
Realizing Pico: Finally No More Passwords!

Jens Hermans and Roel Peeters

KU Leuven, ESAT/COSIC and iMinds
firstname.lastname@esat.kuleuven.be

Abstract

In 2011 Stajano proposed Pico, a secure and easy-to-use alternative for pass-
words. Among the many proposals in this category, Pico stands out by being
creative and convincing. However, the description as published leaves some de-
tails unspecified, and to the best of our knowledge the complete system has not
yet been tested. This work presents detailed specifications and future-proof se-
curity protocols for Pico. Moreover, we present the first robust and efficient Pico
implementation. Our implementation allows to further mature the Pico concept
and can be used for large scale usability evaluations at negligible cost.

1 Introduction

It is generally acknowledged that passwords are problematic. The situation is
even worse when inputting passwords on soft keyboards of the smartphones and
tablets that are ever more frequently being used: opposed to tradional keyboards,
it takes considerable more time and results in more frequent errors [12]. While
passwords are very inexpensive to deploy, they suffer from major security and
usability problems. Nevertheless passwords are widely used and are likely to
remain so in the near future. This is mainly because password-based authenti-
cation is cost-effective, widely supported by applications and accepted by users
as a security mechanism.

A plethora of alternatives for passwords, mainly aimed at web authentica-
tion, has been proposed. Bonneau et al. [4,5] presented an overview of the most
promising ones, reaching the conclusion that none of these is a worthy replace-
ment for passwords. One of the discussed alternatives is the Pico, introduced by
Stajano [13]. The Pico is a dedicated hardware token to authenticate the user
to a myriad of remote servers; it is designed to be very secure while remaining
quasi-effortless for users. The Pico authenticates using public key credentials,
making common attacks on passwords (e.g., sniffing, phishing, guessing, social
engineering) impossible. From a privacy and security perspective the Pico so-
lution is also better then single-sign-on solutions, since users manage the cre-
dentials themselves instead of relying on a third party. The Pico was deemed an
interesting proposal but no more than that, due to the lack of an implementation,
and the impossibility to assess the user experience.

Inspired by the Pico concept, we set forward to realize it in practice. Concretely,
our contributions are:

– We define a comprehensible user interaction model for the Pico in Section 2
taking Human-Computer Interface (HCI) design principles into account.

– In Section 3 we define a concrete communication architecture with detailed
cryptographic protocols to ensure a high level of security. Provisions are
made to smoothen future security upgrades.

– We implemented a robust Android application (Section 4), allowing Pico
to reach maturity at negligible cost per user and making it possible to do
extensive usability testing.

– In Section 5 we evaluate our Pico instantiation and show its efficiency.

2 User Perspective

We first discuss the overall architecture of the system. Then, we go deeper into
the user interactions in general, taking HCI design principles into account. Fi-
nally, we discuss the specifics of our Pico demonstrator with respect to usability.

2.1 System Architecture

Instead of a user logging in to a website (server) by typing his password into
the browser (client) on his computer or smart phone, a Pico will be used to
authenticate the user, together with the client, to the server directly. As a result
the user will be logged in at the client. Figure 1 gives an overview of how the
user will authenticate to a server with the aid of a Pico. The Pico will also be
used to create an account with a server or even authorize transactions, using a
similar process.

Fig. 1: User authentication using our Pico implementation. 1) The user surfs to
a website. 2) Using the Pico, the displayed QR code is scanned. 3 a-b) The user
confirms his intention on the Pico. 3c) The Pico authenticates to the server. 4)
The user is logged in.

To ensure that our instantiation of Pico will be easy to adopt, one must be
able to use it with any available client without having to install add-ons: i.e.,
no browser extensions, hardware add-ons, drivers . . . This means that the Pico
should be able to communicate directly to the server and get all necessary infor-
mation from the client (server identifier and a server-generated session identifier
for the client). This information can be acquired by the Pico, for instance, by
scanning a QR code.

2.2 User Interactions

Molich and Nielsen [10] provided ten usability recommendations, among others
to be consistent and that preventing errors in the first place is better than good
error handling. In order to prevent users from accidentally registering instead
of logging in to a server, the Pico will only offer a single button to start the
authentication process (see Figure 2a). By clicking this button, the Pico will
start its camera to capture a 2D visual code. The provided QR code will encode
additional information that allows the Pico to determine the purpose: logging in
with an existing account, creating a new account, or authorizing a transaction
for an existing account at the server. Different QR codes for every purpose is
also consistent with current practices, e.g., the entry web page for a server has
distinctly marked locations for logging in and creating a new account.

(a) Starting screen. (b) After being logged in.

Fig. 2: Main screen.

The principle of psychological acceptability [11] implies that a user interface
must be designed while keeping the user’s mental models in mind and thus, by
extent, the context he is working in. There is a big difference between logging
in to a newspaper website, logging in to your online banking account or even
approving a financial transaction and this difference should be clear to the user.
The context was clear to the end-user using different user names, more secure
passwords for sensitive applications, easier passwords for less important ones, his
banking card in combination with a reader . . . However, this is no longer the case

when pointing your Pico to a QR code for all these different purposes without
requiring any further user interaction. Yee’s key principles for secure interaction
design [15] require users to provide explicit authorization and visibility of all
active sessions.

For the user to establish context and give explicit authorization, the user will
be presented with a confirmation screen after scanning the QR code, before the
Pico authenticates to the server (step 3a in Figure 1). Depending on the purpose
a different confirmation screens will be shown to the user. Examples are given
in Figure 3, 5 and 6.

Visibility of all active sessions means that from the Pico, the user should be
able to see to which servers he is currently logged in and have the possibility
to log out (see Figure 2b). To keep track of all active sessions, there will be
continuous authentication between the Pico and the server, after logging in. To
log out, we choose to have the user swipe a label off the screen to avoid logging
out by accidental tapping. A helper text is displayed the first time the user logs
in using his Pico.

Login After scanning the QR code, the user will be asked to confirm his login,
by selecting the desired account (see Figure 3). This approach works as well for
one as for multiple accounts exist with a given server.

Fig. 3: Selecting an account to log in with.

Create Account When creating a new account at a server, it is important
for the user to verify that he is indeed communicating with the right server. To
facilitate the verification of the received server parameters (URL, public key . . .),
the user will be presented with a visual hash to compare with a reference image.
This reference image can be used in the server’s public communication (e.g., in
advertisements, letters ...) or be available at a trustworthy website with reference
visual hashes for different servers. Users only need to compare this image at
registration, since afterwards the server’s public key is stored on the Pico. Note
that the visual hash is only required to avoid phishing during registration.

A visual hash converts a given input to an image, for which small differences
in the input lead to very distinctive images (see Figure 4). As such it will be
difficult for an attacker to alter the server parameters while tricking the user
into believing it generated the same image. As a visual hashing scheme, here we
made use of Vash [7].

Fig. 4: Vash images for minimal changes in the input.

We assume that creating a new account is started from within the client,
where the user first enters some basic account information, e.g., a user name.
Then the user will be shown a QR code, which also contains the necessary
parameters of the server and the selected user name, to be scanned with the
Pico. On the Pico, the user will first need to confirm the creation of a new
account. This confirmation screen displays the server’s logo and url location, to
help the user with establishing context. The server parameters will be verified
by the user by comparing the displayed visual hash with the server’s reference
image (see Figure 5a). However, if the user already has other accounts at the
same server, he can be relieved from this burden. The Pico will check that the
received server parameters correspond with the ones of the existing accounts. In
this case, the user is presented with a different screen, as depicted in Figure 5b.

(a) Default. (b) Pre-existing accounts.

Fig. 5: Confirming the creation of a new account.

While an account is created in the background, the user will be requested to
provide an account name, which can be useful to later identify different accounts
at the same server. As default account name, we used the user name that was
provided through the client.

Transaction For transactions we foresee two scenarios. The first one is online
banking, where transactions need to be approved after the user logged in to the
bank’s server. In this case, the transaction information can be send over the
same secure channel as the one that is used for continuous authentication. The
moment the Pico receives this information, a confirmation screen (see Figure
6) is presented to the user. The user can verify the transaction specifics and
confirm these on his Pico. As a second scenario, we consider small payments
in stores, where the merchant presents to the user a QR code containing the
transactions details. Given that the user authorised one banking account as the
default payment account from his Pico, he will be presented with the same
confirmation screen. In case of multiple payment accounts (e.g., a personal and
a business banking account), the user will first need to select with which account
he wants to pay.

Fig. 6: Confirming a transaction.

2.3 Demonstrator

In the above, a Pico device is assumed to have a few buttons, a screen, a camera
able to capture QR codes and wireless communication capabilities. All these
capabilities can be found in the smart phone users already carry around, making
it the ideal platform for implementing a demonstrator. Because the majority of
smart phones today runs on Android, we choose to develop an application for
this operating system. By making our application freely available through the
official Google Play Store, it is easy to install, also for less tech-savy users.

When browsing on the same device as our Pico application is installed on, it
is possible to transfer the data in the QR code, directly to the Pico by clicking on
the QR code. This will open the Pico application, do the authentication, and go
back to the mobile browser. At the same time the Pico application will keep on
running in the back, as will be apparent from the Pico icon in the notification
bar (see Figure 7a). This icon will be visible as long as the user is logged in
at some server, keeping Yee’s [15] principle of visibility of all active sessions in
mind. From the notification drawer (see Figure 7b) it is possible to go directly
to the Pico application, and even to close the Pico application, logging out of all
currently logged in sessions.

(a) Notification bar. (b) Notification drawer.

Fig. 7: Using Android’s notification capabilities.

3 Security Perspective

In this section, we will present a detailed description of the cryptographic pro-
tocols and introduce the specification of the messages to be exchanged.

3.1 Server - Client - Pico Linking

We need to establish a link between the client-server session and the Pico-server
session. This link will be established indirectly by having the server communicate
with the user’s client, the client with the Pico and finally the Pico with the server.

The client will set up a connection with the server, and receives a message
SCP that contains a server identifier and a session identifier. This SCP message
will be transferred by the client to the Pico over an authenticated channel,
for example, by having the Pico scan a displayed QR code. By requiring an
authenticated channel, we ensure a proper binding between the client and the
Pico. However, this does not ensure that the transferred message is confidential.
Thus, in order to avoid session hijacking at the client, the session identifier should
remain separate from the typical browser session identifiers (as found in cookies).
Therefore, the session identifier in the SCP message will be a random string set
by the server or the hash of the browser session identifier.

To avoid unnecessary user interaction and minimize the potential of user
error, we need to differentiate between logging in (existing account) and enrolling
(creating a new account) at the time of establishing this link. This will be done
by also encoding a type (LOGIN or ENROLL) in the SCP message:

SCP = serverID,H(sessionID), type .

The Pico uses the server identifier in its account database to uniquely identify
the server. The server identifier remains static even when the server updates its
key in the future. In the case of enrolling, the server is not yet known to the
Pico and requires the essential parameters from the server, such as the server’s
public key and its validity period, the actual URL for connecting to the Pico
server (not necessarily the same as the URL where the user connects to with
its client), the name and logo of the server as it is communicated to the general
public To keep the data that is transferred over the authenticated channel
between the client and the Pico small, only the (tiny) URL to retrieve the server
parameters and a hash of the server’s public key will be encoded in the SCP

message in case of enrolling:

SCP = serverID,H(sessionID), ENROLL,

URL,H(serverPK) .

The server parameters will be requested by the Pico by sending a INIT

message to the received URL. The server will reply with an INIT message that
contains the server parameters. The Pico checks that the received public key
of the server is correct by checking it with the hash value received in the SCP

message. To protect against phishing attacks, the user will be asked to confirm
the server parameters by verifying the visual hash of these parameters.

By having the Pico scan a QR code displayed by the client, one constructs
an authenticated channel without requiring modifications to the client. If this
requirement is abandoned, the above data can also be send through any other
communication channel, such as a Bluetooth, NFC or USB link between the Pico
and client. However, one still needs to ensure that the communication channel is
authentic (especially for wireless connections) to provide proper binding between
the client and Pico, necessary to avoid session hijacking.

3.2 Mutual Authentication

After the Pico established to which server (with which account) the user wants
to authenticate, the Pico selects the corresponding private/public key pair from
its database and authenticates to the server.

Our authentication protocol (see Figure 8) is based upon the SIGMA-I proto-
col as proposed by Krawczyk [9]. The original proofs by Canetti and Krawczyk [6]
still hold for our construction. SIGMA-I is a mutual authentication protocol with
key agreement that is very efficient and has the added benefit that the Pico can
delay sending its (account-specific) identity until it is assured of the server’s iden-
tity. The shared key K is derived using a key derivation function (KDF) from

an unauthenticated Diffie-Hellman key agreement (here instantiated with the
elliptic curve variant). By having each party sign (SIG and VER) the exchanged
Diffie-Hellman values, the origin of the messages is established. As suggested
by Krawczyk, we use an authenticated encryption (AE and AD) mode [8] to
optimize the protocol.

Because we use the same protocol for different purposes (login, enroll ...),
the purpose will explicitly be encoded in the type that is part of the signed
message. Since the Pico already knows the identity of the server, this value can
be omitted from the protocol. For the identity of the Pico, we use the selected
public key (or a newly generated public key if enrolling). Before accepting the
Pico, the server will also verify that the provided credentials are registered in
it’s database (unless enrolling). The provided sessionID allows the server to link
its Pico session to its client session. This concludes the 3-way handshake, with
messages PS1, SP2 and PS3.

keypair: x,X = xP
(selected account)

Pico

keypair: y, Y = yP
registered Picos: DB = {Xi}

Server

a ∈R Z
∗

l

A = aP

b ∈R Z
∗

l , K = KDF(bA)
type = SERV AUTH

B = bP, IV, α = AEK,IV

(

SIGy (type,A,B)
)

K = KDF(aB), σ ← ADK,IV

(

α
)

!VERY (σ, (SERV AUTH, A,B))? ⊥
type = LOGIN/ENROLL, IV ′ = IV + 1

IV ′, β = AEK,IV ′

(

type,X,SIGx (type,A,B) , sessionID

)

IV ′ ≤ IV ? ⊥
type,X, σ, sessionID ← ADK,IV ′

(

β
)

(type! = LOGIN && type! = ENROLL)||
(type == LOGIN && !X ∈ DB) ||
!VERX (σ, (type,A,B))? ⊥

Fig. 8: Handshake protocol between the Pico and server with public key Y.

When setting up a new account, the Pico creates an entry in its database with
the server parameters and the selected private/public key pair after successfully
receiving SP2 and verifying the server’s identity. The server will create a new
entry in its database for the received public key after successfully receiving PS3
and having validated the signature using this key.

The derived key K during the handshake can later on be used for subsequent
messages MSG between the Pico and the server, i.e., for continuous authenti-
cation. These messages are of the form:

MSG = IV,AEK,IV

(

type, body
)

where type indicates the type of message and body the optional body of the
message. Authenticated encryption requires a unique initialization vector IV

for each message. This will be enforced by incrementing the IV each time a
new message is encrypted. An IV that has not been increased will lead to the
termination of the connection.

3.3 Continuous Authentication

After establishing a secure channel the Pico and the server engage in a continuous
authentication protocol. The server sends a MSG with type PING and a timeout
value to the Pico. The Pico needs to reply with a MSG of type PONG within the
specified time frame. Otherwise, the client session will be closed and the user
logged out.

The user can also end a session directly through the client, in which case the
server attempts to send the Pico a MSG with type BYE to alert the Pico that
the user is no longer logged in. Likewise, the user can close a session on the Pico,
in which case the Pico attempts to send BYE to the server.

When the user is logged out, this session will be removed from the list of
servers the user is currently logged in (see Figure 2a).

With this secure channel between the Pico and server, it is also possible to
have transactions directly authorized through the Pico. The server sends a MSG

with type TRANSACTION and a human readable description of the transaction to
the Pico (e.g., description of a money transfer). This message also contains a
transaction identifier and a time out, by which the server should receive an an-
swer or abort the transaction. After receiving user confirmation on the Pico, the
Pico confirms the transaction by sending a MSG with type APPROVED together
with the transaction identifier. Alternatively, the Pico can send a DECLINED with
the transaction identifier in case the user declines the transaction. Confirming
transactions directly on the Pico ensures that the end user is always aware of the
transaction being confirmed. When confirming a transaction through the client
there is always the risk of an insecure client displaying a fake description of a
transaction.

3.4 Future Proof Security

A crucial aspect to take into account when designing the cryptographic proto-
cols for Pico is algorithm and key agility. It is very likely that in the future
certain algorithms will need to be replaced or key sizes increased out of secu-
rity consideration. Keys will also need to be changed, regardless of algorithm
changes.

Algorithm Agility Popular cryptographic protocols allow for negotiation of
the parameters. Even though this is great for backwards compatibility, this comes
with the risk of an adversary negotiating both parties in the weakest protocol
parameters. We have opted for a different approach, by strictly limiting the num-
ber of protocol parameters. In essence, we only want to allow a single protocol
and associated parameters, which should maximally satisfy all security require-
ments. The only reason to allow multiple (in this case: two) parameter sets is to
allow for fast upgrading in case one of the ciphers or protocols is broken.

We make a distinction between the temporary and permanent parameters.
The temporary parameters are set by the server: the hash function, the elliptic
curve and key derivation function for key agreement, the authenticated encryp-
tion scheme. The permanent parameters define the signature scheme that is used.
For both the temporary and permanent parameters we define two versions, one
to be used initially and one to enable migration in the future to a more secure
set of parameters. There is no intent to maintain an extensive list of broken
parameters for backward compatibility.

The server determines which version of the temporary parameters (tV ersion)
are used, there is no margin for negotiation on the Pico side. This allows for a
very fast migration of the temporary parameters, which is possible since no long
term keys are involved. The Pico should reject weak temporary parameters. The
version of the temporary parameters is passed on to the Pico as part of the SCP

message.
For the permanent parameters a similar approach is desirable, but due to

long term keys being involved it is impossible to do instantaneous upgrades.
Using the SCP message the server indicates the preferred permanent parameter
set. During the transition of the server switching from one version to the next, it
is possible for the Pico to set the permanent version (pV ersion) to the previous
version. Afterwards, it will no longer be possible for the user to upgrade his
account and instead will be forced to create a new account using enroll. This
means that we have to augment the handshake to set up the secure connection
as follows:

a) the Pico sends the version of the permanent and temporary parameters along
with its first message to the server (PS1);

b) upon receiving PS1, the server checks if this version is allowed (previous
permanent version, within transition period) or aborts otherwise;

c) in SP2, the server will put a signature on
(SERV AUTH, A,B, pV ersion, tV ersion);

d) in PS3, the Pico will put a signature on
(type, A,B, pV ersion, tV ersion).

The last two modifications will prevent man-in-the-middle attackers from ex-
ploiting a version mismatch between the Pico and server.

Directly after the handshake the server will request that the Pico updates
its key according to the new version. This is done by sending a MSG with type
UPGRADE and a signature with the server’s new public key (suitable for the new
version) on (UPGRADE, A,B, pV ersion, tV ersion). Note that the pV ersion in this

and the following message is now set to the version as selected by the server.
The Pico will get the server’s new public key and validity period by requesting
the server parameters through a separate request to the server with an INIT

message (see Section 3.1).

The Pico generates a new key pair and makes a new entry in its database,
using the received parameters and server public key.1 The Pico will send a MSG

to the server of the type UPDATE with its new public key and a signature with
this public key on (UPDATE, A,B, pV ersion, tV ersion). Upon validation of the
signature, the server overwrites the existing database entry for this user. The
server will send a confirmation (MSG of type CONFIRM UPDATE) to the Pico,
that can now remove the old account from its database.

Key Agility A similar protocol will be used for the server to update its public
key without migrating to a new version of algorithm parameters. This allows
the server to update its key before it expires or to replace its key if there is
doubt about the private key being compromised. For this we will augment the
handshake by the server sending two signatures (during the transition period) in
PS2, one with the new key and one with the old key. The Pico will try to validate
the first signature, and upon failure the second signature. When both signatures
fail to verify, the connection will be terminated. Given that the second signature
verifies, the Pico requests the new server parameters (by sending a separate
INIT message) and checks the first signature, using the new public key of the
server. If this signature verifies, the Pico updates the selected account in its
database. Even if this signature does not verify, the Pico will still continue by
sending PS3 but not update its database.

3.5 Server

In order to support authentication with a Pico, server changes are needed. First
of all, a Pico module needs to be installed at the server. Second, a reference
image containing a visual hash of the server parameters (see Section 2.2), needs
to be made public.

Third, for existing users at servers that already have authentication mecha-
nisms (e.g., passwords) in place, a transition mechanism needs to be foreseen to
change authentication mechanisms. This could be done securely as follows:

1. the user authenticates to the server, using the current authentication mech-
anism;

2. after being logged in, the user is provided with a QR code for enrollment;

3. the user enrolls using his Pico;

4. the server couples the received public key from the Pico with the user’s
account.

1 The server’s identity remains the same over all permanent versions.

In comparison with a traditional password based authentication mechanism,
supporting the Pico will require more computational effort. However, at the
same time the server’s security is enhanced. For a password based authentication
mechanism, a compromise of the users database gives adversaries an advantage
to log in as genuine users (even at other servers in case the user reuses his
password). The only way to recover from this, is by informing users and have
them pick new passwords. This is not the case with Pico based authentication,
because the stored public keys do not leak any information that can be used to
the attacker’s advantage to log in at the server as a genuine user.

4 Implementation

The main goal of this paper is providing a more detailed specification of the Pico
and demonstrating that this specification results in a practical implementation.
As such, we have limited ourselves to a demonstrator on the Android platform
which does not have any application security features in place. We also did not
implement database level security with a locking mechanism since keys remain
largely unprotected anyway on a smartphone. Additional security can however be
leveraged by using a secure execution environment such as SIM, secure element,
Trustzone . . .

The implementation was done using Java, with a native library (ZBar) for
processing the QR code. The Vash library [7] was ported to Android.

On the server side we use a mix of a Java application and a PHP web applica-
tion for the demonstrator server (a simple message board). The Java application
implements the Pico server module, which takes care of the connection with the
Pico and performs all cryptographic operations.

All protocol messages are encapsulated using Google protocol buffers and sent
over an HTTP connection between the Pico and the Java application. HTTP was
mainly selected for simplicity of the implementation and to easily pass through
firewalls. This however implies that all protocol round-trips must be initiated
by the Pico and require a connection identifier. For this connection identifier we
chose the Diffie-Hellman key B since this is randomly generated by the server.
For efficiency we however do prefer a dedicated, permanent TCP connection. In
case of loss of connection, it can be recovered using B.

All cryptographic operations have been implemented using the Spongycastle
library (which is based on Bouncycastle). We would like to stress that Spongycas-
tle, albeit used in several security apps, contains little security measures against
implementation attacks (i.e., side channels and fault attacks). In future versions
we will implement all cryptographic functions in a native library, incorporating
countermeasures for implementation attacks. Table 1 shows the cryptographic
algorithms that we selected for the demonstrator. All algorithms were selected
based on their security and their general acceptance.

Table 1: Algorithm Agility.
version 1 version 2

Temporary parameters
- Hash SHA-256 SHA-384
- Diffie-Hellman secp224r1 secp384r1
- Key Derivation SHA-256 SHA-384
- Authenticated Encryption AES-GCM-128 AES-GCM-192

Permanent parameters
- Signature ECDSA ECDSA

secp224r1 secp384r1

We experimented with the displaying of the QR code and concluded that
only a small amount of redundancy was required. As such, we can limit the
display size of the QR code, making it easier to incorporate in websites. For
mobile browsing, we also implemented a direct link on the QR codes in the
HTML source, and made sure that the Pico application listens for Intents. This
way a user can simply click on the QR code to launch the Pico application and
pass on the data needed to start authenticating to the server.

5 Evaluation

5.1 Properties

Bonneau et al. [5] performed an extensive comparison of several password re-
placements, including the original Pico description by Stajano. They also de-
scribe a general Usability-Deployability-Security evaluation framework, using a
concise list of properties. Table 2 shows the properties attributed to the original
Pico description by Stajano [13] and the properties of our implementation. Note
that most of the security properties directly follow from the use of public key
authentication.

When it comes to security the Pico clearly outclasses passwords. Our imple-
mentation of Pico achieves all the listed security properties with the exception
of Resilient-to-Theft. Due to the secure connection which is based on public
key cryptography, impersonation of a user without obtaining the Pico device or
somehow extracting the keys is impossible. We also protect against phishing by
embedding the server identity in the QR code. Our implementation even goes
one step further by also preventing phising at the time of creating an account
by having the user compare visual hashes. Explicit user consent is built into the
Pico user interface and all accounts are unlinkable since they use different keys.
Resilient-to-Theft is not achieved due to the lack of a locking mechanism
and the chosen platform. In order to deploy the Pico, this obviously needs to be
solved.

Concerning deployability, the original Pico description only achieves Non-

Proprietary. Our implementation achieves Browser-Compatible since it re-
quires no changes to browsers. Our implementation is a firm step forward to-
wards achieving Mature. One usability property that remains open for discussion

is Negligible-Cost-per-User: this is the case for an Android app, but when
moving to a dedicated hardware devices this is no longer achieved.

Regarding usability, a more thorough usability evaluation is advisable, but
at first sight our Pico instantiation achieves all the properties attributed to
the original Pico description: Memorywise-Effortless, Scalable-For-Users,
Physically-Effortless,Efficient-to-Useand partially Infrequent-Errors.
On top of those, our implementation also achieves the Easy-to-Learn and fully
Infrequent-Errors property due to a different design for user interaction, i.e.,
only one button to start, explicit confirmation.

Table 2: Properties for the Pico.

S
ta

ja
n
o
[1
3
]

T
h
is

w
o
rk

S
e
c
u
ri
ty

Resilient-to-Physical-Observation • •
Resilient-to-Targeted-Impersonation • •
Resilient-to-Throttled-Guessing • •
Resilient-to-Unthrottled-Guessing • •
Resilient-to-Internal-Observation • •
Resilient-to-Leaks-from-Other-Verifiers • •
Resilient-to-Phishing • •
Resilient-to-Theft ◦
No-Trusted-Third-Party • •
Requiring-Explicit-Consent • •
Unlinkable • •

D
e
p
lo
y
a
b
il
it
y Accessible

Neglibile-Cost-per-User ◦
Server-Compatible

Browser-Compatible •
Mature ◦
Non-Proprietary • •

U
sa

b
il
it
y

Memorywise-Effortless • •
Scalable-For-Users • •
Nothing-To-Carry

Physically-Effortless • •
Easy-to-Learn •
Efficient-to-Use ◦ ◦
Infrequent-Errors ◦ •
Easy-Recovery-from-Loss

• fully achieved, ◦ partially achieved

5.2 Performance

Extensive performance testing was done with different users and a range of
devices running at least Android 4.0. Using our demonstrator website, both the
login and enrollment procedures were tested. The overall login takes around 5
seconds to complete, the more involved enrollment around 10 seconds. Most of
the time is taken up by interacting with the user, there is hardly any perceivable
delay due the underlying communication and computations2. There are small
variations due to varying communication times, also depending on the used
wireless connection: WiFi, 3G or EDGE. All the following reported timings are
averages.

When excluding user interaction, logging in takes 1.3 seconds. Of this time,
only 0.9 seconds are spent on computations, the remaining 0.4 seconds is com-
munication overhead. Similarly, creating a new account takes 1.5 seconds, with
roughly the same communication overhead. By using precomputations, i.e., gen-
erating elliptic curve key pairs beforehand, it is possible to shave off 0.4 seconds
for both the login and enrollment.

User interactions require far more time than the actual protocols. Scanning
a QR code takes 3.1 second for login, respectively 3.6 seconds for enrollment.
This is due to more information contained by the enrollment QR code, which
requires a better alignment of the camera and QR code. Confirming a login
takes 2.3 seconds, also depending on the number of accounts to select from.
Confirming the creation of a new account takes 5.3 seconds. Directly after this
enrollment, the user is asked to input a name to identify his account on the Pico.
By providing a default user name (the one the user entered at the website to
create a new account), inputting an account name only takes 1.7 seconds.

For continuous authentication, Pico needs to send and receive messages over
the authenticated channel that was set up during login. One round of communi-
cation (PONG-PING, PONG-BYE or BYE-BYE) takes 0.2 seconds and is dominated by
communication overhead. Please note that continious authentication happens in
the background and as such does not affect the user.

6 Related Work

Bonneau et al. [5] performed an extensive comparison of several password re-
placements, including several two-factor authentication methods. In this section,
we only discuss work directly related to Pico and our implementation.

We deliberately chose not to base our main security protocol on SSL/TLS
(as is the case for Stajano [13]) but instead adapted the SIGMA-I protocol
for the Pico. This is mainly based on the poor security track record of the
SSL/TLS protocols which be believe are overly complex and do not reflect recent
advances in protocol design. This can clearly be seen from the algorithm agility

2 While interacting with the user, part of the handshake protocol can already be run
in parallel: the Pico can send PS1, receive and verify SP2 before getting explicit
authorisation from the user.

perspective: SSL/TLS relies on negotiation of the algorithm suite, allowing for
a myriad of algorithms of which several are sub-optimal security-wise.

Another major difference with [13] is the way a link between server, client
and Pico is established. Stajano uses a static QR code to identify the server and
hence requires a secure wireless link between client and Pico to associate the
client. To differentiate between logging into and creating an account, the user
has to select one of the two dedicated buttons to start the process. The secure
wireless link also acts as a gateway for communication between Pico and the
server. This approach requires changes to the client which will hurt adoptability
as it does not allow the user to just use any client available: the user first needs
to install a browser plugin and possibly a hardware dongle for setting up a secure
short range communication. Additionally it might not be possible for the user
to make any changes to the client as he does not have sufficient rights, e.g.,
computers at work or at an internet cafe. This approach is also more prone to
errors, as the user might accidently hit the wrong button when scanning the QR
code and does not need to confirm his choice.

The work of Stajano also resulted in a Bachelor’s and a Master’s thesis with
partial implementations. Tian [14] augmented the static QR code with a session
identifier and the MAC of the bluetooth device of the client in order to create
the wireless link. This however seems to limit the scope to local logins where the
client is also the server. Bentzon [1] implemented the Pico on a Raspberry Pi.
This implementation has one button to scan specific QR codes that differentiate
between logging in and enrolling and also contain session identifiers. The specified
TLS-alike protocol does not offer forward secrecy and lacks key agreement since
the Pico chooses the session key. We consider both of these properties crucial for
setting up a secure communication channel.

7 Conclusions and Future Work

We realized Pico by providing a detailed specification of the user interface and
cryptographic protocols with provisions for future security upgrades. Our robust
Android implementation demonstrates that our design is feasible, allows to fur-
ther mature the Pico concept and allows to evaluate its usability at negligible
cost.

Our current implementation on the Android platform has some clear disad-
vantages and problems, which we have not dealt with yet given the scope of
this paper. With respect to the implementation of cryptographic algorithms we
clearly want to move away from the current Spongycastle implementation. An
interesting library in this regard is NaCl [3], which is very efficient and has con-
stant time implementations. Regarding the algorithms that we currently have
selected there are some potential optimizations. We consider moving away from
the NIST curves and changing it for Curve25519 [2]. Curve25519 was specifically
designed for high performance in software and with resistance to implementation
attacks in mind. Moreover, it has several security advantages compared to the

NIST curves. Also ECDSA can be replaced by Schnorr signatures, which are less
vulnerable to leakage of the secret key in the case of bad randomness.

As already indicated the current HTTP communication layer can be replaced
by a permanent TCP connection. Regarding the overall platform the major
challenge for future research lies in moving away from a smartphone to dedicated
hardware or at least add a secure element to the smartphone. This seems to be
the only way to rule out vulnerabilities in a complex software platform such as
Android. Provided that a sufficient adaption of the technology can be achieved,
the cost for a separate device is considered reasonable.

References

1. A. Bentzon. Security architecture and implementation for a tpm-based mobile
authentication device. Master’s thesis, 2013.

2. D. J. Bernstein. Curve25519: New diffie-hellman speed records. In M. Yung,
Y. Dodis, A. Kiayias, and T. Malkin, editors, Public Key Cryptography, volume
3958 of Lecture Notes in Computer Science, pages 207–228. Springer, 2006.

3. D. J. Bernstein, T. Lange, and P. Schwabe. The security impact of a new cryp-
tographic library. In LatinCrypt, volume 7533 of LNCS, pages 159–176. Springer,
2012.

4. J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. The Quest to Re-
place Passwords: a Framework for Comparative Evaluation of Web Authentication
Schemes. In 2012 IEEE Symposium on Security and Privacy, pages 553–567. IEEE
Computer Society, 2012.

5. J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. The Quest to Re-
place Passwords: a Framework for Comparative Evaluation of Web Authentication
Schemes. Technical Report UCAM-CL-TR-817, University of Cambridge, Com-
puter Laboratory, 2012.

6. R. Canetti and H. Krawczyk. Security Analysis of IKE’s Signature-Based Key-
Exchange Protocol. In M. Yung, editor, Advances in Cryptology – CRYPTO 2002,
volume 2442 of Lecture Notes in Computer Science, pages 143–161. Springer Berlin
Heidelberg, 2002.

7. T. Cole. Vash - The Visual Hash, 2011. http://www.thevash.com.
8. C. S. Jutla. Encryption Modes with Almost Free Message Integrity. In B. Pfitz-

mann, editor, EUROCRYPT, volume 2045 of Lecture Notes in Computer Science,
pages 529–544. Springer, 2001.

9. H. Krawczyk. SIGMA: The ’SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE-Protocols. In D. Boneh, editor, Advances in
Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 400–425. Springer, 2003.

10. R. Molich and J. Nielsen. Improving a human-computer dialogue. Communications
of the ACM, 33(3):338–348, 1990.

11. J. Saltzer and M. Schroeder. The protection of Information in Computer Systems.
Proceedings of the IEEE, 63(9):1278–1308, 1975.

12. F. Schaub, R. Deyhle, and M. Weber. Password Entry Usability and Shoulder
Surfing Susceptibility on Different Smartphone Platforms. In Proceedings of the
11th International Conference on Mobile and Ubiquitous Multimedia, MUM ’12,
pages 13:1–13:10, New York, NY, USA, 2012. ACM.

http://www.thevash.com

13. F. Stajano. Pico: No More Passwords! In B. Christianson, B. Crispo, J. A. Malcolm,
and F. Stajano, editors, Security Protocols Workshop, volume 7114 of Lecture Notes
in Computer Science, pages 49–81. Springer, 2011.

14. B. Tian. Pico: a security token to replace passwords, 2012.
https://code.google.com/p/pico/ .

15. K.-P. Yee. User interaction design for secure systems. In 4th International Con-
ference on Information and Communications Security (ICICS ’02), volume 2513
of Lecture Notes in Computer Science, pages 278–290. Springer, 2002.

https://code.google.com/p/pico/

	Realizing Pico: Finally No More Passwords!

