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Abstract. The r-round (iterated) Even-Mansour cipher (also known as key-alternating cipher)
defines a block cipher from r fixed public n-bit permutations P1, . . . , Pr as follows: given a se-
quence of n-bit round keys k0, . . . , kr, an n-bit plaintext x is encrypted by xoring round key
k0, applying permutation P1, xoring round key k1, etc. The (strong) pseudorandomness of this
construction in the random permutation model (i.e., when the permutations P1, . . . , Pr are pub-
lic random permutation oracles that the adversary can query in a black-box way) was studied
in a number of recent papers, culminating with the work of Chen and Steinberger (EURO-
CRYPT 2014), who proved that the r-round Even-Mansour cipher is indistinguishable from a
truly random permutation up to O(2

rn
r+1 ) queries of any adaptive adversary (which is an optimal

security bound since it matches a simple distinguishing attack). All results in this entire line of
work share the common restriction that they only hold under the assumption that the round keys
k0, . . . , kr and the permutations P1, . . . , Pr are independent. In particular, for two rounds, the
current state of knowledge is that the block cipher E(x) = k2 ⊕ P2(k1 ⊕ P1(k0 ⊕ x)) is provably
secure up to O(22n/3) queries of the adversary, when k0, k1, and k2 are three independent n-bit
keys, and P1 and P2 are two independent random n-bit permutations. In this paper, we ask
whether one can obtain a similar bound for the two-round Even-Mansour cipher from just one
n-bit key and one n-bit permutation. Our answer is positive: when the three n-bit round keys
k0, k1, and k2 are adequately derived from an n-bit master key k, and the same permutation P
is used in place of P1 and P2, we prove a qualitatively similar Õ(22n/3) security bound (in the
random permutation model). To the best of our knowledge, this is the first “beyond the birthday
bound” security result for AES-like ciphers that does not assume independent round keys.
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1 Introduction

Background. An elementary way to construct a block cipher with message space {0, 1}n
from r fixed and public n-bit permutations P1, . . . Pr is to encrypt a plaintext x by computing

y = kr ⊕ Pr(kr−1 ⊕ Pr−1(· · ·P2(k1 ⊕ P1(k0 ⊕ x)) · · · )),

where (k0, . . . , kr) is a sequence of n-bit round keys which are usually derived from some
master key K. This construction, which captures the high-level structure of (most) block
cipher designs known as Substitution-Permutation Networks (SPNs), such as AES [DR02],
PRESENT [BKL+07], or LED [GPPR11] to name a few, was coined a key-alternating cipher
by Daemen and Rijmen [DR05].

For concrete designs, where permutations P1, . . . , Pr are fixed, the current state of art of
provable security only allows to upper bound the success probability of very specific attacks
such as differential or linear attacks. On the other hand, it is possible to obtain broader
provable security results by working in the random permutation model for P1, . . . , Pr, i.e., by
viewing permutations P1, . . . , Pr as public random permutation oracles, to which the adversary
can only make black-box queries (both in the forward and backward direction). This is a very
strong model, but this allows to upper bound the advantage of any (even computationally
unbounded) adversary as a function of the number of queries it makes. It also heuristically
indicates that any adversary willing to beat the proven security bound cannot be “generic”
and must somehow take advantage of some particular property of the permutations used in
any concrete block cipher.

Such results in the random permutation model were first obtained for r = 1 round by Even
and Mansour [EM97], who showed that the block cipher encrypting x into k1 ⊕ P1(k0 ⊕ x),
where k0 and k1 are independent n-bit keys, and P1 is a random permutation oracle, is secure
up to O(2n/2) queries1 of the adversary.2 For this reason, this construction is often referred
to as the Even-Mansour cipher, though this is somehow a misnomer since this is rather a
framework in which one can conveniently analyze the security of the family of one-round
key-alternating ciphers. In the following, we will perpetuate this unfortunate terminology
and use the naming r-round iterated Even-Mansour cipher to designate the “ideal” r-round
key-alternating cipher where P1, . . . , Pr are public and perfectly random permutation oracles.
Curiously, the general construction with r > 1 remained unstudied for a long while until a
paper by Bogdanov et al. [BKL+12], who showed that for r ≥ 2, security is guaranteed up to
O(22n/3) queries of the adversary. They also conjectured that the security should be O(2

rn
r+1 )

for general r, which matches a simple distinguishing attack. Progress towards solving this
conjecture was rather quick: Steinberger [Ste12] proved security up to O(23n/4) queries for
r ≥ 3, Lampe et al. [LPS12] proved security up to O(2

rn
r+2 ) queries for any even r, and finally

Chen and Steinberger [CS14] resolved the conjecture and proved the O(2
rn
r+1 )-security bound

for any r. We stress that all these results only hold assuming that the r + 1 round keys and
the r permutations are independent. Actually, this is not perfectly accurate: one only needs
the r + 1 round keys (k0, . . . , kr) to be r-wise independent [CS14], which can be obtained
from only an rn-bit long master key, the most simple example being round keys of the form

1 When we talk about queries without being more specific, this includes both queries to the cipher and queries
to the inner permutation(s).

2 Actually it is not very hard to prove that a similar result holds when using k0 = k1, see [DKS12].
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(k′1, k′1⊕k′2, k′2⊕k′3, . . . , k′r−1⊕k′r, k′r), in which case the resulting iterated Even-Mansour cipher
is exactly the cascade of r single-key one-round Even-Mansour ciphers x 7→ k′i ⊕ Pi(k′i ⊕ x).

Our Problem. Let us quickly recapitulate existing provable security results on the Even-
Mansour cipher for a low number of rounds. For r = 1, we know that the single-key Even-
Mansour cipher x 7→ k⊕P (k⊕x) ensures security up to O(2n/2) queries of the adversary. As
pointed out by Dunkelman et al. [DKS12], this construction is “minimal” in the sense that if
one removes any component (either the addition of one of the keys, or the permutation P ),
the construction becomes trivially breakable. For the two-round Even-Mansour cipher, the
best provable security result we have so far requires two independent n-bit permutations P1
and P2, and two independent n-bit keys (k, k′) to construct three pairwise independent round
keys, for example (k, k′⊕k, k′). Concretely, the block cipher x 7→ k′⊕P2((k′⊕k)⊕P1(k⊕x))
ensures security up to O(22n/3) queries of the adversary. In this paper, we tackle the following
question:

Can we obtain a O(22n/3)-security bound similar to the one proven for the two-round
Even-Mansour cipher with (pairwise) independent round keys and independent permu-
tations, from just one n-bit key k and one n-bit random permutation P?

This question is natural since in most (if not all) SPN block ciphers, round keys are derived
from an n-bit master key (or more generally an `-bit master key, where ` ∈ [n, 2n] is small
compared with the total length of the round keys), and the same permutation, or very similar
ones, are used at each round. It is therefore fundamental to determine whether security can
actually benefit from the iterative structure and increase beyond the birthday bound, even
though one does not use more key material nor more permutations than in the single-key
one-round Even-Mansour cipher.

Our Results. We answer positively to the question above. Our main theorem states sufficient
conditions on the way to derive three n-bit round keys (k0, k1, k2) from one n-bit master key
k so that the two-round Even-Mansour cipher defined from a single permutation

x 7→ k2 ⊕ P (k1 ⊕ P (k0 ⊕ x))

is secure up to Õ(22n/3) queries of the adversary, where the Õ(·) notation hides logarithmic
(in N = 2n) factors. In particular, such a good key-schedule k 7→ (k0, k1, k2) can be con-
structed from any (fixed) linear orthomorphism of Fn2 . A permutation π of {0, 1}n is called an
orthomorphism if x 7→ x⊕ π(x) is also a permutation. The good cryptographic properties of
orthomorphisms have already been noticed in a number of papers [Mit95, GGM99], and are in
particular used in Lai-Massey schemes [LM90, Vau99] such as the block ciphers IDEA [LM90]
and FOX [JV04]. Our main theorem is as follows.

Theorem (Informal). Let π be any (fixed) linear orthomorphism of Fn2 , and let P be a
public random n-bit permutation oracle. Then the block cipher with message space and key
space {0, 1}n defined as (see Figure 1, top)

EMP
k (x) = k ⊕ P (π(k)⊕ P (k ⊕ x)) (?)

is secure against any adversary making up to Õ(2
2n
3 ) queries to EMP

k and P . (Queries can be
adaptive and are allowed in both directions for EMP

k and P ).
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Fig. 1. Two constructions of “minimal” two-round Even-Mansour ciphers provably secure up to Õ(2 2n
3 ) queries

of any (adaptive) adversary. Top: π is a (fixed) linear orthomorphism of Fn2 , and P is a public random permu-
tation oracle. Bottom: P1 and P2 are two independent public random permutation oracles.

We remark that if one omits π in construction (?), i.e., if one adds the same round key k
each time, security drops back to O(2n/2) queries. More generally, if round keys are all equal
and the same permutation P is used at each round of the iterated Even-Mansour cipher,
security caps at O(2n/2) queries of the adversary, independently of the number r of rounds.
This seems to be known as a folklore result about slide attacks [BW99, BW00], but since we
could not find a detailed exposition in the literature, we precisely describe and analyze this
attack (as well as a simple extension for two rounds when the key-schedule simply consists in
xoring constants to the master key) in this paper. Hence, construction (?) can be regarded as
a “minimal” two-round Even-Mansour cipher delivering security beyond the birthday bound,
since removing any component causes security to drop back to O(2n/2) queries at best (for π
this follows from the slide attack just mentioned, while removing any instance of permutation
P brings us back to a one-round Even-Mansour cipher). Additionally, we show that when
using two independent public random permutations P1 and P2, the trivial key-schedule is
sufficient: adding the same round key k at each round (see Figure 1, bottom) also yields a
Õ(22n/3)-security bound.

To the best of our knowledge, these are the first results proving “beyond the birthday
bound” security for key-alternating ciphers such as AES that do not rely on the assumption
that round keys are independent. This sheds some light on which exact properties are required
from the key-schedule in order to lift the round keys independence assumption in provable
security results. In particular, this seems to point out that a pseudorandom key-schedule is
not needed (we remind the reader that our results come with the usual caveat that they are
only proved in the very strong Random Permutation Model, and hence can only be taken as
a heuristic security insurance once the inner permutation(s) are instantiated).

More Details on Our Security Bounds. In order to ease the previous discussion, we
have been mixing two distinct types of queries of the adversary, the queries to the Even-
Mansour cipher and the queries to the internal permutation(s), only discussing a global upper
bound on the total number q of queries. Actually, we make a distinction between these two
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types of queries in our security bounds, so that they lend themselves to a more fine-grained
analysis: for each possible value of the number qe of queries to the Even-Mansour cipher, we
can derive an upper bound on the number qp of queries to the inner permutation(s) that
the construction can tolerate while still ensuring security (in our previous discussion, we
were only considering the very specific case where qe = qp). The results of this analysis are
captured on Figure 2, both for the case of a single inner permutation and for independent
inner permutations. One point to notice is that when qe ≥ 2

2n
3 , we still prove security up to

qp = O(n2 ) queries to the inner permutations when they are independent, whereas our security
bound becomes vacuous in the single-permutation case.

Regarding the tightness of our security bounds, we remark that a generic attack with
complexity qp ∼ 2n−

1
2 log2 qe for any qe has been described3 by Gaži [Gaz13] (this is represented

by the dotted line on Figure 2). We note that this matches our security bound (outside
uninteresting extremal points) only in the specific case (qe, qp) = (2

2n
3 , 2

2n
3 ).

log2(qe)
0 n

4
n
3

2n
3

3n
4

n

log2(qp)

n
2

2n
3

3n
4

n

Fig. 2. Our security bounds for the two-round Even-Mansour construction as a function of (qe, qp). When
the two inner permutations are independent and the round keys are identical (construction EMIP[n, 2]), all
parameters below the solid line are secure by Theorem 4. In the case of a single inner permutation (construction
EMSP[n, 2]), all parameters below the dashed line (which merges with the solid line for qe ≤ 2 n

4 ) are secure by
Theorem 5. In both cases, all parameters above the dotted line are insecure by the generic attack of [Gaz13].
The status of the parameters in the light and dark gray region (resp. dark gray region) remains open in the
single-permutation case (resp. in the independent permutation case).

3 In the wording of [Gaz13], the Even-Mansour construction can be regarded as a sequential construction
using an ideal cipher of small, constant key-length (the index of each inner permutation playing the role of
a “public” key), so that Theorem 3 of [Gaz13] applies in our setting with κ = 0.
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Overview of Our Techniques. In order to prove our results, we use the indistinguisha-
bility framework, namely we consider a distinguisher which must tell apart two worlds: the
“real” world where it interacts with (EMP

k , P ), where EMP
k is the Even-Mansour cipher in-

stantiated with permutation P and a random key k, and the “ideal” world where it interacts
with (E,P ) where E is a random permutation independent from P . The distinguisher can
make at most qe queries to EMP

k /E and at most qp queries to P (all queries are adaptive and
can be forward or backward, and we work in the information-theoretic setting, i.e., the adver-
sary is computationally unbounded). In order to upper bound the distinguishing advantage of
this attacker, we use, as already done in [CS14], the H-coefficient method of Patarin [Pat08].
In a nutshell, this technique consists in partitioning the set of all possible transcripts of the
interaction between the distinguisher and the tuple of permutations into a set T1 of “good”
transcripts and a set T2 of “bad” transcripts. Good transcripts τ ∈ T1 have the property that
the ratio of the probabilities to obtain τ in the real and in the ideal world is greater that
1 − ε1 for some small ε1 > 0, while the probability to obtain any bad transcript τ ∈ T2 (in
the ideal world) is less than some small ε2 > 0. Then the advantage of the distinguisher can
be upper bounded by ε1 + ε2.

In order to get intuition about what hides behind good and bad transcripts, it helps to
first look at an example of how an adversary might “get lucky” during an attack. Specifically,
we focus on the following attack scenario (we assume that qe = qp = q for simplicity). The
distinguisher (adversary) D starts by making q arbitrary queries to EMP

k /E, resulting in a
set of q pairs QE = {(x1, y1), . . . , (xq, yq)}; then D determines the pair of sets (U, V ) with
|U | = |V | = q and U, V ⊆ {0, 1}n, that maximizes the size of the set

K(QE , U, V ) def= {k′ ∈ {0, 1}n : ∃(xi, yi) ∈ QE s.t. xi ⊕ k′ ∈ U, yi ⊕ k′ ∈ V } ⊆ {0, 1}n, (1)

and D queries P (u), P−1(v) for all u ∈ U , v ∈ V . (This makes 2q queries to P instead of
q, but this small constant factor is unimportant for the sake of intuition.) Note that if D is
in the real world and if the real key k is in the set K(QE , U, V ) defined in (1), then D can
see that one of its EMP

k /E-queries is compatible with two of its P -queries with respect to k
(in more detail, there exists a value i and queries (u, v), (u′, v′) to P such that xi ⊕ k = u,
v ⊕ π(k) = u′, and v′ ⊕ k = yi). Elementary probabilistic considerations show that such a
“complete cycle” will occur for at most a handful of keys in K(QE , U, V ), so that “false alerts”
can be quickly weeded out and the correct key k validated in a few extra queries, all assuming
k ∈ K(QE , U, V ). Moreover, heuristic considerations indicate that k will be in K(QE , U, V )
with probability |K(QE , U, V )|/2n. In particular, thus, it becomes necessary to show that
|K(QE , U, V )| is significantly smaller than 2n with high probability over QE , i.e., that

max
U,V⊆{0,1}n
|U |=|V |=q

|{k′ ∈ {0, 1}n : ∃(xi, yi) ∈ QE s.t. xi ⊕ k′ ∈ U, yi ⊕ k′ ∈ V }| (2)

is significantly smaller than 2n with high probability over QE , in order to show that D has
small advantage at q queries. One of the criteria that can make a transcript “bad” in our proof
happens to be, precisely, if the set of queries QE to EMP

k /E contained within the transcript
is such that (2) is larger than desirable. (Jumping ahead, K(QE , U, V ) will be re-baptized
BadK1 in Definitions 1 and 3 of a bad transcript.)
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To elaborate a little more on this, note that

|K(QE , U, V )| ≤ |{(k′, u, v) ∈ {0, 1}n × U × V : k′ ⊕ u = xi, k
′ ⊕ v = yi for some 1 ≤ i ≤ q}|

= |{(i, u, v) ∈ {1, . . . , q} × U × V : xi ⊕ yi = u⊕ v}|.

Also note that the set of values {xi⊕yi : (xi, yi) ∈ QE} is essentially a random set since if the
i-th query to EMP

k /E is forward then yi comes at random from a large set, whereas otherwise
xi comes at random from a large set. Moreover, as a matter of fact, the problem of upper
bounding

µ(A) def= max
U,V⊆{0,1}n
|U |=|V |=q

|{(a, u, v) ∈ A× U × V : a = u⊕ v}

for a truly random set A ⊆ {0, 1}n of size q has already been studied before [Bab89, Hay05,
AKKR08, KPS13, Ste13], being dubbed4 the sum-capture problem in [Ste13]. One of the main
known results [Bab89, Ste13] on the sum-capture problem is that µ(A) is upper bounded
by roughly q3/2 for q ≤ 22n/3. Surprisingly enough, this bound is exactly sufficient for our
application, since q3/2 � 2n for q � 22n/3. (Implying, thus, that (2) is far from 2n as long as
q remains beneath 22n/3, as desired.) Our own setting is, of course, slightly different, since the
set {xi⊕yi : (xi, yi) ∈ QE} isn’t, unlike A, a purely random set of size q. Other complications
also arise: in the general case where the three round keys (k0, k1, k2) are derived from the n-bit
master key k using non-trivial (bijective) key derivation functions γi : k 7→ ki, K(QE , U, V )
takes the more complicated form

{k′ ∈ {0, 1}n : ∃(xi, yi) ∈ QE s.t. xi ⊕ γ0(k′) ∈ U, yi ⊕ γ2(k′) ∈ V },

so that we have to upper bound

|{(i, u, v) ∈ {1, . . . , q} × U × V : xi ⊕ u = γ0 ◦ γ−1
2 (yi ⊕ v)}|.

All this means that we have to carefully adapt (and to some degree significantly extend) the
Fourier-analytic techniques used in [Bab89, Ste13].

Once the probability to obtain a bad transcript has been upper bounded, the second
part of the proof is to show that the ratio between the probabilities to obtain any good
transcript in the real and the ideal world is close to 1. This part is in essence a permutation
counting argument. When the two permutations are independent (Figure 1, bottom), the
counting argument is not overly complicated. While we could, in principle, re-use the general
results of [CS14], we expose it in Section 5 (see Lemma 8) since it constitutes a good warm-
up for the reader before the more complicated counting in the subsequent section. For the
single-permutation case, things become much more involved: first, we need to consider more
conditions defining bad transcripts; and second, the permutation counting itself becomes much
more intricate. Interestingly, this part is related to the following simple to state (yet to the
best of our knowledge unexplored) problem: how many queries are needed to distinguish a
random squared permutation P ◦P (where P is uniformly random) from a uniformly random
permutation E?

4 The terminology is attributed to Mario Szegedy.
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Related Work. Two recent papers analyzed a stronger security property of the iterated
Even-Mansour cipher than mere pseudorandomness, namely indifferentiability from an ideal
cipher [ABD+13, LS13]. Aside with provable security results already mentioned, a number of
papers explored attacks on the (iterated) Even-Mansour cipher for one round [Dae91, BW00,
DKS12], two rounds [NWW13], three rounds [DDKS13], and four rounds [DDKS14].

A distinct yet related line of work considers the security of the so-called “Xor-Cascade”
construction [Gaz13, Lee13], a key-length extension method which generalizes the DESX
construction [KR01] in the same way the Generalized Even-Mansour construction generalizes
the original (one-round) Even-Mansour cipher. Given a block cipher E with message space
{0, 1}n and key space {0, 1}κ, the r-round Xor-Cascade construction XCE defines a new block
cipher with message space {0, 1}n and key space {0, 1}κ+(r+1)n as follows: given a plaintext
x ∈ {0, 1}n and a key (z, k0, . . . , kr) ∈ {0, 1}κ+(r+1)n, the ciphertext y is computed as

y = kr ⊕ Ezr(kr−1 ⊕ Ezr−1(· · ·Ez2(k1 ⊕ Ez1(k0 ⊕ x)) · · · )),

where (z1, . . . , zr) is a sequence of sub-keys deterministically derived from z in a way such that
for any z, the zi’s are pairwise distinct (note that this imposes r ≤ 2κ). Some authors consid-
ered minor variants of this construction where the last whitening key kr is omitted [Gaz13]
or where the sub-keys (z1, . . . , zr) are drawn uniformly at random [Lee13]. Directly relevant
to our work, Gazi and Tessaro [GT12] considered a construction they named 2XOR, which is
the two-round variant of Xor-Cascade where the whitening keys are identical (and the last
whitening key is omitted), namely

2XOREz,k(x) = Ez2(k ⊕ Ez1(k ⊕ x)),

where (z1, z2) are pairwise distinct sub-keys derived from z. They showed that, when the
underlying block cipher E is modeled as an ideal cipher, this construction is secure up to
O(2κ+n/2) queries to E, even when the adversary can make all possible 2n queries to the
permutation oracle (which, in the indistinguishability experiment, is either 2XOREz,k or an
independent random permutation). Considering a block cipher E with key-length κ = 1, one
obtains a construction which is similar to the two-round Even-Mansour cipher of Figure 1,
bottom, where the last key addition would be omitted.5 Hence, the Gazi-Tessaro result says
that this construction is secure for qe = 2n and qp = O(2n/2).6 Our own results are incompara-
ble with the one of [GT12]. First, the third key addition is omitted in the 2XOR construction.
Second, our bounds are more general: they hold for any value of qe and qp as long as qe < 22n/3

and qp < 22n/3. Though our bounds become meaningless for qe = 2n, they show that when
qe < 22n/3 (an interesting case in practice since an attacker will not always have access to
the entire codebook), security is ensured up to Õ(22n/3) queries to the internal permutations
(something that cannot be derived from the result of [GT12]).

5 There is a slight subtlety here: in the 2XOR construction used with a block cipher with key-length κ = 1,
i.e., a pair of permutations (P1, P2), there is an additional key bit z (hidden to the distinguisher) which tells
in which order the two permutations are called.

6 This is in fact very closely related to the security result for the single-key one-round Even-Mansour cipher
up to O(2n/2) queries to the inner and outer permutations [DKS12]. In the Gazi-Tessaro case with κ = 1,
the adversary is given an arbitrary permutation E, and must distinguish, given access to (P1, P2), whether
P1 and P2 are independent, or whether P2(k⊕ P1(k⊕ x)) = E(x) for some random key k. In the single-key
one-round Even-Mansour case, the adversary must distinguish, given access to (P1, P2), whether P1 and P2
are independent, or whether k ⊕ P1(k ⊕ x) = P2(x), i.e., P−1

2 (k ⊕ P1(k ⊕ x)) = x. These are very similar
problems, the latter being (up to changing P2 into P−1

2 ) a special case of the former with E the identity.
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Open Questions. Currently, our results only apply when the key derivation functions map-
ping the master key to the round keys are linear bijective functions of Fn2 . This is due to the
fact that the proof of our sum-capture theorem in Section 3 requires linear mappings. It is
an open question whether this theorem can be extended to nonlinear (bijective) mappings as
well. A second tantalizing yet challenging open problem is of course to generalize our results
to larger numbers of rounds. Namely, for r > 2, can we find sufficient conditions on the key-
schedule such that the r-round single-permutation Even-Mansour cipher ensures security up
to Õ(2

rn
r+1 ) queries of the adversary? We stress that even the simpler case where permutations

are independent and round keys are identical seems hard to tackle for r > 2: we currently
have no idea of how to extend our sum-capture result in order to upper bound the probability
of bad transcripts even in the case r = 3.

It would also be interesting to reduce the time complexity of attacks against the two-
round Even-Mansour cipher (potentially down to O(22n/3)). Currently, the best known attack
(for the case of independent permutations and identical round keys) has time complexity
O(2n−log2 n) [DKS12]. Since our focus in this paper is on query complexity, we have not
investigated whether this attack applies to the single-permutation variant (?) as well.

Organization. We start in Section 2 by setting the notation, giving the necessary back-
ground on the H-coefficient technique, and proving some helpful lemmas. In Section 3, which
is self-contained, we prove our new sum-capture result, which might be of independent inter-
est. In Section 4, we detail slide attacks against the iterated Even-Mansour cipher. Sections 5
and 6 contain our two provable security results for the two “minimized” variants of the two-
round Even-Mansour cipher of Figure 1. In Section 5, we first deal with the case where the
two permutations are independent and the three round keys are identical. The permutation
counting argument in this section (Lemma 8) serves as a good exercise before the correspond-
ing one of the subsequent section (Lemma 10). Section 6, which contains our main theorem,
deals with the case of a single permutation.

2 Preliminaries

2.1 Notation
Permutations. In all the following, we fix an integer n ≥ 1, and we write N = 2n. The
set of all permutations on {0, 1}n will be denoted Pn. For integers 1 ≤ s ≤ t, we will write
(t)s = t(t−1) · · · (t−s+1) and (t)0 = 1 by convention. GivenQ = ((x1, y1), . . . , (xq, yq)), where
the xi’s are pairwise distinct n-bit strings and the yi’s are pairwise distinct n-bit strings, and a
permutation P ∈ Pn, we say that P extends Q, denoted P ` Q, if P (xi) = yi for i = 1, . . . , q.
Let X = {x ∈ {0, 1}n : (x, y) ∈ Q} and Y = {y ∈ {0, 1}n : (x, y) ∈ Q}. We call X and
Y respectively the domain and the range of Q. By an abuse of notation, we will sometimes
denote Q the bijection from X to Y such that Q(xi) = yi for i = 1, . . . , q. Thus, for any
X ′ ⊆ X we have Q(X ′) = {y ∈ {0, 1}n : (x, y) ∈ Q ∧ x ∈ X ′}, and for any Y ′ ⊆ Y we have
Q−1(Y ′) = {x ∈ {0, 1}n : (x, y) ∈ Q ∧ y ∈ Y ′}. We will often use the following simple fact:
given Q of size q and Q′ of size q′ whose respective domains X and X ′ and respective ranges
Y and Y ′ satisfy X ∩X ′ = ∅ and Y ∩ Y ′ = ∅, one has

Pr
[
P ←$ Pn : P ` Q′

∣∣P ` Q] = 1
(N − q)q′

.

When two sets A and B are disjoint, we denote A tB their (disjoint) union.
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Vector Space Fn2 . We denote F2 ' {0, 1} the field with two elements, and Fn2 the vector
space of dimension n over F2. Given two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in
Fn2 , we denote x · y =

∑n
i=1 xiyi mod 2 the inner product of x and y. The general linear

group of degree n over F2, i.e., the set of all automorphisms (linear bijective mappings) of
Fn2 , will be denoted GL(n). Given Γ ∈ GL(n), we denote Γ ∗ the adjoint of Γ , i.e., the unique
automorphism satisfying x · Γ (y) = Γ ∗(x) · y for all x, y ∈ Fn2 .

2.2 The Generalized Even-Mansour Cipher

Fix integers n, r,m, ` ≥ 1. Let φ : {1, . . . , r} → {1, . . . ,m} be an arbitrary function, and
γ = (γ0, . . . , γr) be a (r+1)-tuple of functions from {0, 1}` to {0, 1}n. The r-round Generalized
Even-Mansour construction EM[n, r,m, `, φ,γ] specifies, from any m-tuple P = (P1, . . . , Pm)
of permutations on {0, 1}n, a block cipher with message space {0, 1}n and key space {0, 1}`,
simply denoted EMP in the following (parameters [n, r,m, `, φ,γ] are implicit and will always
be clear from the context), which maps a plaintext x ∈ {0, 1}n and a key K ∈ {0, 1}` to the
ciphertext defined by (see Figure 3):

EMP (K,x) = γr(K)⊕ Pφ(r)(γr−1(K)⊕ Pφ(r−1)(· · ·Pφ(2)(γ1(K)⊕ Pφ(1)(γ0(K)⊕ x)) · · · )).

We denote EMP
K : x 7→ EMP (K,x) the Even-Mansour cipher instantiated with key K (hence,

syntactically, EMP
K is a permutation on {0, 1}n).

x

K

Pφ(1)

γ0

Pφ(2)

γ1

Pφ(r) y

γr

Fig. 3. The r-round Generalized Even-Mansour cipher.

For example, AES-128 is a Generalized Even-Mansour cipher where n = 128, r = 10,
m = 2, ` = 128, the function φ is defined by φ(i) = 1 for i = 1, . . . , 9 and φ(10) = 2,
each key derivation function γi is a 128-bit (non-linear for i ≥ 1) permutation, and the two
permutations P1 and P2 are defined as:

P1 = MixColumns ◦ ShiftRows ◦ SubBytes
P2 = ShiftRows ◦ SubBytes.

All previous work about the indistinguishability of the Even-Mansour cipher [BKL+12,
LPS12, Ste12, CS14] considered the case where all permutations and all round keys are inde-
pendent, namely m = r, φ is the identity function, ` = (r+ 1)n, and γi simply selects the i-th
n-bit string of K = (k0, . . . , kr).

In the following, we will focus in particular on two special cases:
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– the case where permutations are independent and the same n-bit key k is used at each
round, namely m = r, φ is the identity function, ` = n, and all γi’s are the identity
function, in which case we will simply denote EMIP[n, r] the resulting construction. Hence,
for an r-tuple of permutations P = (P1, . . . , Pr), the block cipher EMIPP maps a plaintext
x ∈ {0, 1}n and a key k ∈ {0, 1}n to the ciphertext defined by:

EMIPP (k, x) = k ⊕ Pr(k ⊕ Pr−1(· · ·P2(k ⊕ P1(k ⊕ x)) · · · )).

– the case where a single permutation P is used at each round, namelym = 1 and φ(i) = 1 for
i = 1, . . . , r, in which case we will simply denote EMSP[n, r, `,γ] the resulting construction.
Hence, for a permutation P , the block cipher EMSPP maps a plaintext x ∈ {0, 1}n and a
key K ∈ {0, 1}` to the ciphertext defined by:

EMSPP (K,x) = γr(K)⊕ P (γr−1(K)⊕ P (· · ·P (γ1(K)⊕ P (γ0(K)⊕ x)) · · · )).

When additionally ` = n (namely the master key length is equal to the block length), we
overload the notation and simply denote EMSP[n, r,γ] the resulting construction.

2.3 Security Definition

To study the indistinguishability of the Generalized Even-Mansour cipher (in the Random
Permutation Model), we consider a distinguisher D which interacts with a set of m + 1 per-
mutation oracles on n bits that we denote generically (P0, P1 . . . , Pm) = (P0,P ). The goal of
D is to distinguish whether it is interacting with (EMP

K ,P ), where P = (P1, . . . , Pm) are ran-
dom and independent permutations andK is randomly chosen from {0, 1}` (we will informally
refer to this case as the “real” world), or with (E,P ), where E is a random n-bit permutation
independent from P (the “ideal” world). Note that in the latter case the distinguisher is sim-
ply interacting with m+1 independent random permutations. We sometimes refer to the first
permutation P0 as the outer permutation, and to permutations P1, . . . , Pm as the inner per-
mutations. The distinguisher is adaptive, and can make both forward and backward queries
to each permutation oracle, which corresponds to the notion of adaptive chosen-plaintext and
ciphertext security (CCA). We consider computationally unbounded distinguishers, and we
assume wlog that the distinguisher is deterministic and never makes useless queries (which
means that it never repeats a query, nor makes a query P−1

i (y) if it received y as the answer
to a previous query Pi(x), or vice-versa).

The distinguishing advantage of D is defined as

Adv(D) =
∣∣∣Pr

[
DEMP

K ,P = 1
]
− Pr

[
DE,P = 1

]∣∣∣ ,
where the first probability is taken over the random choice of K and P , and the second
probability is taken over the random choice of E and P . We recall that, even though this
is not apparent from the notation, the distinguisher can make both forward and backward
queries to each permutation oracle.

For qe, qp non-negative integers, we define the insecurity of the ideal7 Generalized Even-
Mansour cipher with parameters (n, r,m, `, φ,γ) as:

Advcca
EM[n,r,m,`,φ,γ](qe, qp) = max

D
Adv(D),

7 By ideal, we mean that this insecurity measure is defined in the Random Permutation Model for P1, . . . , Pm.
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where the maximum is taken over all distinguishers D making exactly qe queries to the outer
permutation and exactly qp queries to each inner permutation. The notation is adapted nat-
urally for the two special cases EMIP and EMSP defined in Section 2.2.

2.4 The H-Coefficient Technique
We give here all the necessary background on the H-coefficient technique [Pat08, CS14] that
we will use throughout this paper.

Transcript. All the information gathered by the distinguisher when interacting with the
system of m + 1 permutations can be summarized in what we call the transcript of the
interaction, which is the ordered list of queries and answers received from the system (i, b, z, z′),
where i ∈ {0, . . . ,m} names the permutation being queried, b is a bit indicating whether this
is a forward or backward query, z ∈ {0, 1}n is the actual value queried and z′ the answer.
We say that a transcript is attainable (with respect to some fixed distinguisher D) if there
exists a tuple of permutations (P0, . . . , Pm) ∈ (Pn)m+1 such that the interaction of D with
(P0, . . . , Pm) yields this transcript (said otherwise, the probability to obtain this transcript in
the “ideal” world is non-zero). In fact, an attainable transcript can be represented in a more
convenient way that we will use in all the following. Namely, from the transcript we can build
m+ 1 lists of directionless queries

QE = ((x1, y1), . . . , (xqe , yqe)),
QP1 = ((u1,1, v1,1), . . . , (u1,qp , v1,qp)),

...

QPm = ((um,1, vm,1), . . . , (um,qp , vm,qp))

as follows. For j = 1, . . . , qe, let (0, b, z, z′) be the j-th query to P0 in the transcript: if this was
a forward query then we set xj = z and yj = z′, otherwise we set xj = z′ and yj = z. Similarly,
for each i = 1, . . . ,m, and j = 1, . . . , qp, let (i, b, z, z′) be the j-th query to Pi in the transcript:
if this was a forward query then we set ui,j = z and vi,j = z′, otherwise we set ui,j = z′ and
vi,j = z. A moment of thinking should make it clear that for attainable transcripts there is
a one-to-one mapping between these two representations. (Essentially this follows from the
fact that the distinguisher is deterministic). Moreover, though we defined QE ,QP1 , . . . ,QPm
as ordered lists, the order is unimportant (our formalization keeps the natural order induced
by the distinguisher).

For convenience, and following [CS14], we will be generous with the distinguisher by
providing it, at the end of its interaction, with the actual key K when it is interacting with
(EMP

K ,P ), or with a dummy key K selected uniformly at random when it is interacting
with (E,P ). This is without loss of generality since the distinguisher is free to ignore this
additional information. Hence, all in all a transcript τ is a tuple (QE ,QP1 , . . . ,QPm ,K). We
refer to (QE ,QP1 , . . . ,QPm) (without the key) as the permutation transcript, and we say
that a transcript τ is attainable if the corresponding permutation transcript is attainable. We
denote T the set of attainable transcripts. (Thus T depends on D, as the notion of attainability
depends on D.) In all the following, we denote Tre, resp. Tid, the probability distribution of the
transcript τ induced by the real world, resp. the ideal world (note that these two probability
distributions depend on the distinguisher). By extension, we use the same notation to denote
a random variable distributed according to each distribution.
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Main Lemma. In order to upper bound the advantage of the distinguisher, we will repeatedly
use the following strategy: we will partition the set of attainable transcripts T into a set of
“good” transcripts T1 such that the probabilities to obtain some transcript τ ∈ T1 are close in
the real and in the ideal world, and a set T2 of “bad” transcripts such that the probability to
obtain any τ ∈ T2 is small in the ideal world. More precisely, we will use the following result.

Lemma 1. Fix a distinguisher D. Let T = T1 t T2 be a partition of the set of attainable
transcripts. Assume that there exists ε1 such that for any τ ∈ T1, one has8

Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1− ε1,

and that there exists ε2 such that

Pr[Tid ∈ T2] ≤ ε2.

Then Adv(D) ≤ ε1 + ε2.

Proof. The proof is standard, but we sketch it here for completeness. Since the distinguisher’s
output is a (deterministic) function of the transcript, its distinguishing advantage is upper
bounded by the statistical distance between Tid and Tre, namely

Adv(D) ≤ ‖Tre − Tid‖
def= 1

2
∑
τ∈T
|Pr[Tre = τ ]− Pr[Tid = τ ]| .

Moreover we have:

‖Tre − Tid‖ =
∑
τ∈T

Pr[Tid=τ ]>Pr[Tre=τ ]

(Pr[Tid = τ ]− Pr[Tre = τ ])

=
∑
τ∈T

Pr[Tid=τ ]>Pr[Tre=τ ]

Pr[Tid = τ ]
(

1− Pr[Tre = τ ]
Pr[Tid = τ ]

)

≤
∑
τ∈T1

Pr[Tid = τ ]ε1 +
∑
τ∈T2

Pr[Tid = τ ]

≤ ε1 + ε2. ut

The ratio Pr[Tre = τ ]/Pr[Tid = τ ] takes a particularly simple form for the Even-Mansour
cipher. (This is one of the reasons why we append the key K at the end of the transcript;
otherwise, the ratio would take a more cumbersome form.)

Lemma 2. Let τ = (QE ,QP1 , . . . ,QPm ,K) ∈ T be an attainable transcript. Let

p(τ) def= Pr
[
P1, . . . , Pm ←$ Pn : EMP1,...,Pm

K ` QE
∣∣∣ (P1 ` QP1) ∧ · · · ∧ (Pm ` QPm)

]
.

Then
Pr[Tre = τ ]
Pr[Tid = τ ] = (N)qe · p(τ).

8 Recall that for an attainable transcript, one has Pr[Tid = τ ] > 0.
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Proof. One can easily check that the interaction of the distinguisher with any set of permu-
tations (P0, P1, . . . , Pm) produces permutation transcript (QE ,QP1 , . . . ,QPm) iff

(P0 ` QE) ∧ (P1 ` QP1) ∧ · · · ∧ (Pm ` QPm).

In the ideal world, the distinguisher interacts with (E,P1, . . . , Pm) where E is independent
from P1, . . . Pm, and the (dummy) key K is uniformly random and independent from the
permutations. It follows easily that

Pr[Tid = τ ] = 1
2` ×

1
(N)qe

×
(

1
(N)qp

)m
.

In the real world, the distinguisher interacts with (EMP1,...,Pm
K , P1, . . . , Pm), where the key K

is uniformly random and independent from (P1, . . . , Pm). It easily follows that

Pr[Tre = τ ] = 1
2` ×

(
1

(N)qp

)m
× Pr

[
P1, . . . , Pm ←$ Pn : EMP1,...,Pm

K ` QE
∣∣∣ (P1 ` QP1) ∧ · · · ∧ (Pm ` QPm)

]
,

hence the result. ut

2.5 A Useful Lemma

We prove a lemma that will be useful throughout the paper.

Lemma 3. Let N, a, b, c, d be positive integers such that c+ d = 2b and 2a+ 2b ≤ N . Then

(N)a(N − 2b)a
(N − c)a(N − d)a

≥ 1− 4ab2

N2 .

Proof. Assume wlog that c ≥ d. Note that this implies c ≥ b. Then:

(N)a(N − 2b)a
(N − c)a(N − d)a

= (N)a(N − 2b)a
((N − b)a)2 × ((N − b)a)2

(N − c)a(N − d)a

=
N−b∏

i=N−a−b+1

(i+ b)(i− b)
i2

×
N−b∏

i=N−a−b+1

i2

(i− c+ b)(i− d+ b)

=
N−b∏

i=N−a−b+1

(
1− b2

i2

)
×

N−b∏
i=N−a−b+1

i2

(i− (c− b))(i+ (c− b))︸ ︷︷ ︸
≥1

≥
(

1− b2

(N − a− b+ 1)2

)a

≥ 1− 4ab2

N2 ,

where for the last inequality we used a+ b ≤ N/2. ut
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3 A Sum-Capture Theorem

In this section, we prove a variant of previous “sum-capture” results [Bab89, KPS13, Ste13].
Informally, such results typically state that when choosing a random subset A of Zn2 (or more
generally any abelian group) of size q, the value

µ(A) = max
U,V⊆Zn2
|U |=|V |=q

|{(a, u, v) ∈ A× U × V : a = u⊕ v}|

is close to its expected value q3/N (if A,U, V were chosen at random), except with negligible
probability. Here, we prove a result of this type for the setting where A arises from the
interaction of an adversary with a random permutation P , namely A = {x⊕ y : (x, y) ∈ Q},
where Q is the transcript of the interaction between the adversary and P . In fact our result
is even more general, the special case just mentioned corresponding to Γ being the identity
in the theorem below.

Theorem 1. Fix an automorphism Γ ∈ GL(n). Let P be a uniformly random permutation
of {0, 1}n, and let A be some probabilistic algorithm making exactly q (two-sided) adaptive
queries to P . Let Q = ((x1, y1), . . . , (xq, yq)) denote the transcript of the interaction of A with
P . For any two subsets U and V of {0, 1}n, let

µ(Q, U, V ) = |{((x, y), u, v) ∈ Q× U × V : x⊕ u = Γ (y ⊕ v)}|.

Then, assuming 9n ≤ q ≤ N/2, one has

Pr
P,ω

[
∃U, V ⊆ {0, 1}n : µ(Q, U, V ) ≥ q|U ||V |

N
+ 2q2√|U ||V |

N
+ 3

√
nq|U ||V |

]
≤ 2
N
,

where the probability is taken over the random choice of P and the random coins ω of A.

Proof. The theorem follows directly from Lemmas 4 and 6 that are proven below. ut

A Reminder on Fourier Analysis. We start by introducing some notation and recalling
some classical results on Fourier analysis over the abelian group Zn2 . In the following, given a
subset S ⊂ {0, 1}n, we denote 1S : {0, 1}n → {0, 1} the characteristic functions of S, namely
1S(x) = 1 if x ∈ S and 1S(x) = 0 if x /∈ S. Given two functions f, g : {0, 1}n → R, we denote

〈f, g〉 = E[fg] = 1
N

∑
x∈{0,1}n

f(x)g(x)

the inner product of f and g, and, for all x ∈ {0, 1}n, we denote

(f ∗ g)(x) =
∑

y∈{0,1}n
f(y)g(x⊕ y)

the convolution of f and g. Given α ∈ {0, 1}n, we denote χα : {0, 1}n → {±1} the character
associated with α defined as

χα(x) = (−1)α·x.
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The all-one character χ0 is called the principal character. All other characters χ 6= 1 corre-
sponding to α 6= 0 are called non-principal characters. The set of all characters forms a group
for the pointwise product operation (χαχβ)(x) = χα(x)χβ(x) and one has χαχβ = χα⊕β.

Given a function f : {0, 1}n → R and α ∈ {0, 1}n, the Fourier coefficient of f correspond-
ing to α is

f̂(α) def= 〈f, χα〉 = 1
N

∑
x∈{0,1}n

f(x)(−1)α·x.

The coefficient corresponding to α = 0 is called the principal Fourier coefficient, all the other
ones are called non-principal Fourier coefficients. Note that for a set S ⊆ {0, 1}n one has

1̂S(0) = |S|
N
,

namely the principal Fourier coefficient of 1S is equal to the relative size of the set. We will
also use the following three classical results, holding for any functions f, g, : {0, 1}n → R, any
α ∈ {0, 1}n, and any S ⊆ {0, 1}n:∑

x∈{0,1}n
f(x)g(x) = N

∑
α∈{0,1}n

f̂(α)ĝ(α) (3)

(̂f ∗ g)(α) = Nf̂(α)ĝ(α) (4)∑
α∈{0,1}n

|1̂S(α)|2 = |S|
N
. (5)

First Step: the Cauchy-Schwarz Trick. As a preliminary step towards proving The-
orem 1, we start by relating the quantity µ(Q, U, V ) with the maximal amplitude of (a sub-
set of) non-principal Fourier coefficients of the characteristic function 1̂Q of the set Q =
((x1, y1), . . . , (xq, yq)) seen as a subset of {0, 1}2n. This part is adapted from Babai [Bab89,
Section 4] and Steinberger [Ste13], but in our setting we have to work over the product
group Zn2 × Zn2 (in particular, Lemma 4 below is the analogue of Theorem 4.1 in [Bab89],
which was independently rediscovered by Steinberger [Ste13]). In the following, we let, for
any α, β ∈ {0, 1}n, α 6= 0, β 6= 0,

Φα,β(Q) def= N2
∣∣∣1̂Q(α, β)

∣∣∣ =

∣∣∣∣∣∣
∑

(x,y)∈Q
(−1)α·x⊕β·y

∣∣∣∣∣∣
Φ(Q) def= max

α 6=0,β 6=0
Φα,β(Q).

Lemma 4. For any subsets U and V of {0, 1}n, one has

µ(Q, U, V ) ≤ q|U ||V |
N

+ Φ(Q)
√
|U ||V |.

Proof. In the following, we denote

W = U × V = {(u, v) : u ∈ U, v ∈ V }
K = {(Γ (k), k) : k ∈ {0, 1}n}.
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Since ((x, y), u, v) ∈ Q×U ×V satisfies x⊕u = Γ (y⊕v) iff there exists k ∈ {0, 1}n such that

(x, y)⊕ (u, v) = (Γ (k), k),

it follows that we have

µ(Q, U, V ) =
∑

(x,y)∈({0,1}n)2

(u,v)∈({0,1}n)2

1Q(x, y)1W (u, v)1K(x⊕ u, y ⊕ v)

=
∑

(x,y)∈({0,1}n)2

1Q(x, y)
∑

(u,v)∈({0,1}n)2

1W (u, v)1K(x⊕ u, y ⊕ v)

=
∑

(x,y)∈({0,1}n)2

1Q(x, y)(1W ∗ 1K)(x, y)

= N2 ∑
(α,β)∈({0,1}n)2

1̂Q(α, β) ̂(1W ∗ 1K)(α, β) (by (3))

= N4 ∑
(α,β)∈({0,1}n)2

1̂Q(α, β)1̂W (α, β)1̂K(α, β) (by (4)).

Separating the principal Fourier coefficient from non-principal ones in the last equality above,
we get

µ(Q, U, V ) = N4 |Q|
N2
|W |
N2
|K|
N2 +N4 ∑

(α,β)6=(0,0)
1̂Q(α, β)1̂W (α, β)1̂K(α, β)

= q|U ||V |
N

+N4 ∑
(α,β) 6=(0,0)

1̂Q(α, β)1̂W (α, β)1̂K(α, β). (6)

(We note that equality (6) above holds in fact for any abelian group G and any fixed, non-
necessarily linear, permutation Γ : G → G, replacing the summation over (α, β) 6= (0, 0) by
the summation over all non-principal characters of the product group G×G.) Moreover, we
have

1̂W (α, β) = 1
N2

∑
(u,v)∈({0,1}n)2

1W (u, v)(−1)α·u⊕β·v

= 1
N2

∑
(u,v)∈({0,1}n)2

1U (u)1V (v)(−1)α·u⊕β·v

= 1
N2

 ∑
u∈{0,1}n

1U (u)(−1)α·u
 ∑

v∈{0,1}n
1V (v)(−1)β·v


= 1̂U (α)1̂V (β),

and

1̂K(α, β) = 1
N2

∑
(x,y)∈({0,1}n)2

1K(x, y)(−1)α·x⊕β·y

= 1
N2

∑
y∈{0,1}n

(−1)α·Γ (y)⊕β·y

18



= 1
N2

∑
y∈{0,1}n

(−1)Γ ∗(α)·y⊕β·y

= 0 if β 6= Γ ∗(α)
1
N

if β = Γ ∗(α).

Then, injecting the two observations above in (6), we obtain

µ(Q, U, V ) = q|U ||V |
N

+N3 ∑
α 6=0

1̂Q(α, Γ ∗(α))1̂U (α)1̂V (Γ ∗(α))

≤ q|U ||V |
N

+N3 ∑
α 6=0

∣∣∣1̂Q(α, Γ ∗(α))
∣∣∣ · ∣∣∣1̂U (α)

∣∣∣ · ∣∣∣1̂V (Γ ∗(α))
∣∣∣

≤ q|U ||V |
N

+NΦ(Q)
∑
α 6=0

∣∣∣1̂U (α)
∣∣∣ · ∣∣∣1̂V (Γ ∗(α))

∣∣∣ ,
where the last inequality follows by noting that |1̂Q(α, Γ ∗(α))| ≤ Φ(Q)/N2 for any α 6= 0 (by
definition of Φ(Q)). By Cauchy-Schwarz,∑

α 6=0

∣∣∣1̂U (α)
∣∣∣ · ∣∣∣1̂V (Γ ∗(α))

∣∣∣ ≤ √ ∑
α∈{0,1}n

|1̂U (α)|2
√ ∑
α∈{0,1}n

|1̂V (Γ ∗(α))|2 = 1
N

√
|U ||V |,

where the last equality follows from (5), so that we finally obtain

µ(Q, U, V ) ≤ q|U ||V |
N

+ Φ(Q)
√
|U ||V |. ut

Upper Bounding Non-Principal Fourier Coefficients. Having established Lemma 4,
it remains to find an upper bound on Φ(Q) holding with high probability over the random
choice of P and the random coins of the adversary. For this, we will need the following
extension of the Chernoff bound to “moderately dependent” random variables.

Lemma 5. Let 0 ≤ ε ≤ 1/2, and let A = (Ai)1≤i≤q be a sequence of random variables taking
values in {±1}. Assume that for any 1 ≤ i ≤ q and any sequence (a1, . . . , ai−1) ∈ {±1}i−1,
one has

Pr [Ai = 1 | (A1, . . . , Ai−1) = (a1, . . . ai−1)] ≤ 1
2 + ε.

Then, for any δ ∈ [0, 1], one has

Pr
[ q∑
i=1

Ai ≥ q(2ε+ δ)
]
≤ e−

qδ2
12 .

Proof. Let B = (Bi)1≤i≤q be independent and identically distributed random variables such
that

Pr[Bi = 1] = 1
2 + ε and Pr[Bi = −1] = 1

2 − ε.

We first show that for any r, we have

Pr
[ q∑
i=1

Ai ≥ r
]
≤ Pr

[ q∑
i=1

Bi ≥ r
]
. (7)
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We prove this with a coupling-like argument. Let Berp denote the ±1 Bernoulli distribution of
parameter p (which takes value 1 with probability p and −1 with probability 1− p). Consider
the following sampling process (we assume ε < 1/2 here, but this is wlog since the lemma
trivially holds for ε = 1/2):

for i = 1 to q do
p← Pr [Ai = 1 | (A1, . . . , Ai−1) = (u1, . . . ui−1)]
ui ← Berp
if ui = 1 then

vi ← 1
else

p′ ← 1/2+ε−p
1−p

vi ← Berp′
return ((u1, . . . , uq), (v1, . . . , vq))

Then clearly (u1, . . . , uq) ∼ A. Moreover, (v1, . . . , vq) ∼ B. Indeed, for any i = 1, . . . , q, and
any sequence (v1, . . . , vi−1) ∈ {±1}i−1, one has

Pr[vi = 1|(v1, . . . , vi−1)] = p+ p′(1− p) = 1
2 + ε.

Note that during the sampling process, ui = 1 implies vi = 1, so that for any r,

q∑
i=1

ui ≥ r =⇒
q∑
i=1

vi ≥ r,

which implies (7).
Fix now δ ∈ [0, 1], and let (B′i)1≤i≤q be defined as

B′i = 1 +Bi
2 ,

so that
Pr[B′i = 1] = 1

2 + ε and Pr[B′i = 0] = 1
2 − ε.

Let m = E(
∑q
i=1B

′
i) = q(1/2 + ε). Then the Chernoff bound asserts that for any 0 ≤ δ′ ≤ 1,

one has

Pr
[ q∑
i=1

B′i ≥ (1 + δ′)m
]
≤ e

−mδ′2
3 .

Substituting δ′ = qδ
2m = δ

1+2ε in the inequality above yields (note that δ ∈ [0, 1]⇒ δ′ ∈ [0, 1])

Pr
[ q∑
i=1

Bi ≥ q(2ε+ δ)
]

= Pr
[ q∑
i=1

B′i ≥
(

1 + qδ

2m

)
m

]
≤ e−

q2δ2
12m ≤ e−

qδ2
12 .

which combined with (7) concludes the proof. ut

We are now ready to prove an adequate upper bound on Φ(Q).
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Lemma 6. Assume that 9n ≤ q ≤ N/2. Fix an adversary A making q queries to a random
permutation P . Let Q denote the transcript of the interaction of A with P . Then

Pr
P,ω

[
Φ(Q) ≥ 2q2

N
+ 3√nq

]
≤ 2
N
,

where the probability is taken over the random choice of P and the random coins ω of A.

Proof. In all this proof, Pr[·] denotes PrP,ω[·]. Fix α, β ∈ {0, 1}n, α 6= 0 and β 6= 0. Letting
Q = ((x1, y1), . . . , (xq, yq)) following the natural ordering of the queries of A, we define the
sequence of random variables (Ai)1≤i≤q where Ai = (−1)α·xi⊕β·yi . Then Φα,β(Q) = |

∑q
i=1Ai|.

In order to apply Lemma 5, we will show that for 1 ≤ i ≤ q, and any sequence (a1, . . . , ai−1) ∈
{±1}i−1, we have

pi
def= Pr [Ai = 1 | (A1, . . . , Ai−1) = (a1, . . . , ai−1)] ≤ 1

2 + q

N
. (8)

Assume that the i-th query of the adversary to P is a forward query xi. Note that the answer
yi is distributed uniformly at random on a set of size N − i + 1. Also notice that, once xi
is fixed, there are exactly N/2 yi’s such that Ai = (−1)α·xi⊕β·yi = 1 since β 6= 0. Similarly,
if the i-th query is a backward query yi, then the answer xi is is distributed uniformly at
random on a set of size N − i + 1, and once yi is fixed, there are exactly N/2 xi’s such that
Ai = (−1)α·xi⊕β·yi = 1 since α 6= 0. Hence, we have that

pi ≤
N/2

N − i+ 1 ≤
N

2(N − q) ≤
1
2 + q

2(N − q) ≤
1
2 + q

N
.

We can now apply Lemma 5 with ε = q/N and we obtain, for any δ ∈ [0, 1],

Pr
[ q∑
i=1

Ai ≥
2q2

N
+ qδ

]
≤ e−

qδ2
12 .

Defining A′i = −Ai, and applying exactly the same reasoning, we obtain

Pr
[ q∑
i=1

Ai ≤ −
(

2q2

N
+ qδ

)]
≤ e−

qδ2
12 .

Thus by a union bound we obtain:

Pr
[
Φα,β(Q) ≥ 2q2

N
+ qδ

]
≤ 2e−

qδ2
12 .

Note that this holds for any α 6= 0 and β 6= 0. Hence, if we choose δ =
√

(12 lnN)/q (which,
assuming q ≥ 9n, implies δ ≤ 1), we finally obtain, using

√
12 ln 2 ≤ 3,

Pr
P,ω

[
Φ(Q) ≥ 2q2

N
+ 3√nq

]
≤ 2
N
. ut
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4 Slide Attacks against the Even-Mansour Cipher

4.1 Slide Attack for Identical Round Keys and Identical Permutations

Consider the r-round Even-Mansour cipher with a single permutation P and identical round
keys, which we simply denote EMP

k here. We show that there is a slide attack against this
cipher with query and time complexity O(2n/2), independently of the number r of rounds. This
attack works as follows (we describe a distinguishing attack where the adversary D interacts
with a pair of permutations (E,P ), and must distinguish whether E is truly random, or
whether this is EMP

k for a random key k):

1. Fix a nonzero c ∈ {0, 1}n and two subsets X, U ⊂ {0, 1}n such that |X| = |U | = 2
n
2 and

X ⊕ U = {x⊕ u : x ∈ X,u ∈ U} = {0, 1}n.

(For example, X consists of all strings whose last n/2 bits are zero, and U consists of all
strings whose first n/2 bits are zero.)

2. D makes queries
– E(x) and E(x⊕ c) for x ∈ X
– P (u) and P (u⊕ c) for u ∈ U

3. Using the responses to the above queries, D further makes queries
– E(P (u)) and E(P (u⊕ c)) for u ∈ U
– P (E(x)) and P (E(x⊕ c)) for x ∈ X

4. If there are x∗ ∈ X and u∗ ∈ U such that

P (E(x∗))⊕ E(P (u∗)) = P (E(x∗ ⊕ c))⊕ E(P (u∗ ⊕ c)) = x∗ ⊕ u∗ (9)

then D outputs 1. Otherwise, D outputs 0.

The numbers of E-queries and P -queries required for this attack are both at most 22+n
2

(there might be redundant queries). Moreover this attack can easily be turned into a key-
recovery attack, the key guess of the adversary being k = x∗ ⊕ u∗ for (x∗, u∗) satisfying
Equation (9).

Let us analyze the success probability of this attack. When D is interacting with the real
world (EMP

k , P ), then it always outputs 1 since the pair (x∗, u∗) such that x∗⊕u∗ = k, where
k is the secret key, necessarily satisfies Equation (9). This can easily be seen for example from
the following “commutativity” property, holding for all x ∈ {0, 1}n:

k ⊕ P (EMP
k (x)) = EMP

k (P (k ⊕ x)).

On the other hand, suppose that E is a random permutation that is independent of P .
We will show that the probability of finding (x∗, u∗) satisfying (9) is small. Fix any pair
(x, u) ∈ X × U . For any tuple (y, y′, v, v′) of n-bit values such that y 6= y′ and v 6= v′, we
define

p(y, y′, v, v′) def= Pr
[
(x, u) satisfies (9)

∣∣∣∣∣ E(x) = y ∧ E(x⊕ c) = y′

P (u) = v ∧ P (u⊕ c) = v′

]

= Pr
[
P (y)⊕ E(v) = P (y′)⊕ E(v′) = x⊕ u

∣∣∣∣∣ E(x) = y ∧ E(x⊕ c) = y′

P (u) = v ∧ P (u⊕ c) = v′

]
.

In order to upper bound p(y, y′, v, v′), we distinguish the following four cases:
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1. If (y /∈ {u, u⊕ c} or v /∈ {x, x⊕ c}) and (y′ /∈ {u, u⊕ c} or v′ /∈ {x, x⊕ c}), then

p(y, y′, v, v′) ≤ 1
(N − 2)(N − 3) .

2. If (y ∈ {u, u⊕ c} and v ∈ {x, x⊕ c}) and (y′ /∈ {u, u⊕ c} or v′ /∈ {x, x⊕ c}), then

p(y, y′, v, v′) ≤ 1
(N − 2) .

3. If (y /∈ {u, u⊕ c} or v /∈ {x, x⊕ c}) and (y′ ∈ {u, u⊕ c} and v′ ∈ {x, x⊕ c}), then

p(y, y′, v, v′) ≤ 1
(N − 2) .

4. If y ∈ {u, u⊕ c}, v ∈ {x, x⊕ c}, y′ ∈ {u, u⊕ c}, and v′ ∈ {x, x⊕ c}, then

p(y, y′, v, v′) ≤ 1.

It remains to upper bound the number of tuples (y, y′, v, v′) for each case, and we obtain:

Pr [(x, u) satisfies (9)] ≤ 1
N2(N − 1)2

∑
(y,y′,v,v′)

p(y, y′, v, v′)

≤ 1
N2(N − 1)2

 N2(N − 1)2

(N − 2)(N − 3)︸ ︷︷ ︸
case 1

+2 · 4(N − 1)2

N − 2︸ ︷︷ ︸
cases 2&3

+ 4︸︷︷︸
case 4


≤ 1

(N − 2)(N − 3) + 8
N2(N − 2) + 4

N2(N − 1)2 .

Summing over (x, u) ∈ X × U , we finally obtain

Pr[∃(x, u) satisfying (9)] ≤ N

(N − 2)(N − 3) + 8
N(N − 2) + 4

N(N − 1)2 = O
( 1
N

)
.

Hence, when interacting with the ideal world, D outputs 1 with probability close to zero for
large N . Thus, we just proved the following theorem.

Theorem 2. Consider the r-round iterated Even-Mansour construction with a single permu-
tation and identical round keys EMSP[n, r, ` = n,γ = Id]. Then there exists a distinguishing
attack against this cipher which makes at most 22+n

2 queries both to the outer and to the inner
permutation, and which has a distinguishing advantage 1−O( 1

N ).

4.2 Extension to Key-Schedules Based on Xoring Constants

We show that the slide attack of the previous section can be extended to the single-permutation
two-round Even-Mansour cipher with a very basic key-schedule, namely when the three round
keys are derived as ki = k⊕ti, where k is the n-bit master key and (t0, t1, t2) are three (public)
n-bit constants. The distinguisher, interacting with a pair of permutations (E,P ), proceeds
as follows:
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1. Fix a nonzero c ∈ {0, 1}n and two subsets X, U ⊂ {0, 1}n such that |X| = |U | = 2
n
2 and

X ⊕ U = {x⊕ u : x ∈ X,u ∈ U} = {0, 1}n.

(For example, X consists of all strings whose last n/2 bits are zero, and U consists of all
strings whose first n/2 bits are zero.)

2. D makes queries
– E(x) and E(x⊕ c) for x ∈ X
– P (u) and P (u⊕ c) for u ∈ U

3. Using the responses to the above queries, D further makes queries
– E(t0 ⊕ t1 ⊕ P (u)) and E(t0 ⊕ t1 ⊕ P (u⊕ c)) for u ∈ U
– P (t1 ⊕ t2 ⊕ E(x)) and P (t1 ⊕ t2 ⊕ E(x⊕ c)) for x ∈ X

4. If there are x∗ ∈ X and u∗ ∈ U such that{
P (t1 ⊕ t2 ⊕ E(x∗))⊕ E(t0 ⊕ t1 ⊕ P (u∗)) = t0 ⊕ t2 ⊕ x∗ ⊕ u∗
P (t1 ⊕ t2 ⊕ E(x∗ ⊕ c))⊕ E(t0 ⊕ t1 ⊕ P (u∗ ⊕ c)) = t0 ⊕ t2 ⊕ x∗ ⊕ u∗

(10)

then D outputs 1. Otherwise, D outputs 0.

The numbers of E-queries and P -queries required for this attack are both at most 22+n
2

(there might be redundant queries). Moreover this attack can easily be turned into a key-
recovery attack, the key guess of the adversary being k = t0 ⊕ x∗ ⊕ u∗ for (x∗, u∗) satisfying
conditions (10).

Let us analyze the success probability of this attack. When D is interacting with the real
world (EMP

k , P ), then it always outputs 1 since the pair (x∗, u∗) such that x∗ ⊕ u∗ = k ⊕ t0,
where k is the secret master key, necessarily satisfies conditions (10). This can easily be seen
for example from the following “commutativity” property, holding for all x ∈ {0, 1}n:

k ⊕ t2 ⊕ P (t1 ⊕ t2 ⊕ EMP
k (x)) = EMP

k (t0 ⊕ t1 ⊕ P (k ⊕ t0 ⊕ x)).

When the distinguisher is interacting with the ideal world (E,P ), where E is a random
permutation that is independent from P , then if we set P ′ = t0⊕ t1⊕P and E′ = t1⊕ t2⊕E,
Equation (10) simplifies into Equation (9) with E and P replaced by E′ and P ′, so that we
can use exactly the same analysis as for the original attack of Section 4.1. Hence D outputs
1 with probability O( 1

N ). Thus, we have the following theorem.

Theorem 3. Consider the two-round Even-Mansour construction EMSP[n, 2, ` = n,γ] with
a single permutation and round keys ki derived from the n-bit master key k as γi(k) = k⊕ ti,
for publicly specified constants (t0, t1, t2). Then there exists a distinguishing attack against this
cipher which makes at most 22+n

2 queries both to the outer and to the inner permutation, and
which has a distinguishing advantage 1−O( 1

N ).

5 Security Proof for Independent Permutations and Identical Round
Keys

5.1 Statement of the Result and Discussion

In this section, we study the security of the two-round Even-Mansour construction with two
independent permutations and identical round keys EMIP[n, 2] (depicted on Figure 4). More
precisely, we prove the following theorem.

24



x P1

k

P2

k

y

k

Fig. 4. The two-round Even-Mansour cipher with independent permutations and identical round keys.

Theorem 4 (Independent permutations and identical round keys). Consider the
two-round Even-Mansour cipher with independent permutations and identical round keys
EMIP[n, 2]. Assume that n ≥ 11, qe ≥ 9n, qp ≥ 9n, and 2qe + 2qp ≤ N . Then the follow-
ing upper bounds hold:

(i) When qe ≤ 2
n
4 , one has

Advcca
EMIP[n,2](qe, qp) ≤

6qeqp
N

. (11)

(ii) When 2
n
4 ≤ qe ≤ 2

2n
3 , one has

Advcca
EMIP[n,2](qe, qp) ≤

6
N

+ (13 + 9
√
n)
(
qeq

5
p

N4

) 1
5

. (12)

(iii) When 2
2n
3 ≤ qe ≤ 2

3n
4 , one has

Advcca
EMIP[n,2](qe, qp) ≤

6
N

+ (13 + 9
√
n)q

2
eqp
N2 . (13)

(iv) When qe ≥ 2
3n
4 , one has,

Advcca
EMIP[n,2](qe, qp) ≤

1
eN

+
nq2

p

N
. (14)

Discussion. Before proceeding to the proof, we discuss Theorem 4. As is clear from the
form of the theorem, we can identify four “regimes” for the security bound depending on
qe. The “low qe” regime corresponds to qe ≤ 2

n
4 , where the security bound is given by (11),

which is, up to constant terms, exactly the same bound as for the one-round Even-Mansour
cipher [EM97, DKS12]. There are two “medium qe” regimes, derived with the same analysis
but where two different terms dominate the security bound, which correspond respectively to
2
n
4 ≤ qe ≤ 2

2n
3 , where the security bound is given by (12), and 2

2n
3 ≤ qe ≤ 2

3n
4 where the

security bound is given by (13). Finally, the “large qe” regime corresponds to qe ≥ 2
3n
4 , where

the security bound is given by (14) and caps at qp = 2
n
2 . See Figure 2 in Section 1 where the

security bound is plotted in the (qe, qp) plane.
If we put a global upper bound on the total number of queries of the adversary by letting

q = max(qe, qp), then, assuming q ≤ 2
2n
3 , the second upper bound of Theorem 4 simplifies

into

Advcca
EMIP[n,2](q, q) ≤

6
N

+ (13 + 9
√
n)
(
q6

N4

) 1
5

≤ 6
2n + 13q

2
2n
3

+ 9q
2

2n
3 −

1
2 log2 n

.

Hence, security is ensured up to O(2
2n
3 −

1
2 log2 n) = Õ(2

2n
3 ) total queries of the adversary.

The remaining of this section is devoted to the proof of Theorem 4.
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5.2 Definition and Probability of Bad Transcripts

Following the general methodology outlined in Section 2.4, our first task will be to define the
set T2 of bad transcripts τ = (QE ,QP1 ,QP2 , k), with |QE | = qe and |QP1 | = |QP2 | = qp.
Informally, a transcript is bad if the key creates “chains” in the permutation transcript. The
formal definition follows.

Definition 1 (Bad transcript, independent permutations case). We say that a tran-
script τ = (QE ,QP1 ,QP2 , k) ∈ T is bad if

k ∈ BadK =
⋃

1≤i≤3
BadKi

where:

k ∈ BadK1 ⇔ k = x⊕ u1 = v2 ⊕ y for some (x, y) ∈ QE , (u1, v1) ∈ QP1 , (u2, v2) ∈ QP2

k ∈ BadK2 ⇔ k = x⊕ u1 = v1 ⊕ u2 for some (x, y) ∈ QE , (u1, v1) ∈ QP1 , (u2, v2) ∈ QP2

k ∈ BadK3 ⇔ k = v1 ⊕ u2 = v2 ⊕ y for some (x, y) ∈ QE , (u1, v1) ∈ QP1 , (u2, v2) ∈ QP2 .

Otherwise, τ is said good. We denote T2 the set of bad transcripts, and T1 = T \ T2 the set of
good transcripts.

We first upper bound the probability of obtaining a bad transcript in the ideal world.

Lemma 7. Depending on (qe, qp), the following upper bounds hold:

(i) For any integers qe and qp, one has

Pr[Tid ∈ T2] ≤ 2qeqp
N

.

(ii) When 9n ≤ qe ≤ N/2 and 9n ≤ qp ≤ N/2, one has

Pr[Tid ∈ T2] ≤ 6
N

+
2q2
eqp + 3qeq2

p + 4q2
p
√
qeqp

N2 +
9qp
√
nqe

N
.

(iii) For qe = N and any integer qp, one has, assuming n ≥ 11,

Pr[Tid ∈ T2] ≤ 1
eN

+
nq2

p

N
.

Proof. Note that in the ideal world, sets BadK1, BadK2 and BadK3 only depend on the random
permutations E, P1, and P2, and not on the key k, which is drawn uniformly at random at
the end of the interaction of the distinguisher with (E,P1, P2). Hence, for any C > 0, we can
write

Pr[Tid ∈ T2] ≤ Pr [E,P1, P2 ←$ Pn : |BadK| ≥ C] + C

N
. (15)

With this observation at hand, we first prove (i). Note that one always has, independently of
E, P1, and P2,

|BadK| ≤ |{x⊕ u1 : (x, y) ∈ QE , (u1, v1) ∈ QP1}|+ |{v2 ⊕ y : (x, y) ∈ QE , (u2, v2) ∈ QP2}|
≤ 2qeqp.
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The first upper bound follows by (15) with C = 2qeqp.
We then prove the more complex upper bound of (ii), using the sum-capture theorem of

Section 3. Given a permutation transcript (QE ,QP1 ,QP2), let:

X = {x ∈ {0, 1}n : (x, y) ∈ QE}, Y = {y ∈ {0, 1}n : (x, y) ∈ QE},
U1 = {u1 ∈ {0, 1}n : (u1, v1) ∈ QP1}, V1 = {v1 ∈ {0, 1}n : (u1, v1) ∈ QP1},
U2 = {u2 ∈ {0, 1}n : (u2, v2) ∈ QP2}, V2 = {v2 ∈ {0, 1}n : (u2, v2) ∈ QP2}

denote the domains and ranges of QE , QP1 , and QP2 respectively. Then one has

|BadK1| ≤ µ(QE , U1, V2) def= |{((x, y), u1, v2) ∈ QE × U1 × V2 : x⊕ u1 = v2 ⊕ y}|

|BadK2| ≤ µ(QP1 , X, U2) def= |{((u1, v1), x, u2) ∈ QP1 ×X × U2 : x⊕ u1 = v1 ⊕ u2}|

|BadK3| ≤ µ(QP2 , V1, Y ) def= |{((u2, v2), v1, y) ∈ QP2 × V1 × Y : v1 ⊕ u2 = v2 ⊕ y}|.

We can now use Theorem 1 (with Γ the identity mapping) to upper bound |BadKi| for
i = 1, 2, 3, with high probability (note that in order to apply this theorem to upper bound,
say, |BadK1|, we consider the combination of the distinguisher D and permutations P1 and P2
as a probabilistic adversary A interacting with permutation E, resulting in transcript QE).
We obtain that for

C1 =
qeq

2
p

N
+ 2q2

eqp
N

+ 3qp
√
nqe

C2 = C3 =
qeq

2
p

N
+

2q2
p
√
qeqp

N
+ 3qp

√
nqe,

one has Pr[E,P1, P2 ←$ Pn : |BadKi| ≥ Ci] ≤ 2/N for each i = 1, 2, 3. Applying (15) with
C = C1 + C2 + C3 completes the proof of (ii).

It remains to prove (iii). Hence, we assume now that qe = N , so that QE simply consists
of all pairs (x,E(x)) for x ∈ {0, 1}n. It is easy to see that one always has, independently of
E, P1, and P2,

|BadK2 ∪ BadK3| ≤ |{v1 ⊕ u2 : (u1, v1) ∈ QP1 , (u2, v2) ∈ QP2}| ≤ q2
p.

In order to upper bound |BadK1|, we consider the maximum multiplicity of the multiset

W = {x⊕ E(x) : x ∈ {0, 1}n}.

For any integer d ≥ 1, the probability that one finds an element of multiplicity at least d in
W over the random choice of E ∈ Pn is upper bounded by

N

(
N

d

)
(N − d)!
N ! = N

d! ≤
N

e

(
e

d

)d
.

If there is no element of multiplicity d or more in W , then the size of BadK1 is upper bounded
by (d− 1)q2

p. Hence, if we set d = n and C = q2
p + (n− 1)q2

p = nq2
p, we obtain that

Pr [E,P1, P2 ←$ Pn : |BadK| ≥ C] ≤ N

e

(
e

n

)n
≤ 1
eN

,

where for the last inequality we used that n ≥ 11 ≥ 4e. By (15), this completes the proof of
(iii). ut
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5.3 Good Transcripts and Their Properties

In the second stage of the proof, we show that for any good transcript τ , the ratio between
the probabilities to obtain τ in the ideal world and the real world is close to 1.

Lemma 8. Fix any good transcript τ ∈ T1. Then, depending on qe and qp, the following lower
bounds hold:

(i) For any integers qe and qp such that 2qe + 2qp ≤ N , one has

Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1−

4qeq2
p

N2 .

(ii) For qe = N and any integer qp, one has

Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1.

Proof. Fix a good transcript τ = (QE ,QP1 ,QP2 , k) ∈ T1. In the following, we let:

p(τ) def= Pr
[
P1, P2 ←$ Pn : EMIPP1,P2

k ` QE
∣∣∣ (P1 ` QP1) ∧ (P2 ` QP2)

]
,

so that, by Lemma 2,
Pr[Tre = τ ]
Pr[Tid = τ ] = (N)qe · p(τ). (16)

Hence, we now have to lower bound p(τ). First, we modify the inner permutations P1, P2 and
the transcript in order to “get rid” of the key k. For this, we define:

P ′1 = P1 ⊕ k
P ′2 = P2 ⊕ k
Q′E = {(x⊕ k, y) : (x, y) ∈ QE}
Q′P1 = {(u1, v1 ⊕ k) : (u1, v1) ∈ QP1}
Q′P2 = {(u2, v2 ⊕ k) : (u2, v2) ∈ QP2}.

Then, one clearly has:

p(τ) = Pr
[
P ′1, P

′
2 ←$ Pn : P ′2 ◦ P ′1 ` Q′E

∣∣ (P ′1 ` Q′P1) ∧ (P ′2 ` Q′P2)
]
.

Let:

X = {x′ ∈ {0, 1}n : (x′, y′) ∈ Q′E}, Y = {y′ ∈ {0, 1}n : (x′, y′) ∈ Q′E},
U1 = {u′1 ∈ {0, 1}n : (u′1, v′1) ∈ Q′P1}, V1 = {v′1 ∈ {0, 1}n : (u′1, v′1) ∈ Q′P1},
U2 = {u′2 ∈ {0, 1}n : (u′2, v′2) ∈ Q′P2}, V2 = {v′2 ∈ {0, 1}n : (u′2, v′2) ∈ Q′P2}

denote the domains and ranges of Q′E , Q′P1
, and Q′P2

respectively. We also define α1 = |V2∩Y |
and α2 = |X ∩ U1|. We can now rewrite the fact that τ is good as follows (see Figure 5):

k /∈ BadK1 ⇔ Q′E(X ∩ U1) is disjoint from V2 ⇔ (Q′E)−1(V2 ∩ Y ) is disjoint from U1

k /∈ BadK2 ⇔ Q′P1(X ∩ U1) is disjoint from U2

k /∈ BadK3 ⇔ (Q′P2)−1(V2 ∩ Y ) is disjoint from V1.
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To see why the first equivalence holds, note that:

Q′E(X ∩ U1) ∩ V2 6= ∅
⇔ x′ = u′1 and y′ = v′2 for some (x′, y′) ∈ Q′E , (u′1, v′1) ∈ Q′P1 , and (u′2, v′2) ∈ Q′P2

⇔ k = x⊕ u1 and k = v2 ⊕ y for some (x, y) ∈ QE , (u1, v1) ∈ QP1 , and (u2, v2) ∈ QP2

⇔ k ∈ BadK1.

The other cases are proved similarly.

U1

X

(Q′E)−1(V2 ∩ Y )

V1 U2

Q′P1(X ∩ U1) (Q′P2)
−1(V2 ∩ Y )

V2

Y

Q′E(X ∩ U1)

Q′P1 Q′P2

Q′E

E1 E2

Fig. 5. Graphical help for the proof of Lemma 8. X and Y are of size qe, while U1, V1, U2, and V2 are of size
qp. The red zones are of size α1 and the green zones of size α2.

This allows us to lower bound p(τ) as follows. Let E1 denote the event that P ′1(x′) = u′2
for each of the α1 pairs of queries ((x′, y′), (u′2, v′2)) ∈ Q′E ×Q′P2

such that y′ = v′2 (red arrow
on Figure 5). Similarly, let E2 be the event that P ′2(v′1) = y′ for each of the α2 pairs of queries
((x′, y′), (u′1, v′1)) ∈ Q′E×Q′P1

such that x′ = u′1 (green arrow on Figure 5). Since P ′2 ◦P ′1 ` Q′E
implies E1 and E2, we have

p(τ) = Pr
[
P ′1, P

′
2 ←$ Pn : (P ′2 ◦ P ′1 ` Q′E) ∧ E1 ∧ E2

∣∣(P ′1 ` Q′P1) ∧ (P ′2 ` Q′P2)
]

= Pr
[
P ′1, P

′
2 ←$ Pn : P ′2 ◦ P ′1 ` Q′E

∣∣(P ′1 ` Q′P1) ∧ (P ′2 ` Q′P2) ∧ E1 ∧ E2
]

× Pr
[
P ′1, P

′
2 ←$ Pn : E1 ∧ E2

∣∣(P ′1 ` Q′P1) ∧ (P ′2 ` Q′P2)
]
. (17)

Moreover, since (Q′E)−1(V2 ∩ Y ) is disjoint from U1 and (Q′P2
)−1(V2 ∩ Y ) is disjoint from V1,

we have
Pr
[
P ′1 ←$ Pn : E1

∣∣P ′1 ` Q′P1

]
= 1

(N − qp)α1
.
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Similarly, since Q′P1
(X ∩U1) is disjoint from U2 and Q′E(X ∩U1) is disjoint from V2, we have

Pr
[
P ′2 ←$ Pn : E2

∣∣P ′2 ` Q′P2

]
= 1

(N − qp)α2
.

Hence,

Pr
[
P ′1, P

′
2 ←$ Pn : E1 ∧ E2

∣∣(P ′1 ` Q′P1) ∧ (P ′2 ` Q′P2)
]

= 1
(N − qp)α1 · (N − qp)α2

. (18)

Let α = α1 + α2. Conditioned on event (P ′1 ` Q′P1
) ∧ (P ′2 ` Q′P2

) ∧ E1 ∧ E2, P ′1 is fixed on
qp + α1 points, P ′2 is fixed on qp + α2 points, and P ′2 ◦ P ′1 agrees with Q′E on α pairs (x′, y′).
It remains to lower bound the probability p∗ that P ′2 ◦ P ′1 completes the remaining qe − α
evaluations needed to extend Q′E , namely

p∗ = Pr
[
P ′1, P

′
2 ←$ Pn : P ′2 ◦ P ′1 ` Q′E

∣∣(P ′1 ` Q′P1) ∧ (P ′2 ` Q′P2) ∧ E1 ∧ E2
]
.

Let S1, resp. T1, be the set of points for which P ′1, resp. (P ′1)−1, has not been determined.
More formally:

S1 = {0, 1}n \ (U1 t (Q′E)−1(V2 ∩ Y ))
T1 = {0, 1}n \ (V1 t (Q′P2)−1(V2 ∩ Y )).

Similarly, let S2, resp. T2, be the set of points for which P ′2, resp. (P ′2)−1, has not been
determined. More formally:

S2 = {0, 1}n \ (U2 tQ′P1(X ∩ U1))
T2 = {0, 1}n \ (V2 tQ′E(X ∩ U1).

Let also

X ′ = X ∩ S1 = X \ (U1 t (Q′E)−1(V2 ∩ Y ))
Y ′ = Y ∩ T2 = Y \ (V2 tQ′E(X ∩ U1)).

Then p∗ is exactly the probability, over the choice of two random bijections P ′1 : S1 → T1 and
P ′2 : S2 → T2, that P ′2 ◦ P ′1(x′) = y′ for each (x′, y′) ∈ Q′E such that x′ ∈ X ′ and y′ ∈ Y ′. We
now lower bound p∗.

Note that |X ′| = |Y ′| = qe − α. Choose a set W ⊆ {0, 1}n \ (V1 ∪ U2) of size qe − α (note
that N − 2qp ≥ qe − α by the assumption that 2qe + 2qp ≤ N) and a bijection F : X ′ → W .
The number of possibilities for the pair (W,F ) is at least(

N − 2qp
qe − α

)
(qe − α)! = (N − 2qp)qe−α.

For each choice of (W,F ), the probability that random bijections P ′1 : S1 → T1 and P ′2 : S2 →
T2, satisfy:

(1) P ′1(x′) = F (x′) for each x′ ∈ X ′,
(2) P ′2 ◦ P ′1(x′) = y′ for each (x′, y′) ∈ Q′E such that x′ ∈ X ′ and y′ ∈ Y ′
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is exactly
1

(N − qp − α1)qe−α(N − qp − α2)qe−α
,

since condition (1) fixes qe−α distinct equations on P ′1 and condition (2) fixes qe−α distinct
equations on P ′2. Hence, summing over all the possibilities for the pair (W,F ), we obtain

p∗ ≥ (N − 2qp)qe−α
(N − qp − α1)qe−α(N − qp − α2)qe−α

. (19)

Gathering (16), (17), (18), and (19) finally yields:

Pr[Tre = τ ]
Pr[Tid = τ ] ≥

(N)qe(N − 2qp)qe−α
(N − qp)α1(N − qp − α1)qe−α(N − qp)α2(N − qp − α2)qe−α

= (N)qe(N − 2qp)qe−α
(N − qp)qe−α2(N − qp)qe−α1

. (20)

Note that we did not use any assumptions on qe and qp until now, so that (20) holds for any
parameters (assuming good transcripts exist at all). We now complete the proof by considering
two cases. We first prove (i), under the assumption that 2qe + 2qp ≤ N . From (20), we have

Pr[Tre = τ ]
Pr[Tid = τ ] ≥

(N)qe(N − 2qp)qe
(N − qp)qe(N − qp)qe

× (N − qp − qe + α2)α2(N − qp − qe + α1)α1

(N − 2qp − qe + α)α︸ ︷︷ ︸
≥1

≥ (N)qe(N − 2qp)qe
((N − qp)qe)2

≥ 1−
4qeq2

p

N2 ,

where for the last inequality we used Lemma 3 with a = qe and b = c = d = qp, and the
assumption that 2qe + 2qp ≤ N .

We then consider the case where qe = N . Clearly, U1 ⊆ X and V2 ⊆ Y since X = Y =
{0, 1}n in that case, so that α1 = α2 = qp and α = 2qp. Hence, (20) now becomes

Pr[Tre = τ ]
Pr[Tid = τ ] ≥

N !(N − 2qp)!
((N − qp)!)2 ≥ 1.

This shows (ii) and concludes the proof. ut

5.4 Concluding the Proof of Theorem 4

We are now ready to complete the proof of Theorem 4.

Proof (of Theorem 4). The theorem directly follows by combining the H-coefficient Lemma
(Lemma 1) with the adequate parts of Lemmas 7 and 8. First, if we combine Lemma 7 (i)
and Lemma 8 (i), we obtain

Advcca
EMIP[n,2](qe, qp) ≤

2qeqp
N

+
4qeq2

p

N2 ≤
6qeqp
N

,
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which proves (i).
If we now combine Lemma 7 (ii) (noting that the assumption 2qe + 2qp ≤ N implies that

qe ≤ N/2 and qp ≤ N/2, as needed) and Lemma 8 (i), we obtain

Advcca
EMIP[n,2](qe, qp) ≤

6
N

+
2q2
eqp + 7qeq2

p + 4q2
p
√
qeqp

N2 +
9qp
√
nqe

N
.

Letting α = log2 qe, this upper bound can be rewritten

Advcca
EMIP[n,2](qe, qp) ≤

6
N

+ 2qp
22n−2α + 7

(
qp

2n−
α
2

)2
+ 4

(
qp

2
4n−α

5

) 5
2

+ 9
√
n

qp

2n−
α
2
.

From this inequality, we prove (ii) and (iii). We start with (ii). Since (12) trivially holds
when qeq

5
p > N4, we can assume qeq5

p ≤ N4. One can easily check that when n
4 ≤ α ≤ 2n

3 ,
4n−α

5 ≤ n− α
2 ≤ 2n− 2α. Hence, when 2

n
4 ≤ qe ≤ 2

2n
3 and qeq5

p ≤ N4, one has

Advcca
EMIP[n,2](qe, qp) ≤

6
N

+ 2qp
2

4n−α
5

+ 7
(

qp

2
4n−α

5

)2
+ 4

(
qp

2
4n−α

5

) 5
2

+ 9
√
n

qp

2
4n−α

5

≤ 6
N

+ (13 + 9
√
n)
(
qeq

5
p

N4

) 1
5

,

completing the proof of (ii). We then prove (iii). Since (13) trivially holds when q2
eqp > N2,

we can assume q2
eqp ≤ N2. One can check that when 2n

3 ≤ α ≤
3n
4 , 2n− 2α ≤ n− α

2 ≤
4n−α

5 .
Hence, when 2

2n
3 ≤ qe ≤ 2

3n
4 and q2

eqp ≤ N2, one has

Advcca
EMIP[n,2](qe, qp) ≤

6
N

+ 2qp
22n−2α + 7

(
qp

22n−2α

)2
+ 4

(
qp

22n−2α

) 5
2

+ 9
√
n

qp
22n−2α

≤ 6
N

+ (13 + 9
√
n)q

2
eqp
N2 ,

proving (iii).
Finally, (iv) directly follows from combining Lemma 7 (iii) and Lemma 8 (ii). Lemma 7

(iii) was proved for qe = N , but the resulting upper bound holds in fact for any qe since the
advantage can obviously only increase with qe. ut

6 Security Proof for the Single Permutation Case

6.1 Statement of the Result and Discussion

In this section, we study the security of the two-round Even-Mansour construction where a
single permutation P is used instead of two independent permutations, namely EMSP[n, r, `,γ]
(depicted on Figure 6). By the results of Section 4, we know that we cannot simply use the
same n-bit key k at each round if we aim at proving security beyond the birthday bound,
so that some non-trivial key-schedule γ = (γ0, γ1, γ2), with γi : {0, 1}` → {0, 1}n, is needed
(we remain as general as possible when we can, and we only specify the key-length and the
key-schedule when needed). Given a key K ∈ {0, 1}`, we denote k0 = γ0(K), k1 = γ1(K), and
k2 = γ2(K), so that:

EMSPPK(x) = P (P (x⊕ k0)⊕ k1)⊕ k2.
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x

K

P

γ0

k0

P

γ1

k1

y

γ2

k2

Fig. 6. The two-round Even-Mansour cipher with a single permutation and an arbitrary key-schedule.

Our main result deals with the case where ` = n, namely the master key length is equal to
the block length (and hence to the round keys length). We treat the (simpler) cases where the
three round keys are independent, or derived from two independent n-bit keys, respectively
in Appendices A and B. First, we specify conditions on the key-schedule that will allow us to
upper bound the probability to obtain a bad transcript in the ideal world (the definition of
bad transcripts will be given later).

Definition 2 (Good key-schedule). For ` = n, we say that a key-schedule γ = (γ0, γ1, γ2),
where γi : {0, 1}n → {0, 1}n, is good if it satisfies the following conditions:

(i) γ0, γ1, γ2 ∈ GL(n) (i.e., each γi is a linear bijective map of Fn2 );
(ii) γ0 ⊕ γ1 ∈ GL(n) and γ1 ⊕ γ2 ∈ GL(n);
(iii) γ0 ⊕ γ1 ⊕ γ2 is a permutation over {0, 1}n (non-necessarily linear over Fn2 ).

A simple way to build a good key-schedule is to take for γ0 and γ2 the identity, and γ1 =
π, where π is a linear orthomorphism of Fn2 (recall that a permutation π of {0, 1}n is an
orthomorphism if x 7→ x⊕ π(x) is also a permutation), so that the sequence of round keys is
(k, π(k), k). We give two simple examples of linear orthomorphisms which are attractive from
an implementation point of view:

– When n is even, and k = (kL, kR) where kL and kR are respectively the left and right
halves of k, then

π : (kL, kR) 7→ (kR, kL ⊕ kR)

is a linear orthomorphism.
– Fix an irreducible polynomial p of degree n over F2 and identify Fn2 and the extension field

F2n defined by p in the canonical way. Then, for any c ∈ F2n \ {0, 1}, k 7→ c� k (where �
denotes the extension field multiplication) is a linear orthomorphism.

The main result of this paper if the following security bound for the two-round Even-
Mansour construction with a single permutation and an n-bit master key.

Theorem 5 (Single permutation and non-independent round keys). Consider the
single-permutation two-round Even-Mansour cipher EMSP[n, 2,γ] with n-bit master key length
and a good key-schedule γ (see Definition 2). Assume that n ≥ 9, qe ≥ 9n, qp ≥ 9n, and
4qe + 2qp ≤ N . Then the following upper bounds hold:
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(i) When qe ≤ 2
n
3 , one has

Advcca
EMSP[n,2,γ](qe, qp) ≤

23
N

1
3

+ 16qeqp
N

. (21)

(ii) When qe ≥ 2
n
3 , one has

Advcca
EMSP[n,2,γ](qe, qp) ≤

10
N

+ (23 + 6
√
n) qe
N

2
3

+ (39 + 9
√
n) qp
N

2
3
. (22)

Discussion. Before giving the proof, we discuss Theorem 5. There are two “regimes”. The
“low qe” regime corresponds to qe ≤ 2

n
3 , where the security bound is given by (21), which

is, up to constant terms, exactly the same bound as for the one-round Even-Mansour ci-
pher [EM97, DKS12] and the two-round Even-Mansour cipher with independent permutations
(see Theorem 4, Eq. (11)). The “medium qe” regime corresponds to 2

n
3 ≤ qe ≤ 2

2n
3 , where the

security bound is given by (22), which caps at qp = 2
2n
3 . Note that contrarily to Theorem 4

for the case of independent permutations, the bound becomes vacuous for qe > 2
2n
3 . Inspec-

tion of the proof shows that the annoying terms appear when analyzing good transcripts
(Lemma 10), and we currently do not know how to extend the bound when qe > 2

2n
3 . See

Figure 2 in Section 1 where the security bound is plotted in the (qe, qp) plane.
Letting q = max(qe, qp), and assuming q ≤ N

2
3 , the second upper bound of Theorem 5

simplifies into

Advcca
EMSP[n,2,γ](q, q) ≤

10
N

+ 62q
N

2
3

+ 15
√
n
q

N
2
3

= 10
2n + 62q

2
2n
3

+ 15q
2

2n
3 −

1
2 log2 n

.

Hence, security is ensured up to O(2
2n
3 −

1
2 log2 n) = Õ(2

2n
3 ) total queries of the adversary.

The remaining subsections are devoted to the proof of Theorem 5.

6.2 Definition and Probability of Bad Transcripts

Let τ = (QE ,QP ,K), with |QE | = qe, |QP | = qp, and K ∈ {0, 1}` be an attainable tran-
script. As previously, we start by defining the set of bad transcripts. (The definition holds
independently of the master key length `.) In all the following, we let

M = qe

N
1
3
.

Definition 3 (Bad transcript, single-permutation case). We say that a transcript τ =
(QE ,QP ,K) ∈ T is bad if

K ∈ BadK =
⋃

1≤i≤10
BadKi

where

K ∈ BadK1 ⇔ k0 = x⊕ u and k2 = v′ ⊕ y for some (x, y) ∈ QE and (u, v), (u′, v′) ∈ QP
K ∈ BadK2 ⇔ k0 = x⊕ u and k1 = v ⊕ u′ for some (x, y) ∈ QE and (u, v), (u′, v′) ∈ QP
K ∈ BadK3 ⇔ k1 = v ⊕ u′ and k2 = v′ ⊕ y for some (x, y) ∈ QE and (u, v), (u′, v′) ∈ QP
K ∈ BadK4 ⇔ k0 = x⊕ u and k0 ⊕ k1 = v ⊕ x′ for some (x, y), (x′, y′) ∈ QE , (u, v) ∈ QP

34



K ∈ BadK5 ⇔ k1 ⊕ k2 = y′ ⊕ u and k2 = v ⊕ y for some (x, y), (x′, y′) ∈ QE , (u, v) ∈ QP

K ∈ BadK6 ⇔ |{((x, y), (u, v)) ∈ QE ×QP : x⊕ u = k0}| >
M

3

K ∈ BadK7 ⇔ |{((x, y), (u, v)) ∈ QE ×QP : v ⊕ y = k2}| >
M

3

K ∈ BadK8 ⇔ |{((x, y), (u, v)) ∈ QE ×QP : x⊕ v = k0 ⊕ k1}| >
M

3

K ∈ BadK9 ⇔ |{((x, y), (u, v)) ∈ QE ×QP : u⊕ y = k1 ⊕ k2}| >
M

3
K ∈ BadK10 ⇔

∣∣{((x, y), (x′, y′)
)
∈ QE ×QE : x⊕ y′ = k0 ⊕ k1 ⊕ k2

}∣∣ > M.

Otherwise τ is said good. We denote T2 the set of bad transcripts, and T1 = T \ T2 the set of
good transcripts.

We start by upper bounding the probability to obtain a bad transcript in the ideal world
when the master key length is n and the key-schedule is good. We treat the (simpler) cases
where the three round keys are independent, or derived from two independent n-bit keys,
respectively in Appendices A and B.

Lemma 9. Let ` = n and γ = (γ0, γ1, γ2) be a good key-schedule. The following upper bounds
hold:

(i) For any integers qe and qp, one has

Pr[Tid ∈ T2] ≤ q2
e + 4qeqp
N

.

(ii) When 9n ≤ qe ≤ N/2 and 9n ≤ qp ≤ N/2, one has

Pr[Tid ∈ T2] ≤ 10
N

+
4q2
eqp + 7qeq2

p + 4q2
p
√
qeqp

N2 +
9qp
√
nqe + 6qe

√
nqp

N
+ qe + 12qp

N
2
3

.

Proof. In the ideal world, sets BadKi only depend on the random permutations E and P , and
not on the key k, which is drawn uniformly at random at the end of the interaction of the
distinguisher with (E,P ). Hence, for any C > 0, we can write

Pr[Tid ∈ T2] ≤ Pr [E,P ←$ Pn : |BadK| ≥ C] + C

N
. (23)

With this observation at hand, we first prove (i). Note that

K ∈
7⋃
i=1

BadKi ⇒ k0 = x⊕ u for some (x, y) ∈ QE and (u, v) ∈ QP

or k2 = v ⊕ y for some (x, y) ∈ QE and (u, v) ∈ QP .

Hence, since γ0, γ1, and γ2 are permutations of {0, 1}n, one always has, independently of E
and P ,∣∣∣∣∣

7⋃
i=1

BadKi

∣∣∣∣∣ ≤ |{x⊕ u : (x, y) ∈ QE , (u, v) ∈ QP }|+ |{v ⊕ y : (x, y) ∈ QE , (u, v) ∈ QP }|

≤ 2qeqp.
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Similarly,

K ∈ BadK8 ⇒ k0 ⊕ k1 = x⊕ v for some (x, y) ∈ QE and (u, v) ∈ QP ,
K ∈ BadK9 ⇒ k1 ⊕ k2 = u⊕ y for some (x, y) ∈ QE and (u, v) ∈ QP ,
K ∈ BadK10 ⇒ k0 ⊕ k1 ⊕ k2 = x⊕ y′ for some (x, y), (x′, y′) ∈ QE .

Hence, since γ0 ⊕ γ1, γ1 ⊕ γ2, and γ0 ⊕ γ1 ⊕ γ2 are permutations of {0, 1}n, one always has

|BadK8| ≤ |{x⊕ v : (x, y) ∈ QE , (u, v) ∈ QP }| ≤ qeqp,
|BadK9| ≤ |{u⊕ y : (x, y) ∈ QE , (u, v) ∈ QP }| ≤ qeqp,
|BadK10| ≤

∣∣{x⊕ y′ : (x, y), (x′, y′) ∈ QE}
∣∣ ≤ q2

e .

The first bound follows by (23) with C = 4qeqp + q2
e .

We then prove the more complex upper bound of (ii). Again, the size of BadKi for i = 6
to 10 can be upper bounded independently of E,P . Indeed, since γ0, γ2, γ0⊕ γ1, γ1⊕ γ2, and
γ0 ⊕ γ1 ⊕ γ2 are all permutations of {0, 1}n, one always has

|BadK6|, |BadK7|, |BadK8|, |BadK9| ≤
3qeqp
M

,

|BadK10| ≤
q2
e

M
.

On the other hand, in order to upper bound |BadKi| for i = 1 to 5, we now appeal to the
sum-capture theorem of Section 3. For a permutation transcript (QE ,QP ), let

X = {x ∈ {0, 1}n : (x, y) ∈ QE}, Y = {y ∈ {0, 1}n : (x, y) ∈ QE},
U = {u ∈ {0, 1}n : (u, v) ∈ QP }, V = {v ∈ {0, 1}n : (u, v) ∈ QP }

denote the domains and the ranges of QE and QP , respectively. Then one has

|BadK1| ≤ µ(QE , U, V ) def= |{((x, y), u, v) ∈ QE × U × V : x⊕ u = γ0 ◦ γ−1
2 (y ⊕ v)}|

|BadK2| ≤ µ(QP , X, U) def= |{((u, v), x, u′) ∈ QP ×X × U : x⊕ u = γ0 ◦ γ−1
1 (v ⊕ u′)}|

|BadK3| ≤ µ(QP , V, Y ) def= |{((u′, v′), v, y) ∈ QP × V × Y : v ⊕ u′ = γ1 ◦ γ−1
2 (v′ ⊕ y)}|

|BadK4| ≤ µ(QP , X,X) def= |{((u, v), x, x′) ∈ QP ×X ×X : x⊕ u = γ0 ◦ (γ0 ⊕ γ1)−1(v ⊕ x′)}|

|BadK5| ≤ µ(QP , Y, Y ) def= |{((u, v), y, y′) ∈ QP × Y × Y : y′ ⊕ u = (γ1 ⊕ γ2) ◦ γ−1
2 (v ⊕ y)}|.

By our assumption that the key-schedule is good, we have that γ0 ◦ γ−1
2 , γ0 ◦ γ−1

1 , γ1 ◦ γ−1
2 ,

γ0 ◦ (γ0 ⊕ γ1)−1, and γ0 ◦ (γ0 ⊕ γ1)−1 are all automorphisms of Fn2 . Hence, we can apply
Theorem 1 (note that in order to apply this theorem to upper bound, say, |BadK1|, we consider
the combination of the distinguisher D and permutation P as a probabilistic adversary A
interacting with permutation E, resulting in transcript QE). Thus, if we set

C1 =
qeq

2
p

N
+ 2q2

eqp
N

+ 3qp
√
nqe

C2 = C3 =
qeq

2
p

N
+

2q2
p
√
qeqp

N
+ 3qp

√
nqe

C4 = C5 = q2
eqp
N

+
2qeq2

p

N
+ 3qe

√
nqp,
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one has Pr[E,P ←$ Pn : |BadKi| ≥ Ci] ≤ 2/N for each i = 1 to 5. Applying (23) with

C =
5∑
i=1

Ci + q2
e + 12qeqp

M

=
4q2
eqp + 7qeq2

p + 4q2
p
√
qeqp

N
+ 9qp

√
nqe + 6qe

√
nqp +N

1
3 (qe + 12qp)

completes the proof of (ii). ut

6.3 Good Transcripts and Their Properties

It remains to show that for any good transcript τ , the ratio between the probabilities to obtain
τ in the ideal world and the real world is close to 1. The following lemma holds independently
of the master key length `.

Lemma 10. Assume that n ≥ 9 and 4qe + 2qp ≤ N . Let τ = (QE ,QP ,K) ∈ T1 be a good
transcript. Then

Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1− ε1,

where

ε1 = 4qe(qe + qp)2

N2 + 2q2
e

N
4
3

+ 16qe
N

2
3
.

Proof. Fix a good transcript τ = (QE ,QP ,K) ∈ T1. In the following, we let:

p(τ) def= Pr
[
P ←$ Pn : EMSPPK ` QE

∣∣∣P ` QP ] ,
so that, by Lemma 2,

Pr[Tre = τ ]
Pr[Tid = τ ] = (N)qe · p(τ). (24)

Our goal is now to lower bound p(τ). First, we modify the inner permutation P and the
transcript in order to get rid of the round keys as follows:

P ′ = P ⊕ k1,

Q′E = {(x⊕ k0, y ⊕ k1 ⊕ k2) : (x, y) ∈ QE} ,
Q′P = {(u, v ⊕ k1) : (u, v) ∈ QP } .

Then we have
p(τ) = Pr

[
P ′ ←$ Pn : P ′ ◦ P ′ ` Q′E

∣∣P ′ ` Q′P ] .
Let

X = {x′ ∈ {0, 1}n : (x′, y′) ∈ Q′E}, Y = {y′ ∈ {0, 1}n : (x′, y′) ∈ Q′E},
U = {u′ ∈ {0, 1}n : (u′, v′) ∈ Q′P }, V = {v′ ∈ {0, 1}n : (u′, v′) ∈ Q′P }
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denote the domains and the ranges of Q′E and Q′P , respectively. We also denote α1 = |Y ∩ V |
and α2 = |X ∩ U |. We can now rewrite the fact that the transcript is good as follows (see
Figure 7):

K /∈ BadK1 ⇔ Q′E(X ∩ U) is disjoint from V ⇔ (Q′E)−1(Y ∩ V ) is disjoint from U (B.1)
K /∈ BadK2 ⇔ Q′P (X ∩ U) is disjoint from U (B.2)
K /∈ BadK3 ⇔ (Q′P )−1(Y ∩ V ) is disjoint from V (B.3)
K /∈ BadK4 ⇔ Q′P (X ∩ U) is disjoint from X (B.4)
K /∈ BadK5 ⇔ (Q′P )−1(Y ∩ V ) is disjoint from Y (B.5)

K /∈ BadK6 ⇔ α2 = |X ∩ U | ≤ M

3 (B.6)

K /∈ BadK7 ⇔ α1 = |Y ∩ V | ≤ M

3 (B.7)

K /∈ BadK8 ⇔ |X ∩ V | ≤
M

3 (B.8)

K /∈ BadK9 ⇔ |Y ∩ U | ≤
M

3 (B.9)

K /∈ BadK10 ⇔ |X ∩ Y | ≤M. (B.10)

Let E1 denote the event that P ′(x′) = u′ for each of α1 pairs of queries ((x′, y′), (u′, v′)) ∈
Q′E × Q′P such that y′ = v′ (red arrows on Figure 7). Similarly, let E2 be the event that
P ′(v′) = y′ for each of α2 pairs of queries ((x′, y′), (u′, v′)) ∈ Q′E×Q′P such that x′ = u′ (green
arrows on Figure 7). Since P ′ ◦ P ′ ` Q′E implies E1 and E2, we have

p(τ) = Pr
[
P ′ ←$ Pn : (P ′ ◦ P ′ ` Q′E) ∧ E1 ∧ E2

∣∣P ′ ` Q′P ]
= Pr

[
P ′ ←$ Pn : P ′ ◦ P ′ ` Q′E

∣∣(P ′ ` Q′P ) ∧ E1 ∧ E2
]

× Pr
[
P ′ ←$ Pn : E1 ∧ E2

∣∣P ′ ` Q′P ] . (25)

Note that:

1. U , Q′P (X ∩ U), and (Q′E)−1(Y ∩ V ) are pairwise disjoint since:
– U and (Q′E)−1(Y ∩ V ) are disjoint by (B.1),
– U and Q′P (X ∩ U) are disjoint by (B.2),
– (Q′E)−1(Y ∩ V ) is contained in X, and X and Q′P (X ∩ U) are disjoint by (B.4);

2. V , Q′E(X ∩ U), and (Q′P )−1(Y ∩ V ) are pairwise disjoint since:
– V and Q′E(X ∩ U) are disjoint by (B.1),
– V and (Q′P )−1(Y ∩ V ) are disjoint by (B.3),
– Q′E(X ∩ U) is contained in Y , and Y and (Q′P )−1(Y ∩ V ) are disjoint by (B.5).

Therefore we have

Pr
[
P ′ ←$ Pn : E1 ∧ E2

∣∣P ′ ` Q′P ] = 1
(N − qp)α1+α2

. (26)

Let α = α1 +α2. Conditioned on event (P ′ ` Q′P )∧ E1 ∧ E2, P ′ is fixed on qp +α points, and
P ′ ◦ P ′ agrees with Q′E on α pairs (x′, y′). It remains to lower bound the probability p∗ that
P ′ ◦ P ′ completes the remaining qe − α evaluations needed to extend Q′E , namely

p∗ = Pr
[
P ′ ←$ Pn : P ′ ◦ P ′ ` Q′E

∣∣(P ′ ` Q′P ) ∧ E1 ∧ E2
]
.
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UV

XY

(Q′E)−1(Y ∩ V )

Q′P (X ∩ U)

UV

XY

(Q′P )−1(Y ∩ V )Q′P (X ∩ U)

Q′E(X ∩ U) (Q′E)−1(Y ∩ V )
UV

XY

(Q′P )−1(Y ∩ V )

Q′E(X ∩ U)

E2E1

E2 E1

Q′P Q′P

Q′E

Fig. 7. Graphical help for the proof of Lemma 10. X and Y are of size qe, while U and V are of size qp. The
red zones are of size α1, and the green zones of size α2. Conditioning on (P ′ ` Q′P )∧ E1 ∧ E2, P ′ is defined on
the zones which are colored on the left, while (P ′)−1 is defined on the zones which are colored on the right.
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Let S ⊆ {0, 1}n denote the set of points for which P ′ has not been determined, more formally

S = {0, 1}n \ (U tQ′P (X ∩ U) t (Q′E)−1(Y ∩ V )),

and let T ⊆ {0, 1}n be the set of points for which (P ′)−1 has not been determined, more
formally

T = {0, 1}n \ (V tQ′E(X ∩ U) t (Q′P )−1(Y ∩ V )).

Let also

X ′ = X ∩ S = X \ (U t (Q′E)−1(Y ∩ V ))
Y ′ = Y ∩ T = Y \ (V tQ′E(X ∩ U)).

(Note that Q′E(X ′) = Y ′.) Then p∗ is exactly the probability that P ′ ◦ P ′(x′) = y′ for each
(x′, y′) ∈ Q′E such that x′ ∈ X ′ and y′ ∈ Y ′, over the random choice of bijection P ′ : S → T .
Note that

1. |S| = |T | = N − qp − α;
2. |X ′| = |Y ′| = qe − α;
3. |X ′ ∩ Y ′| ≤ |X ∩ Y | ≤M by (B.10);
4. |X ′ \ T | ≤M since

X ′ \ T ⊆ X \ T = X ∩ T
= (X ∩ V ) t (X ∩Q′E(X ∩ U)) t (X ∩ (Q′P )−1(Y ∩ V ))
⊆ (X ∩ V ) tQ′E(X ∩ U) t (Q′P )−1(Y ∩ V ),

and |X ∩ V |, |X ∩ U |, and |Y ∩ V | are at most M/3 by resp. (B.8), (B.6), and (B.7);
5. |Y ′ \ S| ≤M since

Y ′ \ S ⊆ Y \ S = Y ∩ S
= (Y ∩ U) t (Y ∩Q′P (X ∩ U)) t (Y ∩ (Q′E)−1(Y ∩ V ))
⊆ (Y ∩ U) tQ′P (X ∩ U) t (Q′E)−1(Y ∩ V ),

and |Y ∩ U |, |X ∩ U |, and |Y ∩ V | are at most M/3 by resp. (B.9), (B.6), and (B.7).

At this point, let us recapitulate the problem of lower bounding p∗. We denote q = qe−α
and q′ = qp + α.

Problem 1. Let N, q, q′ be positive integers andM > 0. Let S, T ⊆ {0, 1}n, where |S| = |T | =
N − q′. Let also X ′ = {x1, . . . , xq} ⊆ S and Y ′ = {y1, . . . , yq} ⊆ T be sets of size q. Assume
that

|X ′ ∩ Y ′|, |X ′ \ T |, and |Y ′ \ S| ≤M, (A.1)
6M ≤ q, (A.2)
4q + 2q′ ≤ N. (A.3)

Find a lower bound on the probability p∗ that a random bijection P from S to T satisfies
P (P (xi)) = yi for every i = 1, . . . , q. �
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We will prove in Lemma 11 the lower bound

p∗ ≥ 1
(N)q

(
1− 12M2

q
− 2q2

MN
− 4q(q + q′)2

N2

)
. (27)

Before proving (27), let us finish the proof of Lemma 9. Note that assumptions (A.1), (A.2),
and (A.3) needed to apply (27) are satisfied:
– assumption (A.1) is satisfied since we assume that τ is good;
– α ≤ M by (B.6) and (B.7) since τ is good, and by our original assumption that n ≥ 9,

which implies N = 2n ≥ 73, we have 7M ≤ qe, so that 6M ≤ qe −M ≤ qe − α = q, and
hence assumption (A.2) is satisfied;

– by our original assumption that 4qe + 2qp ≤ N , assumption (A.3) is satisfied.
Therefore, combining (24), (25), (26), and (27), we have:

Pr[Tre = τ ]
Pr[Tid = τ ] ≥

(N)qe
(N)qe−α(N − qp)α

(
1− 12M2

qe − α
− 2(qe − α)2

MN
− 4(qe − α)(qe + qp)2

N2

)
.

Since
(N)qe

(N)qe−α(N − qp)α
= (N − qe + α)α

(N − qp)α
≥ (N − qe)α

(N)α
≥ 1− qeα

N − α+ 1 ≥ 1− Mqe
N −M

,

we obtain
Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1− Mqe

N −M
− 12M2

qe −M
− 2q2

e

MN
− 4qe(qe + qp)2

N2 .

Substituting M = qe/N
1
3 , and noting that N −M ≥ N/2 and qe −M ≥ 6qe/7, we finally

obtain
Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1− 2q2

e

N
4
3
− 7× 12qe

6×N
2
3
− 2qe
N

2
3
− 4qe(qe + qp)2

N2 = 1− ε1

where
ε1 = 4qe(qe + qp)2

N2 + 2q2
e

N
4
3

+ 16qe
N

2
3
.

This concludes the proof. ut

It remains to prove the answer to Problem 1, which we do in the following lemma.

Lemma 11. Let N, q, q′ be positive integers and M > 0. Let S, T ⊆ {0, 1}n, where |S| =
|T | = N − q′. Let also X ′ = {x1, . . . , xq} ⊆ S and Y ′ = {y1, . . . , yq} ⊆ T be sets of size q.
Assume that

|X ′ ∩ Y ′|, |X ′ \ T |, and |Y ′ \ S| ≤M, (A.1)
6M ≤ q, (A.2)
4q + 2q′ ≤ N. (A.3)

Let p∗ be the probability that a random bijection P from S to T satisfies P (P (xi)) = yi for
every i = 1, . . . , q.9 Then

p∗ ≥ 1
(N)q

(
1− 12M2

q
− 2q2

MN
− 4q(q + q′)2

N2

)
.

9 If P (xi) /∈ S, then P (P (xi)) is regarded as undefined.
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Y2

Y1
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X ′Y ′
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Fig. 8. Graphical help for the proof of Lemma 11. S and T are of size N − q′, while X ′ and Y ′ are of size q.
The gray zones X ′ ∩ Y ′, X ′ \ T , and Y ′ \ S are of size at most M . Sets X1, X2, Y1, Y2 are each of size k. The
set W is of size q − 2k.
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Proof. The reader might find helpful to refer to Figure 8 along the proof. A simple way to
lower bound p∗ would be to only count bijections P such that P (X ′) ∩ X ′ = ∅. However,
this is not good enough for our purpose since this only yields a q2/N bound. Hence, we also
need to count bijections P such that |P (X ′) ∩X ′| = k for k in some sufficiently large range.
(Jumping ahead, P (X ′) ∩X ′ will be X2 in the proof below).

Let Z ⊆ X ′ be defined as

Z = {xi ∈ X ′ : xi ∈ T ∧ xi /∈ Y ′ ∧ yi ∈ S ∧ yi /∈ X ′}
= X ′ \ (T ∪ Y ′ ∪ {xi ∈ X ′ : yi ∈ Y ′ \ S} ∪ {xi ∈ X ′ : yi ∈ X ′ ∩ Y ′})
= X ′ \ ((X ′ \ T ) ∪ (X ′ ∩ Y ′) ∪ {xi ∈ X ′ : yi ∈ Y ′ \ S} ∪ {xi ∈ X ′ : yi ∈ X ′ ∩ Y ′}).

Let q′′ = |Z|. Since by assumption (A.1) we have |X ′ ∩ Y ′|, |X ′ \ T |, and |Y ′ \ S| ≤ M , it
follows that q′′ ≥ q− 4bMc ≥ 2bMc, where the last inequality follows from assumption (A.2)
which implies that 6bMc ≤ q.

For each 0 ≤ k ≤M , choose two disjoint subsets X1, X2 ⊂ Z of size k. We will write

X1 = {xi1 , . . . , xik}
X2 = {xik+1 , . . . , xi2k}

X ′ \ (X1 ∪X2) = {xi2k+1 , . . . , xiq}

where i1 < · · · < ik and ik+1 < · · · < i2k and i2k+1 < · · · < iq. Given (X1, X2), choose a
bijection F : X1 → X2 such that F (X1) = X2. The number of possibilities for (X1, X2, F ) is(

q′′

k

)(
q′′ − k
k

)
k! = (q′′)2k

k! . (28)

For each pair of sets (X1, X2), let Y1 = {yi1 , . . . , yik} and Y2 = {yik+1 , . . . , yi2k}. For a fixed
pair of sets (X1, X2), we also choose

W ⊂ (S ∩ T ) \ (X ′ ∪ Y ′)

such that |W | = q − 2k. This is possible (i.e., (S ∩ T ) \ (X ′ ∪ Y ′) is large enough) since by
assumption (A.3), N ≥ 3q + 2q′, so that for 0 ≤ k ≤M we have

|(S ∩ T ) \ (X ′ ∪ Y ′)| ≥ |S ∩ T | − |X ′ ∪ Y ′| ≥ (N − 2q′)− 2q ≥ q − 2k.

For each choice of W , we also choose a bijection G : X ′ \ (X1 ∪X2)→W . Then, the number
of possibilities for the pair (W,G) is at least(

N − 2q − 2q′

q − 2k

)
× (q − 2k)! = (N − 2q − 2q′)q−2k. (29)

For each choice of (X1, X2, F,W,G), the probability that a random bijection P : S → T
satisfies

(1) P (x) = F (x) for each x ∈ X1,
(2) P (x) = G(x) for each x ∈ X ′ \ (X1 ∪X2),
(3) P (P (xi)) = yi for every i = 1, . . . , q
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is exactly
1

(N − q′)2q−k
. (30)

To see why this last claim holds, denote Π : X ′ → Y ′ the bijection such that Π(xi) = yi for
i = 1, . . . , q. Then a bijection P : S → T satisfies (1), (2) and (3) above iff (see also Figure 8):

i) P (x) = F (x) for each x ∈ X1, which yields k equations;
ii) P (x) = G(x) for each x ∈ X ′ \ (X1 ∪X2), which yields q − 2k additional equations;
iii) P (z) = Π(F−1(z)) for each z ∈ X2 (note that X2 ⊆ S), so that P (P (x)) = Π(x) for

each x ∈ X1; this yields k additional equations;
iv) P (z) = Π(F (Π−1(z))) for each z ∈ Y1 (note that Y1 ⊆ S), so that P (P (x)) = Π(x) for

each x ∈ X2; this yields k additional equations since Y1 ∩X ′ = ∅;
v) P (z) = Π(G−1(z)) for each z ∈W , so that P (P (x)) = Π(x) for each x ∈ X ′ \ (X1∪X2);

this yields q − 2k additional equations since W is disjoint from X ′ ∪ Y1.

In total this amounts to (2q − k) equations, hence the claim. Gathering (28), (29), and (30),
we have

p∗ ≥
∑

0≤k≤M

(q′′)2k(N − 2q − 2q′)q−2k
k!(N − q′)2q−k

.

To study the summation appearing on the right hand side, we take advantage of the fact that
the summand “looks like” (but is not exactly) the hypergeometric distribution. The hypergeo-
metric distribution typically applies to sampling without replacement from a finite population
whose elements can be classified into two mutually exclusive categories. The random variable,
parameterized by N , a, and b, counts the number of elements selected from a certain subset
of b “good” elements when a elements are selected from the universe of N elements without
replacement. The probability that exactly k elements are selected from the subset of b “good”
elements is

HypN,a,b(k) =
(b
k

)(N−b
a−k

)(N
a

) = (a)k(b)k(N − b)a−k
k!(N)a

,

and the mean of this variable is ab/N . Hence, we write

p∗ ≥ 1
(N)q

∑
0≤k≤M

(q′′)2k(N)q(N − 2q − 2q′)q−2k
k!(N − q′)2q−k

× k!(N − q′)q
(q)k(q)k(N − q′ − q)q−k

× HypN−q′,q,q(k)

= 1
(N)q

∑
0≤k≤M

(q′′)2k
(q)k(q)k︸ ︷︷ ︸

A

× (N)q(N − 2q − 2q′)q−2k
(N − q − q′)q−k(N − q − q′)q−k︸ ︷︷ ︸

B

×HypN−q′,q,q(k).

We now lower bound A and B independently of k. For any 0 ≤ k ≤ M , we have, since
q′′ ≥ q − 4bMc,

A ≥ (q − 4bMc)2k
q2k =

2k−1∏
i=0

q − 4bMc − i
q

≥
(

1− 6bMc
q

)2k
≥ 1− 12bMc2

q
≥ 1− 12M2

q
,

and
B = (N)q(N − 2q − 2q′)q

(N − q − q′)q(N − q − q′)q
× ((N − 2q − q′ + k)k)2

(N − 3q − 2q′ + 2k)2k︸ ︷︷ ︸
≥1

≥ 1− 4q(q + q′)2

N2 ,
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where we applied Lemma 3 with a = q, b = q + q′, c = d = q + q′ (note that 2a+ 2b ≤ N by
assumption (A.3)). Hence, we obtain

p∗ ≥ 1
(N)q

(
1− 12M2

q
− 4q(q + q′)2

N2

) ∑
0≤k≤M

HypN−q′,q,q(k).

It remains to lower bound the sum on the right hand side. Since the mean of the hypergeo-
metric distribution HypN−q′,q,q is q2

N−q′ , we have

∑
k>M

HypN−q′,q,q(k) ≤ q2

M(N − q′) ≤
2q2

MN

by Markov’s inequality and using the fact that q′ ≤ N/2 by assumption (A.3). So it follows
that ∑

0≤k≤M
HypN−q′,q,q(k) ≥ 1− 2q2

MN
,

which completes the proof. ut

6.4 Concluding the Proof of Theorem 5
We are now ready to complete the proof of Theorem 5.

Proof (of Theorem 5). We first prove (i). Combining the H-coefficient Lemma (Lemma 1)
with Lemma 9 (i) and Lemma 10, we obtain, under the assumption that qe ≤ N

1
3 ,

Advcca
EMSP[n,2,γ](qe, qp) ≤

4q3
e + 8q2

eqp + 4qeq2
p

N2 + 2q2
e

N
4
3

+ 16qe
N

2
3

+ q2
e + 4qeqp
N

≤
(

4q3
e

N2 + 2q2
e

N
4
3

+ 16qe
N

2
3

+ q2
e

N

)
+
(

8q2
eqp + 4qeq2

p

N2 + 4qeqp
N

)

≤ 23
N

1
3

+ 16qeqp
N

.

To prove (ii), note that it trivially holds when qe > 2
2n
3 or qp > 2

2n
3 . Hence, we can

assume that qe ≤ 2
2n
3 and qp ≤ 2

2n
3 . We now use Lemma 9 (ii) (note that the assumption

4qe + 2qp ≤ N implies that qe ≤ N/2 and qp ≤ N/2) to get

Advcca
EMSP[n,2,γ](qe, qp) ≤

10
N

+
4q3
e + 12q2

eqp + 11qeq2
p + 4q2

p
√
qeqp

N2 + 2q2
e

N
4
3

+
9qp
√
nqe + 6qe

√
nqp

N
+ 17qe + 12qp

N
2
3

≤ 10
N

+
(

4q3
e

N2 + 2q2
e

N
4
3

+ 17qe
N

2
3

+
6qe
√
nqp

N

)

+

12qp
N

2
3

+
12q2

eqp + 11qeq2
p + 4q

5
2
p
√
qe

N2 +
9qp
√
nqe

N


≤ 10
N

+ (23 + 6
√
n) qe
N

2
3

+ (39 + 9
√
n) qp
N

2
3
. ut
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A Probability of Bad Transcripts for Three Independent Round Keys

In this section, we upper bound the probability to get a bad transcript for the single-
permutation two-round Even-Mansour cipher in the case where the round keys (k0, k1, k2)
are independent, or in other words, ` = 3n, K = (k0, k1, k2), and γi selects the i-th n-bit
string of K. The analysis is greatly simplified since we do not need to appeal to the sum-
capture theorem of Section 3.
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Lemma 12. Assume that the round keys (k0, k1, k2) in the single-permutation two-round
Even-Mansour cipher are uniformly random and independent. Then

Pr[Tid ∈ T2] ≤ min
{
q2
e + 4qeqp
N

,
2q2
eqp + 3qeq2

p

N2 + qe + 12qp
N

2
3

}
.

Proof. Let (QE ,QP ) be any attainable permutation transcript. Since in the ideal world, K =
(k0, k1, k2) is independent from QE and QP , we have:

Pr[K = (k0, k1, k2)←$ {0, 1}3n : K ∈ BadK] ≤ |BadK|
N3 .

We prove that Pr[Tid ∈ T2] is always less than each of the two terms in the upper bound in
turn. First, note that∣∣∣∣∣

7⋃
i=1

BadKi

∣∣∣∣∣ ≤ N2 × |{x⊕ u : (x, y) ∈ QE , (u, v) ∈ QP }|

+N2 × |{v ⊕ y : (x, y) ∈ QE , (u, v) ∈ QP }|
≤ 2N2qeqp.

Moreover, one has

|BadK8| ≤ N2 × |{x⊕ v : (x, y) ∈ QE , (u, v) ∈ QP }| ≤ N2qeqp

|BadK9| ≤ N2 × |{u⊕ y : (x, y) ∈ QE , (u, v) ∈ QP }| ≤ N2qeqp

|BadK10| ≤ N2 ×
∣∣{x⊕ y′ : (x, y), (x′, y′) ∈ QE}

∣∣ ≤ N2q2
e .

The first upper bound follows.
On the other hand, one also has:

|BadK1|, |BadK2|, |BadK3| ≤ Nqeq2
p,

|BadK4|, |BadK5| ≤ Nq2
eqp,

|BadK6|, |BadK7|, |BadK8|, |BadK9| ≤
3N2qeqp
M

,

|BadK10| ≤
N2q2

e

M
.

The results follows using M = qe/N
1/3. ut

Combining Lemmas 1, 10, and 12, we obtain the following theorem. The proof is similar
to the one of Theorem 5 and therefore omitted. Note that the bound is qualitatively similar
to the one of Theorem 5, only the constants differ.

Theorem 6 (Single permutation and independent round keys). Let γ = (γ0, γ1, γ2),
where γi : (k0, k1, k2) 7→ ki. Consider the two-round Even-Mansour cipher with a single
permutation and independent round keys EMSP[n, 2, ` = 3n,γ]. Assume that n ≥ 9 and
4qe + 2qp ≤ N . Then the following upper bounds hold:
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(i) When qe ≤ 2
n
3 , one has

Advcca
EMSP[n,2,γ](qe, qp) ≤

23
N

1
3

+ 16qeqp
N

. (31)

(ii) When qe ≥ 2
n
3 , one has

Advcca
EMSP[n,2,γ](qe, qp) ≤

23qe
N

2
3

+ 29qp
N

2
3
. (32)

B Probability of Bad Transcripts for Two Alternated Independent Round
Keys

We consider in this section the case where the master keyK is 2n-bit long, namelyK = (k, k′),
and the round key sequence is (k, k′, k). This case is interesting since it is the two-round
analogue of the “alternating” key-schedule of LED-128 [GPPR11] (which has twelve rounds),
where the master key K = (k, k′) is twice as long as the block length, and round keys k and k′
are alternatively xored to the state. This setting is intermediate between the case of perfectly
independent round keys and the case of an n-bit master key (in particular, the sum-capture
theorem is only required to upper bound |BadK1|).

Lemma 13. Consider the single-permutation two-round Even-Mansour cipher with master
key K = (k, k′) and round keys (k, k′, k), k and k′ being random and independent. Then the
following upper bounds hold:

(i) For any integers qe and qp, one has

Pr[Tid ∈ T2] ≤ q2
e + 4qeqp
N

.

(ii) When 9n ≤ qe ≤ N/2 and 9n ≤ qp ≤ N/2, one has

Pr[Tid ∈ T2] ≤ 2
N

+
4q2
eqp + 3qeq2

p

N2 +
3qp
√
nqe

N
+ qe + 12qp

N
2
3

.

Proof. In the ideal world, sets BadKi only depend on the random permutations E and P , and
not on the key K = (k, k′), which is drawn uniformly at random at the end of the interaction
of the distinguisher with (E,P ). Hence, for any C > 0, we can write

Pr[Tid ∈ T2] ≤ Pr [E,P ←$ Pn : |BadK| ≥ C] + C

N2 . (33)

With this observation at hand, we first prove (i). Note that one always has, independently of
E and P , ∣∣∣∣∣

7⋃
i=1

BadKi

∣∣∣∣∣ ≤ N × |{x⊕ u : (x, y) ∈ QE , (u, v) ∈ QP }|

+N × |{v ⊕ y : (x, y) ∈ QE , (u, v) ∈ QP }|
≤ 2Nqeqp.
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Moreover, one always has

|BadK8| ≤ N × |{x⊕ v : (x, y) ∈ QE , (u, v) ∈ QP }| ≤ Nqeqp
|BadK9| ≤ N × |{u⊕ y : (x, y) ∈ QE , (u, v) ∈ QP }| ≤ Nqeqp
|BadK10| ≤ N ×

∣∣{x⊕ y′ : (x, y), (x′, y′) ∈ QE}
∣∣ ≤ Nq2

e .

The first bound follows by (33) with C = 4Nqeqp +Nq2
e .

We then prove (ii). First, the size of BadKi for i = 2 to 10 can be upper bounded inde-
pendently of E,P , namely for any permutation transcript (QE ,QP ), one has:

|BadK2|, |BadK3| ≤ qeq2
p,

|BadK4|, |BadK5| ≤ q2
eqp,

|BadK6|, |BadK7|, |BadK8|, |BadK9| ≤
3Nqeqp
M

,

|BadK10| ≤
Nq2

e

M
,

It remains to upper bound |BadK1|. For this, we need to appeal to the sum-capture theorem
of Section 3. For a permutation transcript (QE ,QP ), let

X = {x ∈ {0, 1}n : (x, y) ∈ QE}, Y = {y ∈ {0, 1}n : (x, y) ∈ QE},
U = {u ∈ {0, 1}n : (u, v) ∈ QP }, V = {v ∈ {0, 1}n : (u, v) ∈ QP }

denote the domains and the ranges of QE and QP , respectively. Then one has

|BadK1| ≤ N × µ(QE , U, V ) def= N × |{((x, y), u, v) ∈ QE × U × V : x⊕ u = y ⊕ v}|.

(The factor N accounts for the fact that the middle key k′ is independent from k.) Thus, if
we set

C1 =
qeq

2
p

N
+ 2q2

eqp
N

+ 3qp
√
nqe,

one has, by Theorem 1, Pr[E,P ←$ Pn : |BadK1| ≥ NC1] ≤ 2/N . Applying (33) with

C = NC1 + 2qeq2
p + 2q2

eqp + 12Nqeqp
M

+ Nq2
e

M

= 4q2
eqp + 3qeq2

p + 3Nqp
√
nqe +N

4
3 qe + 12N

4
3 qp

yields the result. ut

Combining Lemmas 1, 10, and 13, we obtain the following theorem. The proof is similar
to the one of Theorem 5 and therefore omitted. Note that the bound is qualitatively similar
to the one of Theorem 5, only the constants differ.

Theorem 7 (Single permutation and two alternated independent round keys). Let
γ = (γ0, γ1, γ2), where γi : (k0, k1) 7→ ki mod 2. Consider the two-round Even-Mansour cipher
with a single permutation and two alternated independent round keys EMSP[n, 2, ` = 2n,γ].
Assume that n ≥ 9, qe ≥ 9n, qp ≥ 9n, and 4qe + 2qp ≤ N . Then the following upper bounds
hold:
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(i) When qe ≤ 2
n
3 , one has

Advcca
EMSP[n,2,γ](qe, qp) ≤

23
N

1
3

+ 16qeqp
N

. (34)

(ii) When qe ≥ 2
n
3 , one has

Advcca
EMSP[n,2,γ](qe, qp) ≤

2
N

+ 23qe
N

2
3

+ (31 + 3
√
n) qp
N

2
3
. (35)
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