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Abstract. We provide a proof of correctness and security of a two-party-computation protocol based
on garbled circuits and oblivious transfer in the presence of a semi-honest sender. To achieve this we are
the first to combine a machine-assisted proof of correctness with advanced cryptographic primitives to
prove security properties of Java code. The machine-assisted part of the proof is conducted with KeY,
an interactive theorem prover.
The proof includes a correctness result for the construction and evaluation of garbled circuits. This
is particularly interesting since checking such an implementation by hand would be very tedious and
error-prone. Although we stick to the secure two-party-computation of an n-bit AND in this paper, our
approach is modular, and we explain how our techniques can be applied to other functions.
To prove the security of the protocol for an honest-but-curious sender and an honest receiver, we use the
framework presented by Küsters et al. for the cryptographic verification of Java programs. As part of
our work, we add oblivious transfer to the set of cryptographic primitives supported by the framework.
This is a general contribution beyond our results for concrete Java code.

1 Introduction

Motivation and overview Protocols for secure two-party computation allow two parties to evaluate a function
f such that both parties provide a part of the input. Neither of the parties must learn more about the input of
the other than can be inferred by its own input, the function f and the computed output. Since first solutions
for two-party computation protocols have been presented by Yao [33, 34], the problem has received a lot of
attention (e.g., [12, 7, 23, 24, 27]).

Yao’s approach Following the initial ideas of Yao, one can construct a two-party computation protocol from
garbled circuits [33, 34] and oblivious transfer [30] (see Figure 1). The basic idea is to first encode the function
f as a circuit consisting of gates and wires. Such a circuit can then be transformed into a garbled circuit
by one of the parties, say the sender S. Instead of a bitstring, the garbled circuit takes an encoding for each
bit as input. These encodings are initially only known to the creator of the garbled circuit (S here). When
the receiver R wants to evaluate the garbled circuit on a given input x ∈ {0, 1}n, it needs to know the
corresponding encoding for each input bit.

The encodings for the input bits of R are transmitted via oblivious transfer from S to R. The oblivious
transfer protocol guarantees that R learns exactly one encoding for each of its own input bits and that S remains
oblivious to which encodings R learned. Subsequently, S transmits the garbled circuit and the encodings of its
own input bits to R. These encodings don’t tell R anything about S’s input bits. Finally, R can evaluate the
garbled circuit. Note that R only knows the corresponding encoding for one bitstring x ∈ {0, 1}n and hence
can only use the garbled circuit to compute f(x).

From theory to practice While they have always been of theoretical interest, two-party computation protocols
seemed far away from being applicable to practical problems for a long time. Beginning with Fairplay [26],
methods to construct (garbled) circuits for generic functions have drastically improved (e.g., [18, 14]). This
inspired various protocols for practical problems [17, 10, 28, 15]. As performance of garbled circuits is going
to increase, we are going to see more practical applications of garbled circuits in the future.
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Fig. 1. Yao’s protocol for two-party computations.

Mind the gap Although all of those protocols come equipped with security proofs of abstractions of the
protocol, there remains a gap between the security of the specification in a theoretical model and a real
world implementation, e.g., in Java. There are aspects of actual implementations, which have no counterpart
in the abstract world. For example, even if a protocol itself is secure, minor mistakes in its realization can
completely break security as the recent Heartbleed bug in the OpenSSL library shows. Under this point of
view it is important not only to prove the security and correctness of a protocol in the abstract world but
also to verify its actual implementation. This can be achieved by using machine-based verification techniques,
and in this work we present a first step to close this gap. We chose Java for being a widely used programming
language in the real world, unlike e.g. EasyCrypt [2], which offers verification in its own specific language.

Our contributions We use the KeY tool[3], a deductive verification tool for Java programs, to show the
correctness of a two-party computation protocol implemented in Java. KeY was previously used for verification
of functional properties[31], non-interference properties[13], and security properties of programs making use
of public key encryption[20]. Our first contribution is to extend this body of work by using KeY to prove
correctness of an implementation that uses symmetric encryption for garbled circuits. The machine-assisted
proof is done for a concrete function f , namely an n-bit AND. While this might seem limited at first glance,
the proof is modular, i.e., it uses the correctness of the implementation of garbled gates in a black-box way.
Additionally, we explain how correctness proofs for other functions can be conducted in the same fashion. As
a proof of concept, we also prove the correctness of a XOR gate. The correctness of our implementation of an
n-bit AND can be used in a black-box way to show the correctness of more complicated circuits. This is the
first paper that presents a security and correctness proof of an implementation in a real-world programming
language. Alternative tools for languages like Java, C, and C#, are, for example, Spec# [1], Krakatoa [11] or
VCC [32]. Another tool using symbolic execution for Java and C programs is the VeriFast system [16].

Our second contribution is to show the security of the implementation in presence of a passive adversary
for corrupted sender S and honest receiver R; independently of the function f . To achieve this, we add
oblivious transfer as a cryptographic building block to the framework for Cryptographic Verification of Java-
like programs by Küsters et al. [19, 21]. That is, we provide an ideal interface in Java for oblivious transfer
following the ideal OT functionality of [7] for Canetti’s UC-framework [5]. We show that this ideal interface
can be implemented by any UC-secure oblivious transfer protocol (e.g., [29, 9, 8]).

On our restrictions. We would like to point out that – although we only consider honest-but-curious security
in this paper – our work is a necessary step towards proving security of implementations of adaptively secure
protocols based on garbled circuits (like [25] for example). Every security argument for these protocols assumes
that the actual implementation is correct; this is where our result is needed. Furthermore, we would like to
point out that it is sufficient that the output is only learned by R as explained in [24].

Outline The structure of this paper is as follows. In the next section we introduce some preliminaries, in
particular we introduce the framework for the Cryptographic Verification of Java Programs by Küsters et
al. [19]. Furthermore, we briefly introduce cryptographic building blocks used in this paper, the specification
language Java Modelling Language and the interactive theorem prover KeY.

Subsequently, in Section 3, we describe the protocol we analyze in this work. In Section 4 we present
details on an abstraction for the secret key encryption scheme, followed by a description of the modular
implementation for the cryptographic building blocks introduced earlier. We then show two lemmas stating
the correctness of the implementation with respect to the specification.

Finally, we prove the security of our protocol for a semi-honest sender S (i.e., in presence of a passive
adversary) in Section 5 using the results from Section 4. We conclude in Section 6 and present future work.



2 Preliminaries

2.1 The CVJ framework

In this section we briefly review the parts of the CVJ (Cryptographic Verification of Java Programs) framework
by Küsters et al. required for our results. We refer the reader to [19] for a full description of the framework.
The CVJ framework is formulated for the language Jinja+ which comprises a rich fragment of Java. Our
implementation is not only a Java program, but a Jinja+ program. Hence we can make use of the framework.

Systems, runs, interfaces, and environments A Jinja+ program or system is a set of class declarations, just
like common Java code restricted to the syntax of Jinja+. Programs may call a function randomBit. They are
called randomized if they do and deterministic otherwise. An interface is a system without method bodies
and static field initializers (see Figure 12 for example). Dropping all method bodies and field initializers from
a system S yields an interface I that we consequently call the interface of S. If we additionally drop all private
fields and methods from I, we call the result the public interface of S. Our concept of interfaces is not to
confuse with the interface key word in Java. Basically, interfaces will be used to define what parts of a system
other systems may utilize. For two interfaces I and I ′ we say that I ′ is a subinterface of I if it can be obtained
from I by dropping whole classes (with their method and field declarations), dropping methods and fields,
dropping extends clauses, and/or adding the final modifier to class declarations. Two interfaces are called
disjoint if the set of class names declared in these interfaces are disjoint. We call them compatible if there
exists an interface I they are both subinterfaces of.

A system S implements an interface I if I is a subinterface of the public interface of S. A system uses an
interface I if, besides its own classes S uses at most classes, methods, and fields declared in I. We say that
a system is complete if it uses the empty interface, i.e., the system does not have any external dependencies.
We say that two systems are composable if they use compatible interfaces (see [19] for details).

An environment is a program that declares a private static variable result of type boolean with initial
value false. We implicitly assume throughout the paper that the variable result is unique in every program
and is always declared by what is the environment for a given context. For an interface I an environment E
is called I-environment for a program S if
1. S implements I and E uses I,
2. there is an interface IE such that E implements IE and S uses IE ,
3. and either S or E contains main.

Then E and S are composable and E · S is a complete program. For finite runs of E · S the value of result
at the end of the run is the output of E · S. For infinite runs, we define the output to be false. If E · S
is deterministic, we write E · S  false and E · S  true for the two possible outputs respectively. For
randomized programs we write Pr [E · S  false] and Pr [E · S  true] to denote the probabilities for the
respective outputs. Finally, we say that two systems S1 and S2 use the same interface if S1 uses I iff S2 uses
I for all interfaces I.

Indistinguishability of systems We quantify the run time of programs w.r.t. a given security parameter λ to
use computational assumptions in a meaningful way. We say that
1. a program P is almost bounded if there exists a polynomial p such that the probability that a run of P (λ)

exceeds p(λ) is negligible,
2. an environment E is bounded if there exists a polynomial p such that for every program P that is com-

posable with E the number of steps performed in the code of E does not exceed p(λ) for every run of
(E · S)(λ), and

3. a system S is environmentally I-bounded, if S implements I and for each bounded I-environment of S,
the program E · S is almost bounded.

Computational indistinguishability Let I be an interface and S1 and S2 be two environmentally I-bounded

systems. Then S1 and S2 are computationally indistinguishable w.r.t. I, denoted S1
I
≈ S2, if S1 and S2 use

the same interface and for every bounded I-environment E for S1 and S2 we have that E · S1 and E · S2

are computationally equivalent. That is, |Pr [(E · S1)(λ) true] − Pr [(E · S2)(λ) true] | is a negligible
function in the security parameter λ.



Definition 1 (Strong Simulatability). Let Iout , Iin , IE , IS be disjoint interfaces. Let F and R be systems.
Then R realizes F w.r.t. the interfaces Iout , Iin , IE , and IS written R ≤(Iout ,Iin ,IE ,IS ) F if
1. R uses Iin ∪ IE and implements Iout ,
2. F uses Iin ∪ IE ∪ IS and implements Iout ,
3. either R and F both contain the main method, or none of them,
4. R is an environmentally Iout -bounded system, and
5. there is a system S (the simulator) such that

(a) S does not contain main (b) S uses IE and implements IS

(c) (S · F ) is environmentally Iout -bounded (d) and R
Iout≈ S · F

Intuitively, Iout is the interface for the service provided by R and F . They may use trusted external services
specified by Iin or untrusted external services IE which will be implemented by the environment. IS is the
interface of the simulator used by the functionality F .

2.2 Cryptographic building blocks

SKE A secret key encryption scheme (SKE scheme) with keyspace K and message space M features three
probabilistic-polynomial-time algorithms:
– Gen takes the security parameter λ and generates a key k ∈ K,
– E takes a key k ∈ K and a message M ∈M and outputs a ciphertext, and
– D takes a key k ∈ K and a ciphertext C and outputs the plaintext if decryption works and ⊥ otherwise.

We say that an SKE scheme is correct if for all k ∈ K and allM ∈M we have D(k,E(k,M)) = M . Furthermore,
we stipulate for SKE schemes throughout the paper that Pr [D(k′,E(k,M)) 6= ⊥ : k, k′ ← Gen(λ)] is negligible
in λ. Note that this already implies that two honestly generated keys are equal only with negligible probability
independent of the security of the SKE scheme.

1public final class Key {
public final int ident ;

3 public Key(int id);
}

5public final class SKE {
public static Key GenKey();

7 public static Cipher Encrypt(Key k, Object m);
public static Object Decrypt(Key key, Cipher c);

9}

10public final class Cipher {
public final int ident ;

12 public Cipher(int id);
}

14public final class GCnBitAND {
public GCnBitAND(Key[] in0, Key[] in1,

16 Key out0, Key out1);
public Key evaluate(Key[] in);

18}

Fig. 2. Interfaces ISKE for secret key encryption and IGC for n-bit AND garbled circuit.

The algorithms Gen, E and D can be provided in many ways; in our implementation they are provided by
the interface ISKE as shown in Figure 2. The methods GenKey, Encrypt and Decrypt provide the respective
functionality. The classes Key and Cipher provide a constructor, which we do not further specify and the
identifier ident which represents the numerical representation of a byte array. An implementation can use
the ident field to store an arbitrary representation of the object. We use this concept throughout the paper
for all abstract objects we have. Although identifiers are defined here as of data type int, these fields can hold
arbitrary natural numbers during verification. Hence, they are merely a placeholder and an actual represen-
tation would not be bounded by a 32 or 64 bit integer size. The method GenKey creates a key which is unique
but not efficiently distinguishable from a random number.

The Encrypt method provides encryption functionality. An object is encrypted with a key into a cipher.
The cipher returned has an identifier, which is also indistinguishable from a random number for S and R.

The Decrypt method takes as input a cipher and a key. If the key has the same identifier as the key
originally used for encryption, the encrypted object is returned. If the provided key has a different identifier,
the method returns null.

Next, we briefly introduce circuits and garbled circuits as used throughout this paper. A thorough and
comprehensive state-of-the-art description can be found in [4].



Circuits A circuit consists of input pins, output pins, gates and wires. Each gate has two input pins and one
output pin. Each wire connects exactly two pins and each pin is connected to exactly one wire. Furthermore,
each wire connects an input pin of the circuit to an input pin of a gate. An output pin of a gate is connected
to an input pin of a gate or an output pin of the circuit. If the gates, the input pins, and the output pins of
the circuits are viewed as nodes of a graph and the wires are viewed as the edges, a circuit must be a directed
acyclic graph. Each wire can take a value from {0, 1} and each gate resembles an arbitrary binary function
g : {0, 1}2 → {0, 1}. 3 To evaluate a circuit having n input wires for an input x ∈ {0, 1}n, we assign xi to the
wire connected to the ith input pin and then evaluate gate after gate in a straightforward way. Obviously, for
every function f : {0, 1}n → {0, 1}m we can find a circuit encoding f , i.e., evaluating the circuit for x ∈ {0, 1}n
yields f(x).

Garbled Circuits Given a circuit, the idea behind garbling is basically to obfuscate the function encoded by it
to some extend. Using an SKE scheme, we can garble a circuit as follows: First, we generate two keys k0, k1
for each wire. These keys represent the two possible values the wire can take. The input of each gate are now
two keys l ∈ {l0, l1} and r ∈ {r0, r1}. The output must be a key out ∈ {out0, out1}. For lb and rb′ we compute
E(lb,E(rb′ , outg(b,b′))) which yields a list of four ciphertexts (as above, g{0, 1}2 → {0, 1} is the binary function
describing the functionality of the gate). A random permutation of that list, also referenced as evaluation
table later, is the description of the gate. To evaluate a garbled gate, one can, given the input keys l and r,
try all ciphers and see which one decrypts correctly to retrieve the output key. In this manner, the garbled
circuit can be evaluated gate by gate.

We provide an implementation of a concrete garbled circuit for n-bit AND. While the inner workings of
the code are explained in depth in Section 4 we already present the interface in Figure 2 here.

Oblivious Transfer The protocol we describe uses a cryptographic primitive called oblivious transfer (OT),
introduced by [30]. More concretely, we use a 2-1 oblivious transfer for two parties. One party (S) has two
secrets of which another party (R), may learn exactly one. S must not learn the choice of R while R must learn
only one of the secrets.

In our Java code, we use an interface resembling an abstraction of a two message OT protocol (we refer the
interested reader to Figure 12 in the appendix for the complete interface): The receiver R starts by generating
some secret information OTKey. This is used to prepare the request OTReq which is then sent to S. From the
request S can generate a response by providing to inputs in0 and in1. If R receives the response, it can extract
in0 or in1 depending on the value of choice used for generating the request.

2.3 The Verification Setup

We use JML*, an extension of the Java Modelling Language (JML) for specification of Java programs and the
KeY-tool as a prover. A full account of JML can be found in [22]. Specifications are given as annotations in the
source code of a program. The main concept follows a design-by-contract approach, whose central specification
artefacts are method contracts and class invariants.

A method contract is indicated by the keyword normal_behaviour and consists of a precondition, indicated
by the keyword requires and a postcondition indicated by ensures. In this paper we do not consider contracts
which argue about exceptions thrown by a method but prove that all methods terminate without throwing an
exception. A method satisfies its contract if for all states satisfying the method’s precondition it terminates
in a state that satisfies the postcondition. A class invariant describes a global state which has to be preserved
by all methods, unless the method is annotated by the keyword helper.

Pre-, postconditions and invariants are boolean valued JML expressions. A JML expression can be almost
any side-effect free Java expression. Besides the built-in operators in Java, some additional operators can be
used. One we frequently use is the all-quantifier \forall T x; guard; body, where T is the type over which
the expression ranges, x is a variable of this type, and guard and body are boolean expressions. The operator
\old can be used in the postcondition of a contract, taking an expression as input and evaluates to the value
the expression evaluates to in the prestate of a method call. A special variable is \result which refers to the
return value of a method.

3 Although there are more general definitions of circuits, this one is simple and doesn’t restrict our results.



We frequently make use of ghost variables, which are variables that can be used for specifications. They do
not influence the actual behaviour of a program, but allow us to perform bookkeeping of information during
execution of a program and we use them during proofs. Ghost variables cannot be referred to by Java code.

We use the KeY-tool [3] for proofs for Java programs. The interactive theorem prover built-in in the KeY-
tool can is based on a generalization of Hoare logic. During a KeY proof, a program is symbolically executed,
i.e., transformed into a set of logical constraints representing the behavior of the program. Using first-order
reasoning, the KeY tool evaluates the postcondition, given the constraints.

3 The protocol

In this section we describe the concrete protocol we analyze and present the interfaces of sender and receiver.
We model a two-party computation of an n-bit AND between a sender S and a receiver R following Yao’s
initial construction (see Figure 1). During a normal run of a protocol, both parties send exactly one message
(we omit distributing the output computed by the receiver).

Intuitively, the protocol works as follows: R starts by preparing oblivious transfers (OTs) according to its
own input. E.g., if R’s ith input bit is 1, it will prepare the OT such that it will learn the second input of S to
this OT later. R then sends the OTs to S. S generates a garbled circuit. For each input and each output wire
of the circuit S generates a pair of keys that corresponds to the possible bit-value of the wire (0 or 1). For
the input wires that belong to R’s input, S fills the OTs received from R with the corresponding key pairs. R
will receive only the corresponding key (and, by the security of the OT, R’s choice remains hidden from S). S
then sends the garbled circuit, the keys corresponding to its own input, the filled OTs and the key pairs for
the output wires to R. R extracts the keys corresponding to its inputs from the OTs, evaluates the garbled
circuit and can – using the key pairs for the output wires – interpret the resulting keys as a bitstring. This
bitstring is the result of the two-party computation.

We now describe our implementation of this protocol in Java. The interfaces of sender and receiver are
given in Figure 3 and Figure 4 respectively. They both contain a wrapper class for the message. The sender
program uses the receiver interface and the other way round. Both use the interfaces for oblivious transfer
from Figure 12, secret key encryption Figure 2, and garbled circuits Figure 2.

Figure 5 shows a main method as it could be provided by the environment. The protocol starts with a
message by the receiver which contains nR OT requests (class OTReq) where nR is the bit length of R’s input.
When the sender receives this message it generates a garbled circuit (using the interfaces IGC and ISKE) and
prepares the response SenderMessage as follows:
– gc contains the garbled circuit.
– sender_keys contains nS keys corresponding to the first nS input bits of the garbled circuit where nS is

the bit length of S’s input.
– ots contains nR OT responses. Response i contains the two keys corresponding to the (nS + i)th input bit

of the garbled circuit.
– out0 and out1 contain the key corresponding to a 0 and to a 1 output respectively.

Finally, the method getOutput, given the SenderMessage, evaluates the garbled circuit: First, R retrieves
the nR keys matching its input from the oblivious transfers. R then calls the evaluate function of the garbled
circuit which yields the output key. Depending on whether the output key is out0 or out1, it outputs true

or false.

4 Correctness of our protocol

In this section we describe the proof of correctness for our implementation. We provide a formal specification
for the interfaces IKey, ICipher and ISKE. Further, we provide a realization of the interface IGC in Java using the
interfaces of the cryptographic primitives and a formal specification of invariants for the realization. Finally,
we proof the correctness of our implementation with respect to method contracts, which yields correctness of
the realization of the interface IGC.

We will present in this paper only the core of the specification and implementation for a compact presen-
tation. The complete implementation and machine-assisted proofs are available online 4.

4 http://formal.iti.kit.edu/˜greiner/cans2014/CodeAndProofCANS2014.zip

http://formal.iti.kit.edu/~greiner/cans2014/CodeAndProofCANS2014.zip


1public final class SenderMessage {
GarbledCircuit gc;

3 Key[] sender keys;
OTResp[] ots;

5 Key out0, out1;
}

7public final class Sender {
public Sender(boolean[] input);

9 public SenderMessage
getMessage(Receiver r, ReceiverMessage m);

11}

Fig. 3. Interface for sender in our protocol.

1public final class ReceiverMessage {
OTReqt[] ots;

3}

5public final class Receiver {
public Receiver(boolean[] input);

7 public ReceiverMessage getMessage();
public boolean

9 getOutput(Sender s, SenderMessage m);
}

Fig. 4. Interface for receiver in our protocol.

public static void main(String[] args) {
2 boolean[] sender in = {true, true};

boolean[] receiver in = {false, true};
4

Sender s = new Sender(sender in);

Receiver r = new Receiver(receiver in);
6 ReceiverMessage m1 = r.getMessage();

SenderMessage m2 = s.getMessage(m1);
8 boolean out = r.getOutput(m2);
}

Fig. 5. Example for a main method utilizing sender and receiver.

A word on modularity and re-usability One of the most tedious tasks during the verification of a program is
finding a correct and sufficient specification. This is especially true in the case of garbled gates and circuits,
because a lot of information is given implicitly by the code and the interworking of methods following after
another. In order to prove correctness, we have to make this information explicit in the form of class invariants.

Our implementation is modular in the way that only the contracts of other objects are used for verification,
not their actual implementation. In order to implement binary gates with different algorithms the same
functionality the specification provided can be re-used. Also, when binary gates realizing a different function
are implemented, our specification can be reused, by only changing the specification of the truth table and
fixing two lines in the postcondition of one method. As a proof of concept, we implemented and verified an
additional garbled gate with XOR-functionality, which can be found in the online sources. The proof process
for the new gate is essentially the same for both gates.

A circuit is built by wiring gates (which are used in a black-box fashion but may again be circuits them-
selves) in a certain way. The way gates are wired is called the topology of the circuit. In our work we use
something one could call a linear topology for the circuit that then forms the n-bit AND. Our specification
can easily be re-used for other circuits with a linear topology. For example, realizing an n-bit OR would only
require straightforward changes in two lines of the postcondition of the evaluate method. Realizations of n-bit
AND and n-bit OR are particularly interesting to us because they are the basis for disjunctive and conjunctive
normal forms. Further research is necessary in order to identify and specify a practical set of topologies for
circuits which allow an effective realization of arbitrary formulas.

4.1 Encryption Abstraction

Instead of using a real implementation for the interfaces ISKE from Figure 2 we provide an abstract specification
of this cryptographic primitive following the design-by-contract paradigm. Figure 6 shows the specification of
the classes Cipher and Key.

A Cipher has two ghost fields we use for specifying the encryption information. The ghost field key holds
the key, which was used for encryption of a message. We call two objects of type Key corresponding, if they
have the same ident value. The ghost field msg holds the message that is encrypted in the cipher by a key
corresponding to the value of key.

Instead of directly using constructors or methods provided by Key or Cipher, we encapsulate this function-
ality in a secret key encryption scheme, providing the interface ISKE. The specification used for verification is
shown in Figure 7.



The SKE class has two static ghost fields. The field randoms holds a collection of random numbers, which
represent random byte arrays. The content of randoms can be seen as a stream of random numbers from
which elements can be drawn. This way, we make execution of the methods provided by SKE deterministic
and we can treat randomisation independent from execution of our actual code.

The field counter is a pointer to the element in randoms which is drawn the next time a random number
is needed. The management of this pointer is ensured by the methods provided by SKE. To create a new key,
we use the method GenKey. It returns a new Key object, where the identifier has the same value as the next
element in randoms. Line 11 expresses the assumption that each time a random number is drawn, it is different
to all random numbers drawn earlier by SKE. This assumption is justified since the probability of a collision
has to be be negligible for any polynomial number of generated keys.

The method SKE.Encrypt encapsulates the encryption functionality in our program. The Cipher object
returned by the method has a fresh random number as identifier. The ghost field key remembers the key
which was used for encryption, while the ghost field msg remembers the clear text information.

The method SKE.Decrypt provides decryption functionality, which ensures that a null object is returned,
if the key passed as parameter does not correspond to the key originally used for encryption of the message.
In the case of a corresponding key being provided, we consider two situations. First, we state in lines 36ff the
expected behaviour for the case when the encrypted message is of type Cipher, which encrypts a Key object.
In this case, the method returns a cipher corresponding to the originally encrypted one, which also encrypts
a Key object corresponding to the key originally encrypted twice.

Second, we specify on lines 42ff that if the encrypted message is of type Key, the Decrypt method returns
a key corresponding to the originally encrypted key object. So the object structure is preserved by decryption.
For other cases, we leave the behaviour of Decrypt underspecified.

4.2 Implementation Details

Our realization of a garbled circuit consists of two classes. The class GarbledANDGate implements a garbled
gate with binary AND functionality. The GCnBitAND makes use of the class GarbledANDGate to realize the
interface IGC.

GarbledANDGate The class GarbledANDGate defines the field Cipher[] eT, representing the evaluation
table as explained in Section 2.2. We introduce several ghost variables for bookkeeping of the state of a
GarbledANDGate shown in Figure 8 to explicitly store information given by the structure of the evaluation
table.

The variables kl0 and kl1 store an object of type Key which represents the keys expected as 0- or 1-valued
input on the left pin. The variables kr0 and kr1 do the same for the right pin. The variables out0 and out1

hold the objects representing the keys used as 0- and 1-valued output.
The evaluation table holds on each position an encryption either of out0 or out1, first encrypted by one

of the input keys for the right pin and then encrypted by one of the input keys for the left pin. As explained
in Section 2.2, the evaluation table contains a random permutation the ciphers and we use the ghost variables
ci0, ci1, ci2, ci3 to store the indices of the ciphers after permutation.For example, the encryption of
out0 with the keys kr0 and kl0 is stored at position eT[ci0]. A more detailed definition of the invariant can
be found in the Appendix in Figure 13, for a full account, the reader may be referred to implementation.

Further, we provide a method contract for the constructor and the method evaluate provided by the gate.
These contracts ensure that the gate does realize a garbled AND functionality, assuming some preconditions.
The correctness of the implementation according to the contract is used as a lemma during the proof of
correctness of the garbled circuit.

1public final class Key {
public final int ident ;

3 ...
}

public final class Cipher {
6 //@ public ghost Key key;
//@ public ghost Object msg;

8 public final int ident ;
... }

Fig. 6. Specification of classes Cipher and Key providing the interfaces ICipher and IKey



1public final class SKE {
//@ public static ghost int counter;

3//@ public static ghost int [] randoms;

5/∗@ public normal behaviour
@ requires

7 @ 0 <= counter < randoms.length;
@ ensures

9 @ \old(counter) + 1 == counter &&
@ \ result . ident == randoms[counter−1] &&

11 @ (\ forall int i ; 0 <= i < randoms.length &&
@ i != \old(counter);

13 @ \ result . ident != randoms[i]);
@ ... ∗/

15public static Key GenKey() { ... }

17/∗@ public normal behaviour
@ requires

19 @ 0 <= counter < randoms.length;
@ ensures

21 @ \ result .key == k &&
@ \ result .message == m &&

23 @ \ result . ident == randoms[counter−1] &&
@ \old(counter) + 1 == counter &&

@ (\ forall int i ; 0 <= i < randoms.length &&
26 @ i != \old(counter);

@ \result . ident != randoms[i]) &&
28 @ ... ;

@ ∗/
30public static Cipher Encrypt(

Key k, Object m) { ... }
32

/∗@ public normal behaviour
34 @ ensures

@ \ if (c.key.ident == key.ident)
36 @ \then (\ if (\typeof(c.msg) == Cipher &&

@ \typeof(c.msg.msg) == Key)
38 @ \then (\typeof(\ result ) == Cipher &&

@ \typeof(\ result .msg) == Key &&
40 @ \ result . ident == c.msg.ident &&

@ \ result .msg.ident == c.msg.msg.ident)
42 @ \ elseif (\typeof(c.msg) == Key)

@ \then (\typeof(\ result ) == Key &&
44 @ \ result . ident == c.msg.ident)))

@ \else (\ result == null); ∗/
46public static Object Decrypt(

Key key, Cipher c) { ... }
48}

Fig. 7. Specification of class SKE providing ISKE

public final class GarbledANDGate {
2 Cipher[] eT;

/∗@ ghost Key kl0, kl1, kr0, kr1,
4 @ out0, out1;

@ ghost int ci0, ci1, ci2, ci3;∗/
6 public GarbledANDGate(Key kl0, kl1,

kr0, k1, out0, out1 ){...}
8 public Key evaluate(Key inl, inr ){...} }

Fig. 8. Definition of GarbledANDGate including Ghost
variables.

public final class GCnBitAND {
2 GarbledANDGate[] gates;

/∗@ ghost Key[] in0, in1;
4 @ ghost Key out0, out1;∗/
}

Fig. 9. Definition of GCnBitAND including ghost vari-
ables.

Garbled n-bit AND circuit The class GCnBitAND, realizing IGC, defines the field gates as an array of type
GarbledANDGate[]. The gates stored in this array are responsible for the functionality implemented by the
circuit. The correct wiring of the circuit is indirectly ensured by the constructor and the evaluate method.

We define four ghost variables as shown in Figure 9. The keys expected by the circuit as 0-valued input are
stored in the array in0, those representing a 1-valued input are stored in the array in1. The ghost variables
out0 and out1 store the keys representing the respective 0- and 1-valued outputs.

The invariant of GCnBitAND ensures a well-definedness property and can be found in Figure 14 in the
appendix. First, it is ensured that the expected input of a gate on the left pin corresponds to the output of
the previous gate, i.e. the circuit implements a linear structure. Second, it is ensured that the keys expected
as an input on the right pin by the gates correspond to the keys expected as input by the circuit. A spacial
case here is the first gate, for which both inputs come from the user. Finally, the invariant ensures that the
output of the last gate corresponds to the output the circuit is supposed to provide.

4.3 Correctness of the Implementation

We prove the correctness of our implementation of the methods provided by GCnBitAND against their contracts.



1/∗@ requires
@ inkeys0. length == inkeys1.length &&

3@ inkeys0. length >= 2 &&
@ (\ forall int i ; 1 <= i < inkeys0.length;

5@ \ distinct (inkeys0[ i−1], inkeys1[ i−1],
@ inkeys0[ i ], inkeys1[ i ]. ident)) &&

7@ \ distinct (outkey0, outkey1); ∗/
@ ensures

9@ (\ forall int i ; 0 <= i < in0.length;
@ inkeys0[ i ]. ident == in0[i]. ident &&

11@ inkeys1[ i ]. ident == in1[i]. ident) &&
@ outkey0.ident == out0.ident &&

13@ outkey1.ident == out1.ident;
public GarbledNBitANDCircuit(Key[] inkeys0,

15 inkeys1; Key outkey0, outkey1) {...}

Fig. 10. Contract of constructor of GCnBitAND.

1/∗@ requires
@ in.length == in0.length &&

3@ (\ forall int i ; 0 <= i < in.length;
@ in[ i ]. ident == in0[i].ident ||

5@ in[ i ]. ident == in1[i].ident );
@ ensures

7@ \ if (\ forall int i ; 0 <= i < in.length;
@ in[ i ]. ident == in1[i].ident)

9@ \then (\ result . ident == out1.ident)
@ \else (\ result . ident == out0.ident); ∗/

11public Key evaluate(Key[] in) {...}

Fig. 11. Contract of evaluate for GCnBitAND.

Figure 10 shows the contract for the constructor of GCnBitAND. It requires in line 2 that as many keys
provided as 0-valued input are also provided as 1-valued input. The amount of keys provided determines the
number of pins provided by the circuit. At least two keys have to be provided for each value, which expresses
the circuit to be built provides at least two pins.

The quantifier at line 4 states that the keys used as possible input for each pin do not correspond, neither
do the keys used as possible input on two subsequent gates. The predicate distinct used here indicates
that its arguments have pairwise unequal values of the respective ident fields. Both of these conditions are
necessary for the correctness of the gates, which are built during execution of the constructor. Line 7 states
that the possible output keys do not correspond, i.e. it can be distinguished between a 0- and a 1-valued
output.

The postcondition in line 9 states that the identifier representing expected input keys in the ghost fields
in0 and in1 are the same as the identifiers of the keys used as input to the constructor. Additionally, the
invariant is required to hold after termination of the constructor, which is an implicit postcondition for the
constructor.

Theorem 1 states the correctness of the constructor of IGC, since its implementation is correct with respect
to its specification.

Theorem 1. Let GCnBitAND be the realization of IGC; let in0 and in1 be arrays of keys, such that the length of
in0 equals the length of in1, all elements in in0 and in1 are not null and in0 contains at least two elements;
let out0 and out1 be keys that are not null and let all keys in in0, in1 and the keys out0 and out1 have
pairwise different identifier.

Then a call IGC.GCnBitAND(in0, in1, out0, out1) returns an object gc realizing IGC such that the invariant
of gc holds and; for all i ∈ {0 .. length of in0 − 1} the keys expected by gc as input on pin n representing
a 0-valued input corresponds to the key in0[n] and the key expected by gc as input on pin n representing a
1-valued input corresponds to the key in1[n] and the key provided by gc as output representing a 0-valued
output corresponds to out0 and the key provided by gc as output representing a 1-valued output corresponds to
out1.

Proof. The conditions stated as preconditions in Theorem 1 imply the preconditions as stated in Figure 10.
The postconditions stated in Theorem 1 are equivalent to the postcondition in Figure 10. The realization of
IGC is given by the class GCnBitAND.

We proved with the KeY-tool that GCnBitAND.GCnBitAND satisfies its contract. Therefore Theorem 1 holds.

The contract of evaluate of GCnBitAND is shown in Figure 11. Line 2 requires R to provide exactly one
key for each pin of the circuit, while each key either has to correspond to the key expected by the circuit on
the respective pin as 0- or 1-valued input (line 3). Implicitly it is also required that the invariant of the circuit
holds right before a call to evaluate, although not directly stated in the precondition.



The postcondition states in line 7 that a correct implementation of evaluate returns a key corresponding
to the 1-valued output key, if all input keys correspond to 1-valued input. If at least one input key does not
correspond to a 1-valued input, the circuit returns a 0-valued output (line 10). It is easy to see that the
postcondition expresses a n-bit AND functionality.

Theorem 2 states the correctness of method evaluate of IGC, since the implementation of the constructor
is correct due to its specification.

Theorem 2. Let GCnBitAND be the realization of IGC; let gc be the object giving access to IGC; let the invariant
of gc hold; let in be an array of keys with the same length as the amount of expected input keys by gc and let
in[i] correspond to the 0-valued or 1-valued input key expected by gc.

Then a call IGC.evaluate(in) returns a key o such that o represents a 1-valued output if all keys in in
represent 1-valued inputs and o represents a 0-valued output if not all keys in in represent 1-valued inputs.

Proof. The conditions stated in Theorem 2 are equivalent to the precondition as stated in Figure 11. The
postcondition stated in Theorem 2 are equivalent to the postcondition as stated in Figure 11. The realization
of IGC is given by the class GCnBitAND.

We proved with the KeY-tool that the method evaluate of class GCnBitAND satisfies its contract. Therefore
Theorem 2 holds.

5 Security of our protocol

In this section we prove that our protocol (see Section 3) is secure against an honest-but curious adversary if
the sender S is corrupted. Security in this setting means, that the inputs of the receiver R remain secret. This
follows from the correctness of the protocol and the UC-security of oblivious transfer.

Figure 15 describes the interface of the two-party computation in presence of a corrupted sender to the
environment. In addition to what a passive adversary can usually observe during a run of the protocol,
it now gets access to methods getSenderInput and getSenderKeys which leak S’s secrets. In particular,
getSenderKeys returns the list of all encryption keys generated by S to construct the garbled circuit. Note
that the adversary cannot change the behavior of S.

We now introduce two implementations of the interface I(Ŝ,R).

– The real implementation 2PC
(Ŝ,R)
real runs the two-party protocol in the constructor on the given inputs and

saves the exchanged messages, generated encryption keys, etc. for later retrieval by the adversary through
the corresponding getters.

– The ideal implementation 2PC
(Ŝ,R)
ideal doesn’t run the protocol but uses a simulator implementing the interface

from Figure 16 to provide the output of all getters except getOutput. It resembles a wrapper for the ideal
functionality (for corrupted S and honest R) running in parallel with a simulator. Note that the simulator
is only given the input of the sender and the length of the receiver’s input.
OTideal is an ideal implementation of the interface for oblivious transfer from Figure 12 resembling the

ideal functionality FOT. Internally, OTideal maintains a list of tuples (OTKey k, boolean choice, OTResp

r, Object in0, Object in1) each representing one OT instance. Constructing an OT request creates a
new entry in that list with r, in0 and in1 set to null. Upon genResponse for an OTKey the corresponding r,
in0 and in1 are set according to the given values (which must not be null and the length of their serialization
must not exceed a fixed maximum). On getOutput for OTResp r and OTKey k, depending on the value of
choice, in0 or in1 is returned. The ident attributes of keys, responses and requests are set to uniformly
random values on object creation.5 As usual throughout the paper, these idents are placeholders that can be
used for data by a real implementation.

Theorem 3. Let 2PC
(Ŝ,R)
real , 2PC

(Ŝ,R)
ideal and OTideal be the programs introduced above and SKEreal be a correct

implementation of ISKE, then we have

SKEreal · OTideal · 2PC(Ŝ,R)
real ≤(Iout,∅,∅,ISim) SKEreal · OTideal · 2PC(Ŝ,R)

ideal

5 Theoretically, other distributions are also possible. For Theorem 3 we just need that the idents of OT requests are
independent of the choice bit.



where Iout := I(Ŝ,R) ∪ IOT ∪ ISKE and ISim the interface from Figure 16.

Proof. The simulator can successfully fake getReceiverMessage because the OT keys are random handles
independent of choice in OTideal. It creates inR_length OTs and returns the corresponding OT requests on
a call of getReceiverMessage. To simulate the sender, it generates a garbled circuit as an honest S would do
and prepares the OT responses accordingly to assemble the sender response. The correctness of the garbled
circuit (see Theorem 1, Theorem 2) guarantees that the output in the real world actually matches that in the
ideal world.

What remains to do is to show that we can replace the ideal implementation for oblivious transfer by a
real one.

Security of Oblivious Transfer We first describe the simplified functionality for oblivious transfer [7]. FOT

interacts with a sender S and a receiver R.
– Upon receiving a message (in0, in1) from S, store (in0, in1).
– Upon receiving a message b from R, check if a (in0, in1) message was previously sent by S. If yes, send inb

to R. If not, send nothing to R (but continue running).
Let OTreal be a system that implements the OT interface from Figure 12. We show that the system OTideal

can safely be replaced by OTreal if OTreal suitably implements a two-party-two-message realization of FOT.
Such realizations exists under standard cryptographic assumptions, e.g., decisional Diffie-Hellman, quadratic
residuosity, or learning with errors [29].6

Theorem 4. If OTreal implements a realization R of FOT, then OTreal ≤(IOT,∅,∅,∅) OTideal

Proof. The basic idea is that, since R realizes FOT, there is a simulator S such that R and S · FOT are
indistinguishable for every environment in the computational UC model (for a suitable composition · in that
model). The output of S is independent from the original inputs of the parties S and R (it doesn’t get those
values from FOT). As output distribution for OTideal we can hence pick that of S. Since we can simulate Turing
machines with Jinja+ programs, simulatability in the CVJ framework in the sense of Definition 1 follows.

6 Future work

This work provides the proof of security of a two-party computation implemented in Java against a semi-honest
sender. In particular, we prove correctness of the implementation of a garbled circuit using cryptographic
primitives via a formally specified interface.

One obvious direction for future work is to prove security for the two remaining scenarios, i.e., security
against a corrupted receiver and security if both parties are honest (all in presence of a passive adversary).

One interesting challenge towards this goal is to prove at code level that the evaluation of a garbled circuit
does not leak more than the encoded function f and the output f(x).7 For this, implementation details of the
garbled circuit (e.g., that the evaluation table is randomized) will become important.

Since the security against a corrupted receiver will also depend on the security of the used encryption
scheme, a suitable functionality for secret key encryption will be necessary. This functionality should be
realizable in the sense of strong simulatability and sufficient for the construction of garbled circuits.

Finally, it would be interesting to build a compiler from functions to (garbled) circuits that automatically
outputs Java code that is verifiably correct. E.g., if we have the description of a function in conjunctive normal
form (one multi-bit AND, a number of multi-bit ORs and NOTs) we can use the modularity of our correctness
proof as explained in Section 4. However, more work would be needed to get from the proof for a conjunctive
normal form to a high-level description of the function like “addition of two integers given as bitstrings”.

6 These realizations need a common reference string functionality [6] which can be part of OTreal.
7 Actually, a garbled circuit should leak f only to some extent. However, since f is public in our setting, even a

complete leakage of f would not be problematic which relaxes the difficulty of the proof.



Bibliography

[1] Mike Barnett, Rustan Leino, and Wolfram Schulte. The spec# programming system: An overview. In
Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian Muntean, editors, Con-
struction and Analysis of Safe, Secure, and Interoperable Smart Devices, volume 3362 of Lecture Notes
in Computer Science, pages 49–69. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-24287-1.
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Appendix

1public final class OTKey {
public final int ident ;

3 public OTKey(int id);
}

5public final class OTReq {
public int ident;

7 public OTReq(OTKey key, boolean choice);
public OTResp

9 genResponse(Object in0, Object in1);
}

public final class OTResp {
12 public int ident;

public OTResp(OTReq request,
14 Object in0, Object in1);

public Object getOutput(OTKey key);
16}

Fig. 12. Interface IOT for oblivious transfer.

/∗@ invariant
2 @ eT[ci0].key.ident == kl0.ident &&

@ eT[ci0].msg.key.ident ==
4 @ kr0.ident &&

@ eT[ci0].msg.msg.ident ==
6 @ out0.ident &&

@ eT[ci1].key.ident == kl0.ident &&
8 @ eT[ci1].msg.key.ident ==

@ kr1.ident &&
10 @ eT[ci1].msg.msg.ident ==

@ out0.ident &&
12 @ eT[ci2].key.ident == kl1.ident &&

@ eT[ci2].msg.key.ident ==
14 @ kr0.ident &&

@ eT[ci2].msg.msg.ident ==
16 @ out0.ident &&

@ eT[ci3].key.ident == kl1.ident &&
18 @ eT[ci3].msg.key.ident ==

@ kr1.ident &&
20 @ eT[ci3].msg.msg.ident ==

@ out1.ident ; ∗/

Fig. 13. Invariant for GarbledANDGate including
ghost variables.

1/∗@ invariant
@ (\ forall int i ; 0 <= i < gates.length−1;

3@ gates [ i ]. out0 == gates[i+1].kl0 &&
@ gates [ i ]. out1 == gates[i+1].kl1) &&

5@ (\ forall int i ; 0 <= i < gates.length;
@ gates [ i ]. kr0 == in0[i+1] &&

7@ gates [ i ]. kr1 == in1[i+1]) &&
@ gates [0]. kl0 == in0[0] &&

9@ gates [0]. kl1 == in1[0] &&
@ gates[gates . length−1].out0 == out0 &&

11@ gates[gates . length−1].out1 == out1;

Fig. 14. Invariant of GCnBitAND.



1public final class ProtoCS {
public ProtoCS(boolean[] inS, boolean[] inR);

3 public ReceiverMessage getReceiverMessage();
public boolean[] getSenderInput();

5 public Key[] getSenderKeys();
public SenderMessage getSenderMessage();

7 public boolean getOutput();
}

Fig. 15. Interface I(Ŝ,R) for a passive adversary in case
of a corrupted sender.

public final class Simulator {
2 public Simulator(boolean[] inS, int inR length);

public ReceiverMessage getReceiverMessage();
4 public boolean[] getSenderInput();

public Key[] getSenderKeys();
6 public SenderMessage getSenderMessage();

public boolean getOutput();
8}

Fig. 16. Interface ISim for simulator.

public final class ProtoCS {
2 private final Simulator sim;

public ProtoCS(boolean[] inS, boolean[] inR) {
4 sim = new Simulator(inS, inR.length)
}

6 public ReceiverMessage getReceiverMessage() {
return sim.getReceiverMessage();

8 }
...

10 public boolean getOutput() {
return AND(inS, inR); // AND of all input bits

12 }
}

Fig. 17. Implementation 2PC
(Ŝ,R)
ideal of interface I(Ŝ,R).
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