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Abstract

Secure computation on encrypted data stored on untrusted clouds is an important goal. Existing
secure arithmetic computation techniques, such as fully homomorphic encryption (FHE) and somewhat
homomorphic encryption (SWH), have prohibitive performance and/or storage costs for the majority
of practical applications. In this work, we investigate a new secure arithmetic computation primitive
called switchable homomorphic encryption (or SHE) that securely switches between existing inexpensive
partially homomorphic encryption techniques to evaluate arbitrary arithmetic circuits over integers. SHE
is suited for use in a two-cloud model that is practical, but which makes stronger assumptions than the
standard single-cloud server model. The security of our SHE solution relies on two non-colluding parties,
in which security holds as long as one of them is honest. We benchmark SHE directly against existing
secure arithmetic computation techniques—FHE and SWH—on real clouds (Amazon and Rackspace)
using microbenchmarks involving fundamental operations utilized in many privacy-preserving computa-
tion applications. Experimentally, we find that SHE offers a new design point for computing on large
data—it has reasonable ciphertext and key sizes, and is consistently faster by several (2–3) orders of
magnitude compared to FHE and SWH on circuits involving long chain of multiplications. SHE exhibits
slower performance only in certain cases, when batch (or parallel) homomorphic evaluation is possible,
only against SWH schemes (which have limited expressiveness and potentially high ciphertext and key
storage costs).

1 Introduction

Outsourcing of large-scale personal data from resource-constraint client devices, such as smartphones or
laptops, to public clouds is prevalent from email to medical records management applications. In such
services, users often want to utilize the cloud services for storage and computation without trusting it with
the privacy of their data. Secure (or privacy-preserving) computation on encrypted cloud data has been a
long-standing problem.

There have been considerable recent theoretical advances in cryptographic techniques for secure compu-
tation. In Gentry’s seminal work [30], a primitive called fully homomorphic encryption (or FHE) was intro-
duced and it offers ability to compute arbitrary circuits. Since then, continual improvement and progress
has been made [53, 28, 27, 29]; however, these schemes are still prohibitively slow even for simple arithmetic
operations. Another generic technique which offers faster circuit evaluation times is garbled circuits (or GC).
GC-based computation techniques have witnessed considerable efficiency improvements [38, 51], especially
for evaluation operations involving bitwise operations [37]. However, the size of garbled circuits grow lin-
early in the size of the data they compute on in general. Therefore, when computing on large-scale data, the
costs of garbled circuit creation and upload to the cloud can be a prohibitive bottleneck in many practical
applications. In contrast, partially homomorphic encryption (or PHE) [21, 54] that evaluates specific integer
arithmetic operations has offered performance at least 2–3 orders of magnitude more efficient than FHE.
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PHE techniques have been used in several practical research systems recently [57, 64]. Similarly, somewhat
homomorphic encryption (or SWH) [53, 4] has received considerable attention for its better efficiency com-
pared to FHE. However, it evaluates only low-degree polynomials on encrypted data, thereby having limited
expressiveness.

In this paper, our goal is to develop an alternative primitive for secure arithmetic computation on
encrypted data. Specifically, we aim to develop a primitive that supports general expressiveness, supporting
arbitrary number of addition and multiplication over encrypted integers, with better efficiency for practical
use. We aim to experimentally benchmark our primitive directly against existing primitives on the same
benchmarks under the real cloud settings. In order to explore alternative primitives, we consider a two-cloud
model that is practical to achieve, but requires a stronger trust assumptions than the traditional single
server-setting. (We elaborate on this model and its practical feasibility in §2.1.)

Two-Cloud Model. The majority of the existing cryptographic techniques for secure computation are
designed for a client-server model. Table 1 gives a summary of different variants of client-server models,
ranging from one-client & one-server, e.g., a naive download-and-compute approach1 and FHE, to multi-
client & multi-server, e.g., general secure multi-party computation (MPC).

In this work, we consider a single-client and two non-colluding cloud model. We assume that the client
outsources its data to two cloud providers (e.g., Google, Microsoft, Amazon, and Rackspace), never revealing
the decryption keys to any of them, but making some realistic assumptions about them not colluding. Such
a model (relying on two non-colluding parties or multiple parties with a subset of them being honest) has
also been used in other contexts, for example, initially in secure two-party computation (2PC) [22, 36, 14,
8, 62] and multi-party computation (MPC) [20, 12, 40], and more recently in private information retrieval
(PIR) [2, 16, 4] and oblivious RAM (ORAM) [48, 61]. We consider a non-interactive model between a client
and two servers, in the sense that the client is “offline”, i.e., outsourced computation on encrypted data can
be performed without the client’s participation. We further discuss the differences between previous works
and ours in §6.

Model ↔ Examples

1 client & 1 server:
– Download-and-compute Yes [5, 15]
– FHE No [30, 28, 29]
– SWH No [53, 4]

1 client & multi-servers:
– Instantiation from MPC No [35, 62]
– SHE (this work) No

Multi-clients & 1 server:
– Outsourced MPC Yes [22, 40]
– Outsourced MPC No [34]
– Threshold FHE Yes [30, 1]
– Multi-key FHE No [47]
Multi-clients & multi-servers:
– Single-key MPC Yes [18, 12, 3]
– Multi-key MPC No [56]

Table 1: Models for secure computation. (Notation: ↔ denotes interactivity between the client and the
server during secure computation.)

Our Contributions. We demonstrate that there exist practical alternatives to FHE when working in the
two-cloud model, which seems to be a promising, under-explored direction in the context of homomorphic

1Here a client downloads its encrypted data from online storage and locally performs the computation.
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encryption. We realize this through a new cryptographic primitive called switchable homomorphic encryption
(or SHE), which relies on two non-colluding clouds to jointly execute the client’s computation on encrypted
data without any of them having access to the decryption key. While we focus on two clouds in this paper,
our approach can be generalized and extended to a n-cloud setting (e.g., one server and n− 1 proxies, where
at least one of them is honest) in a straightforward manner.

Informally, our concept of SHE builds upon existing PHE techniques, such that it is possible to transform
ciphertexts associated with additively homomorphic encryption (or ADD) to ciphertexts associated with
multiplicatively homomorphic encryption (or MUL), and vice versa, and thus achieving fully homomorphic
encryption. Our construction of SHE makes use of the well-studied Paillier ADD scheme [54] and a variant
of the ElGamal MUL scheme [21] as building blocks. A major challenge in designing SHE based on the
ElGamal MUL scheme is that a ciphertext leaks information whenever a plaintext value is zero. In our
scheme, we make use of a simple, but novel, technique to address the zero-plaintext problem. Our technique
enables an ElGamal ciphertext to be “operated” within a Paillier ciphertext, such that the encryption of
zero is indistinguishable from the encryption of any other value. (We give an overview of our solution in
§2.4.)

We implement and benchmark our SHE scheme based on two real cloud settings: Amazon and Rackspace.
To compare against existing known primitives for secure arithmetic computation, we also implement and
benchmark SWH based on the HElib library [45], FHE based on the Scarab Library (FHE) [46], and GC
based on FastGC [37]. Our benchmarks are based on two fundamental operations in privacy-preserving
computation: matrix multiplication and polynomial evaluation. These operations are commonly used in
applications such as, set intersection [24], regular expression matching [55], private information retrieval [4],
and so on. Our experimental results show that for encrypted polynomial evaluation, especially in applications
with less data parallelism, our SHE scheme in the two-cloud model can be up to approximately 2, 500 times
faster than SWH and FHE in the single-cloud setting; and roughly up to 35 times faster than FastGC.
However, our scheme shows only slightly better performance as compared to SWH and GC approaches in the
case of matrix multiplication. Thus, our scheme performs better than the existing solutions for applications
with deeper circuit sizes, i.e., many consecutive multiplications. When parallelization is used in SWH, our
scheme is considerably slower. The dominant overhead comes from the communication cost between the two
clouds. However, public key and ciphertext sizes in SWH can expand quickly (with polynomial or polylog
overhead) as the evaluated circuit gets deeper. On the other hand, our approach enjoys constant sizes in
both the public key and the ciphertext, and thus, has lower storage cost. In summary, our contributions are
twofold:

• We demonstrate that indeed it is feasible to efficiently and securely switch between PHE schemes in
the two-cloud model.

• We implement and evaluate secure arithmetic primitives on the same, real cloud platform (rarely done
in previous works).

2 Problem & Approach

In this work, we are interested in looking for an alternative that is as expressive as existing FHE schemes,
but with better efficiency.

2.1 Problem Definition

We consider the problem of secure computation of outsourced data generated by a client. In our setting,
as illustrated in Figure 1, there exist two entities: nodes X and Y hosted by two separate cloud providers,
respectively. We envision that these nodes can be hosted on two separate public clouds, such as Amazon and
Rackspace connected by a high-speed network. These two clouds can be trusted not to overtly collude, while
each being vulnerable to curious insiders. Encrypting data is still important to prevent curious insiders,
such as database admins, who can be assumed to operate within the administrative domain of a single cloud
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Figure 1: Secure outsourced computation via two clouds, X and Y .

provider and not able to collude outside of an organization. Our goal is then to protect data confidentiality
against both the clouds. We do not consider non-malleability and verifiability of data computation.

A client interacts with both clouds, say via a web service, through a privacy-assisting browser extension.
The client generates by itself some cryptographic keys, encrypts and stores its data on node Y . The client
also shares some key material (different from the client’s private keys) with X and Y , such that the key
share at each side alone does not reveal any information about the encrypted data. Data computation is
then performed within a virtual machine (VM) running on each cloud with the following constraints:

• Node Y is able to perform computation on the encrypted data on the client’s behalf by interacting
with node X over a high-speed network;

• The client can be offline during the computation, and upon completion, is able to retrieve the output
from Y ;

• The VMs run on an untrusted environment; that is, they are susceptible to snooping by curious insiders
(c.f. [57]).

• Both X and Y are required to store only a small amount (less than a few KB) of cryptographic keys
per user. All persistent ciphertext storage is accessible to service admins.

Adversarial Model. We assume that at least one of the two clouds is honest (i.e., the other cloud can
behave maliciously by deviating arbitrarily from our scheme). Security holds as long as at least one party is
honest. If the server and cloud overtly collude by sharing the cryptographic keys, or if both act maliciously,
no security can be guaranteed. We consider this to be a practical assumption. In the public cloud scenario,
it is possible for well-reputed public cloud providers to overtly collude across organizations, but it risks
their reputation. Our scheme can be extended to a n-cloud model where security holds as long as one
party is honest, thereby making collusion difficult. Our trust assumptions are comparable to those used in
multi-cloud PIR [48, 16] and ORAM [61].

We also assume that both nodes X and Y on the clouds are susceptible to malware installations by any
outsider at the software stack, including the OS and the applications running on it. These may result in
leakage of the client’s encrypted data and key material, and any intermediate computation results stored on
the VM. Hence, each cloud is assumed to further employ secure key distribution and storage mechanisms by
leveraging TPM-based solutions, e.g., KISS [69], to protect the key material. We assume that the client’s key
share never leaves a sealed storage component and it is accessible only via a trusted piece of software, e.g.,
TrustVisor [49], and thus, decryption can be performed in an isolated, malware-free execution environment.
A similar TPM-based trust model is also used in Autocrypt [64] for secure computation on encrypted web
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content in the single-server setting, where the client’s (entire) decryption key is assumed to be securely stored
on a hosting server. However, our model is stronger in the sense that the exposure of a key share does not
reveal the plaintext corresponding to any encrypted data, unless the remaining key share is also known to
the attacker.

Nevertheless, TPM-based solutions do not preclude all physical attacks, such as cold boot attacks. Hence,
curious insiders, who have physical access to the node, may still learn the key material via a sophisticated
hardware attack.2 However, even if the insider gets the key material and has access to the encrypted data,
it still cannot learn anything. It needs the other key share.

Our model also slightly differs from that used in many existing works on two-party computation (2PC),
e.g., [14, 35, 62, 67]. Their model allows the client’s entire decryption key to be revealed to one of the
two parties; the other party without the key has access to the client’s encrypted data. That is, the model
assumes that the encrypted data is never accessible to the party holding the decryption key. This seems to
be a stronger assumption and may not be easy to realize in practice even with TPM-based solutions, since
the ciphertext storage requirement could be large. Our model only assumes the protection of a small amount
of key material on each node.

Note that it is not within our goal to prevent a malicious cloud provider from modifying ciphertexts stored
on the cloud or launching a denial-of-service (DoS) attack to the other party. Also, we do not preserve the
privacy of any function that is to be evaluated by the server, i.e., it may infer some information about
the client’s encrypted input based on the function that it evaluates. Evaluating private functions [44, 42],
verifying computation [25] and mitigating the impact of (DoS) attacks are orthogonal subjects of interest
that are beyond the scope of this work.

2.2 A Simple but Inefficient Solution

Consider the following surprisingly simple known protocol [35, 62] that achieves the stated goal in the two-
cloud model: store all the client’s data encrypted with an additive homomorphic encryption (ADD) scheme,
E+, on one cloud, Y , and store the corresponding decryption key on the other cloud, X. (Here, we require
an ADD scheme, e.g., the Paillier ADD scheme [54], that also allows multiplication of an encrypted value
by a constant.) This way, Y can perform any arbitrary number of homomorphic additions on the encrypted
data. To evaluate a multiplication operation on encrypted values E+(a) and E+(b), Y chooses two random
values r1 and r2 and runs the following protocol with X:

Y → X : E+(a+ r1), E+(b+ r2)

X → Y : E+((a+ r1)(b+ r2)).

In the first step, Y simply homomorphically blinds the target ciphertexts E+(a) and E+(b) with random
values r1 and r2, respectively. X then, using the corresponding decryption key, recovers (a+r1) and (b+r2),
performs the required multiplication, and returns the encryption of (a + r1)(b + r2) to Y . Now what Y
received from X is E+(ab+ ar2 + br1 + r1r2). However, clearly, Y is able to homomorphically remove all the
“unneeded” terms (except ab) from the ciphertext, since it knows random values r1 and r2, and the ADD
scheme allows multiplication of E+(a) and E+(b) with r2 and r1, respectively.

While the above simple solution works, it has two issues. First, X has the decryption key, and hence, if
given access to any ciphertexts generated by the client (e.g., those stored on Y ), it would be able to recover
the corresponding plaintexts. However, this is easy to fix. We can simply split the client’s decryption key
and give each party only one part of the key. This way, neither party can individually decrypt any ciphertext.
Alternatively, we can “double-encrypt” the ciphertexts stored on Y , such that Y can decrypt the “outer”
layer of encryption and X can decrypt the “inner” layer. (The outer-layer protects against curious insiders.)

The second issue is that the solution has poor efficiency. Each multiplication operation requires a “joint
computation” between X and Y (which includes one encryption, two decryptions and roughly five modular

2There exist mechanisms for preventing hardware attacks, for example, by using a secure processor substrate and through
memory cloaking. See Bastion [10] and SecureMe [11] for further details.

5



exponentiations if the Paillier ADD scheme is used). Therefore, the solution does not scale for applications
requiring a large number of multiplications.

2.3 Challenges

Henceforth, we focus on using two partially homomorphic encryption (PHE) schemes (supporting addition
and multiplication, respectively) as the building blocks in designing a practical FHE solution. There are
numerous challenges in realizing this:

• Compatibility: To convert arbitrarily between ADD and MUL ciphertexts, we need a transformation
function that is bijective, i.e., one-to-one mapping between ADD and MUL ciphertexts. Moreover, such
transformation function must preserve the homomorphism property of the ciphertexts. A homomorphic
and bijective function that maps elements from one group to elements of another group is known as
a group isomorphism. This may not be easy to realize, for example, if we work with the well-known
Paillier ADD and the standard ElGamal MUL schemes [21]. The former uses an additive group with
composite modulus and the later works in a multiplicative group with prime order. There seems to be
no known efficient inverse of an isomorphic function that maps elements from a multiplicative group
to those in an additive group.

• Zero-Plaintext: A fundamental, inevitable property of known MUL schemes, such as ElGamal and
RSA, is that encrypting zero results a zero in the ciphertext. One natural way to address such issue
is to encode a message with some “noise” before encrypting it. However, this typically destroys the
multiplicative homomorphism of the scheme, for example in the case of RSA-OAEP [52]. Moreover,
removing the accumulated noise in an encrypted domain after a series of computations may not be
trivial at all.

• Security: The cloud providers performing computation on a client’s encrypted data must not learn
anything about the underlying plaintexts and the corresponding decryption keys. It is also critical to
preserve the data confidentiality invariant before, during and after transformation of any ADD and
MUL ciphertexts. We assume SHE switching logic runs in a TPM-protected environment.

• Efficiency: The overall computational and communication overhead incurred during transformation
of ciphertexts should be reasonable for most real world application scenarios.

Why not instantiate with 2PC? To solve our outlined problem, one may consider using an existing
2PC protocol between the proxy and the server [37]. First, the communication complexity of generic 2PC
is at least linear to the size of the garbled circuit, which in turn, is proportional to the size of the data
(input wires). In contrast, our approach has communication complexity that is independent of the size of
the encrypted data, but instead is linear to the number of ciphertext transformations between ADD and
MUL schemes in the circuit. Second, many efficient solutions to 2PC, such as GC, require the circuit to be
encrypted in advance by the client, unlike in our solution where the computed function can be dynamically
picked by a third party. Finally, garbled circuits typically cannot be reused in order to preserve the secrecy of
the relevant input and function. The client must reconstruct a new garbled circuit (proportional to the size of
the dataset) and upload it to the server each time the client wants to evaluate a function.3 This renders GC
to be unsuitable for privacy-preserving outsourced computation, particularly for large datasets. Although
circuit construction can be outsourced to the server, the computational and storage costs incurred could still
be high for large datasets and large numbers of clients. We experimentally benchmark the efficacy of one of
the recent GC solutions using its off-the-shelf implementation and compare it against our scheme [37].

3While there exist recent, promising results on reusable garbled circuits using function encryption by Goldwasser et al. [32],
no practical implementation has been reported thus far.
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2.4 Solution Overview

For ease of exposition, let us now call node X the proxy and node Y the server. In our solution, the client
encrypts its data using either the ADD or the MUL scheme and stores the resulting ciphertexts on the server.

In our solution, the client stores integer or ASCII data encrypted under the MUL scheme. Circuits are
in DNF form. They are constructed once and uploaded to the server, and can be reused on any subset
of the data repeatedly. The client also provides the corresponding secret key shares to both the proxy
and the server. Using our SHE schemes, the server can evaluate addition and multiplication operations on
the encrypted data, and when necessary, switch between ADD and MUL ciphertexts. We now give some
technical highlights of our approach.

Secret Key Shares. We split a user-chosen private (decryption) key into two parts. The proxy and the
server each is given one part of the key, which in turn, can be used only to jointly decrypt a ciphertext during
transformation of a ciphertext from ADD to MUL (and vice versa).

SHE. We work with a variant of the ElGamal MUL scheme that uses a composite modulus, such that it
is “compatible” with the Paillier ADD scheme. However, a fundamental limitation with the ElGamal MUL
scheme is that it does not handle a zero-plaintext.4 Our SHE scheme addresses such an issue. We perform
addition and multiplication of ElGamal ciphertexts in a homomorphic manner within an encrypted domain
associated with the Paillier ADD scheme. Since the encryption of zero under the Paillier ADD scheme is
indistinguishable from the encryption of a random plaintext under the same scheme, the ElGamal ciphertext
will not leak any information even if the corresponding plaintext becomes zero. However, the catch is that
all the client’s initial input has to be encrypted with the ElGamal MUL scheme and the input must not
contain zeros. We do not see this as a glitch. As pointed out by Jakobsson and Juels [39], we can represent an
ElGamal encryption of zero with two ElGamal encryptions of two random values n1 and n2, respectively, such
that n1 − n2 = 0. Using our technique, therefore, we can perform homomorphic addition or multiplication
over any two ElGamal ciphertexts, or a Paillier ciphertext and an ElGamal ciphertext. It turns out that
Boolean combinatorial circuits can be represented in DNFs (sum of products) [58]. This implies that we
can evaluate arbitrary size disjuncts and sum up an arbitrary number of them. For certain applications, the
DNF size may grow larger, but our evaluation in §5 explains that many interesting applications directly build
on matrix multiplication and polynomial-arithmetic operations. Our scheme can also be used for statistical
analysis applications such as, mean, covariance, and linear regression. These are well-suited for DNF.

Security. The security of our SHE solution is based on the assumptions that: (i) the underlying Paillier
ADD and ElGamal MUL schemes are also secure, and (ii) the proxy and the server do not collude. We
analyze the security of our SHE scheme under the scenario that either the proxy or the server is malicious,
while the other remains honest. Our security proof is by reduction to the security of the Paillier ADD and
ElGamal MUL schemes and the hardness of the Decisional Diffie-Hellman (DDH) problem. We show that
our SHE scheme is CPA-secure [41] (in terms of indistinguishability of encryptions).

3 SHE with Two Clouds

In this section, we first give a definition of switchable homomorphic encryption (SHE). We also briefly recall
two partially homomorphic encryption (PHE) schemes. We then present our SHE construction built upon
the PHE schemes.

Notation. Henceforth, we use the operator ◦ ∈ {+,×} to indicate if a parameter, an algorithm or a scheme
is associated with either additive (+) or multiplicative (×) homomorphic encryption, i.e., ADD or MUL.

4In fact, technically speaking, any message m /∈ Z∗
N , for a composite N , encrypted under the ElGamal scheme leaks some

information about m.
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3.1 Definition

A switchable homomorphic encryption (SHE) scheme in the two-cloud setting comprises six algorithms
defined as follows:

• KeyGen(1n): On input a security parameter 1n, the algorithm outputs a public and private key pair
(pk◦, sk◦) for each operator ◦ ∈ {+,×}.

• Enc(pk◦,m): The algorithm takes as input a public key pk◦ and a message m. It outputs a ciphertext
c◦.

• Dec(sk◦, c◦): On input a private key sk◦ and a ciphertext c◦, the algorithm outputs a message m.

• KeyShaGen(sk◦): The algorithm takes as input a private key sk◦ and outputs a pair of secret key shares
(k◦0 , k

◦
1). (Here secret key shares are key material used to blindly decrypt5 a ciphertext.)

• AddToMul(k+0 , k
+
1 , c

+, pk+, pk×): The algorithm takes as input the secret key shares (k+0 , k
+
1 ) and an

ADD ciphertext c+. It outputs the corresponding MUL ciphertext c× under public key pk×.

• MulToAdd(k×0 , k
×
1 , c
×, pk×, pk+): On input the secret key shares (k×0 , k

×
1 ) and an MUL ciphertext c×,

the algorithm outputs the corresponding ADD ciphertext c× under public key pk+.

The first four algorithms described above are run by the client. The AddToMul and MulToAdd algorithms
can be loosely regarded as isomorphic transformation functions (discussed in §2.3), which are performed by
the proxy and the server to transform an ADD ciphertext to a MUL ciphertext, and vice versa.

3.2 PHE as Building Blocks

We work with the Paillier ADD scheme [54] and a variant of the ElGamal MUL scheme [21]. We choose to
work with an ElGamal encryption scheme that uses a composite modulus [50], i.e., N = pq where p, q are
large primes. Both the ADD and MUL schemes share the same modulus. (Note that this does not pose any
security concern since the modulus is public information and a public-private key pair used in scheme has
different structure and is independently chosen from that of the other scheme.) This is essential so that both
schemes work on the same group structure, and thus, allowing ciphertexts to be transformed in a natural
way (i.e., such that bijective mapping exists.)

Paillier ADD. The Paillier encryption system, denoted by E+, is defined as follows:

• KeyGen(1n,+): On input a security parameter 1n, the algorithm outputs (N, p, q), where N = pq,
and p and q are n-bit primes. The public key is pk+ := N and the corresponding private key is
sk+ := 〈N,φ(N)〉, where φ(N) = (p− 1)(q − 1).

• Enc(pk+,m): The algorithm takes as input a public key N and a message m ∈ ZN . It chooses a
random r ∈ Z∗N and outputs the ciphertext c+ as

(1 +N)m · rN mod N2.

• Dec(sk+, c+): On input a private key 〈N,φ(N)〉 and a ciphertext c+, the algorithm outputs the message
m as

((c+)φ(N) mod N2)− 1

N
· φ(N)−1 mod N.

(Recall that since |Z∗N2 | = φ(N2) = Nφ(N), we have rNφ(N) = 1 mod N2 for any r ∈ Z∗N .)

Clearly, the scheme is additively homomorphic.

5We use the term “blind decryption” to denote a decryption that results in a “partially” decrypted ciphertext or a blinded
plaintext.
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ElGamal MUL. The ElGamal encryption system, denoted by E×, is defined as follows:

• KeyGen(1n,×): On input a security parameter 1n, the algorithm chooses two large, safe primes p and
q (as specified in [50]) and set N = pq. It also chooses a base g = 16 and a random odd6 number x,
and sets h := gx mod N . The public key is then pk× := 〈N, g, h〉 and the corresponding private key is
sk× := 〈N, g, x〉.

• Enc(pk×,m): The algorithm takes as input a public key 〈N, g, h〉 and a message m ∈ Z∗N . It chooses
a random r ∈ Z∗N and outputs the ciphertext c× := 〈c×1 , c

×
2 〉 as

〈mhr, gr mod N〉.

• Dec(sk×, c×): On input a private key 〈N, g, x〉 and a ciphertext c×, the algorithm outputs the message
m as

(c×1 )/(c×2 )x mod N.

It is easy to see that multiplicative homomorphism holds.
We discuss the security of the Paillier ADD and ElGamal MUL schemes in §4.

3.3 Our Scheme

We avoid the inherent zero-plaintext problem in the ElGamal scheme. Moreover, our scheme enables com-
putation of arbitrary sum-of-subset expressions (and more) over encrypted integers, and thus is expressive
as FHE. It is sufficient to show that such a scheme, in theory, evaluates arbitrary boolean combinatorial
circuits, since any circuit can be represented in its DNF form (sum-of-subsets).

Intuition. Since the Paillier ADD scheme allows encryption of a zero-plaintext, but the ElGamal MUL
scheme does not, one natural question to ask is: can we manipulate ElGamal ciphertexts within the Paillier
ciphertext space? It turns out that we can, since both ElGamal and Paillier encryptions can operate within
the group ZN . One can simply treat an ElGamal ciphertext, which is an element of the group Z∗N , as
a “plaintext” in the Paillier encryption domain, where the message space is ZN . By slightly abusing the
notation E+ and E×, this can be visualized as

E+(E×(m)) = (1 +N)E
×(m).rN

for a random r and where E×(m) = mhr0 mod N . (Note that strictly speaking, the above expression is
incorrect since an ElGamal ciphertext has two components 〈mhr0 , gr0 mod N〉. However, for exposition
purpose, we simply assume for now that E×(m) refers to the first ciphertext component mhr0 .) We observe
that, interestingly, even if E×(m) is “encrypted” (as a Paillier ciphertext), the Paillier ADD scheme has the
property that allows anyone without knowledge of the Paillier decryption key to manipulate the ElGamal
ciphertext. That is, one can “decrypt” E×(m) by raising the encrypted ElGamal ciphertext to the power of
(hr0)−1 (with knowledge of the ElGamal decryption key), or “re-encrypt” m by raising E+(m) to the power
of hr1 for a randomly chosen r1. This way, we can perform addition and multiplication on ElGamal and
Paillier ciphertexts. Henceforth, when we say “an encrypted MUL ciphertext”, we refer to encryption of the
form E+(E×(m)).

Take for example, given E+(m) and E×(m′) = mhr
′
, one can “homomorphically multiply” the ciphertexts

to get E+(mm′). This can be done simply as follows:

1. raise E+(m) to the power of E×(m′) such that we have E+(mm′hr
′
)

2. remove the term hr
′

from E+(mm′hr
′
) by raising it to the power of (hr

′
)−1, assuming the decryption

key of E×(mm′) is known.

9



E+ E×
E+ + +,×
E× +,× +,×

Table 2: Combination of ciphertexts and supported operations.

Table 2 summarizes possible combinations of ciphertexts and the corresponding supported arithmetic
operations. Note that our scheme supports homomorphic addition and multiplication of any combination
of E+and E×ciphertexts, except that it does not allow homomorphic multiplication of two E+ciphertexts.
Circuits prepared in DNF form will have no need to switch back from ADD to MUL. In DNF form, multi-
plications are performed first and followed by additions. If DNF form is not suitable for whatever reason,
we can always combine SHE with the basic interactive multiplication approach described in § 2.2.

Construction. We are now ready to present our SHE scheme, which is based on the Paillier ADD scheme,
E+, and the ElGamal MUL scheme, E×described in §3.2. We note that since we operate MUL ciphertexts in
an encrypted domain, the AddToMul algorithm is used to transform a message encrypted under E+ into an
encrypted MUL ciphertext under E+; analogously, the MulToAdd algorithm transforms an encrypted MUL
ciphertext under E+ into a plaintext encrypted under E+. Our SHE scheme is specified as follows:

• KeyGen(1n): On input a security parameter 1n, the algorithm first chooses (N, p, q), where N = pq,
and p and q are n-bit primes. It then chooses two random odd numbers x0, x1 ∈ Z∗N , where |x0| ≈
|x1| < 1

2 |N |, and the generator g = 16. It sets x = x0x1 and h = gx, and outputs the following
public-private key pairs

(pk+, sk+) := (N, 〈N,φ(N), p, q〉)
(pk×, sk×) := (〈N, g, h〉, 〈N, g, x0, x1〉).

• Enc(pk◦,m): For ◦ := +, the algorithm runs the Enc algorithm of E+; otherwise if ◦ := ×, it runs the
Enc algorithm of E×.

• Dec(sk◦, c◦): Similarly, for ◦ := +, the algorithm runs the Dec algorithm of E+; otherwise if ◦ := ×, it
runs the Dec algorithm of E×.

• KeyShaGen(sk+): The algorithm sets both the secret key shares k+0 and k+1 to null (since no decryption
of E+(m) ciphertexts is required in our scheme).

• KeyShaGen(sk×): The algorithm sets the secret key shares to be k×0 := x0 and k×1 := x1.

• AddToMul(c+, pk×): This algorithm is run locally by the server. Given an ADD ciphertext of the form

E+(m) := (1 +N)m · (r′)N mod N2

and the MUL public key pk× := 〈N, g, h〉, the algorithm chooses a random r ∈ Z∗N and outputs an
encrypted MUL ciphertext

E+(E×(m)) := 〈(1 +N)mh
r

· (r′)Nh
r

mod N2, gr〉.

• MulToAdd(c+, k×0 , k
×
1 ): This algorithm is jointly run by the server and the proxy. On input an encrypted

MUL ciphertext of the form

E+(E×(m)) := 〈(1 +N)mh
r

· (r′)Nh
r

mod N2, gr〉,
6With an odd exponent x, it is almost certainly true that we will have gcd(x, φ(N)) = 1.

10



the server chooses a random s ∈ Z∗N , computes

c′ := (gr+s)k
×
1 , R := gs

and forwards 〈c+, c′, R〉 to the proxy. (Here the random value s is used to blind the ElGamal ciphertext
component gr. This is to prevent the proxy from learning the corresponding hr value using its key
share.)

The proxy then, using its key share k×0 , computes (c′)k
×
0 = hr+s and its inverse (hr+s)−1. It also

computes and returns

c′′ := ((1 +N)mh
r

· (r′)Nh
r

)(h
r+s)−1

mod N2

:= (1 +N)mh
−s

· (r′)Nh
−s

mod N2

:= E+(mh−s)

and R′ = Rk
×
0 to the server.

Finally, the server computes (R′)k
×
1 = hs and recovers the corresponding ADD ciphertext E+(m) by

homomorphically removing h−s from c′′.

We analyze the security of the above construction in Section 4.

3.3.1 Discussion

Assumptions. In our SHE scheme, the client is required to generate and submit only ElGamal ciphertexts
corresponding to non-zero plaintexts. As explained in Section 2.4, if encryption of zero is required in the
computation, the client can construct a circuit that represents zero in the form of

MulToAdd(E+(E×(n1)))×MulToAdd(E+(E×(n2)))−1 = E+(0)

for random n1, n2 and where n1 − n2 = 0. This prevents encryption of a zero-plaintext under E× at any
point of the computation.

Moreover, we assume that: (i) at least either the proxy or the server does not reveal to any party its
secret key shares and any local states, e.g., random value s used in a ciphertext transformation; (ii) at least
either the proxy or the server obediently executes the specified algorithms in the scheme.

Homomorphism. With the SHE scheme, it is trivial to evaluate homomorphic multiplication on two
encrypted messages E×(m1) and E×(m2). To output the result in E+, the server simply encrypts E×(m1m2)
under E+ and runs MulToAdd(E+(E×(m1m2))). To homomorphically add E×(m1) to E+(m3), the server first
runs the MulToAdd(E+(E×(m1))) = E+(m1) and then adds the result to E+(m3) to obtain E+(m1 + m3).
The steps involved in performing multiplication between E×(m1) and E+(m3) has been sketched before.
Lastly, homomorphic addition of two Paillier encrypted messages is done in the usual way.

Extending to n-cloud. Our scheme can be extending to work in the n-cloud setting. For example, instead
of relying on one proxy, we can use n− 1 non-colluding proxies to jointly perform the MulToAdd algorithm
with the server. Each proxy is given a secret key share k×0,i for i ∈ {1, . . . , n − 1} and the server holds the

key share k×0,n such that x = k×0,1 · · · k
×
0,n. This way, the confidentiality of the client’s data is protected so

long as at least one of the n parties is honest.

4 Security Analysis

Our security goal is to protect data confidentiality, that is, ensuring no meaningful information is leaked
through homomorphically encrypted data. This must hold before, during and after a ciphertext associated

11



with one arithmetic operation is transformed to one that supports another arithmetic operation. However,
as with any existing homomorphic encryption schemes, our schemes do not guarantee data integrity or
correctness.7 Moreover, our schemes do not prevent information leakage through the function to which the
client’s input is fed.

4.1 CPA Model

We work with the standard chosen-plaintext attack (CPA) model [41]. As usual, security is defined through
simulating an indistinguishability security game between an adversary A (attack algorithm) and a challenger:

1. A plays the role of either a malicious server or a malicious proxy (but not both).

2. At the start of the game, A is given the public keys and secret key shares that would have been
required by a real server or proxy to perform the Enc algorithms associated with E+ and E×, and the
AddToMul and MulToAdd algorithms for transformation of ciphertexts.

3. During the game, A is given access to the following oracles:

• Enc oracle—capability to choose arbitrary plaintexts to be encrypted and obtain the corresponding
ciphertexts;

• AddToMul oracle—capability to transform E+(m) to E+(E×(m));

• MulToAdd oracle—capability to transform E+(E×(m)) to E+(m).

4. A is also required to choose two messages m0,m1 with the restriction that |m0| = |m1|. It also chooses
what type of transformation (AddToMul or MulToAdd) on which it wishes to be challenged.

5. During the challenge phase, and given m0,m1, the challenger performs the following steps:

• pick a random bit b ∈ {0, 1};
• if A wishes to be challenged on AddToMul, generate E+(mb) and run the AddToMul algorithm;

• otherwise, generate E+(E×(mb)) and jointly run the MulToAdd algorithm with A;

• output both the ciphertexts before and after transformation as the challenge ciphertext; A is also
given a copy of E×(mb) (since all data is initially encrypted in such form in our SHE scheme).

6. A continues to have access to the aforementioned oracles.

7. At the end of the game, A outputs a guess b′ ∈ {0, 1} for b. A wins the game if b = b′.

Note that since A has access to E×(mb), we impose the restriction of m0 6= m1 6= 0 in the above game. (In
the actual scheme, as explained, this requirement can be easily met.) Moreover, for simplicity, we consider
transformation of a single ciphertext that is directly computed from one of the messages chosen by the
adversary. However, it is straightforward to extend the above CPA security game to allow the adversary to
submit two sets of messages M0 = {m1

0,m
2
0, . . . ,m

t
0} and M1 = {m1

1,m
2
1, . . . ,m

t
1}, with the restriction that

|mi
0| = |mi

1| for all 1 ≤ i ≤ t.
We say that the SHE scheme is CPA-secure if any probabilistic polynomial-time algorithm A attacking

the scheme has only negligible advantage of winning the CPA security game.

7Hence, we work in a model which is comparable to a semi-honest model typically used in the MPC setting [31], but
additionally, we allow one of the two parties to behave maliciously.
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4.2 Security of PHE

The Paillier MUL scheme has been proven to have indistinguishable ciphertexts under the CPA model. The
security proof is based on the assumption that the decisional composite residuosity problem is hard, relative
to the hardness of factoring a composite number N that is the product of two primes [54].

On the other hand, McCurley [50] showed that, with careful selection of parameters, ElGamal encryption
with a composite modulus can be secure against any adversary who could break Diffie-Hellman key exchange,
or could factor the modulus, but not both. While there is no known proof of CPA-security, it is conjectured
that the ElGamal MUL scheme over a composite modulus is semantically secure [23, 9].

4.3 Security of SHE

We now prove the security of our SHE scheme under the CPA model defined in § 4.1.

Theorem 1. The SHE scheme is secure in the CPA model against any probabilistic polynomial-time ad-
versary if the underlying ADD and MUL schemes are CPA-secure, the Decisional Diffie-Hellman (DDH)
problem is hard, and provided at least the proxy or the server is honest.

Proof of Theorem 1. Let εshe be the advantage of A in breaking the SHE scheme. We simulate a CPA secu-
rity game and consider the following cases.

Case 1 (Honest Server): If A is the proxy, it is given the public key pk× and the key share k×0 for the
MUL scheme. Moreover, if A chooses to attack the AddToMul algorithm, it has access to

〈E×(mb), E+(mb), E+(E×(mb))〉

as the challenge ciphertext. However, by the semantic security of the ADD scheme, A learns no information
about mb from E+(mb) and E+(E×(mb)) without the corresponding private key sk+. Hence, it is sufficient
to analyze if any information about mb can be deduced from

〈E×(mb) = (mbh
r, gr), pk× = (N, g, h), k×0 = x0〉.

Lemma 1. Given 〈g, h, x0, gr,mbh
r〉, any probabilistic polynomial-time adversary A has negligible advantage

εA1 in distinguishing E×(m0) from E×(m1), assuming that the DDH problem is hard.

Proof of Lemma 1. By definition of the CPA-secure MUL scheme, m0h
r is indistinguishable from m1h

r.
This is because mbh

r contains no information about mb for a randomly chosen r (i.e., the distribution of
the former is independent of that of the latter), since hr is indistinguishable from a random group element
under the DDH assumption. However, given knowledge of the key share k×0 = x0, A is able to compute the

values h1/x0 = (gx)1/x0 = gx1 and (mbh
r)1/x0 = m

1/x0

b grx1 , where x1 is the other unknown key share. (Note
that here (mb)

1/x0 is known to A.) Hence, we need to show that given (g, gr, gx1), A is unable to distinguish
grx1 from a random group element with non-negligible advantage, since the capability in doing so implies

that A is able to distinguish m
1/x0

0 grx1 from m
1/x0

1 grx1 with non-negligible advantage.

Let consider m̃b = m
1/x0

b as an encoded message of mb. It is then straightforward to prove that m̃bg
rx1

leaks no information about m̃b under the standard DDH assumption. Suppose there exists an adversary A
which can break the CPA security of the MUL scheme with advantage at least εA1 . We build an algorithm B
which can solve the DDH problem. Let B take as input a DDH challenge (g, gv, gw, T ) for random v, w ∈ Z∗N
and where T is either gvw or a random group element of Z∗N . B then proceeds as follows. It picks a random
x0 and sets 〈g, h = gw, N〉 as the public key of the MUL scheme and x0 as the secret key share k×0 for
adversary A. (This implicitly sets gw = gx1 .) B also provides Enc oracle access to A in the standard way.

During the challenge phase, A submits two messages m0,m1 of equal length. B chooses a random bit

b ∈ {0, 1} and returns (m
1/x0

b T, gv) as the challenge MUL ciphertext, which by definition, is a valid MUL
ciphertext since

(m
1/x0

b T, gv) = (m̃bT, g
v)

13



where m̃b can be treated as an encoded message based on x0, and gw = gx1 is given to A as the public key.
A finally outputs a guess b′ of b. If b′ = b, B outputs 0 (indicating that T = gvw); otherwise, it outputs

1 (indicating that T is a random element of Z∗N ). We see that if T is a random group element, then B has
probability 1

2 in outputting b = 0. On the other hand, if T = gvw, B has advantage at least εA1
in solving

the DDH problem.

On the other hand, ifA wishes to attack the MulToAdd algorithm, it has access to 〈E×(mb), E+(E×(mb)), c
′, R〉

instead during the challenge phase. Similarly, we turn our attention to analyzing what information can be
deduced from non-ADD ciphertext components

〈E×(mb) = (mbh
r, gr), c′ = (gr+s)x1 , R = gs, pk× = (N, g, h), k×0 = x0〉.

From Lemma 1, we prove that the adversary does not learn anything about mb from 〈E×(mb), pk
×, k×0 〉.

Hence, it is sufficient to show that no information about mb is leaked through c′ and R.

Lemma 2. Given 〈g, h, x0, gs, (gr+s)x1 ,mbh
r〉, any probabilistic polynomial-time adversary A has negligible

advantage εA2 in distinguishing E×(m0) from E×(m1), assuming that the DDH problem is hard.

Proof of Lemma 2. Given (gr+s)x1 and x0, A is able to compute (gr+s)x1x0 = (gx)r+s = hr+s, from which
it can also compute hr+s/(mbh

r) = (1/mb)h
s. Hence, we need to show that it is infeasible for the adversary

to distinguish (1/m0)hs from (1/m1)hs with non-negligible advantage.
We can prove that (1/mb)h

s leaks no information about mb using the same technique for proving
Lemma 1. That is, we run an adversary A with advantage at least εA2 against the MUL scheme as a
subroutine within an algorithm B, which is used to solve the DDH problem. Given a DDH challenge
(g, gv, gw, T ), we set gw = gx1 and embed gv in the challenge ciphertext of the form

((1/mb)
1/x0T, gv) = (m̃bT, g

v)

such that T is either gvw = gsx1 or a random element of Z∗N . Following the same reasoning, we can show
that B has advantage at least εA2

in solving the DDH problem.

Case 2 (Honest Proxy): If A is the server, it is given the public key pk× and the key share k×1 for the
MUL scheme. Similarly to Case 1, if A wishes to attack the AddToMul algorithm, it learns no information
about mb from 〈E×(mb), E+(mb), E+(E×(mb))〉 by the security definition of the ADD scheme and Lemma 1.

However, if A attacks the MulToAdd algorithm, it is given access to 〈E×(mb), E+(E×(mb)), c
′′, R′〉. We

then focus on what can be inferred from non-ADD ciphertext components

〈E×(mb) = (mbh
r, gr), R′ = gsx0 , k×1 = x1〉.

Lemma 3. Given 〈g, h, x1, s, gr, gsx0 ,mbh
r〉, any probabilistic polynomial-time adversary A has negligible

advantage εA3 in distinguishing E×(m0) from E×(m1), assuming that the DDH problem is hard.

Proof of Lemma 3. Given knowledge of s and x1, clearly A can compute gx0 and (mbh
r)1/x1 = m

1/x1

b grx0 ,
where x0 is unknown to A. Using the same proof technique for Lemma 1, we can show that given (g, gr, gx0),
it is infeasible to distinguish grx0 from a random group element under the DDH assumption. If there exists
an adversary A with advantage εA3 in breaking the security of the MUL scheme, then we can build an
algorithm B to solve the DDH problem with advantage εA3 .

What remains is to analyze if A can deduce any information about the MUL private key just from one
of the given key shares.

Lemma 4. Given only one of the secret key shares, either k×0 or k×1 , any probabilistic polynomial-time
adversary A has only negligible probability εA4

in learning the corresponding MUL private key sk×.
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Proof of Lemma 4. Since k×0 = x0 and k×1 = x1 are randomly and independently chosen, clearly the dis-
tribution for each key share is indistinguishable from A’s viewpoint. Even though A with knowledge of x0
(resp. x1) can compute gx1 (resp. gx1), recovering the other unknown key share x1 (resp. x0) is equivalent
to solving the discrete logarithm problem. Thus, given only one of the two key shares, A can only perform
exhaustive search on the other key share, and thus, has only negligible probability εA4

in recovering the
correct original decryption key x = x0x1.

Combining Lemmas 1–4, we have εshe ≥ εA1 +εA2 +εA3 +εA4 . This completes the proof of Theorem 1.

5 Evaluation

5.1 Implementation

SHE. We implement our SHE scheme using the GNU MP library version 5.1.3 in 1540 lines of C code. We
choose a modulus N of size 1024 bits for implementing the Paillier AHE and the ElGamal MHE schemes.
Our current implementation is unoptimized and does not use any parallelization techniques.

GC. We use FastGC [37], which is implemented in Java, and is one of the fastest available implementations
of the MPC framework that is based on GC. For benchmarking purposes, we construct circuits for 32-bit
integer multiplication, matrix multiplication, and polynomial evaluation. We assume that the client sends
all the inputs along with the circuit to the server, which in turn, evaluates the circuit and returns the results
to the client. For every new input which has to be evaluated, a new garbled circuit has to be generated with
new input labels, as the garbled circuits in FastGC can be used only once for secure computation. Hence our
experiments take into account the time required for the circuit construction, garbling or any circuit upload
while measuring the execution time using FastGC.

SWH. Our implementation of SWH is based on a recently released homomorphic encryption library called
HElib [45], which is written in C++. It implements the BGV homomorphic encryption scheme [6] and makes
use of Smart and Vercauteren’s packing techniques [60] allowing SIMD-like computation. The optimization
provides support for parallel computation on NSLOTS with a single SIMD-like instruction. The HElib library
supports both bit and integer operations on encrypted data. Moreover, we choose the security parameter
to be 80 bits, roughly equivalent to the 1024-bit security level achieved by our SHE scheme. The library,
however, does not provide the bootstrapping function required for FHE, and thus imposing a limit on the
depth of the evaluated circuit. The number of consecutive multiplication operations required in an application
decides the depth of a circuit. The deeper the circuit, the slower is the performance of each multiplication
operation. The maximal depth of the circuit that we could support is 26 multiplications. Table 4 shows
different choices of levels, number of slots and their corresponding times required for multiplication and the
maximal supported number of multiplications.

FHE. We also implement FHE based on the Scarab Library [46], which in turn, is based on the work of
Gentry [30], and Smart and Vercauteren [60]. The library implements the “re-encrypt” operation required
for bootstrapping and refreshing a ciphertext, and it supports bitwise operations over encrypted bit inputs.
In order to be used for our benchmarking, we modify the library such that it supports integer addition and
multiplication. There are other faster variants of FHE scheme, such as López-Alt et al.’s scheme that is
based on NTRU encryption [47]. However, no open source implementation of these schemes is available
yet. Nevertheless, Doroz et al. [19] report that the NTRU-based scheme can be faster than using HElib
by a factor of 6. As we show next, our SHE scheme can be up to roughly 2, 500 times faster (3 orders of
magnitude) for cases which yield circuits with greater depths.
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Level Number of Time for single Max. Mul.
slots multiplication (ms) Supported

16 330 669 6

32 588 2471 13

64 1264 9510 26

Table 4: Parameter choices for SWH.

5.2 Selection of Benchmarks

SHE is based on partially homomorphic encryption schemes that support limited but fast arithmetic op-
erations. Hence, we focus on benchmarks that operate on integer values as inputs and do not consider
applications using bitwise operations like AES. To evaluate the performance of SHE, we select polynomial
evaluation and matrix multiplication that are commonly used in privacy-preserving computation applications
as our benchmarks. We evaluate these benchmarks for various input sizes using SHE and other primitives
described above. We limit the input sizes to a small number i.e., 26 degree for polynomial and 10 for matrix
as the tools we compare to did not scale for larger values.

Polynomial Evaluation. Encrypted polynomial evaluation is a fundamental building block of many in-
teresting privacy-preserving applications, for example, privacy-preserving set intersection [24], private infor-
mation retrieval [4], and regular expression matching [55]. In our experiments, we measure the computational
cost for polynomial evaluation using both the naive method and Horner’s rule. The naive way of evaluating
a polynomial involves: (i) computing all the terms in the polynomial; and (ii) adding up all the terms. The
input to this application is encrypted polynomial coefficients and a point at which the polynomial is to be
evaluated. However, the degree of the polynomial is unencrypted. All the inputs are in the integer domain.

Matrix Multiplication. Our second benchmark is based on matrix multiplication, which is a core opera-
tion used in various applications such as image transformation, page rank algorithms, and machine learning
algorithms []. We evaluate multiplication of two square matrices of different dimensions where the inputs are
encrypted. Unlike polynomial evaluation which may have long chains of multiplications, matrix multiplica-
tion requires only a small depth circuit. Thus our selected benchmarks allow us to evaluate the efficiency of
SHE on both small and larger depth circuits.

5.3 Evaluation

We perform our evaluation with the following goals:

• To examine the impact of the network latency between the two nodes, including on real clouds.

• To evaluate the efficiency of SHE for different depth of circuits which is indicated by the number of
continuous chain of multiplications.

• To compare the performance of SHE with publicly available implementations for secure arithmetic
computation on encrypted data.

Methodology. We measure the performance of SHE for three different setups: (i) between two clouds, (ii)
within a LAN, and (iii) on the same machine.

For evaluating our scheme in the two-cloud model (i.e., between proxy and server), we use Amazon EC2
and Rackspace servers connected over a bandwidth of 251 Mbits/sec (measured using iperf [63]). We set up
a Ubuntu-trusty-14.04-amd64-server instance on Amazon EC2 having 8 vCPU’s, 28 compute units (ECU)
and 15 GB memory. We use this instance as our server. We then host the proxy as the same Ubuntu version
on Rackspace with 4 vCPU’s and 15 GB memory. We host the proxy and the server in geographically
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different regions to evaluate the communication overhead between these two clouds. Our proxy is hosted in
US Northern Virginia, while the server is hosted in US West (Oregon).

For evaluation on a local area network (LAN), we use two machines connected over a bandwidth of 937
Mbits/sec. We use a Dell Latitude E6430s machine with 8 GB RAM and Intel(R) Core(TM) i7-3520M CPU
at 2.90 GHz 4-core processor having cache size of 4096 KB as the proxy. On the other hand, we use a Dell
Optiplex D990MT Desktop machine with 8 GB RAM and Intel(R) Core(TM) i7-2600M CPU at 3.40 GHz
8-core processor having cache size of 8192 KB as the server.

In the third setting, we run both the proxy and the server on the same machine. One can imagine this
to be useful in a scenario where a machine contains two CPUs manufactured by different vendors and a
possible threat arises from a hardware backdoor present in either of the CPUs [65]. The two CPUs can act
as the two nodes in our SHE design and execute the proxy and server logic respectively. We use the Dell
Optiplex D990MT Desktop machine to measure the performance when proxy and server are hosted on the
same machine.

Summary of Evaluation. The results of our evaluation can be summarized as follows:

• SHE is a new design point in the space of secure arithmetic computation in the two cloud model and
is expressive enough for applications of different circuit depths like matrix multiplication (depth = 1)
and polynomial evaluation (depth = 26)8.

• In applications with no data parallelism, our scheme demonstrates a stark improvement of 2500 time
speed up over FHE and SWH, and 35 times over GC for naive evaluation of a polynomial (deep circuit)
and 1000 times speed up over FHE, 2 times over GC and almost comparable performance with SWH
for matrix multiplication (low depth circuit).

• The dominant cost in the performance is due to the communication overhead between two clouds which
varies our speed up from 2500 to 7000 over FHE when moved from cloud setting to same machine setting
that has zero network latency.

5.4 Results

Table 3 shows the results of our evaluation in the three experimental setups. It gives the time required, in
milliseconds, to execute our benchmark applications for various sizes of input. It also shows the speed up of
our scheme as compared to FHE, GC , SWH and SWH when the parallel functionality is used. We report
on matrices of size 2, 5 and 10 since the FHE library did not scale for matrix size of 10 in our experiments.
We evaluate the polynomial for a maximum of 26 degree as the SWH library could not scale for more than
26 degree because of its limited expressiveness.

Performance of SHE. Our scheme takes around 400 ms to evaluate a polynomial of degree 26 using the
naive method and 4.5 seconds using Horner’s method in the cloud setting. Both methods require conversions
from ElGamal ciphertexts to Paillier ciphertexts (MulToAdd) proportional to the degree of the polynomial.
However in the naive way of evaluating a polynomial, all the multiplications are done together and sent to
the proxy for conversion in a single request; whereas Horner’s method requires to make communication calls
to the proxy that is equal to the degree of the polynomial. Thus, the communication overhead increases in
the latter case. The time for evaluating a polynomial using both the naive method and Horner’s method are
almost the same (101 ms and 115 ms resp.) when executed on the same machine (zero network latency).
This confirms our observation that the dominant cost comes from the communication overhead between the
two clouds. Matrix multiplication makes N3 conversion calls for multiplying two matrices of size N × N .
On the same machine setting, SHE takes 5 s for multiplying matrices of size 10. This shows that the
second dominant factor after network latency that effects the performance is the number of conversions from
ElGamal to Paillier ciphertexts. Thus, SHE is comparatively much more efficient for applications which have
longer chains of multiplications and fewer conversion calls.

8depth is defined by the number of continuous multiplication operations in the application
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KeyGen MulToAdd Pai. Mul AddToMul Pai. Add ElG. Mul

66 ms 11 ms 2 ms 5 ms 0.003 ms 0.002 ms

Table 5: Time required for individual operations on SHE (averaged over 10 runs).

Comparison with other schemes. The performance of SHE is roughly 2500 and 7000 times better than
FHE when evaluated on two-cloud servers and on the same machine, respectively, for applications with
a high-depth circuit like polynomial evaluation. FHE involves the computationally expensive “re-encrypt”
function after every multiplication operation in order to remove the noise from the ciphertext. This operation
increases the execution time for longer chain of multiplications. SHE scheme does not suffer from any
such costly computations, and thus, shows consistent speed up in the performance even for execution of
deep circuits. However, the network latency between the proxy and the server effects the speed up in the
performance of SHE when it is run in the cloud setting.

For non-parallel applications, our scheme is around 2500 times faster than SWH in the two cloud setting
and 8500 times faster when executed on the same machine setting for high-depth polynomial evaluation.
Our scheme shows comparable performance against SWH for matrix multiplication which has depth size of
1 (as the depth of circuit is only one, we set the level parameter as 2 in the SWH scheme for evaluating this
particular application). This is due to the fact that SWH is faster for small chain of multiplications and slows
down with increase in the circuit depth. After a certain number of multiplications, the ciphertext becomes
noisy and cannot be used further. This limits the maximum multiplications that can be supported by SWH.
Table 4 shows the maximal number of supported multiplications in the HElib library. For applications
that can support highly parallel tasks, we show the comparison to our scheme by dividing the execution
time of SWH with the NSLOTS (the maximum parallelism possible) in Table 4. We observe that SHE is
considerably slow for matrix multiplication and Horner’s method, and is comparable to SWH for naive
method of polynomial evaluation using batch processing offered by SWH. However, for dynamic queries,
e.g., private information retrieval, where client does not have enough input data available to leverage the
benefits of such batch processing in SWH, SHE is faster. Even with parallel processing, SHE performs 2.64
to 6.76 times better than SWH for 26 degree polynomial. The benefits of SHE in terms of efficiency and
expressiveness are visible for deep chains of multiplication which SWH cannot support due to its limitations.

Our benchmarks execute around 35 times faster using SHE as compared to running with GC in the
cloud setting. The main performance overhead in GC comes from the circuit generation and circuit garbling
operations that are proportional to the size of the input. Unlike SHE which can reuse the same application
to evaluate on different set of encrypted inputs, GC is limited to a one-time use of the circuit for a particular
set of inputs.

Individual Operation costs. Table 5 shows the computation times required for various operations in the
SHE scheme. The key generation step is performed by the client and takes around 66 ms. Paillier homomor-
phic addition and ElGamal homomorphic multiplication require only 0.003 ms and 0.002 ms, respectively.
Multiplying a Paillier ciphertext with a constant value and AddToMul both require on an average of less
than 5 ms. The MulToAdd call call to the proxy takes around 10 ms (which includes the network latency).
All the timing measurements are averaged over 10 runs of each operation.

6 Related Work

Secure Arithmetic Operations. In the secure two-party or multi-party computation (2PC/MPC) set-
ting, there has been an extensive amount of work in secure arithmetic operations, such as addition, multiplica-
tion, division, exponentiation and modulo reduction over integers, see for example [26, 39, 17, 33, 35, 62, 67].
Typically, 2PC is performed over two input values a and b from each party such that both parties learn only
their respective input and the output c = a ◦ b for some operator ◦. The communication and computational
complexity of an MPC protocol is generally high. For example, Rabin’s n-party multiplication protocol via
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secret sharing takes a single round of communication and involves the exchange of O(n2) elements from a
relevant finite field [26]. This is because each of the n players must perform Shamir secret sharing as part of
the protocol. In the garbled circuit setting, on the other hand, multiplication of two l-bit unsigned integers
requires a circuit of size approximately O(l1.6) with Karatsuba’s algorithm. The complexity can increase
drastically even for a slightly more advanced operation. For example, Yu et al.’s two-party exponentiation
protocol takes 24 rounds and requires roughly 279l secure multiplications [67] for l-bit shares.

Outsourced MPC. Kamara et al. [40, 59] studied MPC in a server-aided setting, where the involved
clients/parties, particularly those with limited computing power, are able to outsource expensive computation
to an untrusted server with vast amount of computational resources. The server neither has any input to the
computation nor receives any output from the computation. However, any secure computation would require
interaction between the involved parties and the server. On the other hand, Halevi et al. [34] proposed a
non-interactive MPC solution that allows outsourcing of computation to a web server. However, the server
is allowed to learn the output of the computation.

Peter et al. [56] recently extended the above previous works to the multi-key setting, proposing an MPC
construction that allows input to be encrypted with multiple keys corresponding to different parties/clients.
Their construction, as with our work, relies on two non-colluding servers and no interaction is required
between the clients and the servers during secure computation. However, it makes use of traditional MPC
protocols as building blocks, and thus, the resulting construction has relatively high computational over-
head. For example, one multiplication operation alone takes approximately 200 ms using the Bresson et al.
encryption scheme [7] with a 1536-bit modulus. Other work on secure polynomial evaluation in the multi-key
setting can be found in [66].

Threshold FHE & Multi-key FHE. The notion of FHE typically assumes a semi-honest adversary
model. As observed by Gentry [30], however, we can extend this to the fully malicious model using threshold
cryptography. Asharov et al. [1] proposed a threshold FHE (TFHE) scheme in which all clients share a
common public key and decryption requires a collaborative effort from all the clients. Using their TFHE
scheme, one can derive simple MPC protocols secure against fully malicious attackers, while preserving
relatively low communication complexity.

López-Alt et al. [47] proposed the concept of multi-key FHE (MFHE) that allows computation on data
encrypted under multiple unrelated public keys, analogous to multi-key MPC [56]. One major advantage of
such approach is that dynamically chosen computation can be performed on data belonging to arbitrary sets
of users on-the-fly and in a non-interactive manner. Nevertheless, it still relies on an interactive protocol
during decryption of the computed results. The performance of the schemes is faster than FHE but still
unsuitable for practical use.

Hybrid Approach. There also exist works on combining homomorphic encryption with 2PC/MPC proto-
cols to support a wider range of operations, including both arithmetic and Boolean circuits, while achieving
more optimal performance compared to using each primitive/protocol individually [35, 13, 68]. Our SHE
scheme is orthogonal to the hybrid framework and can be used as a faster alternative to homomorphic en-
cryption for supporting arithmetic operations. Algorithms for automated protocol selection among different
types of secure computation protocols for optimal performance can be found in [43].

Others. Naehrig et al. [53] showed that SWH is sufficient for a number of real-world applications, par-
ticularly in the medical, financial, and the advertising domains. Reasonable efficiency can be achieved by
carefully performing application-specific optimization to an SWH scheme. The efficiency of our SHE scheme
is comparable to that of an SWH scheme for a small number of homomorphic additions and multiplications.
For a larger number of similar operations, our scheme outperforms the latter. We provide a more detailed
performance comparison against SWH in Section 5. In a recent independent work, Boneh et al. [4] showed
how private database conjunction queries can be performed using techniques from SWH. For a database
with 2, 000 records, the required query time is roughly 10 min.
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Our solution is also related to Tople et al.’s proposal of AutoCrypt [64], which supports both homomorphic
addition and multiplication on outsourced encrypted web contents using the Paillier ADD and the ElGamal
MUL schemes. However, one major drawback of AutoCrypt is that the client has to reveal its decryption
keys to the hosting server, such that the server can decrypt and re-encrypt ciphertexts on the client’s behave.
(Hence, the server has full access to the plaintexts and is trusted to not expose them to any outsider.)

7 Open Problems

Many interesting open problems arise from this work. First, it would be interesting to investigate if our
SHE scheme can be extended to support parallel homomorphic computation. Second, it is also interesting
to explore if our ideas and techniques can be adapted or generalized to improve existing secure computation
techniques for more complex arithmetic operations, such as division, exponentiation, and modulo reduction
over integers. Finally, if there exists a provably secure MUL scheme which does not inherit the zero-plaintext
problem and that is compatible with any existing ADD scheme, then more efficient and expressive SHE may
be realizable.
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