
Adaptively Secure Puncturable Pseudorandom Functions in the

Standard Model

Susan Hohenberger∗

Johns Hopkins University
susan@cs.jhu.edu

Venkata Koppula
University of Texas at Austin

kvenkata@cs.utexas.edu

Brent Waters†

University of Texas at Austin
bwaters@cs.utexas.edu

November 26, 2015

Abstract

We study the adaptive security of constrained PRFs in the standard model. We initiate our
exploration with puncturable PRFs. A puncturable PRF family is a special class of constrained
PRFs, where the constrained key is associated with an element x′ in the input domain. The key
allows evaluation at all points x 6= x′.

We show how to build puncturable PRFs with adaptive security proofs in the standard
model that involve only polynomial loss to the underlying assumptions. Prior work had either
super-polynomial loss or applied the random oracle heuristic. Our construction uses indistin-
guishability obfuscation and DDH-hard algebraic groups of composite order.

More generally, one can consider a t-puncturable PRF: PRFs that can be punctured at any
set of inputs S, provided the size of S is less than a fixed polynomial. We additionally show
how to transform any (single) puncturable PRF family to a t-puncturable PRF family, using
indistinguishability obfuscation.

∗Supported by the National Science Foundation (NSF) CNS-1154035 and CNS-1228443; the Defense Advanced
Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) under contract FA8750-11-C-
0080, the Office of Naval Research under contract N00014-14-1-0333, and a Microsoft Faculty Fellowship.
†Supported by NSF CNS-1228599 and CNS-1414082, DARPA SafeWare, Google Faculty Research award, the

Alfred P. Sloan Fellowship, Microsoft Faculty Fellowship, and Packard Foundation Fellowship.

1 Introduction

Pseudorandom functions (PRFs) are one of the fundamental building blocks in modern cryptogra-
phy. A PRF system consists of a keyed function F and a set of keys K such that for a randomly
chosen key k ∈ K, the output of the function F (k, x) for any input x in the input space “looks”
random to a computationally bounded adversary, even when given polynomially many evaluations
of F (k, ·). Recently, the concept of constrained pseudorandom functions1 was proposed in the con-
current works of Boneh and Waters [4], Boyle, Goldwasser and Ivan [6] and Kiayias, Papadopoulos,
Triandopoulos and Zacharias [21]. A constrained PRF system is associated with a family of boolean
functions F = {f}. As in standard PRFs, there exists a set of master keys K that can be used to
evaluate the PRF F . However, given a master key k, it is also possible to derive a constrained key
kf associated with a function f ∈ F . This constrained key kf can be used to evaluate the function
F (k, ·) at all inputs x such that f(x) = 1. Intuitively, we would want that even if an adversary has
kf , the PRF evaluation at an input x not accepted by f looks random. Security is captured by
an adaptive game between a PRF challenger and an adversary. The adversary is allowed to make
multiple constrained key or point evaluation queries before committing to a challenge x∗ not equal
to any of the evaluation queries or accepted by any of the functions for which he obtained a con-
strained key. 2 The challenger either sends the PRF evaluation at x∗ or an output chosen uniformly
at random from the PRF range space, and the adversary wins if he can distinguish between these
two cases.

Since their inception, constrained PRFs have found multiple applications. For example, Boneh
and Waters [4] gave applications of broadcast encryption with optimal ciphertext length, identity-
based key exchange, and policy-based key distribution. Sahai and Waters [24] used constrained
PRFs as a central ingredient in their punctured programming methodology for building cryptosys-
tems using indistinguishable obfuscation. Boneh and Zhandry [5] likewise applied constrained PRFs
for realizing multi-party key exchange and broadcast systems.

Adaptive Security in Constrained PRFs In their initial work, Boneh and Waters [4] showed
constructions of constrained PRFs for different function families, including one for the class of all
polynomial circuits (based on multilinear maps). However, all their constructions offer selective
security - a weaker notion where the adversary must commit to the challenge input x∗ before
making any evaluation/constrained key queries.3 Using complexity leveraging, one can obtain
adaptive security by guessing the challenge input x∗ before any queries are made. However, this
results in exponential security loss. The works of [6, 21] similarly dealt with selective security.

Recently, Fuchsbauer, Konstantinov, Pietrzak and Rao [11] showed adaptive security for prefix-
fixing constrained PRFs, but with quasi-polynomial security loss. Also recently, Hofheinz [16]
presented a novel construction that achieves adaptive security for bit-fixing constrained PRFs, but
in the random oracle model.

While selective security has been sufficient for some applications of constrained PRFs, including
many recent proofs leveraging the punctured programming [24] methodology (e.g., [24, 19, 5, 2]),
there are applications that demand adaptive security, where the security game allows the adversary
to query the PRF on many inputs before deciding on the point to puncture. For instance, [5] give

1These were alternatively called functional PRFs [6] and delegatable PRFs [21].
2This definition can be extended to handle multiple challenge points. See Section 3 for details.
3The prefix construction of [6] and [21] were also selective.

1

a construction for multiparty key exchange that is semi-statically secure, and this construction
requires adaptively secure constrained PRFs for circuits. We anticipate that the further realization
of adaptively secure PRFs will introduce further applications of them.

Our Objective and Results Our goal is to study adaptive security of constrained PRFs in the
standard model. We initiate this exploration with puncturable PRFs, first explicitly introduced
in [24] as a specialization of constrained PRFs. A puncturable PRF family is a special class
of constrained PRFs, where the constrained key is associated with an element x′ in the input
domain. The key allows evaluation at all points x 6= x′. As noted by [4, 6, 21], the GGM tree-
based construction of PRFs from one-way functions (OWFs) [14] can be modified to construct a
puncturable PRF. 4 A selective proof of security follows via a hybrid argument, where the reduction
algorithm uses the pre-determined challenge query x∗ to “plant” its OWF challenge. However, such
a technique does not seem powerful enough to obtain adaptive security with only a polynomial-
factor security loss. The difficulty in proving adaptive security arises due to the fact that the
reduction algorithm must respond to the evaluation queries, and then output a punctured key
that is consistent with the evaluations. This means that the reduction algorithm must be able
to evaluate the PRF at a large set S (so that all evaluation queries lie in S with non-negligible
probability). However, S cannot be very large, otherwise the challenge x∗ will lie in S, in which
case the reduction algorithm cannot use the adversary’s output.

In this work, we show new techniques for constructing adaptively-secure puncturable PRFs in
the standard model. A central contribution is to overcome the conflict above, by allowing the
reduction algorithm to commit to the evaluation queries, and at the same time, ensuring that the
PRF output at the challenge point is unencumbered by the commitment.

Our main idea is to execute a delayed commitment to part of the PRF by partitioning. Initially,
in our construction all points are tied to a single (Naor-Reingold [23] style) PRF. To prove security
we begin by using the admissible hash function of Boneh and Boyen [3]. We partition the inputs
into two distinct sets. The evaluable set which contains about (1 − 1/q) fraction of inputs, and a
challenge set which contains about 1/q fraction of inputs, where q is the number of point evaluation
queries made by the attacker. Via a set of hybrid steps using the computational assumptions of
indistinguishability obfuscation and subgroup hiding we modify the construction such that we
use one Naor-Reingold PRF function to evaluate points in the evaluable set and a completely
independent Naor-Reingold PRF to evaluate points in the challenge set.

After this separation has been achieved, there is a clearer path for our proof of security. At this
point the reduction algorithm will create one PRF itself and use it to answer any attacker point
query in the evaluable set. If it is asked for a point x in the challenge set, it will simply abort.
(The admissible hash function ensures that we get through without abort with some non-negligible
probability.) Eventually, the attacker will ask for a punctured key on x∗, which defines x∗ as the
challenge input. Up until this point the reduction algorithm has made no commitments on what
the second challenge PRF is. It then constructs the punctured key using the a freshly chosen PRF
for the challenge inputs. However, when constructing this second PRF it now knows what the
challenge x∗ actually is and can fall back on selective techniques for completing the proof.

At a lower level our core PRF will be the Naor-Reingold PRF [23], but based in composite-
order groups. Let G be a group of order N = pq, where p and q are primes. The master key
consists of a group element v ∈ G and 2n exponents di,b ∈ ZN (for i = 1 to n and b ∈ {0, 1}).

4In fact, the GGM PRF construction can be used to construct prefix-fixing constrained PRFs.

2

The PRF F takes as input a key k = (v, {di,b}), an `-bit input x, uses a public admissible hash

function h : {0, 1}` → {0, 1}n to compute h(x) = b1 . . . bn and outputs v
∏n

j=1 dj,bj . A punctured key
corresponding to x′ derived from master key k is the obfuscation of a program P which has k, x′

hardwired and outputs F (k, x) on input x 6= x′, else it outputs ⊥.
We will use a parameterized problem (in composite groups) to perform some of the separation

step. Our assumption is that given g, ga, . . . , ga
n−1

for randomly chosen g ∈ G and a ∈ Z∗N it is hard
to distinguish ga

n
from a random group element. While it is somewhat undesirable to base security

on a parameterized assumption, we are able to use the recent results of Chase and Meiklejohn [8]
to reduce this to the subgroup decision problem in DDH hard composite order groups.

t-puncturable PRFs We also show how to construct t-puncturable PRFs: PRFs that can be
punctured at any set of inputs S, provided |S| ≤ t (where t(·) is a fixed polynomial). We show how
to transform any (single) puncturable PRF family to a t-puncturable PRF family, using indistin-
guishability obfuscation. In the security game for t-puncturable PRFs, the adversary is allowed to
query for multiple t-punctured keys, each corresponding to a set S of size at most t. Finally, the
adversary sends a challenge input x∗ that lies in all the sets queried, and receives either the PRF
evaluation at x∗ or a uniformly random element of the range space.

In the construction, the setup and evaluation algorithm for the t-puncturable PRF are the same
as those for the puncturable PRF. In order to puncture a key k at set S, the puncturing algorithm
outputs the obfuscation of a program P that takes as input x, checks that x /∈ S, and outputs
F (k, x).

For the proof of security, we observe that when the first t-punctured key query S1 is made by
the adversary, the challenger can guess the challenge x̃ ∈ S1. If this guess is incorrect, then the
challenger simply aborts (which results in a 1/t factor security loss). However, if the guess is correct,
then the challenger can now use the punctured key Kx̃ for all future evaluation/t-punctured key
queries. From the security of puncturable PRFs, it follows that even after receiving evaluation/t-
punctured key queries, the challenger will not be able to distinguish between F (k, x̃) and a random
element in the range space.

We detail this transformation and its proof in Section 5.1. We also believe that we can use a
similar approach to directly modify our main construction to handle multiple punctured points,
however, we choose to focus on the generic transformation.

Related Works Two recent works have explored the problem of adaptive security of constrained
PRFs. Fuchsbauer, Konstantinov, Pietrzak and Rao [11] study the adaptive security of the GGM
construction for prefix-free constrained PRFs. They show an interesting reduction to OWFs that
suffers only a quasi-polynomial factor qO(logn) loss, where q is the number of queries made by the
adversary, and n is the length of the input. This beats the straightforward conversion from selective
to adaptive security, which results in O(2n) security loss.

Hofheinz [16] shows a construction for bit-fixing constrained PRFs that is adaptively secure,
assuming indistinguishability obfuscation and multilinear maps in the random oracle model. It also
makes novel use of the random oracle for dynamically defining the challenge space based on the
output of h. It is currently unclear whether such ideas could be adapted to the standard model.

Fuchsbauer et al. also show a negative result for the Boneh-Waters [4] construction of bit-
fixing constrained PRFs. They show that any simple reduction from a static assumption to the
adaptive security of the Boneh-Waters [4] bit-fixing constrained PRF construction must have an

3

exponential factor security loss. More abstractly, using their techniques, one can show that any
bit-fixing scheme that has the following properties will face this obstacle: (a) fingerprinting queries
- By querying for a set of constrained keys, the adversary can obtain a fingerprint of the master
key. (b) checkability - It is possible to efficiently check that any future evaluation/constrained key
queries are consistent with the fingerprint. While these properties capture certain constructions,
small perturbations to them could potentially circumvent checkability.

Partitioning type proofs have been used in several applications including identity-based en-
cryption [3, 25, 1, 17], verifiable random functions [20], and proofs of certain signature signature
schemes [9, 18, 19]. We believe ours is the first to use partitioning for a delayed commitment to
parameters. We note that our delayed technique is someway reminiscent to that of Lewko and
Waters [22].

Recently, there has been a push to prove security for indistinguishability obfuscation from basic
multilinear map assumptions. The recent work of Gentry, Lewko, Sahai and Waters [13] is a step
in this direction, but itself requires the use of complexity leveraging. In the future work, we might
hope for such reductions with just polynomial loss — perhaps for special cases of functionality.
And thus give an end-to-end polynomial loss proof of puncturable PRFs from multilinear maps
assumptions.

Two works have explored the notion of constrained verifiable random functions (VRFs). Fuchs-
bauer [10] and Chandran, Raghuraman and Vinayagamurthy [7] show constructions of selectively
secure constrained VRFs for the class of all polynomial sized circuits. The construction in [7] is
also delegatable.

Future Directions A natural question is to construct adaptively-secure constrained PRFs for
larger classes of functions in the standard model. Given the existing results of [11] and [16], both
directions seem possible. While the techniques of [16] are intricately tied to the random oracle
model, it is plausible there could be constructions in the standard model that evade the negative
result of [11]. On the other hand, maybe the negative result of [11] (which is specific to the [4]
construction) can be extended to show a similar lower bound for all constructions of constrained
PRFs with respect to function family F .

2 Preliminaries

First, we recall the notion of admissible hash functions due to Boneh and Boyen [3]. Here we state
a simplified definition from [19]. Informally, an admissible hash function family is a function h with
a ‘partition sampling algorithm’ AdmSample. This algorithm takes as input a parameter Q and
outputs a ‘random’ partition of the outputs domain, where one of the partitions has 1/Q fraction
of the points. Also, this partitioning has special structure which we will use in our proof.

Definition 2.1 Let l, n and θ be efficiently computable univariate polynomials, h : {0, 1}l(λ) →
{0, 1}n(λ) an efficiently computable function and AdmSample a PPT algorithm that takes as input
1λ and an integer Q, and outputs a string u ∈ {0, 1,⊥}n(λ). For any u ∈ {0, 1,⊥}n(λ), define
Pu : {0, 1}l(λ) → {0, 1} as follows: Pu(x) = 0 if for all 1 ≤ j ≤ n(λ), h(x)j 6= uj, else Pu(x) = 1.

We say that (h,AdmSample) is θ-admissible if the following condition holds:
For any efficiently computable polynomial Q, ∀ x1, . . . , xQ(λ), x

∗ ∈ {0, 1}l(λ), where x∗ /∈ {xi}i,

Pr[(∀i ≤ Q(λ), Pu(xi) = 1) ∧ Pu(x∗) = 0] ≥ 1

θ(Q(λ))

4

where the probability is taken over u← AdmSample(1λ, Q(λ)).

Theorem 2.1 (Admissible Hash Function Family [3], simplified proof in [9]) For any ef-
ficiently computable polynomial l, there exist efficiently computable polynomials n, θ such that there
exist θ-admissible function families mapping l bits to n bits.

Note that the above theorem is information theoretic, and is not based on any cryptographic
assumptions.

Next, we recall the definition of indistinguishability obfuscation from [12, 24]. Let PPT denote
probabilistic polynomial time.

Definition 2.2 (Indistinguishability Obfuscation) A uniform PPT machine iO is called an indis-
tinguishability obfuscator for a circuit class {Cλ} if it satisfies the following conditions:

• (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs
x, we have that C ′(x) = C(x) where C ′ ← iO(λ,C).

• (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT distinguisher
B = (Samp,D), there exists a negligible function negl(·) such that the following holds: if for
all security parameters λ ∈ N,Pr[∀x,C0(x) = C1(x) : (C0;C1;σ)← Samp(1λ)] > 1− negl(λ),
then

|Pr[D(σ, iO(λ,C0)) = 1 : (C0;C1;σ)← Samp(1λ)]−
Pr[D(σ, iO(λ,C1)) = 1 : (C0;C1;σ)← Samp(1λ)]| ≤ negl(λ).

In a recent work, [12] showed how indistinguishability obfuscators can be constructed for the circuit
class P/poly. We remark that (Samp,D) are two algorithms that pass state, which can be viewed
equivalently as a single stateful algorithm B. In our proofs we employ the latter approach, although
here we state the definition as it appears in prior work.

2.1 Assumptions

Let G be a PPT group generator algorithm that takes as input the security parameter 1λ and
outputs (N, p, q,G,Gp, Gq, g1, g2) where p, q ∈ Θ(2λ) are primes, N = pq, G is a group of order N ,
Gp and Gq are subgroups of G of order p and q respectively, and g1 and g2 are generators of Gp

and Gq respectively.

Assumption 1 (Subgroup Hiding for Composite Order DDH-Hard Groups) Let (N , p,
q, G, Gp, Gq, g1, g2) ← G(1λ) and b ← {0, 1}. Let T ← G if b = 0, else T ← Gp. The advantage
of algorithm A in solving Assumption 1 is defined as

AdvSGH
A =

∣∣∣∣Pr[b← A(N,G,Gp,Gq, g1, g2, T)]− 1

2

∣∣∣∣
We say that Assumption 1 holds if for all PPT A, AdvSGH

A is negligible in λ.

5

Note that the adversary A gets generators for both subgroups Gp and Gq. This is in contrast to
bilinear groups, where, if given generators for both subgroups, the adversary can use the pairing to
distinguish a random group element from a random subgroup element.

Analogously, we assume that no PPT adversary can distinguish between a random element of
G and a random element of Gq with non-negligible advantage. This is essentially Assumption 1,
where prime q is chosen instead of p, and Gq is chosen instead of Gp.

Assumption 2 This assumption is parameterized with an integer n ∈ Z. Let (N, p, q,G,Gp,Gq, g1, g2)←
G(1λ), g ← G, a← Z∗N and b← {0, 1}. Let D = (N,G,Gp,Gq, g1, g2, g, g

a, . . . , ga
n−1

). Let T = ga
n

if b = 0, else T ← G. The advantage of algorithm A in solving Assumption 2 is defined as

AdvA =

∣∣∣∣Pr[b← A(D,T)]− 1

2

∣∣∣∣
We say that Assumption 2 holds if for all PPT A, AdvA is negligible in λ.

We will use Assumption 2 for clarity in certain parts of our proof, but we do not give it
a name because it is implied by other named assumptions. First, Assumption 2 is implied by
the n-Power Decisional Diffie-Hellman Assumption [15]. Second, it is also implied by the non-
parameterized Assumption 1. The recent results of Chase and Meiklejohn [8] essentially show
this latter implication, but that work focuses on the target groups of bilinear maps, whereas our
algebraic focus does not involve bilinear maps.

3 Constrained Pseudorandom Functions

In this section, we define the syntax and security properties of a constrained pseudorandom function
family. This definition is similar to the one in Boneh-Waters [4], except that the keys are constrained
with respect to a circuit family instead of a set system.

Let K denote the key space, X the input domain and Y the range space. The PRF is a
function F : K×X → Y that can be computed by a deterministic polynomial time algorithm. We
will assume there is a Setup algorithm F.setup that takes the security parameter λ as input and
outputs a random secret key k ∈ K.

A PRF F : K × X → Y is said to be constrained with respect to a circuit family C if there is
an additional key space Kc, and three algorithms F.setup, F.constrain and F.eval as follows:

• F.setup(1λ) is a PPT algorithm that takes the security parameter λ as input and outputs a
description of the key space K, the constrained key space Kc and the PRF F .

• F.constrain(k,C) is a PPT algorithm that takes as input a PRF key k ∈ K and a circuit C ∈ C
and outputs a constrained key kC ∈ Kc.

• F.eval(kC , x) is a deterministic polynomial time algorithm that takes as input a constrained
key kC ∈ Kc and x ∈ X and outputs an element y ∈ Y. Let kC be the output of
F.constrain(k,C). For correctness, we require the following:

F.eval(kC , x) =

{
F (k, x) if C(x) = 1

⊥ otherwise

6

Security of Constrained Pseudorandom Functions: Intuitively, we require that even after
obtaining several constrained keys, no polynomial time adversary can distinguish a truly random
string from the PRF evaluation at a point not accepted by the queried circuits. This intuition can
be formalized by the following security game between a challenger and an adversary A.

Let F : K×X → Y be a constrained PRF with respect to a circuit family C. The security game
consists of three phases.

Setup Phase The challenger chooses a random key k ← K and b← {0, 1}.

Query Phase In this phase, A is allowed to ask for the following queries:

• Evaluation Query A sends x ∈ X , and receives F (k, x).
• Key Query A sends a circuit C ∈ C, and receives F.constrain(k,C).
• Challenge Query A sends x ∈ X as a challenge query. If b = 0, the challenger outputs
F (k, x). Else, the challenger outputs a random element y ← Y.

Guess A outputs a guess b′ of b.

Let E ⊂ X be the set of evaluation queries, L ⊂ C be the set of constrained key queries and Z ⊂ X
the set of challenge queries. A wins if b = b′ and E ∩ Z = φ and for all C ∈ L, z ∈ Z,C(z) = 0.
The advantage of A is defined to be AdvFA(λ) = Pr[A wins].

Definition 3.1 The PRF F is a secure constrained PRF with respect to C if for all PPT adversaries
A AdvFA(λ) is negligible in λ.

3.1 Puncturable Pseudorandom Functions

In this section, we define the syntax and security properties of a puncturable pseudorandom function
family. Puncturable PRFs are a special class of constrained pseudorandom functions.

A PRF F : K × X → Y is a puncturable pseudorandom function if there is an additional key
space Kp and three polynomial time algorithms F.setup, F.eval and F.puncture as follows:

• F.setup(1λ) is a randomized algorithm that takes the security parameter λ as input and
outputs a description of the key space K, the punctured key space Kp and the PRF F .

• F.puncture(k, x) is a randomized algorithm that takes as input a PRF key k ∈ K and x ∈ X ,
and outputs a key kx ∈ Kp.

• F.eval(kx, x′) is a deterministic algorithm that takes as input a punctured key kx ∈ Kp and
x′ ∈ X . Let k ∈ K, x ∈ X and kx ← F.puncture(k, x). For correctness, we need the following
property:

F.eval(kx, x
′) =

{
F (k, x′) if x 6= x′

⊥ otherwise

Security of Puncturable PRFs: The security game between the challenger and the adversary
A consists of the following four phases.

7

Setup Phase The challenger chooses uniformly at random a PRF key k ← K and a bit b← {0, 1}.

Evaluation Query Phase A queries for polynomially many evaluations. For each evaluation
query x, the challenger sends F (k, x) to A.

Challenge Phase A chooses a challenge x∗ ∈ X . The challenger computes kx∗ ← F.puncture(k, x∗).
If b = 0, the challenger outputs kx∗ and F (k, x∗). Else, the challenger outputs kx∗ and y ← Y chosen
uniformly at random.

Guess A outputs a guess b′ of b.

Let E ⊂ X be the set of evaluation queries. A wins if b = b′ and x∗ /∈ E. The advantage of A is
defined to be AdvFA(λ) = Pr[A wins].

Definition 3.2 The PRF F is a secure puncturable PRF if for all probabilistic polynomial time
adversaries A AdvFA(λ) is negligible in λ.

3.1.1 t-Puncturable Pseudorandom Functions

The notion of puncturable PRFs can be naturally extended to that of t-puncturable PRFs, where
it is possible to derive a key punctured at any set S of size at most t. A formal definition of
t-puncturable PRFs can be found in Section 5.

4 Construction

We now describe our puncturable PRF family. It consists of the PRF F : K × X → Y and the
three algorithms F.setup, F.puncture and F.eval. The input domain is X = {0, 1}`, where ` = `(λ).
We define the key space K and range space Y as part of the setup algorithm described next.

F.setup(1λ) F.setup, on input 1λ, runs G to compute (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Let n, θ
be polynomials such that there exists a θ-admissible hash function h mapping `(λ) bits to n(λ)
bits. For simplicity of notation, we will drop the dependence of ` and n on λ.

The key space is K = G×
(
Z2
N

)n
and the range is Y = G. The setup algorithm chooses v ∈ G,

di,b ∈ ZN , for i = 1 to n and b ∈ {0, 1}, and sets k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
The PRF F for key k on input x is then computed as follows. Let k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))) ∈

G×
(
Z2
N

)n
and h(x) = (b1, . . . , bn), where bi ∈ {0, 1}. Then,

F (k, x) = v
∏n

j=1 dj,bj .

F.puncture(k,x′) F.puncture computes an obfuscation of PuncturedKeyk,x′ (defined in Figure 1);
that is, Kx′ ← iO(λ,PuncturedKeyk,x′) where PuncturedKeyk,x′ is padded to be of appropriate size. 5

5Looking ahead, in the proof of security, the program PuncturedKeyk,x′ will be replaced by PuncturedKey′V,w,D,u,x′ ,
PuncturedKeyAltu,k,k′,x′ and PuncturedKeyAlt′u,W,E,k,x′ in subsequent hybrids. Since this transformation relies on iO
being secure, we need that all programs have same size. Hence, all programs are padded appropriately to ensure that
they have the same size.

8

PuncturedKeyk,x′

Input: x ∈ {0, 1}`

Constants : The group G

k = (v, ((d1,0, d1,1) . . . (dn,0, dn,1))) ∈ G×
(
Z2
N

)n
x′ ∈ {0, 1}`

Compute h(x) = b1 . . . bn ∈ {0, 1}n.
if x = x′ then

Output ⊥.
else

Output v
∏n

j=1 dj,bj .
end if

Figure 1: Program PuncturedKey

F.eval(Kx′ ,x) The punctured key Kx′ is a program that takes an `-bit input. We define

F.eval(Kx′ , x) = Kx′(x).

4.1 Proof of Security

We will now prove that our construction is a secure puncturable PRF as defined in Definition 3.2.
Specifically, the claim we show is:

Theorem 4.1 (Main Theorem) Assuming iO is a secure indistinguishability obfuscator and the
Subgroup Hiding Assumption holds for groups output by G, the PRF F defined above, together with
algorithms F.setup, F.puncture and F.eval, is a secure punctured pseudorandom function as defined
in Definition 3.2.

Proof: In order to prove this, we define the following sequence of games. Assume the adversary
A makes Q = Q(λ) evaluation queries (where Q(·) is a polynomial) before sending the challenge
input.

4.1.1 Sequence of Games

We underline the primary changes from one game to the next.

Game 0 This game is the original security game from Definition 3.2 between the challenger and
A instantiated by the construction under analysis. Here the challenger first chooses a random PRF
key, then A makes evaluation queries and finally sends the challenge input. The challenger responds
by sending a key punctured at the challenge input, and either a PRF evaluation at the challenged
point or a random value.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to n and b ∈ {0, 1},
and set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).

2. On any evaluation query xi ∈ {0, 1}`, compute h(xi) = bi1 . . . b
i
n and output v

∏n
j=1 dj,bi

j .

9

3. A sends challenge input x∗ such that x∗ 6= xi ∀ i ≤ Q. ComputeKx∗ ← iO(λ,PuncturedKeyk,x∗)

and h(x∗) = b∗1 . . . b
∗
n. Let y0 = v

∏n
j=1 dj,b∗j and y1 ← G.

4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 1 This game is the same as the previous one, except that we simulate a partitioning game
while the adversary operates and if an undesirable partition arises, we abort the game and decide
whether or not the adversary “wins” by a coin flip. This partitioning game works as follows: the
challenger samples u ∈ {0, 1,⊥}n using AdmSample and aborts if either there exists an evaluation
query x such that Pu(x) = 0 or the challenge query x∗ satisfies Pu(x∗) = 1.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to n and b ∈ {0, 1},
and set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u← AdmSample(1λ, Q) and let Su = {x : Pu(x) = 1} (recall Pu(x) = 0 if h(x)j 6=
uj ∀1 ≤ j ≤ n).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏n
j=1 dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi ∀ i ≤ Q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKeyk,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = v

∏n
j=1 dj,b∗j and

y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′. B performs an artificial abort step. If artificial abort occurs, B chooses a

uniformly random bit γ′ ← {0, 1}, and A wins if γ′ = 1.
If artificial abort does not occur, A wins if β = β′.

Artificial Abort: The information theoretic guarantee of admissible hash functions states that for
all queries x1, . . . , xQ, x

∗, Pr[Pu(xi) = 1 for all i, Pu(x∗) = 0] ≥ 1/θ(Q). However, this probability
(over the choice of u) could be different for different tuples (x1, . . . , xQ, x

∗). To handle this, Waters
[25] introduced the artificial abort technique. At a high level, this technique ensures that the
experiment aborts with almost identical probability for all input sequences. This is achieved in
the following manner: after the adversary submits its guess, the challenger estimates the abort
probability corresponding to this input sequence. The experiment then ‘artificially’ aborts with
an additional probability η. This probability η, which depends on the sequence (x1, . . . , xQ, x

∗), is
computed as follows.

• First, estimate the abort probability corresponding to (x1, . . . , xQ, x
∗). This is performed

by choosing ũ ← AdmSample(1λ, Q) repeatedly and checking if Pũ(xi) = 1 for all i and
Pũ(x∗) = 0. Using Chernoff bounds, we can argue that this gives us an accurate estimate τ
of the abort probability corresponding to (x1, . . . , xQ, x

∗).
• Let τ∗ = 1− 1/θ(Q). Abort with probability (τ∗ − τ)/(1− τ).

These two steps ensure that the abort probability is always negligibly close to τ∗ (independent of
the adversary’s queries). The formal analysis for this part is identical to the one in [25], [20].

10

Game 2 In this game, the challenger modifies the punctured key and outputs an obfuscation of
PuncturedKeyAlt defined in Figure 2. On inputs x such that Pu(x) = 1, the altered punctured key
uses the same master key k as before. However, if Pu(x) = 0, the altered punctured key uses a
different master key k′ that is randomly chosen from the key space.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to n and b ∈ {0, 1}.
Set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u← AdmSample(1λ, Q).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏n
j=1 dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi ∀ i ≤ Q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.
Else choose w ∈ G, ei,b ∈ ZN , for i = 1 to n and b ∈ {0, 1}.
Set k′ = (w, ((e1,0, e1,1), . . . , (en,0, en,1))).

Compute Kx∗ ← iO(λ,PuncturedKeyAltu,k,k′,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = w

∏n
j=1 ej,b∗j

and y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′. B performs an artificial abort step. If artificial abort occurs, B chooses a

uniformly random bit γ′ ← {0, 1}, and A wins if γ′ = 1.
If artificial abort does not occur, A wins if β = β′.

PuncturedKeyAltu,k,k′,x′

Input: x ∈ {0, 1}`

Constants : The group G, k = (v, ((d1,0, d1,1) . . . (dn,0, dn,1))) ∈ G×
(
Z2
N

)n
k′ = (w, ((e1,0, e1,1) . . . (en,0, en,1))) ∈ G×

(
Z2
N

)n
x′ ∈ {0, 1}`, u ∈ {0, 1,⊥}n

Compute h(x) = b1 . . . bn.
if x = x′ then

Output ⊥.
else if Pu(x) = 0 then

output w
∏n

j=1 ej,bj .
else

Output v
∏n

j=1 dj,bj .
end if

Figure 2: Program PuncturedKeyAlt

Game 3 In this game, the challenger changes how the master key k′ is chosen so that some
elements contain an a-factor, for use on inputs x where Pu(x) = 0.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to n and b ∈ {0, 1},

11

and set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u← AdmSample(1λ, Q).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏
j dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi ∀ i ≤ Q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.
Else choose w ← G, a← Z∗N and e′i,b ← ZN .

Let ei,b = e′i,b · a if h(x∗)i = b, else ei,b = e′i,b.

Let k′ = (w, ((e1,0, e1,1), . . . , (en,0, en,1))), Kx∗ ← iO(PuncturedKeyAltu,k,k′,x∗).

Let h(x∗) = b∗1 . . . b
∗
n and y0 = w

∏
j ej,b∗j and y1 ← G.

4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′. B performs an artificial abort step. If artificial abort occurs, B chooses a

uniformly random bit γ′ ← {0, 1}, and A wins if γ′ = 1.
If artificial abort does not occur, A wins if β = β′.

Game 4 This game is the same as the previous one, except that the altered punctured program

contains the constants {wai}ni=0 hardwired. These terms are used to compute the output of the
punctured program. The punctured key is an obfuscation of PuncturedKeyAlt′ defined in Figure 3.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to n and b ∈ {0, 1},
and set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u← AdmSample(1λ, Q).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏
j dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi ∀ i ≤ Q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.
Else choose w ← G, a← Z∗N and e′i,b ← ZN .

Let W = (w,wa, . . . , wa
n−1

), E = ((e′1,0, e
′
1,1), . . . , (e

′
n,0, e

′
n,1)).

Let K ′′x∗ ← iO(PuncturedKeyAlt′u,W,E,k,x∗), h(x∗) = b∗1 . . . b
∗
n, y0 =

(
wa

n)∏j e
′
j,b∗

j and y1 ← G.

4. Flip coin β ← {0, 1}. Output (K ′′x∗ , yβ).
5. A outputs β′. B performs an artificial abort step. If artificial abort occurs, B chooses a

uniformly random bit γ′ ← {0, 1}, and A wins if γ′ = 1.
If artificial abort does not occur, A wins if β = β′.

Game 5 In this game, we replace the term wa
n

with a random element from G. Hence, both y0
and y1 are random elements of G, thereby ensuring that any adversary has zero advantage in this
game.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose v ∈ G, di,b ∈ ZN , for i = 1 to n and b ∈ {0, 1},
and set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).
Choose u← AdmSample(1λ, Q).

12

PuncturedKeyAlt′u,W,E,k,x′

Input: x ∈ {0, 1}`

Constants : The group G, k = (v, ((d1,0, d1,1) . . . (dn,0, dn,1))) ∈ G×
(
Z2
N

)n
W = (w0, . . . , wn−1) ∈ Gn, E = ((e′1,0, e

′
1,1), . . . , (e′n,0, e

′
n,1)) ∈

(
Z2
N

)n
x′ ∈ {0, 1}`, u ∈ {0, 1,⊥}n

Compute h(x) = b1 . . . bn and h(x′) = b′1 . . . b
′
n. Let tx′(x) = |{i : bi = b′i}|.

if x = x′ then
Output ⊥.

else if Pu(x) = 0 then

output
(
wtx′ (x)

)∏n
j=1 e′j,bj .

else
Output v

∏n
j=1 dj,bj .

end if

Figure 3: Program PuncturedKeyAlt’

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏n
j=1 dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi ∀ i ≤ Q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.
Else choose w ← G, a ← Z∗N , and e′i,b ← ZN . Let W = (w,wa, . . . , wa

n−1
), E = ((e′1,0, e

′
1,1),

. . ., (e′n,0, e
′
n,1)) and Kx∗ ← iO(λ,PuncturedKeyAlt′u,W,E,k,x∗).

Let h(x∗) = b∗1 . . . b
∗
n. Choose T ← G and let y0 = (T)

∏n
j=1 e

′
j,b∗

j and y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′. B performs an artificial abort step. If artificial abort occurs, B chooses a

uniformly random bit γ′ ← {0, 1}, and A wins if γ′ = 1.
If artificial abort does not occur, A wins if β = β′.

4.1.2 Adversary’s Advantage in these Games

Let AdviA denote the advantage of adversary A in Game i. We will now show that if an adversary
A has non-negligible advantage in Game i, then A has non-negligible advantage in Game i + 1.
Finally, we show that A has advantage 0 in Game 5.

Claim 1 For any adversary A, Adv1A ≥ Adv0A/θ(Q).

Proof: This claim follows from the θ-admissibility of the hash function h. Recall h is θ-admissible
if for all x1, . . . , xq, x

∗, Pr[∀i, Pu(xi) = 1 ∧ Pu(x∗) = 0] ≥ 1/θ(Q), where the probability is only
over the choice of u← AdmSample(1λ, Q). Therefore, if A wins with advantage ε in Game 0, then
A wins with advantage at least ε/θ(Q) in Game 1.

13

Claim 2 Assuming iO is a secure indistinguishability obfuscator and the Subgroup Hiding Assump-
tion holds, for any PPT adversary A,

Adv1A − Adv2A ≤ negl(λ).

Clearly, the two programs in Game 1 and Game 2 are functionally different (they differ on ‘challenge
partition’ inputs x where Pu(x) = 0), and therefore the proof of this claim involves multiple
intermediate experiments. In the first hybrid experiment, we transform the program such that the
program computes the output in a different manner, although the output is the same as in the
original program. Next, the constants hardwired in the modified program are modified such that
the output changes on all ‘challenge partition’ inputs (this step uses Assumption 2). Essentially,
both programs use a different base for the challenge partition inputs. Next, using Subgroup Hiding
Assumption and Chinese Remainder Theorem, even the exponents can be changed for the challenge
partition, thereby ensuring that the original program and final program use different PRF keys for
the challenge partition. The formal proof can be found in Appendix A.

Claim 3 For any PPT adversary A, Adv3A = Adv2A.

Proof: Game 2 and Game 3 are identical, except for the manner in which the constants ei,b are
chosen. In Game 2, ei,b ← ZN , while in Game 3, the challenger first chooses e′i,b ← ZN , a ← Z∗N ,
and sets ei,b = e′i,b · a if h(x)i = b, else sets ei,b = e′i,b. Since a ∈ Z∗N (and therefore is invertible),
e′i,b · a is also a uniformly random element in ZN if e′i,b is. Hence the two experiments are identical.

Claim 4 If there exists a PPT adversary A such that Adv3A − Adv4A is non-negligible in λ, then
there exists a PPT distinguisher B that breaks the security of iO with advantage non-negligible in
λ.

Proof: Suppose there exists a PPT adversary A such that Adv3A − Adv4A = ε. We will construct
a PPT algorithm B that breaks the security of iO with advantage ε by interacting with A. B first
sets up the parameters, including u and k, and answers the evaluation queries of A exactly as in
steps 1 and 2 of Game 3, which are identical to steps 1 and 2 of Game 4. When A sends B a
challenge input x∗, B checks that Pu(x∗) = 0 and if not aborts (identical in both games).

Next B chooses further values to construct the circuits: w ← G, a ← Z∗N and e′i,b ← ZN .
Let ei,b = e′i,b · a if h(x∗)i = b, else ei,b = e′i,b. Let k′ = (w, ((e1,0, e1,1), . . . , (en,0, en,1))), W =

(w,wa, . . . , wa
n−1

) and E = ((e′1,0, e
′
1,1), . . . , (e

′
n,0, e

′
n,1)).

B constructs C0 = PuncturedKeyAltu,k,k′,x∗ , C1 = PuncturedKeyAlt′u,W,E,k,x∗ , and sends C0, C1

to the iO challenger. B receives Kx∗ ← iO(Cb) from the challenger. It computes h(x∗) = b∗1 . . . b
∗
n,

y0 = w
∏

j ej,b∗j , y ← G, β ← {0, 1}, sends (Kx∗ , yβ) to A and receives β′ in response. If β = β′, B
outputs 0, else it outputs 1.

We will now prove that the circuits C0 and C1 have identical functionality. Consider any ` bit
string x, and let h(x) = b1 . . . bn. Recall tx∗(x) = |{i : bi = b∗i }|.

For any x ∈ {0, 1}` such that x = x∗, both circuits output ⊥.

For any x ∈ {0, 1}` such that x 6= x∗ and Pu(x) = 1, both circuits output v
∏n

j=1 dj,bj .
For any x ∈ {0, 1}` such that x 6= x∗ and Pu(x) = 0, we have

14

C0(x) = PuncturedKeyAltu,k,k′,x∗(x) = w
∏n

j=1 ej,bj = w
a
tx∗(x) ∏n

j=1 e
′
j,bj =(

wtx∗ (x)
)∏n

j=1 e
′
j,bj = PuncturedKeyAlt′u,W,E,k,x∗(x) = C1(x).

As C0 and C1 have identical functionality, Pr[B wins] = Pr[A wins in Game 3] - Pr[A wins in Game 4].
If Adv3A − Adv4A = ε, then B wins the iO security game with advantage ε.

Claim 5 If there exists a PPT adversary A such that Adv4A − Adv5A is non-negligible in λ, then
there exists a PPT adversary B that breaks Assumption 2 with advantage non-negligible in λ.

Proof: Suppose there exists an adversary A such that Adv4A − Adv5A = ε, then we can build
an adversary that breaks Assumption 2 with advantage ε. The games are identical except that
Game 5 replaces the term wa

n
with a random element of G. On input an Assumption 2 instance

(N,G,Gp,Gq, g1, g2, w, w
a, . . ., wa

n−1
) together with challenge value T (which is either wa

n
or a

random element in G), use these parameters as in Game 5 with A. If A guesses it was in Game 4,
guess that T = wa

n
, else guess that T was random.

Observation 1 For any adversary A, Adv5A = 0.

Proof: If the challenger aborts either during the evaluation or challenge phase, then A has 0
advantage, since A wins with probability 1/2. If the challenger does not abort during both these
phases, then A receives (Kx∗ , yβ), and A must guess β. However, both y0 and y1 are uniformly
random elements in G, and therefore, Adv5A = 0.

4.1.3 Conclusion of the Main Proof

Given Claims 1-5 and Observation 1, we can conclude that if iO is a secure indistinguishability
obfuscator and Assumption 1 holds (in Appendix B, we show that Assumption 1 implies Assumption
2), then any PPT adversary A has negligible advantage in the puncturable PRF security game (i.e.,
Game 0).

5 t-Puncturable PRFs

Let t(·) be a polynomial. A PRF Ft : K × X → Y is a t-puncturable pseudorandom function if
there is an additional key space Kp and three polynomial time algorithms Ft.setup, Ft.eval and
Ft.puncture defined as follows.

• Ft.setup(1λ) is a randomized algorithm that takes the security parameter λ as input and
outputs a description of the key space K, the punctured key space Kp and the PRF Ft.

• Ft.puncture(k, S) is a randomized algorithm that takes as input a PRF key k ∈ K and S ⊂ X ,
|S| ≤ t(λ), and outputs a t-punctured key KS ∈ Kp.

15

• Ft.eval(kS , x′) is a deterministic algorithm that takes as input a t-punctured key kS ∈ Kp
and x′ ∈ X . Let k ∈ K, S ⊂ X and kS ← Ft.puncture(k, S). For correctness, we need the
following property:

Ft.eval(kS , x
′) =

{
Ft(k, x

′) if x′ /∈ S
⊥ otherwise

The security game between the challenger and adversary is similar to the security game for
puncturable PRFs. However, in this case, the adversary is allowed to make multiple challenge
queries (as in the security game for constrained PRFs). The game consists of the following three
phases.

Setup Phase The challenger chooses a random key k ← K and b← {0, 1}.

Query Phase In this phase, A is allowed to ask for the following queries:

• Evaluation Query A sends x ∈ X , and receives Ft(k, x).
• Key Query A sends a set S ⊂ X , and receives Ft.puncture(k, S).
• Challenge Query A sends x ∈ X as a challenge query. If b = 0, the challenger outputs
Ft(k, x). Else, the challenger outputs a random element y ← Y.

Guess A outputs a guess b′ of b.

Let x1, . . . , xq1 ∈ X be the evaluation queries, S1, . . . , Sq2 ⊂ X be the t-punctured key queries
and x∗1, . . . , x

∗
s be the challenge queries. A wins if ∀i ≤ q1, j ≤ s, xi 6= x∗j , ∀i ≤ q2, j ≤ s, x∗j ∈ Si

and b′ = b. The advantage of A is defined to be AdvFt
A (λ) = Pr[A wins].

Definition 5.1 The PRF Ft is a secure t-puncturable PRF if for all PPT adversaries A AdvFt
A (λ)

is negligible in λ.

5.1 Construction

In this section, we present our construction of t-puncturable PRFs from puncturable PRFs and
indistinguishability obfuscation. Let F : K×X → Y be a puncturable PRF, and F.setup, F.puncture,
F.eval the corresponding setup, puncturing and evaluation algorithms. We now describe our t-
puncturable PRF Ft, and the corresponding algorithms Ft.setup, Ft.puncture and Ft.eval.

Ft.setup(1λ) Ft.setup is the same as F.setup.

Ft.puncture(k,S) Ft.puncture(k, S) computes an obfuscation of the program PuncturedKeytk,S de-
fined in Figure 4; that is, KS ← iO(λ,PuncturedKeytk,S). As before, the program PuncturedKeytk,S
is padded to be of appropriate size.

Ft.eval(KS,x) The punctured key KS is a program that takes an input in X . We define

Ft.eval(KS , x) = KS(x).

16

PuncturedKeytk,S

Input: x ∈ X
Constants : The function description F, k ∈ K, S ⊂ X such that |S| ≤ t

if x ∈ S then
Output ⊥.

else
Output F (k, x).

end if

Figure 4: Program PuncturedKeyt

5.2 Proof of Security

We will now prove that the above construction is a secure t-puncturable PRF as defined in Definition
5.1.

Theorem 5.1 Assuming iO is a secure indistinguishability obfuscator and F , together with F.setup,
F.puncture and F.eval is a secure puncturable PRF, the PRF Ft defined above, together with Ft.setup,
Ft.puncture and Ft.eval, is a secure t-puncturable PRF.

For simplicity, we will assume that the adversary makes q1 evaluation queries, q2 punctured key
queries and 1 challenge query. As shown by [4], this can easily be extended to the general case
of multiple challenge queries via a hybrid argument. We will first define the intermediate hybrid
experiments.

Game 0 This game is the original security game between the challenger and adversary A, where
the challenger first chooses a PRF key, then A makes evaluation/t-punctured key queries and finally
sends the challenge input. The challenger responds with either the PRF evaluation at challenge
input, or sends a random element of the range space.

1. Choose a key k ← K.
2. A makes evaluation/t-punctured key queries.

(a) If A sends an evaluation query xi, then output F (k, xi).
(b) IfA sends a t-punctured key query for set Sj , output the keyKSj ← iO(PuncturedKeytk,Sj

).

3. A sends challenge query x∗ such that x∗ 6= xi ∀i ≤ q1 and x∗ ∈ Sj ∀j ≤ q2. Choose β ← {0, 1}.
If β = 0, output y = F (k, x∗), else output y ← Y.

4. A sends β′ and wins if β = β′.

Game 1 This game is the same as the previous one, except that the challenger introduces an
abort condition. When the first t-punctured key query S1 is made, the challenger guesses the
challenge query x̃← S1. The challenger aborts if any of the evaluation queries are x̃, if any of the
future t-punctured key queries does not contain x̃ or if the challenge query x∗ 6= x̃.

1. Choose a key k ← K.

17

2. A makes evaluation/t-punctured key queries.
Let S1 be the first t-punctured key query. Choose x̃← S1 and output key
KS1 ← iO(λ,PuncturedKeytk,S1

). For all evaluation queries xi before S1,

output F (k, xi).
For all queries after S1, do the following.

(a) If A sends an evaluation query xi and xi = x̃, abort.
Choose γ1i ← {0, 1}. A wins if γ1i = 1.
Else if xi 6= x̃, output F (k, xi).

(b) If A sends a t-punctured key query for set Sj and x̃ /∈ Sj , abort.

Choose γ2i ← {0, 1}. A wins if γ2i = 1.

Else if x̃ ∈ Sj , output KSj ← iO(λ,PuncturedKeytk,Sj
).

3. A sends challenge query x∗ such that x∗ 6= xi ∀i ≤ q1 and x∗ ∈ Sj ∀j ≤ q2.
If x̃ 6= x∗, abort. Choose γ∗ ← {0, 1}. A wins if γ∗ = 1.
Else if x̃ = x∗, choose β ← {0, 1}. If β = 0, output y = F (k, x∗), else output y ← Y.

4. A sends β′ and wins if β = β′.

Next, we define q2 games, Game 1l, 1 ≤ l ≤ q2. Let Game 10 = Game 1.

Game 1l In this game, the first l punctured key queries use Kx̃, while the remaining use k.

1. Choose a key k ← K.
2. A makes evaluation/t-punctured key queries.

Let S1 be the first t-punctured key query. Choose x̃← S1.
Compute Kx̃ ← F.puncture(k, x̃).
Output KS1 ← iO(λ,PuncturedKeyAlttKx̃,S1

) (where PuncturedKeyAltt is defined in Figure 5).

For all evaluation queries xi before S1, output F (k, xi).
For all queries after S1, do the following.

(a) If A sends an evaluation query xi and xi = x̃, abort. Choose γ1i ← {0, 1}. A wins if
γ1i = 1.
Else if xi 6= x̃, output F.eval(Kx̃, xi) = F (k, xi).

(b) If A sends a t-punctured key query for set Sj and x̃ /∈ Sj , abort. Choose γ2i ← {0, 1}.
A wins if γ2i = 1.
Else if x̃ ∈ Sj and j ≤ l, output KSj ← iO(λ,PuncturedKeyAlttKx̃,Sj

).

Else output KSj ← iO(λ,PuncturedKeytk,Sj
).

3. A sends challenge query x∗ such that x∗ 6= xi ∀i ≤ q1 and x∗ ∈ Sj ∀j ≤ q2.
If x̃ 6= x∗, abort. Choose γ∗ ← {0, 1}. A wins if γ∗ = 1.
Else if x̃ = x∗, choose β ← {0, 1}. If β = 0, output y = F (k, x∗), else output y ← Y.

4. A sends β′ and wins if β = β′.

Game 2 In this game, the challenger outputs a random element as the response to the challenge
query.

1. Choose a key k ← K.

18

PuncturedKeyAlttKx̃,S

Input: x ∈ X
Constants : The function description F,Kx̃, S ⊂ X such that |S| ≤ t

if x ∈ S then
Output ⊥.

else
Output F.eval(Kx̃, x).

end if

Figure 5: Program PuncturedKeyAltt

2. A makes evaluation/t-punctured key queries.
Let S1 be the first t-punctured key query. Choose x̃← S1 and computeKx̃ ← F.puncture(k, x̃).
Output KS1 ← iO(λ,PuncturedKeyAlttKx̃,S1

).
For all evaluation queries xi before S1, output F (k, xi).
For all queries after S1, do the following.

(a) If A sends an evaluation query xi and xi = x̃, abort. Choose γ1i ← {0, 1}. A wins if
γ1i = 1.
Else if xi 6= x̃, output F.eval(Kx̃, xi) = F (k, xi).

(b) If A sends a t-punctured key query for set Sj and x̃ /∈ Sj , abort. Choose γ2i ← {0, 1}.
A wins if γ2i = 1.
Else if x̃ ∈ Sj , output KSj ← iO(λ,PuncturedKeyAlttKx̃,Sj

).

3. A sends challenge query x∗ such that x∗ 6= xi ∀i ≤ q1 and x∗ ∈ Sj ∀j ≤ q2.
If x̃ 6= x∗, abort. Choose γ∗ ← {0, 1}. A wins if γ∗ = 1.
Else if x̃ = x∗, choose β ← {0, 1} and output y ← Y.

4. A sends β′ and wins if β = β′.

5.2.1 Adversary’s Advantage in these Games

Let AdviA denote the advantage of adversary A in Game i.

Observation 2 For any adversary A, Adv1A ≥ Adv0A/t.

Proof: Since one of the elements of S1 will be the challenge input, and |S1| ≤ t, the challenger’s
guess is correct with probability 1/|S1| ≥ 1/t. Hence, Adv1A ≥ Adv0A/t.

We will now show that Game 1l and Game 1l+1 are computationally indistinguishable, assuming
iO is secure.

Claim 6 If there exists a PPT adversary A such that Adv1lA − Adv
1l+1

A is non-negligible in λ, then
there exists a PPT distinguisher B that breaks the security of iO with advantage non-negligible in
λ.

Proof: Note that the only difference between Game 1l and Game 1l+1 is in the response to the
(l + 1)th t-punctured key query. In Game 1l, PuncturedKey

t
k,Sl+1

is used to compute KSl+1
, while

in Game 1l+1, PuncturedKeyAlt
t
Ks̃,Sl+1

is used. Suppose there exists a PPT adversary A such that

19

Adv1lA − Adv
1l+1

A = ε. We will construct a PPT algorithm B that interacts with A and breaks the
security of iO with advantage ε.
B chooses k ← K and for all evaluation queries xi before the first t-punctured key query,

outputs F (k, xi). On receiving the first t-punctured key query S1, B chooses x̃← S1 and computes
Kx̃ ← F.puncture(k, x̃). The evaluation queries are computed as in Game 1l and 1l+1. The first
l t-punctured key queries are constructed using k, while the last q2 − l − 1 t-punctured keys are
constructed using Kx̃ (as in Game 1l and Game 1l+1). For the (l+1)th query, B does the following.
B sets C0 = PuncturedKeytk,Sl+1

and C1 = PuncturedKeyAlttKx̃,Sl+1
, and sends C0, C1 to the iO

challenger, and receives KSl+1
in response, which it sends to A.

Finally, after all queries, the challenger sends the challenge query x∗. B checks that x̃ = x∗,
sets y0 = F (k, x∗) and chooses y1 ← Y, β ← {0, 1}. It outputs yβ and receives β′ in response. If
β = β′, B outputs 0, else it outputs 1.

From the correctness property of puncturable PRFs, it follows that F.eval(Kx̃, x) = F (k, x) for
all x /∈ Sl+1. Hence, the circuits C0 and C1 are functionally identical. This completes our proof.

Next, we show that Game 1q2 and Game 2 are computationally indistinguishable.

Claim 7 If there exists a PPT adversary A such that Adv
1q2
A − Adv2A is non-negligible in λ, then

there exists a PPT distinguisher B that breaks the security of puncturable PRF F with advantage
non-negligible in λ.

Proof: We will use A to construct a PPT algorithm B that breaks the security of puncturable

PRF F with advantage Adv
1q2
A − Adv2A. Observe that in Game 1q2 , the challenger requires the

master key k only for the evaluation queries before the first t-punctured key query. After the first
t-punctured key query S1, the challenger chooses x̃← S1, computes a punctured key Kx̃, and uses
this to compute all future evaluation queries and t-punctured keys.
B begins interacting with A. For each evaluation query xi before the first t-punctured key

query, B sends xi to the puncturable PRF challenger, and receives yi, which it forwards to A. On
receiving the first t-punctured key query S1, B chooses x̃ ← S1 and sends x̃ as challenge input to
the puncturable PRF challenger. B receives Kx̃ and y. It uses Kx̃ for all remaining queries. On
receiving challenge x∗ from A, B checks x∗ = x̃ and sends y. B sends A’s response to the PRF
challenger.

Note that until the challenge query is made, both games are identical and B simulates them
perfectly. If y is truly random, then A receives a response as per Game 2, else it receives a response
as per Game 1q2 .

Finally, we have the following simple observation.

Observation 3 For any adversary, Adv3A = 0.

From the above claims and observations, we can conclude that if iO is a secure indistinguisha-
bility obfuscator as per Definition 2.2, and F , together with F.setup, F.puncture, F.eval is a secure
puncturable PRF as per Definition 3.2, then any PPT adversary A has negligible advantage in
Game 0.

20

6 Conclusion

Puncturable and t-puncturable PRFs have numerous cryptographic applications. This work pro-
vides the first constructions and proofs of adaptive security in the standard model. This is an
interesting step forward in its own right, and we believe the techniques used to achieve adaptive-
ness from indistinguishability obfuscation may be useful elsewhere. Moreover, this work resolves for
at least the puncturable PRF space, the larger question of characterizing which classes of functions
admit an adaptively-secure constrained PRF in the standard model. As noted earlier, the results
of [11] and [16] provide intuition both for and against whether this is indeed possible for many
other function families.

References

[1] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (h)ibe in the standard model. In: Pro-
ceedings of the 29th Annual international conference on Theory and Applications of Cryp-
tographic Techniques. pp. 553–572. EUROCRYPT’10, Springer-Verlag, Berlin, Heidelberg
(2010), http://dx.doi.org/10.1007/978-3-642-13190-5_28

[2] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: Indistinguishability obfuscation vs. auxiliary-
input extractable functions: One must fall. Cryptology ePrint Archive, Report 2013/641
(2013), http://eprint.iacr.org/

[3] Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: CRYPTO.
pp. 443–459 (2004)

[4] Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: ASI-
ACRYPT. pp. 280–300 (2013)

[5] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. In: CRYPTO (2014)

[6] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In:
Public-Key Cryptography - PKC 2014 - 17th International Conference on Practice and Theory
in Public-Key Cryptography, Buenos Aires, Argentina, March 26-28, 2014. Proceedings. pp.
501–519 (2014)

[7] Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Constrained pseudorandom func-
tions: Verifiable and delegatable. Cryptology ePrint Archive, Report 2014/522 (2014), http:
//eprint.iacr.org/

[8] Chase, M., Meiklejohn, S.: Déjà q: Using dual systems to revisit q-type assumptions. In:
EUROCRYPT. pp. 622–639 (2014)

[9] Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash functions in
the multilinear setting. In: CRYPTO. pp. 513–530 (2013)

[10] Fuchsbauer, G.: Constrained verifiable random functions. In: Security and Cryptography
for Networks - 9th International Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014.
Proceedings. pp. 95–114 (2014)

21

[11] Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of constrained
prfs. In: Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014, Proceedings, Part II. pp. 82–101 (2014)

[12] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguisha-
bility obfuscation and functional encryption for all circuits. In: FOCS (2013)

[13] Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multi-
linear subgroup elimination assumption. Cryptology ePrint Archive, Report 2014/309 (2014),
http://eprint.iacr.org/

[14] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended ab-
stract). In: FOCS. pp. 464–479 (1984)

[15] Golle, P., Jarecki, S., Mironov, I.: Cryptographic primitives enforcing communication and
storage complexity. In: Financial Cryptography. pp. 120–135 (2002)

[16] Hofheinz, D.: Fully secure constrained pseudorandom functions using random oracles. IACR
Cryptology ePrint Archive 2014, 372 (2014)

[17] Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. J. Cryptology
25(3), 484–527 (2012)

[18] Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear maps and
identity-based aggregate signatures. In: CRYPTO (2013)

[19] Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full domain hash from
indistinguishability obfuscation. In: EUROCRYPT. pp. 201–220 (2014)

[20] Hohenberger, S., Waters, B.: Constructing verifiable random functions with large input spaces.
In: EUROCRYPT. pp. 656–672 (2010)

[21] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom
functions and applications. In: ACM Conference on Computer and Communications Security.
pp. 669–684 (2013)

[22] Lewko, A.B., Waters, B.: New proof methods for attribute-based encryption: Achieving full
security through selective techniques. In: CRYPTO. pp. 180–198 (2012)

[23] Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions.
J. ACM 51(2), 231–262 (2004)

[24] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and
more. In: STOC. pp. 475–484 (2014)

[25] Waters, B.: Efficient identity-based encryption without random oracles. In: EUROCRYPT.
pp. 114–127 (2005)

22

A Proof of Claim 2 (Adv1
A − Adv2

A is negligible)

Recall that Claim 2 states that ssuming iO is a secure indistinguishability obfuscator and the
Subgroup Hiding Assumption holds, for any PPT adversary A,

Adv1A − Adv2A ≤ negl(λ).

In order to prove this, we establish a sequence of intermediate experiments Game 1A to Game
1G and show that any two consecutive experiments are computationally indistinguishable. First,
we recall Game 1.

Game 1

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose u← AdmSample(1λ, q).
Choose v ← G, di,b ← ZN . Set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏
j dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKeyk,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = v

∏
j dj,b∗j and

y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 1A We change the sampling procedure for the di,b values so that some include a factor of
a.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose u← AdmSample(1λ, q).
Choose v ← G, d′i,b ← ZN , a← Z∗N and set di,b = d′i,b if ui = b, else di,b = d′i,b · a. 6.

Set k = (v, ((d1,0, d1,1) , . . . , (dn,0, dn,1))).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n and output v

∏
j dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKeyk,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = v

∏
j dj,b∗j and

y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

6If ui =⊥, then di,b = d′i,b · a for b = 0, 1.

23

Game 1B We substitute an alternative method of computing the punctured key program output
using a differently formatted input.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose u← AdmSample(1λ, q).
Let ru(x) = |{j : uj 6= h(x)j}|. Choose v ← G, d′i,b ← ZN , a ← Z∗N and set di,b = d′i,b if

ui = b, else di,b = d′i,b · a.

Let D = ((d′1,0, d
′
1,1), . . . , (d

′
n,0, d

′
n,1)), V = (v, va, . . . , va

n−1
) and w = va

n
.

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1. 7

If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n. Output v

∏
j dj,bi

j =
(
va

ru(xi)
)∏

j d
′
i,bi

j .

3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.
If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKey′V,w,D,u,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = v

∏
j dj,b∗j =

w

∏
j d
′
j,b∗

j and y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

PuncturedKey′V,w,D,u,x′

Input: x ∈ {0, 1}`

Constants : The group G
V = (v0, v1, . . . , vn−1) ∈ Gn, w ∈ G

D =
((
d′1,0, d

′
1,1

)
. . .
(
d′n,0, d

′
n,1

))
∈
(
Z2
N

)n
x′ ∈ {0, 1}`, u ∈ {0, 1,⊥}n

Compute h(x) = b1 . . . bn.
if x = x′ then

Output ⊥.
else if Pu(x) = 0 then

Output w
∏

j d′
j,bj .

else
Compute ru(x). Output

(
vru(x)

)∏
i d

′
j,bj .

end if

Figure 6: Program PuncturedKey′

Game 1C In this game, the term va
n

is replaced by a random element of G.

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose u ← AdmSample(1λ, q). Let ru(x) = |{j :
uj 6= h(x)j}|.
Choose v ← G, d′i,b ← ZN , a← Z∗N and set di,b = d′i,b if ui = b, else di,b = d′i,b · a.

Let D = ((d′1,0, d
′
1,1) . . . , (d

′
n,0, d

′
n,1)), V = (v, va, . . . , va

n−1
) and w ← G.

7Note that ru(x) < n if Pu(x) = 1, else ru(x) = n.

24

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n. Output v

∏
j dj,bi

j =
(
va

ru(xi)
)∏

j d
′
i,bi

j .

3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.
If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKey′V,w,D,u,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = w

∏
j d
′
j,b∗

j

and y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 1D This game is same as the previous one, except that v and w are chosen from subgroups
Gp and Gq respectively, instead of G.

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose u ← AdmSample(1λ, q). Let ru(x) = |{j :
uj 6= h(x)j}|.
Choose v ← Gp, w ← Gq, d

′
i,b ← ZN , a← Z∗N and set di,b = d′i,b if ui = b, else di,b = d′i,b · a.

Let D = ((d′1,0, d
′
1,1), . . . , (d

′
n,0, d

′
n,1)), V = (v, va, . . . , va

n−1
).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n. Output v

∏
j dj,bi

j =
(
va

ru(xi)
)∏

j d
′
i,bi

j .

3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.
If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKey′V,w,D,u,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = w

∏
j d
′
j,b∗

j

and y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 1E

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose u ← AdmSample(1λ, q). Choose v ← Gp,
w ← Gq, di,b ← ZN . Let di,b,p = di,b mod p and di,b,q = di,b mod q.

Set k = (v, ((d1,0,p, d1,1,p), . . . , (dn,0,p, dn,1,p))).

Set k′ = (w, ((d1,0,q, d1,1,q), . . . , (dn,0,q, dn,1,q))).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n. Output v

∏
j dj,bi

j = v

∏
j dj,bi

j
,p .

3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.
If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKeyAltu,k,k′,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = w

∏
j dj,b∗j

= w
∏

j dj,b∗j ,q and y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

25

Game 1F

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose u ← AdmSample(1λ, q). Choose v ← Gp,
w ← Gq, di,b,p ← Zp, ei,b,q ← Zq.
Set k = (v, ((d1,0,p, d1,1,p), . . . , (dn,0,p, dn,1,p))).
Set k′ = (w, ((e1,0,q, e1,1,q), . . . , (en,0,q, dn,1,q))).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n. Output = v

∏
j dj,bi

j
,p .

3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.
If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKeyAltu,k,k′,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = w

∏
j ej,b∗j ,q

and y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 1G This game is same as the previous one, except that the di,b and ei,b values are uniformly
chosen from ZN instead of Zp and Zq, respectively.

1. Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Choose u ← AdmSample(1λ, q). Choose v ← Gp,
w ← Gq, di,b ← ZN , ei,b ← ZN .

Set k = (v, ((d1,0, d1,1), . . . , (dn,0, dn,1))) and k′ = (w, ((e1,0, e1,1), . . . , (en,0, dn,1))).
2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.

If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n. Output = v

∏
j dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKeyAltu,k,k′,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = w

∏
j ej,b∗j

and y1 ← G.
4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

Game 2 This is Game 2 from Section 4.1. This game is same as the previous one, except that v
and w are chosen from G instead of the subgroups Gp and Gq respectively.

1. Let (N, p, q,G,Gp,Gq, g1, g2)← G(1λ). Choose u← AdmSample(1λ, q).
Choose v ← G, w ← G, di,b ← ZN , ei,b ← ZN .
Set k = (v, ((d1,0, d1,1), . . . , (dn,0, dn,1))) and k′ = (w, ((e1,0, e1,1), . . . , (en,0, dn,1))).

2. On any evaluation query xi ∈ {0, 1}`, check if Pu(xi) = 1.
If not, flip a coin γi ← {0, 1} and abort. A wins if γi = 1.

Else compute h(xi) = bi1 . . . b
i
n. Output = v

∏
j dj,bi

j .
3. A sends challenge input x∗ such that x∗ 6= xi for all i ≤ q. Check if Pu(x∗) = 0.

If not, flip a coin γ∗ ← {0, 1} and abort. A wins if γ∗ = 1.

Else compute Kx∗ ← iO(λ,PuncturedKeyAltu,k,k′,x∗) and h(x∗) = b∗1 . . . b
∗
n. Let y0 = w

∏
j ej,b∗j

and y1 ← G.

26

4. Flip coin β ← {0, 1}. Output (Kx∗ , yβ).
5. A outputs β′ and wins if β = β′.

We will now prove that the difference in advantage of any PPT adversary in two consecutive
game is negligible in λ. Let Adv1αA denote the advantage of adversary A in Game 1α.

Observation 4 For any adversary A, Adv1A = Adv1AA .

Proof: The only difference between Game 1 and Game 1A is the manner in which the constants
di,b are chosen. In Game 1, the challenger chooses di,b ← ZN . In Game 1A, the challenger first
chooses d′i,b ← ZN , a ← Z∗N and then sets di,b as either d′i,b or d′i,b · a, depending on ui. However,
note that in either case, di,b is a uniformly random element in ZN since a ∈ Z∗N .

Claim 8 If there exists a PPT adversary A such that Adv1AA − Adv1BA is non-negligible in λ, then
there exists a PPT adversary B that breaks the security of iO with advantage non-negligible in λ.

Proof: Suppose there exists a PPT adversary A such that Adv1AA −Adv1BA = ε. We will construct
a PPT algorithm B that breaks the security of iO with advantage ε by interacting with A. B
establishes some parameters that will be needed to interact with A and which will be used as part
of the circuits designed by B: first it chooses v ← G, a ← Z∗N , d′i,b ← ZN , u ← AdmSample(1λ, q)
and sets di,b = d′i,b if ui = b, else di,b = d′i,b · a. On receiving evaluation query xi, B first checks that

Pu(xi) = 1. If so, it computes h(x) = bi1 . . . b
i
n and sends v

∏
j dj,bi

j to A.
On receiving challenge query x∗ from A, B checks Pu(x∗) = 0. Now, B is ready to construct

the circuits. It sets k = (v, ((d1,0, d1,1), . . . , (dn,0, dn,1))), V = (v, va, . . . , va
n−1

), w = va
n

and
D = ((d′1,0, d

′
1,1), . . . , (d

′
n,0, d

′
n,1)). It uses k to construct circuit C0 = PuncturedKeyk,x∗ , uses V,w,D

to construct C1 = PuncturedKey′V,w,D,u,x∗ and sends C0, C1 to the iO challenger. B receives Kx∗ ←

iO(Cb) from the challenger. It computes h(x∗) = b∗1 . . . b
∗
n, y0 = v

∏
j dj,b∗j , y ← G, β ← {0, 1}, sends

(Kx∗ , yβ) to A and receives β′ in response. If β = β′, B outputs 0, else it outputs 1.
We will now prove that the circuits C0 and C1 have identical functionality. Consider any ` bit

string x, and let h(x) = b1 . . . bn. Recall ru(x) = |{j : uj 6= bj}|.

∏
j

dj,bj =

 ∏
uj=bj

d′j,bj

 ·
 ∏
uj 6=bj

(d′j,bj · a)

 =

 ∏
uj=bj

d′j,bj

 · aru(x) ·
 ∏
uj 6=bj

d′j,bj


Hence, v

∏
j dj,bj =

(
va

ru(x)
)∏

j d
′
j,bj . Also, recall ru(x) = n iff Pu(x) = 0. Therefore, to compute

v
∏

j dj,bj for some x such that Pu(x) = 1, we only need the constant {d′i,b} and {v, va, va2 , . . . , van−1}.
Similarly, if Pu(x) = 0, we only need the constants {d′i,b} and va

n
to compute v

∏
j dj,bj . Using this

observation, we can prove that the programs PuncturedKeyk,x∗ and PuncturedKey′V,w,D,u,x∗ have
identical functionality.

For any x ∈ {0, 1}` such that Pu(x) = 1,

PuncturedKey′V,w,D,u,x∗(x) =
(
va

ru(x)
)∏

j d
′
j,bj = v

∏
j dj,bj = PuncturedKeyk,x∗(x)

27

For any x ∈ {0, 1}` such that Pu(x) = 0,

PuncturedKey′V,w,D,u,x∗(x) = w
∏

j d
′
j,bj =

(
va

n)∏j d
′
j,bj = v

∏
j dj,bj

= PuncturedKeyk,x∗(x)

Since C0 and C1 have identical functionality, Pr[B wins] = Pr[A wins in Game 1A] - Pr[A wins in Game 1B].
If Adv1AA − Adv1BA = ε, then B wins the iO security game with advantage ε.

Claim 9 If there exists a PPT adversary A such that Adv1BA − Adv1CA is non-negligible in λ, then
there exists a PPT adversary B that breaks Assumption 2 with advantage non-negligible in λ.

Proof: Suppose there exists a PPT adversary A such that Adv1BA −Adv1CA = ε. We will construct
a PPT algorithm B that uses A and breaks Assumption 2 with advantage at least ε. B receives the
group description G, (v, va, . . . , va

n−1
) ∈ Gn and T ∈ G, where T = va

n
or T ← G. B chooses d′i,b ←

ZN , u← AdmSample(1λ, q). B sets V = (v, . . . , va
n−1

), w = T , D = ((d′1,0, d
′
1,1), . . . , (d

′
n,0, d

′
n,1)).

On evaluation query xi, B first checks that Pu(xi) = 1. Next, it computes h(x) = bi1 . . . b
i
n, and

finally outputs
(
va

ru(xi)
)∏

j d
′
i,bi

j . Note that ru(x) < n if Pu(x) = 0. Therefore, B can simulate the

evaluation query phase perfectly.
On challenge query x∗, B first checks that Pu(x∗) = 0. Next, it computes h(x) = b∗1 . . . b

∗
n,

Kx∗ ← iO(λ,PuncturedKey′V,w,D,u,x∗). It sets y0 = w
∏

j d
′
j,bj and y1 ← G.

Finally, B chooses β ← {0, 1}, sends (Kx∗ , yβ) from A, and receives β′. If β = β′, B outputs 0
(i.e. it guesses T = va

n
), else it outputs 1.

Clearly, if Adv1BA − Adv1CA = ε, then B also wins with advantage ε.

Claim 10 If there exists a PPT adversary A such that Adv1CA −Adv1DA is non-negligible in λ, then
there exists a PPT adversary B that breaks Assumption 1 with advantage non-negligible in λ.

Proof: We will prove this claim using an intermediate experiment Hyb. Hyb is the same as
Game 1C, except that v ← Gp. We will prove that Game 1C and Hyb are computationally
indistinguishable, and similarly, Hyb and Game 1D are computationally indistinguishable.

Suppose there exists a PPT adversary A such that Adv1CA − AdvHybA = ε. Using A, we will
construct a PPT algorithm B that breaks Assumption 1. B receives G, Gp, Gq, g1 ← Gp, g2 ← Gq
and T , where T ← Gp or T ← G. B sets v = T , chooses a ← Z∗N , d′i,b ← ZN , u ← AdmSample,

w ← G and computes V = (v, va, . . . , va
n−1

) and di,b as in Game 1C.
On receiving evaluation query xi from A, B computes h(xi) = bi1 . . . b

i
n, checks if Pu(xi) = 1

and responds with
(
va

ru(xi)
)∏

j d
′
j,bi

j .

On receiving challenge query x∗, B checks Pu(x∗) = 0, and computesKx∗ ← iO(λ,PuncturedKey′V,w,D,u,x∗),

y0 = (w)

∏
j d
′
j,b∗

j , y1 ← G, β ← {0, 1} and outputs (Kx∗ , yβ). If A outputs β, B guesses v ∈ G, else

guesses v ∈ Gp. Notice that if AdvHybA −Adv1CA = ε, then B breaks Assumption 1 with advantage ε.

In order to prove our claim, we now need to show that the experiments Hyb and Game 1D are
computationally indistinguishable. Note that the only difference between these two experiments
is the manner in which w is chosen. In Hyb, w ← G, while in Game 1D, w ← Gq. We can show

28

that if Assumption 1 holds, then Hyb and Game 1D are computationally indistinguishable. This
argument is exactly similar to the step from Game 1C to Hyb, the only difference being that the
assumption used will be that w ← G is computationally indistinguishable from w ← Gq.

Claim 11 If there exists a PPT adversary A such that Adv1DA −Adv1EA is non-negligible in λ, then
there exists a PPT adversary B that breaks the security of iO with advantage non-negligible in λ.

Proof: We will use two intermediate experiments Hyb1 and Hyb2, and use the security of iO to
prove that (a) Game 1D and Hyb1 are computationally indistinguishable, (b) Hyb1 and Hyb2 are
identical experiments, and (c) Hyb2 and Game 1E are computationally indistinguishable.

First we define the experiments Hyb1 and Hyb2. In Hyb1, the challenger first samples u, v, w, d′i,b, a
as in Game 1D, and sets di,b = d′i,b if ui = b, else di,b = a (same as before). The evaluation query
responses are also same as in Game 1D. For the challenge query x∗, the challenger first checks

that Pu(x∗) = 0. Next, it sets w′ = w1/an , computes y0 = w
′
∏

j dj,b∗j = w
∏

j dj,b∗j , y1 ← G as
in Game 1D. However, the punctured key Kx∗ is computed using PuncturedKeyAlt. The chal-
lenger sets k = (v, ((d1,0, d1,1), . . . , (dn,0, dn,1))), k

′ = (w′, ((d1,0, d1,1), . . . , (dn,0, dn,1))) and com-
putes Kx∗ ← iO(λ,PuncturedKeyAltk,k′,u,x∗).

Hyb2 is the same as Hyb1, except that it chooses di,b ← ZN and uses w instead of w′ in the key
k′ and for computing y0.

Proof of (a): Suppose there exists a PPT adversary A such that Adv1DA −Adv
Hyb1
A = ε. We will

first construct a PPT algorithm B that uses A to break the security of iO. B samples u, v, w, d′i,b
and computes di,b as in Game 1D/Hyb. On receiving evaluation query xi, it checks Pu(xi) =

0 and outputs v

∏
j dj,bi

j . On receiving challenge query x∗, B sets V = (v, va, . . . , va
n−1

), D =
((d1,0, d1,1), . . . , (d

′
n,0, d

′
n,1)), k, k

′ as in Hyb, and constructs circuits C0 = PuncturedKey′V,w,D,u,x∗ and
C1 = PuncturedKeyAltk,k′,u,x∗ . It sends C0, C1 to the iO challenger, and receives Kx∗ ← iO(λ,Cb).
B computes y0, chooses y1, β, sends (Kx∗ , yβ) to A and receives β′ in response. If β = β′, B outputs
0, else outputs 1.

In order to complete this proof, we show that circuits PuncturedKey′V,w,D,u,x∗ and PuncturedKeyAltk,k′,u,x∗
have identical functionality.

For any x ∈ {0, 1}` such that Pu(x) = 1, h(x) = b1 . . . bn,

PuncturedKeyAltk,k′,u,x∗(x) = v
∏

j dj,bj =
(
va

ru(x)
)∏

j d
′
j,bj = PuncturedKey′V,w,D,u,x∗(x).

For any x ∈ {0, 1}` such that Pu(x) = 0, x 6= x∗, h(x) = b1 . . . bn,

PuncturedKeyk,k′,u,x∗(x) = w
′
∏

j dj,bj =
(
w′a

n)∏j d
′
j,bj = w

∏
j d
′
j,bj

= PuncturedKey′V,w,D,u,x∗(x).

For x = x∗, both programs outputs ⊥. Therefore, the two programs are functionally equivalent.
Hence, B breaks the security of iO with advantage ε.

Proof of (b): Note that in both Hyb1 and Hyb2, di,b is a uniformly random element in ZN (since
a ∈ Z∗N). Also, if w ← Gq, then w1/an is a uniformly random element in Gq. From these two
observations, it follows that the two experiments Hyb1 and Hyb2 are the same.

29

Proof of (c): Game 1E is similar to Hyb2, except that the challenger chooses k, k′ differently.
In Game 1E, the challenger chooses v ← Gp, w ← Gq, di,b ← ZN . It sets di,b,p = di,b mod p, di,b,q =
di,b mod q, k = (v, ((d1,0,p, d1,1,p), . . . , (dn,0,p, dn,1,p))) and k′ = (w, ((d1,0,q, d1,1,q), . . . , (dn,0,q, dn,1,q))).

Suppose there exists a PPT adversary A such that Adv
Hyb2
A − Adv1EA = ε. Consider the following

PPT algorithm B that uses A to break the security of iO. B chooses v, w, {di,b} and sets k =
(v, ((d1,0, d1,1), . . ., (dn,0, dn,1))), k

′ = (w, ((d1,0, d1,1), . . . , (dn,0, dn,1))), k̃ =(v, ((d1,0,p, d1,1,p),
. . ., (dn,0,p, dn,1,p))) and k̃′ = (w, ((d1,0,q, d1,1,q), . . . , (dn,0,q, dn,1,q))). B uses the constants v and
{di,b}i,b to respond to A’s evaluation queries. On receiving challenge query x∗, B constructs cir-
cuits C0 = PuncturedKeyAltk,k′,u,x∗ and C1 = PuncturedKeyAltk̃,k̃′,u,x∗ and sends C0, C1 to the iO
challenger. It receives Kx∗ in response. B computes y0, y1, chooses β ← {0, 1} and sends (Kx∗ , yβ)
to A, and receives β′ in response. If β = β′, then B outputs 0, else it outputs 1.

Since v ∈ Gp, v
∏

j dj,bj = v
∏

j dj,bj ,p for any sequence b1 . . . bn. Similarly, since w ∈ Gq, w
∏

j dj,bj =

w
∏

j dj,bj ,q . Therefore the circuits C0, C1 have identical functionality. Hence, B breaks the security
of iO with advantage ε.

Claim 12 For any adversary A, Adv1FA = Adv1EA .

Proof: We will show that Game 1E and Game 1F are identical, and therefore, any adver-
sary has the same advantage in both games. Note that the only difference between Game 1E
and Game 1F is the manner in which the keys k, k′ are chosen. In Game 1E, the challenger
chooses v ∈ Gp, w ∈ Gq, di,b ∈ ZN and sets k = (v, ((d1,0,p, d1,1,p), . . . , (dn,0,p, dn,1,p))) and k′ =
(w, ((d1,0,q, d1,1,q), . . . , (dn,0,q, dn,1,q))). In Game 1F, the challenger chooses di,b,p ← Zp, ei,b,q ← Zq
and sets k = (v, ((d1,0,p, d1,1,p), . . . , (dn,0,p, dn,1,p))) and k′ = (w, ((e1,0,q, e1,1,q), . . . , (en,0,q, en,1,q))).
Using Chinese Remainder Theorem, it follows that {(x mod p, x mod q) : x ← ZN} ≡ {(x, y) :
x← Zp, y ← Zq}, and hence, Game 1E and Game 1F are identical.

Claim 13 If there exists a PPT adversary A such that Adv1FA −Adv1GA is non-negligible in λ, then
there exists a PPT adversary B that breaks the security of iO with advantage non-negligible in λ.

Proof: The proof of this claim is similar to the proof of Claim 11, part (c).

Claim 14 If there exists a PPT adversary A such that Adv1GA − Adv2A is non-negligible in λ, then
there exists a PPT adversary B that breaks Assumption 1 with advantage non-negligible in λ.

Proof: The proof of this claim is similar to the one for Claim 10.

B Reducing Assumption 2 to Subgroup Hiding Assumption in
Composite Order DDH-Hard Groups

Chase and Meiklejohn showed that in bilinear groups of composite order, many q-type reductions
are implied by subgroup hiding. The paper also states that a similar result holds in composite
order DDH-hard groups. For completeness, we include a proof of this implication.

Theorem B.1 Let (N, p, q,G,Gp,Gq, g1, g2) ← G(1λ). Then, Assumption 1 implies Assumption
2.

30

As in the work by Chase and Meiklejohn, the proof of this theorem uses the dual system technique
introduced by Waters. First, we define 4n + 1 hybrid experiments Game 1, Game 11, Game 12,
Game 13, . . ., Game n− 1, Game n− 11, Game n− 12, Game n− 13, Game n and then show that (a)
no PPT adversary can distinguish between consecutive hybrid experiments (b) any adversary has
negligible advantage in Game n.

B.1 Sequence of Games

We underline the changes from one game to the next.

Game 0 : Choose v ← G, a← ZN , β ∈ {0, 1} and set T0 = va
n
, T1 ← G.

Output (N,G,Gp,Gq, g1, g2, v, va, . . ., va
n−1

, Tβ).

Game i : Choose v1 ← Gp, a1, . . . ai, r1, . . . , ri ← ZN , β ∈ {0, 1} and set T0 = v
∑i

j=1 rja
n
j

1 , T1 ← G.

Output (N,G,Gp,Gq, g1, g2, v
∑i

j=1 rj
1 , v

∑i
j=1 rjaj

1 , . . . , v
∑i

j=1 rja
n−1
j

1 , Tβ).

Game i1 : Choose v1 ← Gp, v2 ← Gq, a1, . . . ai, r1, . . . , ri ← ZN , β ∈ {0, 1} and set T0 = v
∑i

j=1 rja
n
j

1 v
ani
2 ,

T1 ← G.

Output (N,G,Gp,Gq, g1, g2, v
∑i

j=1 rj
1 v2, v

∑n
j=1 rjaj

1 vai2 , . . . , v
∑i

j=1 rja
n−1
j

1 v
an−1
i

2 , Tβ)

Game i2 : Choose v1 ← Gp, v2 ← Gq, a1, . . . ai, ai+1, r1, . . . , ri ← ZN , β ∈ {0, 1} and set

T0 = v
∑i

j=1 rja
n
j

1 v
ani+1

2 , T1 ← G.

Output (N,G,Gp,Gq, g1, g2, v
∑i

j=1 rj
1 v2, v

∑i
j=1 rjaj

1 v
ai+1

2 , . . . , v
∑i

j=1 rja
n−1
j

1 v
an−1
i+1

2 , Tβ)).

Game i3 : Choose v1 ← Gp, v2 ← Gq, a1, . . . ai, ai+1, r1, . . . , ri, ri+1 ← ZN , β ∈ {0, 1} and set

T0 = v
∑i+1

j=1 rja
n
j

1 v
ani+1

2 , T1 ← G.

Output (N,G,Gp,Gq, g1, g2, v
∑i+1

j=1 rj
1 v2, v

∑i+1
j=1 rjaj

1 v
ai+1

2 , . . . , v
∑i+1

j=1 rja
n−1
j

1 v
an−1
i+1

2 , Tβ)).

B.2 Adversary’s Advantage in these Games

Let Adv1αA denote the advantage of adversary A in Game α. Note that in Game 0, a ← ZN , while
in Assumption 2, a← Z∗N . This results in security loss that is negligible in λ.

Claim 1 If there exists a PPT adversary A such that Adv10A − Adv11A = ε, then there exists a PPT
algorithm B that can distinguish between a random element of G and a random element of Gp with
advantage ε.

Proof: The only difference between the two games is that in Game 0, the challenger chooses
v ← G, while in Game 1, the challenger chooses v1 ← Gp. B receives N,G,Gp,Gq, g1, g2 and w
from the challenger, where w ← G or w ← Gp. B sets v = w, chooses a ∈ ZN , β ∈ {0, 1} and

sets T0 = va
n
, T1 ← G. It sends (N,G,Gp,Gq, g1, g2, v, v

a, . . . , va
n−1

, Tβ) ot A and receives β′ in
response. If β′ = β, B sends 1 to the challenger (indicating that w ∈ G), else it sends 0. Clearly,

31

if w ∈ G, then this corresponds to Game 0, else it corresponds to Game 1. If A wins Game 0
with probability p0, and wins Game 1 with probability p1, then the advantage of B in breaking
Assumption 1 is p0 − p1 = ε.

Claim 2 If there exists a PPT adversary A such that Adv1iA −Adv1i1A = ε, then there exists a PPT
algorithm B that can distinguish between a random element of G and a random element of Gp with
advantage ε.

Proof: The PPT algorithm B is defined as follows. First, B receivesN,G,Gp,Gq, g1, g2 and w from
the challenger, where w ← G or w ← Gp. B chooses v′ ← Gp, a1, . . . , ai−1, r1, . . . , ri−1 ← ZN , β ←
{0, 1} and sets T0 = v′

∑i−1
j=1 rja

n
j wa

n
i and T1 ← G. It sends (N,G,Gp,Gq, g1, g2, v

′
∑i−1

j=1 rjw, v′
∑i−1

j=1 rjajwai , . . .,

v′
∑i−1

j=1 rja
n−1
j wa

n−1
i , Tβ) to A and receives β′ in response. If β′ = β, it sends 0 to the challenger, else

it sends 1.
If w ∈ G, then w = v′rv2 for some r ∈ ZN , v2 ∈ Gq. If w ∈ Gp, then w = v′r for some r ∈ ZN .

Therefore, B implicitly sets ri = r, and hence, if w ∈ Gp, A receives the challenge as per Game i,
otherwise it receives the challenge as per Game i1.

Claim 3 For any adversary A, Adv1i1A = Adv1i2A .

Proof: This step is information-theoretic. First, let us recall the Chinese Remainder Theorem.
For distinct primes p, q and N = pq, we have

{(x mod p, x mod q) : x← ZN} ≡ {(x mod p, y mod q) : x← ZN , y ← ZN} .

Hence, it follows that distributions D1 and D2 are identical, where

D1 =


i∑

j=1

rjaj mod p, . . . ,

i∑
j=1

rja
n
j mod p, ai mod q : r1, . . . , ri, a1, . . . , ai ← ZN


D2 =


i∑

j=1

rjaj mod p, . . . ,

i∑
j=1

rja
n
j mod p, ai+1 mod q : r1, . . . , ri, a1, . . . , ai, ai+1 ← ZN

 .

Note that since v ∈ Gp, v
x = vx mod p. Similarly, wy = wy mod q. Hence it follows that any

adversary has identical advantage in Game i1 and Game i2.

Claim 4 If there exists a PPT adversary A such that Adv1i2A −Adv1i3A = ε, then there exists a PPT
algorithm B that can distinguish between a random element of G and a random element of Gq with
advantage ε.

Proof: The PPT algorithm B is defined as follows. First, B receivesN,G,Gp,Gq, g1, g2 and w from
the challenger, where w ← G or w ← Gq. B chooses v′ ← Gp, a1, . . . , ai, r1, . . . , ri ← ZN , β ← {0, 1}
and sets T0 = v′

∑i
j=1 rja

n
j wa

n
i+1 and T1 ← G. It sends (N,G,Gp, Gq, g1, g2, v

′
∑i

j=1 rjw, v′
∑i

j=1 rjajwai+1 , . . .,

v′
∑i

j=1 rja
n−1
j wa

n−1
i+1 , Tβ) to A and receives β′ in response. If β′ = β, it sends 0 to the challenger (i.e.

B guesses that w ← Gq), else it sends 1.
As in the proof of 2, if w ∈ G, then w = v′rv2, else w = v2 for some r, v2. B therefore implicitly

sets ri+1 = r. If w ∈ Gq, then A gets a Game i2 challenge, else a Game i3 challenge.

32

Claim 5 If there exists a PPT adversary A such that Adv1i3A − Adv1i+1
A = ε, then there exists a

PPT algorithm B that can distinguish between a random element of G and a random element of
Gq with advantage ε.

Proof: The proof for this step is similar to the proof of Claim 4.

Claim 6 For any adversary A, Adv1nA ≤ negl(λ).

Proof: Let us consider the following distributions (all operations are modulo p):

D1 =


n+1∑
j=1

rj ,
n+1∑
j=1

rjaj , . . . ,
n+1∑
j=1

rja
n−1
j ,

n+1∑
j=1

rja
n
j

 : r1, . . . , rn+1, a1, . . . , an+1 ← Zp


D2 =


n+1∑
j=1

rj ,
n+1∑
j=1

rjaj , . . . ,
n∑
j=1

rja
n−1
j , r

 : r1, . . . , rn+1, a1, . . . , an+1, r ← Zp


In order to show that Adv1n+1

A ≤ negl(λ), it suffices to show that D1 and D2 are statistically
indistinguishable. In fact, one can prove the following stronger statement.

Observation 5 D1 ≈s {(c1, . . . , cn+1) : c1, . . . , cn+1 ← Zp}

Note that D1 can also be expressed as{
(r1 . . . rn+1) · Va1...an+1 : ri, aj ∈ Zp

}
where Va1...an+1 is a Vandermonde matrix of dimension (n+ 1)× (n+ 1).

Va1...an+1 =


1 a1 · · · an1
1 a2 · · · an2
...

...
. . .

...
1 an+1 · · · ann+1


If all ais are distinct and non-zero, then Va1...an+1 is invertible. Hence, if the entries ai are chosen
uniformly at random from Zp, then with overwhelming probability, Va1...an is invertible. Thus,
there is a bijection between {(r1, . . . , rn+1) · V : ri ∈ Zp} and Zn+1

p . This proves our observation.

33

