the number of (J + 2) leading terms will
be kept and the (J + 1)-th order ML attack can be shown again to be equivalent to the centered product
combination attack. Furthermore, we can get the general formula for the success rate. The mean µ and
the simplified variance Σ of ∆(kc, kg) in (26) has elements

µi = (
1

2
)2J+1(

J∏
j=0

δj)
2κ(kc, kgi); σij = (

1

2
)2J(

J∏
j=0

δj)
2κ(kc, kgi , kgj ). (32)

Therefore the asymptotic success rate for (J + 1)-th order attack becomes:

SR = ΦNk−1(

√
n
∏J
j=0 δj

2J+1
K−1/2κ). (33)

The detailed analysis for the (J+1)-th order attack is provided in Appendix A. Formula (33) shows that
each time one more mask is applied, the entire system SNR (the factor inside function ΦNk−1) changes
by δ

2 (normally lower than 1) and therefore the attack success rate reduces. Comparing a J-th order
masked device to an unmasked device, we assume the first-order attack on the unmasked device requires
n measurement traces to achieve a certain success rate, then (J + 1)-th order attack on the J-th order
masked device needs measurements in the order of n( 2

δ )2J assuming all the δi are the same as δ. It is
clear from this expression that higher-order masking is more effective when the noise is high (small δ).

We derived the results above under the Gaussian noise assumption (15) and Hamming Weight leakage
model (24). Some extensions to other leakage models are possible. For non-Hamming Weight leakage, the
CPCF attack (17) maximize the correlation with a function f(Zgi ) that may be different from H(Zgi ).
However, the f(Zgi ) is still a deterministic function whose explicit formula can be calculated from the
given leakage model. For example, recent work [26] does so for linear regression leakage model. For Non-
Gaussian noise, the success rate formulas (29) and (33) still hold for CPCF attack. Some experimental
results are presented in Section 4.3 with more discussions included in Appendix D. Full extensions to
other power leakage model and other masking schemes remains an open topic.

4 Numerical Results

In this section, we verify the derived statistical model for second-order DPA attacks on realistic mea-
surement data, and also run numerical simulations on synthetic data for second-order and higher-order
attacks.

4.1 Empirical Success Rates on Measurements from a Physical Implementation

We first verify the analytical results of Section 3 on real measurement data of a masked AES implemen-
tation on an SASEBO-GII board with a Virtex-5 FPGA. The SASEBO board implements the boolean-
masked AES algorithm according to the scheme described in [29]. A 128-bit random mask sequence is
obtained from a set of linear shift registers [30], then XORed with the input plaintext before the AES

9



AddRoundkey operation. The AES SBox module implementations are modified to keep all intermedi-
ate states masked. The overhead of such masking is large, with 50% more slices and 67% more power
consumption than the unprotected AES implementation on the same FPGA board.

We collect N = 1, 400, 000 power traces with 3125 points for each one. The two leakage points are at
the time points with the highest correlation between the power measurements and H(M) and H(Z⊕M),
respectively. The first leakage point leaks the Hamming Weight of the random mask M , while the second
leakage point leaks the Hamming distance of the first byte of SBOX output in the last round of AES. We
find them at the 581th and 2873th points, with their SNRs 0.0926 and 0.0955. To obtain the empirical
success rate we repeatedly sample n traces from the total number of N = 1, 400, 000 traces. We conduct
the second-order DPA attack on the sampled n traces with 1, 000 trials and calculate the empirical
success rate for each selected n. We plot the empirical success rate versus number of traces in Fig. 1. To
draw the theoretical success rate curve, we just use 10,000 traces to find the SNRs at the two points,
and then plug them into formula (30) once, without complex experimental trials over millions of traces.
Fig. 1 shows the two curves, Empirical SR and Theoretical SR, track each other very well, verifying
that our theoretical success rate formula predicts the empirical success rates accurately. The analytical
formula depicts the relation between the attack success rate and the number of traces, without collecting
millions of traces and running statistical analysis to empirically calculate the SR. Such formula will be
very useful for efficient countermeasure design evaluation before real implementation.
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Fig. 1. Theoretical and empirical success rates of the second-order attack on a masked AES implementation.

We also check the noise distribution in the measured power traces, and find that for the Virtex-5
FPGA chip on SASEBO-GII board under 65 nm technology, the power model is indeed linear. Fig. 2 shows
the average power and distribution for each group of power traces (with different Hamming distances)
at the two time points.

4.2 Success Rates on Synthetic Datasets

We further verify the analytic success rate formula on synthetic datasets generated from the Hamming
weight model (15), to evaluate the effect of system parameters, SNRs, on side-channel attacks and validate
our approximate ML-attacks with the centered-product attacks. For simplicity, we take c0 = c1 = 1 and
signal strengths ε0 = ε1 = 1 in the simulation. The range of noises, standard deviations σ0 and σ1, is
{1, 5}. That is, the SNRs δ0 and δ1 take values in the range of {0.2, 1}. These settings are similar to
those in previous work [16].
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Fig. 2. The linear power model with Gaussian distribution noises at the two time points

For each set of generated power leakages, we apply two attacks as discussed in Remark 2: (a) the
theoretical strongest approximate ML-attack that assumes all the parameters (c, ε,σ) known (as a
system designer); (b) the real second-order attack with CPCF that only works on the power data (as an
attacker).

We plot the success rate versus number of measurements for different SNRs δ0 and δ1 values in Fig. 3,
for the two attacks and the theoretical model. 10, 000 simulation trials were run to compute the empirical
success rates of the attacks. We can see that the theoretical success rate curve fits the empirical results
well when SNRs are small. In addition, attacks (a) and (b) match very well, showing the equivalence
between our approximate second-order ML attack and the second-order attack based on the CPCF. In
each graph of Fig. 3, when one SNR increases, the attack requires less measurements for the same success
rate. When the SNRs are big, δ0 = δ1 = 1, the three curves diverge for small n but still converge for
large n values. This confirms that our asymptotic analysis works for big sample size n under very noisy
situations (small SNRs). In reality, SNRs are small and would not be as high as 1.
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Fig. 3. The empirical and theoretical success rates of second order attacks (a) known parameter ML-attack and
(b) the CPCF attack on masked AES SBox.
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Finding the success rate of an attack based on simulated power data can be as time-consuming as on
real measurements, especially when the number of traces is large. For example, the 10, 000 simulations
to create the success rate curve for δ0 = δ1 = 0.2 in Fig. 3 took about 11 hours on our workstation
while the success rate curve using the explicit formula is produced within seconds. Hence, the analytic
success rate formula would be very efficient and insightful for a secure system designer to evaluate any
implementation.

The theoretical success rate model also helps us better understand the effect of masking on the security
against SCAs. With masking, the number of measurements for the masked device should increase to be
( 2
δ )2 times the number of measurements for the unmasked device to achieve the same success rate. For

example, in noisy situations when δ = 0.1, that is 400 times.

We see that while the second-order attack can break first-order masking, it is much harder to con-
duct due to significantly reduced information leakage. Moreover, the leakage reduction is much more
pronounced in noisy situations with small SNRs. Hence the security benefit of masking is greater when
it is combined with other countermeasures that aim to increase the noise and reduce the SNR.

4.3 Extension to Higher-order Attacks and Other Power Models

The general formula for higher-order attacks is given in Section 3.4. As mentioned at the end of Sec-
tion 3.4, the success rate formula also hold for other non-Gaussian noises. Here we numerically study
these extended SR formula. Firstly, we generate power data from higher-order mask model (31) with
J = 2 and SNRs δ0 = δ1 = δ2 = 0.2. Fig. 4 shows the success rates of the corresponding third-order
approximate ML attack again fits the theoretical success rate formula very well. Compared to the second-
order results in Fig. 3, the number of measurements needed for the third-order attack increases to 100
times of that needed for the second-order attack to achieve the same success rate under the same SNRs
(δ = 0.2). Secondly, we generate synthetic power data from model (15) with Laplace noises instead. That

is, the noises r0 and r1 both come from the probability density function p(x) = e−
√
2|x|/
√

2. We set the
SNRs δ0 = 0.0955 and δ1 = 0.0926 the same as the SNRs observed in our real measurements. The success
rate curves for the second-order attack are shown in Fig. 5. We can see that the theoretical success rate
formula fits the empirical success rates equally well for Laplace noises. The plot is very similar to the
plot of success curves under Gaussian noises with the same SNRs.
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Fig. 4. The success rates of the third-order attack
on simulated data with all three SNRs δ0 = δ1 =
δ2 = 0.2.
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Fig. 5. The success rates of the second-order attack
on simulated data with noises from the Laplace dis-
tribution (δ0 = 0.0955, δ1 = 0.0926).

12



5 Discussions and conclusions

Various other combination functions have been proposed in literature. Joye et al. suggested raising the
absolute difference combining to a power α in [11]. In [15], Oswald et al. proposed a combination function
based on the sine function. There has not been any theoretical result indicating the optimal combination
function. Prouff et al. proved in [16] that the CPCF is optimal among all attacks using the product
combination functions in noisy situations. We prove for the first time that the most powerful SCA, ML-
attack, is equivalent to the CPCF attack under very noisy situations. This gives a formal proof that the
centered product combination function based attack is indeed optimal among all possible second-order
and higher-order attacks on masked devices.
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Appendix

A Derivations for the (J + 1)-th order ML-attack on Masked Devices

For the (J + 1)-th order ML-attack, the attack statistic from Equation (16) becomes

T gML =
1

n

n∑
i=1

log{Em[φ(rgm,i,0)

J∏
j=1

φ(rm,i,j)]} (34)

wherem = (m(1), ...,m(J)), r
g
m,i,0 =

li,0−c0−ε0V g
m,i,0

σ0
= ri,0+δ0(Vi,0−V gm,i,0) and rm,i,j =

li,j−cj−εjVm,j

σj
=

ri,j + δj(Vi,j − Vm,j), j = 0, ..., J . Here V gm,i,0 = V0(Zgi ⊕Jj=1m(j)), Vm,j = Vj(m(j)), and δj = εj/σj
denotes SNR for j = 0, ..., J . The Em takes expectation over all possible values of the vector m =
(m(1), ...,m(J)). That is, each element m(j) iterate over M.

For the (J + 1)-th order attack, we need to take J + 2 terms in the Taylor expansion of (34). So the
leading key-sensitive term (22) before becomes

T g =
1

n

n∑
i=1

Bgi =
1

n

n∑
i=1

(−1

2
)J+1Em[Agm,i

J∏
j=1

Am,i,j ], (35)

where Agm,i and Am,i,j in (23) now become

Agm,i = Ai,0 − 2δ0 l̃i,0V
g
m,i,0 + δ20V

g
m,i,0[V gm,i,0 − E(Vi,0)];

Am,i,j = Ai,j − 2δj l̃i,jVm,j + δ2jVm,j [Vm,j − E(Vi,j)] j = 1, ..., J,
(36)

Using (36), we find the leading key-sensitive term in Em[Agm,i

∏J
j=1Am,i,j ] relates to the centered

product combination as

Em({−2δ0 l̃i,0V
g
m,i,0}

∏J
j=1{−2δj l̃i,jVm,j}) = (−2)J+1(

∏J
j=0 δj)C̃if(Zgi ).
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Here C̃i =
∏J
j=0 l̃i,j and f(Zgi ) = Em(V gm,i,0

∏J
j=1 Vm,j). Plug this into (35),

T g = B∗ + T̃ g + o(

J∏
j=0

δj), with T̃ g =
(
∏J
j=0 δj)

n

n∑
i=1

C̃if(Zgi ). (37)

The f(Zgi ) has an explicit formula as Em(V gm,i,0

∏J
j=1 Vm,j) under the Hamming Weight power

leakage model:

V0(Z,M) = H(Z
J
⊕
j=1

Mj) and Vj(M) = H(Mj), j = 1, ..., J. (38)

By Lemma 21 in [16], for any b-bits random mask M , E[H(Z ⊕M)H(M)|Z] = − 1
2H(Z) + b/4. Apply

this formula once, we get

Em(1)
(V gm,i,0Vm,1) = Em(1)

[H(Zgi
J
⊕
j=1

m(j))H(m(1))] = −1

2
H(Zgi

J
⊕
j=2

m(j)) + b/4.

Repeatedly apply the formula another J − 1 times, we get that

Em(V gm,i,0

J∏
j=1

Vm,j) = (−1

2
)JH(Zgi ) + constant.

Hence under the Hamming Weight power leakage model, the centered product combination function
attack maximizes

T̃ g = (−1

2
)J

(
∏J
j=0 δj)

n

n∑
i=1

C̃iH(Zgi ). (39)

We now can calculate u and Σ in the success Rate (3) for the higher order attack. From (35),

∆(kc, kg) = T c − T g = 1
n

n∑
i=1

(Bci − Bgi ). So as in Section 2, u and Σ are the mean and variance of

∆̃1 = (Bc1 −B
g1
1 , . . . , B

c
1 −B

gNk−1

1 )T . Using (37) and (39), we get

Bc1 −B
g
1 = (−1

2
)J(

J∏
j=0

δj)[

J∏
j=0

l̃1,j ][H(Zc1)−H(Zg1 )]. (40)

Recall l̃1,j = r1,j + δj [V1,j − E(V1,j)]. Since E(r1,j) = 0 and r1,j ’s are independent of the Vi,j ’s. We find

E(Bc1 −B
g
1 ) = (−1

2
)J(

J∏
j=0

δj)
2E{

J∏
j=0

[V1,j − E(V1,j)][H(Zc1)−H(Zg1 )]}.

Recall that V1,j = H(m1,j)’s are Hamming weights of the random masks for j = 1, ..., J . Using formula

(46) in Appendix C, taking expectation over the masks, E{
∏J
j=0[V1,j − E(V1,j)][H(Zc1) − H(Zg1 )]} =

E{(−1/2)J [H(Zc1) − b/2][H(Zc1) −H(Zg1 )]}. Here b is the bit length of Zc1. Since E[H(Zc1) −H(Zg1 )] =
b/2− b/2 = 0, we get

E(Bc1 −B
g
1 ) = (− 1

2 )2J(
∏J
j=0 δj)

2E{H(Zc1)[H(Zc1)−H(Zg1 )]}
= ( 1

2 )2J(
∏J
j=0 δj)

2E{[H(Zc1)]2 −H(Zc1)H(Zg1 )}
= ( 1

2 )2J(
∏J
j=0 δj)

2 1
2E{[H(Zc1)]2 + [H(Zg1 )]2 − 2H(Zc1)H(Zg1 )}

= ( 1
2 )2J+1(

∏J
j=0 δj)

2E{[H(Zg1 )−H(Zc1)]2}
= ( 1

2 )2J+1(
∏J
j=0 δj)

2κ(kc, kg).
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Here the confusion coefficient κ(kc, kg) is exactly the same as the confusion coefficient for unmasked
device defined in (9). Thus we arrive at the first formula in equation (32)

µi = E[Bc1 −B
gi
1 ] = (

1

2
)2J+1(

J∏
j=0

δj)
2κ(kc, kgi).

The ij-th element in the variance Σ = V ar(∆̃1) is

σij = Cov(Bc1 −B
gi
1 , B

c
1 −B

gj
1 ) = E[(Bc1 −B

gi
1 )(Bc1 −B

gj
1 )]− µiµj .

Since E(r1,j) = 0 and E(r21,j) = 1 for j = 0, ..., J , using equation (40), we have the leading term in σij
as in the second formula in equation (32)

(−1

2
)2J(

J∏
j=0

δj)
2E(

J∏
j=0

r21,j)E{[H(Zgi1 )−H(Zc1)][H(Z
gj
1 )−H(Zc1)]} = (

1

2
)2J(

J∏
j=0

δj)
2κ(kc, kgi , kgj ).

Here the three-way confusion coefficient κ(kc, kgi , kgj ) is exactly the same as those defined for unmasked
device in (10).

Taking J = 1, (32) becomes (27) and (28).

B More Accurate Formula for the Covariance Matrix Σ in the Second-order
ML Attack on Masked Devices

Equation (28) only calculate the leading term in σij . We can calculate all the terms to get more accurate

formula. Keeping all terms in l̃1,0 and l̃1,1 we have

Bc1 −B
g
1 = −1

2
δ0δ1[r1,0 + δ0(V1,0 −

b

2
)][r1,1 + δ1(V1,1 −

b

2
)][H(Zc1)−H(Zg1 )].

Then, since E(r1,0) = E(r1,1) = 0 and E(r21,0) = E(r21,1) = 1, we have

σij = 1
4δ

2
0δ

2
1E{[H(Zgi1 )−H(Zc1)][H(Z

gj
1 )−H(Zc1)]}

+ 1
4δ

2
0δ

4
1E{(V1,1 − b

2 )2[H(Zgi1 )−H(Zc1)][H(Z
gj
1 )−H(Zc1)]}

+ 1
4δ

4
0δ

2
1E{(V1,0 − b

2 )2[H(Zgi1 )−H(Zc1)][H(Z
gj
1 )−H(Zc1)]}

+ 1
4δ

4
0δ

4
1E{(V1,0 − b

2 )2(V1,1 − b
2 )2[H(Zgi1 )−H(Zc1)][H(Z

gj
1 )−H(Zc1)]} − µiµj .

(41)

Using (44) and (47) in Appendix C, this simplifies to

σij = 1
4δ

2
0δ

2
1κ(kc, kgi , kgj ) + 1

4δ
2
0δ

4
1
b
4κ(kc, kgi , kgj ) + 1

4δ
4
0δ

2
1
b
4κ(kc, kgi , kgj )

+ 1
4δ

4
0δ

4
1 [ 12κ

∗(kc, kgi , kgj ) + b2−2b
16 κ(kc, kgi , kgj )]− 1

64δ
4
0δ

4
1κ(kc, kgi)κ(kc, kgj )

= 1
4δ

2
0δ

2
1(1 + b

4δ
2
0)(1 + b

4δ
2
1)κ(kc, kgi , kgj )

+ 1
64δ

4
0δ

4
1 [8κ∗(kc, kgi , kgj )− 2bκ(kc, kgi , kgj )− κ(kc, kgi)κ(kc, kgj )].

(42)

Here the three-way confusion coefficients κ(kc, kgi , kgj ) and κ∗(kc, kgi , kgj ) are the same as those defined
for unmasked device in (10) and (11).

Thus we get the formula (30).

C Formulas for Eliminating Em with Hamming Weight Power Models on
Masked Devices

Here we list some formulas used for calculation in the above derivations. We shall consider the b-bit mask
M similarly as in Prouff et al [16]. We are going to consider quantities involving H(Z ⊕M) and H(M)
for a fixed Z. By Lemma 20 in [16],

E[H(M)] =
b

2
; E[H(M)2] =

b2 + b

4
. (43)
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Therefore,

E[(H(M)− b

2
)2] = E[H(M)2]− bE[H(M)] +

b2

4
=
b

4
. (44)

By Lemma 21 in [16],

E[H(M)H(Z ⊕M)|Z] = −1

2
H(Z) +

b2 + b

4
. (45)

Combine (43) and (45), we arrive at

E{[H(M)− b

2
][H(Z ⊕M)− b

2
]|Z} = −1

2
H(Z) +

b2 + b

4
− (

b

2
)2 = −1

2
H(Z) +

b

4
= −1

2
[H(Z)− b

2
].

Hence for fixed Z and J random masks M1, ..., MJ , we have

E{[H(Z
J
⊕
j=1

Mj)−
b

2
]

J∏
j=1

[H(Mj)−
b

2
]} = −1

2
E{[H(Z

J−1
⊕
j=1

Mj)−
b

2
]

J−1∏
j=1

[H(Mj)−
b

2
]} = ... = (−1

2
)J [H(Z)− b

2
]

(46)
The last result required in earlier derivation is

E{[H(Z ⊕M)− b

2
]2[H(M)− b

2
]2|Z} =

1

2
[H(Z)− b

2
]2 +

b2 − 2b

16
. (47)

This equation (47) follows from (43), (45) above, and (48), (49) below.

E[H(M)H(Z ⊕M)2|Z] = E[H(M)2H(Z ⊕M)|Z] = − b
2
H(Z) +

b2(b+ 3)

8
; (48)

E[H(M)2H(Z ⊕M)2|Z] =
1

2
H(Z)2 − b2 + b

2
H(Z) +

b(b3 + 6b2 + 3b− 2)

16
. (49)

Equations (48) and (49) come from straight calculation using formulas (43),(50),(57),(58), (59) and (60).
The above calculation used the formulas below which are derived similar to those in in [16]. First, let ∧
denote the bit-wise multiplication. Then the following formula is the property 2 in [16]:

H(Z ⊕M) = H(Z) +H(M)− 2H(Z ∧M). (50)

Let Z(i) denotes the ith bit of Z. We derive the following formulas, using the fact that E(M(i)M(j)) =

E(M(i)) = 1
2 when i = j and E(M(i)M(j)) = 1

4 by independence when i 6= j.

E[H(Z ∧M)] =
1

2
H(Z), (51)

since E[H(Z ∧M)] = E[
∑b
i=1 Z(i)M(i)] =

∑
i Z(i)

1
2 .

E[H(M)H(Z ∧M)] =
b+ 1

4
H(Z), (52)

since E[H(M)H(Z ∧M)] =
∑b
i=1 Z(i)

∑b
j=1E[M(i)M(j)] =

∑
i Z(i)[

1
2 + (b− 1) 1

4 ].

E[H(Z ∧M)H(Zg ∧M)] =
1

4
H(Z)H(Zg) +

1

4
H(Z ∧ Zg), (53)

since E[H(Z ∧M)H(Zg ∧M)] =
∑
i,j Z(i)Z

g
(j)E[M(i)M(j)] which becomes

∑
i=j

Z(i)Z
g
(j)

1

2
+
∑
i 6=j

Z(i)Z
g
(j)

1

4
=
∑
i,j

Z(i)Z
g
(j)

1

4
+
∑
i

Z(i)Z
g
(i)

1

4
.

17



We get the following two formulas similarly as (51), (52) and (53) above, with the detailed calculation
omitted for space.

E[H(M)H(Z ∧M)H(Zg ∧M)] =
b+ 2

8
H(Z)H(Zg) +

b

8
H(Z ∧ Zg), (54)

E[(H(M))2H(Z ∧M)H(Zg ∧M)] =
b2 + 5b+ 2

16
H(Z)H(Zg) +

b2 + b− 2

16
H(Z ∧ Zg). (55)

Taking Zg = Z in (54) and (55), we get

E[H(M)H(Z ∧M)2] =
b+ 2

8
H(Z)2 +

b

8
H(Z), (56)

E[(H(M))2H(Z ∧M)2] =
b2 + 5b+ 2

16
H(Z)2 +

b2 + b− 2

16
H(Z). (57)

Taking Zg to have every bit equals to one in (54) and (55), we get

E[H(M)2H(Z ∧M)] =
b(b+ 3)

8
H(Z), (58)

E[(H(M))3H(Z ∧M)] =
b3 + 6b2 + 3b− 2

16
H(Z). (59)

Taking Z to have every bit equals to one in (58) and (59), we get

E[H(M)]3 =
b2(b+ 3)

8
; E[H(M)]4 =

b(b3 + 6b2 + 3b− 2)

16
. (60)

D Extension to General Noise Models

In general, the second-order power leakage model (15) Lj = L(tj) = cj + εjVj + σjrj , j = 0, 1, can be
extended to the cases where Vj ’s are not Hamming Weights and the noises rj ’s are not Gaussian. Also,
masking schemes other than boolean mask can be studied.

Since the proof of Theorem 1 does not use the Hamming Weight model assumption (24), the equiv-
alence of ML-attack and CPCF attack also holds for non-Hamming Weight leakage. The success rate
formulas, however, are derived under the Hamming Weight model (24). Therfore, the confusion coeffi-
cients would be different under non-Hamming Weight leakage model. It is very important to have the
correct leakage model for using the success rate formula as security bounds in practice. Figure 6 shows
the theoretical and empirical success rates of the CPCF attack on data simulated from the weighted sum
leakage model in [31] where the least significant bit dominates with a relative weight of 10 as motivated
by [32],

Vj = 10Yj,1 +

8∑
i=2

Yj,i, j = 0, 1. (61)

Here Y0,i, i = 1, ..., 8 is the i-th bit of Z ⊕M , and Y1,i, i = 1, ..., 8 is the i-th bit of M . The data is
generated with an SNR δ = δ0 = δ1 = 0.05. If the Hamming Weight model (61) is wrongfully fitted to
the data, the SNR would appear to be δ = δ0 = δ1 = 0.1. We can see that the theoretical success rate
formula (29) calculated using confusion coefficients from correct Non-Hamming Weights model (61) still
bounds the empirical success rate of CPCF attack well. However, if the Hamming Weight model (24) is
wrongfully assumed for the data, the theoretical success rate formula (61) would be too low.

If the noise is not Gaussian, let p∗(x) denote the density for the noises r0 and r1 in model (15)
Lj = L(tj) = cj + εjVj + σjrj . Then the ML-attack statistic in (16) becomes

T gML =
1

n

n∑
i=1

log{Em[p∗(rgm,i,0)p∗(rm,i,1)]} (62)
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Fig. 6. Success rates of the second-order attack on simulated data from Non-Hamming Weight model (61).

We can apply the Taylor series expansion on (62) similarly. Denote h(x) = − log[p∗(x)], then the equation
(20) becomes

Agm,i = 2[h(rgm,i,0)− h(ri,0)] = 2δ0(Vi,0 − V gm,i,0)f ′(ri,0) + δ20(Vi,0 − V gm,i,0)2f ′′(ri,0) +O(δ30);

Am,i,1 = 2[h(rm,i,1)− h(ri,1)] = 2δ1(Vi,1 − Vm,1)f ′(ri,1) + δ21(Vi,1 − Vm,1)2f ′′(ri,1) +O(δ31).
(63)

The dominating terms in Agm,i and Am,i,1 are 2δ0(Vi,0−V gm,i,0)f ′(ri,0) and 2δ1(Vi,1−Vm,1)f ′(ri,1). Then

Rgm,i = − 1
2 (Agm,i+Am,i,1) = O(δ) as before, and the leading key-sensitive term in the Taylor expansion is

still T g = 1
4n

n∑
i=1

Em[Agm,iAm,i,1] in equation (22). To ensure the remainder terms are controlled uniformly

as order O(δ3), technical conditions on the log-density function h(x) = − log[p∗(x)] are needed so that

Em[max(1,e
R

g
m,i )

6 |Rgm,i|3] has finite moments for each i as in Remark 1. This is satisfied by, say, Laplace

distribution p∗(x) = e−|x|/2. However, Em[Agm,iAm,i,1] needs more careful analysis as it may not be the
CPCF statistic anymore. The success rate formula (29) would still hold for the CPCF attack as long as
the noises r0 and r1 have mean zero and variance one, regardless they are Gaussian distributed or not.

In a general masking scheme, a secrete Z is replaced by Z�M with � denotes the masking operation
that may be different from the boolean operation ⊕. Assuming the masking is proper in the sense that
Z �M follows the uniform distribution for any Z value, then Lemma 1 holds. Then we still have the

equivalence of ML-attack statistic to the statistic T g = 1
4n

n∑
i=1

Em[Agm,iAm,i,1] in equation (22). The rest

of the derivation to the success rate formula (29) used the boolean mask formulas from [16]. Success rate
formulas for other proper masking schemes are possibly similar to (29), but need separate derivations.
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