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An Equivalent Condition on the Switching
Construction of Differentially 4-uniform

Permutations on F22k from the Inverse Function
Xi Chen, Yazhi Deng, Min Zhu and Longjiang Qu**

Abstract

Differentially 4-uniform permutations on F22k with high nonlinearity are often chosen as substitution
boxes in block ciphers. Recently, Qu et al. used the powerful switching method to construct permutations with
low differential uniformity from the inverse function [10], [11] and proposed a sufficient but not necessary
condition for these permutations to be differentially 4-uniform. In this paper, a sufficient and necessary
condition is presented. We also give a compact estimation for the number of constructed differentially 4-
uniform permutations. Comparing with those constructions in [10], [11], the number of functions constructed
here is much bigger. As an application, a new class of differentially 4-uniform permutations is constructed.
The obtained functions in this paper may provide more choices for the design of substitution boxes.

Index Terms

Differentially 4-uniform permutation, Substitution box, 4-Uniform BFI, Preferred Boolean function, APN
function

I. INTRODUCTION

In the design of many block ciphers, permutations with specific properties are chosen as substitution box
(S-box) to bring confusion into ciphers. To prevent various attacks on the cipher, such permutations are
required to have low differential uniformity, high algebraic degree and high nonlinearity. Furthermore, for
software implementation, such functions are usually required to be defined on fields with even degrees,
namely F22k . Throughout this paper, we always let n = 2k be an even integer.

It is well known that the lowest differential uniformity of a function defined on F2n can achieve is 2
and such functions are called almost perfect nonlinear (APN) functions. On this aspect, they are the most
ideal choices for the design of substitution boxes. However, it is very difficult to find APN permutations
over F22k , which is called BIG APN Problem. Due to the lack of knowledge on APN permutations on
F22k , a natural trade-off solution is to use differentially 4-uniform permutations as S-boxes. For example,
the Advanced Encryption Standard (AES) uses the multiplicative inverse function, which is a differentially
4-uniform permutation with known maximal nonlinearity. Hence to provide more choices for the S-boxes, it
is important to construct more infinite families of differentially 4-uniform permutations on F22k with other
good cryptographic properties.

Recently, many constructions of differentially 4-uniform permutations were introduced [2]–[4], [6], [10]–
[15]. In 2013, Qu et al. used the powerful switching method [7] to construct many infinite families of
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such permutations from the inverse function [10], [11]. In the constructions, they introduced a type of
function called preferred Boolean function (PBF). More precisely, they studied the functions with the form
G(x) = 1

x + f( 1x), where f is a Boolean function. They proved that if f is a PBF, then G is a permutation
polynomial over F2n whose differential uniformity is at most 4. The number n-variable of PBFs is at least
2

2n+2

3 [11]. However, as pointed out in [11], f to be a PBF is only a sufficient but not necessary condition
for f to be a differentially 4-uniform permutation. Thus it is interesting to find an equivalent condition. To
decide the number of the functions in this class is another interesting problem.

The rest of this paper is organized as follows. We introduce some necessary definitions and useful lemmas
in Section II . In Section III, a generalization of PBF which is called 4-uniform Boolean function with respect
to the inverse function (4-Uniform BFI for short) is presented. Then we find a sufficient and necessary
condition for G(x) = 1

x + f( 1x) to be a differentially 4-uniform permutation. As an application, a new
class of differentially 4-uniform permutations where f are not PBFs is constructed. In Section IV, we
give a compact estimation to the number of 4-Uniform BFIs. The estimation indicates that the number of
differentially 4-uniform permutations constructed by our equivalent condition is much bigger than those
constructed by PBFs. These constructed functions may provide more choices for the design of Substitution
boxes.

II. NECESSARY DEFINITIONS AND USEFUL LEMMAS

In this section, we give necessary definitions and lemmas which will be used in the paper.
Let F2n be a finite field with 2n elements. It can be regarded as a vector space of dimension n over

F2, and can then be identified with Fn2 . In the following, we will switch between these two points of view
without explanation if the context is clear. Let ω = α

2n−1

3 when n is an even integer, where α is a primitive
element of F2n . Then ω is an element of F24 \ F2.

Given two positive integers n and m, a function F : F2n → F2m is called an (n,m)-function. Particularly,
when m = 1, F is called an n-variable Boolean function, or a Boolean function with n variables. We denote
by Bn the set of Boolean functions of n variables. The basic representation of any Boolean function f ∈ Bn
is by its truth table, i.e.,

f = [f(1), f(α), f(α2), · · · , f(α2n−2), f(0)].

Let F be an (n, n)-function. Then F can be expressed uniquely as a polynomial over F2n with degree at
most 2n − 1. It is called a permutation polynomial if it induces a permutation over F2n .

Let ξ = (ξ(1), · · · , ξ(m))T be a column vector in Fm2 and ξ(i) be the i-th element of ξ. The Hamming
weight of ξ, denoted by wt(ξ), is the size of the support of ξ, where the support of ξ is defined as
Supp(ξ) = {1 ≤ i ≤ m|ξ(i) = 1}. Let ~0 be the vector whose all m elements are 0 and ~1 be the vector
with m same elements 1. Define el ∈ Fm2 to be the vector whose l-th element is 1 and others are all 0.
Suppose that ξ = (ξ(1), · · · , ξ(m))T, η = (η(1), · · · , η(m))T are two column vectors in Fm2 , define ξ � η
if and only if ξ(i) ≤ η(i) for any 1 ≤ i ≤ m.

We define the expected value of a random variable X as E(X). We use |S| to indicate the number of the
elements in a set S. Define the absolute trace function from F2n to F2 by Tr(x) =

∑n−1
i=0 x

2i . Denote by
F∗2n the set of all nonzero elements of F2n . Note that for the multiplicative inverse function x−1, we always
define 0−1 = 0 in this paper.

For any (a, b) ∈ F∗2n × F2n , define

δF (a, b) = |{x : x ∈ F2n |F (x+ a) + F (x) = b}|.

The multiset {∗ δF (a, b) : (a, b) ∈ F∗2n × F2n ∗} is called the differential spectrum of F . The value

∆F , max
(a,b)∈F∗2n×F2n

δF (a, b)



3

is called the differential uniformity of F , or we call F a differentially ∆F -uniform function. In particular,
we call F almost perfect nonlinear (APN) if ∆F = 2. It is easy to see that APN functions achieve the
lowest possible differential uniformity for functions defined on fields with an even characteristic.

The following lemmas are useful in our further discussion.
Lemma 2.1: [5] Let n be an even integer and f be an n-variable Boolean function. Then x+ f(x) is a

permutation polynomial over F2n if and only if f(x) = f(x+ 1) holds for any x ∈ F2n .
Lemma 2.2: [9] For any a, b ∈ F2n and a 6= 0, the polynomial f(x) = x2+ax+b ∈ F2n [x] is irreducible

if and only if Tr( b
a2 ) = 1.

Lemma 2.3: [8, Lemma 4.1] Let b ∈ F2n \ F2. Then Tr(1b ) = 0 if and only if there exists z ∈ F2n \ F4

such that b = z + z−1.

III. AN EQUIVALENT CONDITION WHICH PROVIDES MORE CONSTRUCTIONS

In this section, we give the definition of 4-Uniform BFI and an equivalent condition on the switching
construction of differentially 4-uniform permutations on F22k from the inverse function. As an application,
we present a new class of differentially 4-uniform permutations which can not be constructed from PBFs.

A. Definition of 4-Uniform BFI

In [11] the authors introduced a type of functions called preferred Boolean functions, and then constructed
many infinite families of permutations of the form G(x) = 1

x + f( 1x), whose differential uniformity are at
most 4.

Theorem 3.1: [11] Let n = 2k be an even integer and f be an n-variable Boolean function. Let ω be
an element in F2n with order 3. Then f is a PBF if and only if it satisfies the following two conditions:
(1) f(x+ 1) = f(x) for any x ∈ F2n ;
(2) f(0) + f(z + 1

z ) + f(ωz + 1
ωz ) + f(ω2z + 1

ω2z ) = 0 for any z ∈ F2n \ F4.
Theorem 3.2: [11] Let n = 2k be an even integer, f be a Boolean function with n variables. Define

G(x) =
1

x
+ f(

1

x
).

If f(x) is a PBF, then G(x) is a permutation polynomial on F2n whose differentially uniformity is at most
4.

Theorem 3.2 builds a bridge from PBFs to permutation polynomials with differentially uniformity at most
4. However, as pointed out in [10], f to be a PBF is only a sufficient but not necessary condition. Then
a natural question is to search for an equivalent condition. For convenience, we introduce the following
definition.

Definition 3.3: Let n = 2k be an even integer and f be an n-variable Boolean function. We call f a
4-uniform Boolean function with respect to the inverse function (4-Uniform BFI for short) when G(x) =
1
x + f( 1x) is a permutation whose differential uniformity is at most 4.

Hence a PBF is a 4-Uniform BFI and not vice versa.

B. An Equivalent Condition

Now we introduce the main theorem of this section. It is an equivalent condition on the switching
construction of differentially 4-uniform permutation of F22k from the inverse function.

Theorem 3.4: Let n be an even integer and f be an n-variable Boolean function. Let ω be an element
in F2n with order 3. Then G(x) = 1

x + f( 1x) is a differentially 4-uniform permutation over F2n if and only
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if f(x) = f(x + 1) holds for any x ∈ F2n and for any z ∈ F2n \ F4, at least one of the following two
equations holds.

f(0) + f(z + 1
z + 1) + f(ωz + 1

ωz + 1) + f(ω2z + 1
ω2z + 1) = 0, (1)

f(0) + f(z + 1
z + 1) + f(ω(z + 1

z + 1)) + f(ω2(z + 1
z + 1)) = 1. (2)

Proof: It follows from Lemma 2.1 that G(x) is a permutation if and only if f(x) = f(x + 1) holds for
any x ∈ F2n . Then we only need to compute the differential uniformity of G.

Sufficiency: Assume that the differential uniformity of G(x) = 1
x + f( 1x) is more than 4. Then there

exist a ∈ F∗2n , b ∈ F2n such that
G(x+ a) +G(x) = b (3)

has more than 4 solutions in F2n . Since f is a Boolean function, we have{ 1
x + 1

x+a = b

f( 1x) + f( 1
x+a) = 0,

(4)

or { 1
x + 1

x+a = b+ 1

f( 1x) + f( 1
x+a) = 1.

(5)

It is clear that Eq.(4) and Eq.(5) have no common solutions and each of them has at most 2 solutions in
F2n\{0, a}. Hence 0 is a solution of Eq.(4) or Eq.(5) and each of them has exactly 2 solutions in F2n\{0, a}.
The following proof is divided into two cases.

Case 1. 0 is a solution of Eq.(4)
In this case, we have ab = 1 and

f(0) + f(
1

a
) = 0. (6)

Substituting ab = 1 into Eq.(4) and Eq.(5), we get{
1
x + 1

x+a = 1
a

f( 1x) + f( 1x + 1
a) = 0,

(7)

or {
1
x + 1

x+a = 1
a + 1

f( 1x) + f( 1x + 1
a + 1) = 1.

(8)

If x 6= 0 or a, then Eq.(7.1) is equivalent to x2 + ax+ a2 = 0, which always has 2 solutions x = a
ω and

x = a
ω2 .

Now we consider Eq.(8.1). It is clear that 0 and a are not the solutions of Eq.(8.1) and a 6= 1. Hence Eq.
(8.1) is equivalent to

x2 + ax+
a2

1 + a
= 0 (9)

Since n is an even integer, then Tr( 1
a+1) = Tr( a

a+1) = Tr( 1
1+ 1

a

). It follows from Lemma 2.2 that Eq.(9)

has solutions in F2n if and only if 0 = Tr( 1
a+1), which is equal to Tr( 1

1+ 1

a

). It follows from a 6= 0, 1 that

1 + 1
a ∈ F2n \ F2. Then according to Lemma 2.3, Tr( 1

1+ 1

a

) = 0 if and only if there exists z ∈ F2n \ F4

such that 1
a + 1 = z+ 1

z . Hence Eq.(8.1) has a solution in F2n if and only if there exists z ∈ F2n \ F4 such
that a = 1

z+ 1

z
+1

.
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Let x1 = 1
ωz+ 1

ωz
+1

. Then

1

x1 + a
=

1
1

ωz+ 1

ωz
+1

+ 1
z+ 1

z
+1

=
(ωz + 1

ωz + 1)(z + 1
z + 1)

ω2z + 1
ω2z

=
ωz2 + 1

ωz2

ω2z + 1
ω2z

+ 1 = ω2z +
1

ω2z
+ 1.

Hence
1

x1
+

1

x1 + a
= (ωz +

1

ωz
+ 1) + (ω2z +

1

ω2z
+ 1) = z +

1

z
=

1

a
+ 1,

which means that x1 = 1
ωz+ 1

ωz
+1

is a solution of Eq.(8.1). Clearly, x2 = x1 + a = 1
ω2z+ 1

ω2z
+1

is the other
solution of Eq.(8.1).

Substituting a = 1
z+ 1

z
+1

into Eq.(6), Eq.(7.2) and Eq.(8.2), one gets the following equation system.
f(0) + f(z + 1

z + 1) = 0,
f(ω(z + 1

z + 1)) + f(ω2(z + 1
z + 1)) = 0,

f(ωz + 1
ωz + 1) + f(ω2z + 1

ω2z + 1) = 1.
(10)

Hence there exists z ∈ F2n \ F4 such that neither Eq.(1) nor Eq.(2) holds, a contradiction.
Case 2. 0 is a solution of Eq.(5)
Similarly as Case 1, we have a(b+ 1) = 1 and there exists z ∈ F2n \ F4 such that a = 1

z+ 1

z
+1

. Then we
get 

f(0) + f(z + 1
z + 1) = 1,

f(ω(z + 1
z + 1)) + f(ω2(z + 1

z + 1)) = 1,
f(ωz + 1

ωz + 1) + f(ω2z + 1
ω2z + 1) = 0.

(11)

Thus there exists z ∈ F2n \ F4 such that neither Eq. (1) nor Eq. (2) is hold, a contradiction.
Hence the differential uniformity of G is at most 4.
Now we prove that G can not be an APN function. Assume G(x) = 1

x + f( 1x) is an APN function. Then
Eq.(3) has at most 2 solutions in F2n for any a, b ∈ F2n and a 6= 0.

As in the proof of Case 1, let a = 1
z+ 1

z
+1

and b = z + 1
z + 1, where z is any element of F2n \ F4. Then

we can verify that x = 0, x = a, x = a
ω and x = a

ω2 are the solutions of Eq. (4.1), while x = 1
ωz+ 1

ωz
+1

,

x = 1
ω2z+ 1

ω2z
+1

are the solutions of Eq.(5.1). Since Eq.(3) has at most 2 solutions in F2n , at most one
equation of Eq.(10) holds.

Now we turn to Case 2. Let a = 1
z+ 1

z
+1

and b = z+ 1
z . Similarly, at most one equation of Eq.(11) holds.

Hence at most two of the six equations of Eq.(10) and Eq.(11) hold. On the other hand, one and only
one of Eq.(10.1) and Eq.(11.1) holds since f is a Boolean function. By the same reason, exactly three of
these six equations hold, contradicts.

Hence G(x) = 1
x + f( 1x) is not an APN permutation but a differentially 4-uniform permutation.

Necessity: Assume, on the contrary, that there exists z ∈ F2n \ F4 such that neither Eq.(1) nor Eq.(2)
holds. Since f is a Boolean function, we have f(0) + f(z+ 1

z + 1) = 0 or 1. Here we only prove one case.
The proof for the other case is similar and is left to the interested readers.

Assume that f(0) + f(z + 1
z + 1) = 0. Then with the assumption that neither Eq.(1) nor Eq.(2) holds,

one can get the equation system Eq.(10). Let a = 1
z+ 1

z
+1

and b = z + 1
z + 1. It is clear that ab = 1 and

a 6= 0 since z ∈ F2n \ F4.
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It follows from Eq.(10.1), Eq.(10.2) and a 6= 0 that x = 0, x = a, x = a
ω and x = a

ω2 are four different
solutions of Eq.(4). Similarly as in the sufficient part of the proof, one can verify that x = 1

ωz+ 1

ωz
+1

and x = 1
ω2z+ 1

ω2z
+1

are two different solutions of Eq.(5). Obviously, Eq.(4) and Eq.(5) have no common
solutions. Hence Eq.(3) has at least 6 different solutions in F2n , a contradiction.

We finish the proof. �
We make two comments on Theorem 3.4. First, in the above proof the condition f(x) = f(x + 1)

was not used in the computation of the differential uniformity of G. Hence if we remove this condition
in the theorem, G is also a differentially 4-uniform function but may be not a permutation. This means
that Theorem 3.4 can be used to construct more differentially 4-uniform functions. Second, it was proved
that G(x) = 1

x + f( 1x) constructed by 4-Uniform BFI is not an APN function. In particular, those G(x)
constructed by PBF can not be APN functions either.

C. A New Infinite Family of Differentially 4-Uniform Permutations

In this subsection we construct a new infinite family of differentially 4-uniform permutations with Boolean
functions which are not PBFs but 4-Uniform BFIs. We first introduce a lemma.

Lemma 3.5: Let n be an even integer and ω be an element in F2n with order 3. If z ∈ F2n \ F4, then

1

z + 1
z + 1

+
1

ωz + 1
ωz + 1

+
1

ω2z + 1
ω2z + 1

= 0.

Proof. It is clear that 1 + ω + ω2 = 0 and z + 1
z /∈ {0, 1}. Then

1

ωz + 1
ωz + 1

+
1

ω2z + 1
ω2z + 1

=
z + 1

z

(ωz + 1
ωz + 1)(ω2z + 1

ω2z + 1)
=

z + 1
z

z2 + 1
z2 + z + 1

z

=
1

z + 1
z + 1

.

�
Theorem 3.6: Let n be an even integer. Let α, β ∈ F2n satisfying

α+
1

α
+ 1 = β +

1

β
∈ F2n \ F4, (12)

Tr( 1
ωα+ 1

ωα
+1

) = 1 and Tr( 1
ωβ+ 1

ωβ
+1

) = 1. Define two subsets of F2n as follows.

U := {α+
1

α
, α+

1

α
+ 1, ωα+

1

ωα
, ωα+

1

ωα
+ 1, ω2α+

1

ω2α
, ω2α+

1

ω2α
+ 1,

ωβ +
1

ωβ
, ωβ +

1

ωβ
+ 1, ω2β +

1

ω2β
, ω2β +

1

ω2β
+ 1}.

V := {ω(ωα+
1

ωα
+ 1), ω2(ωα+

1

ωα
+ 1), ω(ω2α+

1

ω2α
+ 1), ω2(ω2α+

1

ω2α
+ 1),

ω(ωβ +
1

ωβ
+ 1), ω2(ωβ +

1

ωβ
+ 1), ω(ω2β +

1

ω2β
+ 1), ω2(ω2β +

1

ω2β
+ 1)}.

Let us define
f(x) =

{
1, when x ∈ U ;
0, else.

(13)

If U ∩ V = ∅, then f(x) is a 4-Uniform BFI but not a PBF. Hence G(x) = 1
x + f( 1x) is a differentially

4-uniform permutation on F2n .
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Proof. It is easy to verify that the elements of U are distinct and 0 /∈ U . Then f(0) = 0. Let z be any
element of F2n \ F4. According to Theorem 3.4, it suffices to prove that at least one of the following two
equations holds.

f(0) + f(z + 1
z + 1) + f(ωz + 1

ωz + 1) + f(ω2z + 1
ω2z + 1) = 0, (14)

f(0) + f(z + 1
z + 1) + f(ω(z + 1

z + 1)) + f(ω2(z + 1
z + 1)) = 1. (15)

It follows from Eq.(12) and Lemma 2.3 that Tr( 1
α+ 1

α
+1

) = Tr( 1
β+ 1

β
+1

) = 0. By the assumption Tr( 1
ωα+ 1

ωα
+1

) =

Tr( 1
ωβ+ 1

ωβ
+1

) = 1 and Lemma 3.5, we have Tr( 1
ω2α+ 1

ω2α
+1

) = Tr( 1
ω2β+ 1

ω2β
+1

) = 1. Then it follows from

Lemma 2.3 that neither of ωα + 1
ωα , ω

2α + 1
ω2α , ωβ + 1

ωβ , ω
2β + 1

ω2β can equal to z + 1
z + 1. Hence

z + 1
z + 1 ∈ U if and only if z ∈ {α, 1α , β,

1
β , ωα,

1
ωα , ωβ,

1
ωβ , ω

2α, 1
ω2α , ω

2β, 1
ω2β}. It is also clear that

z + 1
z + 1 ∈ U if and only if ωz + 1

ωz + 1, ω2z + 1
ω2z + 1 ∈ U . The rest of the proof is split into two cases

according to whether z + 1
z + 1 ∈ U .

Case 1. z + 1
z + 1 /∈ U

Then f(z + 1
z + 1) = f(ωz + 1

ωz + 1) = f(ω2z + 1
ω2z + 1) = 0 since neither of z + 1

z + 1, ωz + 1
ωz +

1, ω2z + 1
ω2z + 1 is in U . Hence Eq.(14) holds.

Case 2. z + 1
z + 1 ∈ U

Contrary to Case 1, now Eq.(14) does not hold since z + 1
z + 1, ωz + 1

ωz + 1, ω2z + 1
ω2z + 1 ∈ U . Hence

f is not a PBF. Now we need to prove that Eq.(15) must hold, or equivalently, to prove that

f(ω(z +
1

z
+ 1)) = f(ω2(z +

1

z
+ 1)). (16)

We distinguish two subcases.
Subcase 2.1. z ∈ {ωα, 1

ωα , ωβ,
1
ωβ , ω

2α, 1
ω2α , ω

2β, 1
ω2β}

It is clear that ω(z+ 1
z +1), ω2(z+ 1

z +1) ∈ V . Then it follows from the definition of f and the assumption
U ∩ V = ∅ that f(ω(z + 1

z + 1)) = f(ω2(z + 1
z + 1)) = 0, which means Eq.(16) holds.

Subcase 2.2. z ∈ {α, 1α , β,
1
β}

Let U1 = {α + 1
α + 1 = β + 1

β , α + 1
α = β + 1

β + 1}, U2 = U\U1. Then one can easily verify that
u1 + u2 ∈ U2 holds for any u1 ∈ U1, u2 ∈ U2. Since z + 1

z + 1 ∈ F2n \ F4, we have ωi(z + 1
z + 1) /∈ U1,

i = 1, 2. Then ω(z + 1
z + 1) ∈ U2 if and only if ω2(z + 1

z + 1) = (z + 1
z + 1) + ω(z + 1

z + 1) ∈ U2, which
means f(ω(z + 1

z + 1)) = 1 if and only if f(ω2(z + 1
z + 1)) = 1. Hence Eq.(16) holds.

The proof is completed. �
We use Magma [1] to do an exhaust search for F2n(6 ≤ n ≤ 18, n even). The experiment data is listed

in Table I. The data suggests that the number of f(x) constructed by Theorem 3.6 is close to 2n−5. We also
list the number of the functions f(x) satisfying all the conditions of Theorem 3.6 except U ∩ V = ∅. The
result hints that the restriction U ∩ V = ∅ is quite weak.
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TABLE I: The number of f(x) constructed by Theorem 3.6 for 6 ≤ n ≤ 18 (n is even)
f(x) satisfied all

The number conditions except
n of f(x) U ∩ V = ∅ 2n−5

6 3 0 2

8 6 0 8

10 30 0 32

12 126 1 128

14 525 0 512

16 2076 0 2048

18 8112 0 8192

Theorem 3.6 indicates that there exist some functions which are 4-Uniform BFIs but not PBFs. Indeed,
the number of 4-Uniform BFIs is much bigger than that of PBFs. We will estimate the number of 4-Uniform
BFIs in the next section.

IV. THE NUMBER OF 4-UNIFORM BFIS

According to Definition 3.3, G(x) = 1
x + f( 1x) is a differentially 4-uniform permutation if and only if f

is a 4-Uniform BFI. Thus it is interesting to calculate the number of 4-Uniform BFIs. In this section, we
first introduce an algorithm to calculate the exact number of 4-Uniform BFIs. As it is difficult to realize the
algorithm, even on F28 , we propose a method to estimate the number of η-partly 4-Uniform BFIs (introduced
in Definition 4.5) and then discuss the accuracy of our compact estimation. At last we generalize the method
to estimate the number of 4-Uniform BFIs.

A. The Exact Number of 4-Uniform BFIs

We first consider the number of PBFs. Suppose that h : F2n → F2n is defined by h(z) = z+ 1
z + 1. Then

Eq.(1) and Eq.(2) in Theorem 3.4 can be written as

f(0) + f(h(z)) + f(h(ωz)) + f(h(ω2z)) = 0,

f(0) + f(h(z)) + f(ωh(z)) + f(ω2h(z)) = 1.

Define the following three sets:

Lx = {{x, x+ 1} : x ∈ F2n} ,
Lz = {{0, h(z), h(ωz), h(ω2z)} : z ∈ F2n \ F4},
Lh = {{0, h(z), ωh(z), ω2h(z)} : z ∈ F2n \ F4}.

Clearly |Lx| = 2n−1. Note that when z ∈ F2n \ F4, the elements z + 1
z + 1, ωz + 1

ωz + 1, ω2z + 1
ω2z + 1

are pairwise distinct since the sum of them is 1 and none of them can be 1. Then the 6 different elements
z, ωz, ω2z, 1z ,

1
ωz ,

1
ω2z lead to the same element of Lz , hence |Lz| = 2n−4

6 = 2n−1−2
3 . It is clear that |Lh| ≤

2n−1
3 . Since different elements z may lead to the same element in Lh, we can not get |Lh| directly. However,

it can be calculated easily for small number of variables with a computer.
Then we define a matrix M0 with the size of (|Lz|+ |Lx|)× 2n, where the columns of M0 are indexed

by the 2n elements in F2n and the order of rows is decided by the following algorithm:
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Algorithm 4.1:

1 i n p u t n ;
2 M0 := 0; i := 0;Msupp := 0;SetZ := ∅;SetX := ∅;
3 f o r z ∈ F2n \ F4 do
4 i f z + 1

z + 1 /∈ SetZ t h e n
5 i := i+ 1;M0[i, 0] := 1;
6 f o r j ∈ {0, 1, 2} do
7 M0[i, ω

jz + 1
ωjz + 1] := 1;Msupp[i, j + 1] := ωjz + 1

ωjz + 1;
8 SetZ := SetZ

⋃
{z + 1

z + 1, ωz + 1
ωz + 1, ω2z + 1

ω2z + 1};
9 f o r x ∈ F2n do

10 i f x /∈ SetX t h e n
11 i := i+ 1;M0[i, x] := 1;M0[i, x+ 1] := 1;
12 SetX := SetX

⋃
{x, x+ 1};

13 o u t p u t M0;Msupp.

Here we use Msupp to save the support of those lines produced by Lz . The elements of M0 are in F2 and
each line of M0 save some messages of the condition of PBFs. Then we get the number of PBFs according
to the following theorem.

Theorem 4.2: [11] Let M0 be defined as above and let f be an n-variable Boolean function expressed
by its truth table. Then f is a PBF if and only if it satisfies the equation

M0f
T = 0. (17)

Further, the number of the Boolean functions satisfying (17) is 22
n−Rank(M0). Particularly, if M0 is a full

rank matrix, then this number equals to 2
2n+2

3 .
Now we focus on the number of 4-Uniform BFIs. Assume that the n-variable Boolean function f is a

4-Uniform BFI. Let ξ = (ξ(1), · · · , ξ(|Lz|))T be a column vector in F|Lz|2 and ξ(i) be the i-th element of ξ.
Replace the vector 0 in Eq.(17) by (ξ(1), · · · , ξ(|Lz|), 0, · · · , 0)T, where the last |Lx| elements are 0. Then
f(x) + f(x+ 1) = 0 holds for any x ∈ F2n . For any 1 ≤ i ≤ |Lz|, assume that M0[i, 0] = M0[i, h(zi)] =
M0[i, h(ωzi)] = M0[i, h(ω2zi)] = 1 and other elements are 0 in the i-th line of M0 according to Algorithm
4.1, where zi ∈ F2n \ F4. For those i satisfying ξ(i) = 0, the equation f(0) + f(h(zi)) + f(h(ωzi)) +
f(h(ω2zi)) = 0 holds. And for the other i satisfying ξ(i) = 1, the equation above does not hold, which
means the following three equations must hold according to Theorem 3.4.

f(0) + f(h(zi)) + f(ωh(zi)) + f(ω2h(zi)) = 1, (18)

f(0) + f(h(ωzi)) + f(ωh(ωzi)) + f(ω2h(ωzi)) = 1, (19)

f(0) + f(h(ω2zi)) + f(ωh(ω2zi)) + f(ω2h(ω2zi)) = 1. (20)

We define the matrix Mξ which adds the three conditions above as new lines to M0 for any i ∈ Supp(ξ).
However, each condition should be considered at most one time although some of them may be derived
from different zi.
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Algorithm 4.3:

1 i n p u t ξ,M0,Msupp;
2 Mξ := M0; iξ := |Lz|+ |Lx|;SetY := ∅
3 f o r i i n Supp(ξ) do
4 f o r j i n {0, 1, 2} do
5 i f Msupp[i, j + 1] /∈ SetY t h e n
6 iξ := iξ + 1;Mξ[iξ, 0] := 1;Mξ[iξ,Msupp[i, j + 1]] := 1;
7 Mξ[iξ, ωMsupp[i, j + 1]] := 1;Mξ[iξ, ω

2Msupp[i, j + 1]] := 1;
8 SetY := SetY ∪ {Msupp[i, j + 1], ωMsupp[i, j + 1], ω2Msupp[i, j + 1]}
9 mξ := iξ

10 o u t p u t Mξ;mξ;

Here mξ is the row number of Mξ, which means Mξ is a matrix of the size mξ × 2n. Due to Algorithm
4.3, mξ = |Lz|+ |Lx|+ |Lh| ≤ |Lz|+ |Lx|+ 2n−1

3 ≤ 2n. The columns of Mξ are indexed by the 2n elements
in F2n and the elements of Mξ are in F2. It is clear that for any ξ, let l ∈ Supp(ξ) then mξ+el ≤ mξ + 3.
Define a column vector vξ on F2 with mξ elements as follows: The first |Lz| elements of vξ are the same
as the vector ξ, the next |Lx| elements are 0 and the last mξ − |Lz| − |Lx| elements are 1.

Theorem 4.4: Let n be an even integer. For any ξ ∈ F|Lz|2 , let Mξ, vξ be defined as above and let f be
an n-variable Boolean function expressed by its truth table. Then f is a 4-Uniform BFI if and only if there
exists a ξ ∈ F|Lz|2 such that f satisfies the following equation.

Mξf
T = vξ. (21)

Further, the number of 4-Uniform BFIs on F2n is

BF (n) =
∑

ξ∈F|Lz|2

(Rank(Mξ)− Rank([Mξ, vξ]) + 1)× 22
n−Rank(Mξ). (22)

Proof: For any 1 ≤ i ≤ |Lz|, if ξ(i) = 0, then f(0) + f(h(zi)) + f(h(ωzi)) + f(h(ω2zi)) = 0 holds in
these lines. And if ξ(i) = 1, the last mξ − |Lz| − |Lx| elements are 1, which ensures that all of Eq.(18),
Eq.(19) and Eq.(20) hold according to Algorithm 4.3. Clearly, f(x) = f(x+ 1) holds for any x ∈ F2n since
the |Lx| elements in the middle of vξ are 0 (vξ(|Lz|+1) = vξ(|Lz|+2) = · · · = vξ(|Lx|+|Lz|) = 0). Then for
any ξ ∈ F|Lz|2 , the solutions of Eq.(21) are 4-Uniform BFIs due to Theorem 3.4. Since all of the cases in
Theorem 3.4 have been considered when ξ runs over F|Lz|2 , thus f is a 4-Uniform BFI if and only if f is
the solution of Eq.(21).

Clearly those solutions corresponding to different ξ are pairwise distinct. By the knowledge of linear
algebra, for any ξ ∈ F|Lz|2 , the number of the Boolean functions satisfying Mξf

T = vξ is 22
n−Rank(Mξ)

when Rank(Mξ) = Rank([Mξ, vξ]). Otherwise, the number is 0. Here the matrix [Mξ, vξ] is the augmented
matrix of Eq.(21). Thus the number of 4-Uniform BFIs on F2n is∑

ξ∈F|Lz|2

(Rank(Mξ)− Rank([Mξ, vξ]) + 1)× 22
n−Rank(Mξ).

This completes the proof of Theorem 4.4. �
With the help of the computer, we get the exact number of 4-Uniform BFIs on F26 , which is 16198656 ≈

224. In [11], it is computed that the number of PBFs on F26 is 221. Hence the number of 4-Uniform BFIs is
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almost eight times as that of PBFs. It is difficult to calculate the number even on F28 since the complexity
is over 242. Thus it is important to estimate the number of 4-Uniform BFIs.

B. The Estimated Number of 4-Uniform BFIs

In this subsection, we first define η-partly 4-Uniform BFIs as a subset of 4-Uniform BFIs. Then we give a
heuristic method to estimate the number of η-partly 4-Uniform BFIs. As it is not a rigorous method, we also
do some experiments to show the accuracy of our method. Most of the symbols we use here are introduced
in Section II and |Lz| = 2n−1−2

3 is a fixed number as we defined in last subsection.
Definition 4.5: Let n be an even integer and η ∈ F|Lz|2 . We call the n-variable Boolean function f an

η-partly 4-Uniform BFI if there exists ξ � η such that f satisfies Eq.(21). Then the number of η-partly
4-Uniform BFIs is

BF (n, η) =
∑
ξ�η

(Rank(Mξ)− Rank([Mξ, vξ]) + 1)× 22
n−Rank(Mξ), (23)

where Mξ, vξ are defined in Theorem 4.4.
In particular, the number of 4-Uniform BFIs equals BF (n,~1) and the number of PBFs equals BF (n,~0) =

22
n−Rank(M0).
Since Mξ, vξ depend on ξ and the relationships between them are quite complex, it is difficult for us to

calculate the value Rank(Mξ)−Rank([Mξ, vξ]) + 1 for all of ξ ∈ F|Lz|2 when n ≥ 8. To make the problem
simpler, we regard vξ as a random column vector of Fmξ

2 , which means only the length mξ depends on ξ.
Since Mξ is identified when ξ fixed, Rank(Mξ)−Rank([Mξ, vξ]) + 1 only depends on the random variable
vξ. Then we use the expected value E(Rank(Mξ) − Rank([Mξ, vξ]) + 1) in Eq.(23) as an approximation,
which means

BF (n, η) ≈
∑
ξ�η

E(Rank(Mξ)− Rank([Mξ, vξ]) + 1)× 22
n−Rank(Mξ) , BF (n, η).

We call BF (n, η) the estimation of η-partly 4-Uniform BFIs.
Now we calculate the expected value E(Rank(Mξ)−Rank([Mξ, vξ])+1) for the random variable vξ for any

ξ ∈ F|Lz|2 . Clearly there are totally 2mξ possible vξ. Since 2Rank(Mξ) of them are linear combinations over F2

of the column vectors in Mξ, the probability that vξ is F2-linearly dependent with the column vectors in Mξ

is 2Rank(Mξ)−mξ . And in this case, we have Rank(Mξ)−Rank([Mξ, vξ])+1 = 1. In the other case, vξ is F2-
linearly independent of the column vectors in Mξ, the value Rank(Mξ)−Rank([Mξ, vξ])+1 will be 0. Then
the expected value E(Rank(Mξ)−Rank([Mξ, vξ])+1) equals 2Rank(Mξ)−mξ×1+(1−2Rank(Mξ)−mξ)×0 =
2Rank(Mξ)−mξ .

Thus

BF (n, η) ≈ BF (n, η)

=
∑
ξ�η

2Rank(Mξ)−mξ × 22
n−Rank(Mξ)

=
∑
ξ�η

22
n−mξ .

Then we need to estimate the value BF (n, η).
For any η ∈ F|Lz|2 , define a series of vectors with ascending order from ~0 to η: ~0 = η0 � η1 � · · · �

ηwt(η)−1 � ηwt(η) = η satisfying wt(ηs) = s for any 0 ≤ s ≤ wt(η). This means for any 1 ≤ s ≤ wt(η),
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ηs−1 � ηs and only one bit of them is different. We first discuss the relationship between BF (n, ηs) and
BF (n, ηs−1).

Lemma 4.6: Let n be an even integer. For any ηs ∈ F|Lz|2 , let l1 ∈ Supp(ηs), then∑
ξ�ηs

22
n−mξ ≥ 9

8

∑
ξ�ηs−el1

22
n−mξ .

The equality happens if and only if mξ+el1
= mξ + 3 holds for any ξ � ηs − el1 .

Proof: For any ξ � ηs− el1 , it is clear that mξ+el1
≤ mξ + 3 according to the definition in Algorithm 4.3.

Then ∑
ξ�ηs

22
n−mξ =

∑
ξ�ηs−el1

22
n−mξ +

∑
el1�ξ+el1�ηs

22
n−mξ+el1

≥
∑

ξ�ηs−el1

22
n−mξ +

∑
ξ�ηs−el1

22
n−mξ−3

=
9

8

∑
ξ�ηs−el1

22
n−mξ

Clearly, the equality happens if and only if mξ+el1
= mξ + 3 holds for any ξ � ηs − el1 . �

Since wt(ηs−el1) = s−1, let ηs−1 = ηs−el1 . Then BF (n, ηs) ≥ 9
8BF (n, ηs−1) always holds according

to Lemma 4.6. Then we can get a rough estimation of the number of η-partly 4-Uniform BFIs immediately
since m0 = |Lx|+ |Lz| = 2n+1−2

3 .
Proposition 4.7: Let n be an even integer and η ∈ F|Lz|2 . Then

BF (n, η) ≈
∑
ξ�η

22
n−mξ ≥

(
9

8

)wt(η)
2

2n+2

3 ,

Equality in the last inequality happens if and only if there exists a series of vectors with ascending order
from ~0 to η, satisfying mηs = mηs−1

+ 3 for any 1 ≤ s ≤ wt(η). This may happens if wt(η) is not very
large. But it is impossible when 2n+2

9 < wt(η) ≤ |Lz|. Otherwise, mη = |Lx| + |Lz| + 3wt(η) > 2n, a
contradiction. Thus we need to find a better estimation of BF (n, η).

Lemma 4.8: Let n be an even integer. For any ηs ∈ F|Lz|2 , let l1 ∈ Supp(ηs), if mηs ≤ mηs−el1 + 2, then
there exists l2 ∈ Supp(ηs − el1), such that∑

ξ�ηs

22
n−mξ ≥ 41

32

∑
ξ�ηs−el1−el2

22
n−mξ .

Proof: Since mηs ≤ mηs−el1 + 2, there exists l2 ∈ Supp(ηs − el1) such that{
{Msupp[l1, 1], ωMsupp[l1, 1], ω2Msupp[l1, 1]}, {Msupp[l1, 2], ωMsupp[l1, 2], ω2Msupp[l1, 2]},

{Msupp[l1, 3], ωMsupp[l1, 3], ω2Msupp[l1, 3]}
}⋂{

{Msupp[l2, 1], ωMsupp[l2, 1], ω2Msupp[l2, 1]},

{Msupp[l2, 2], ωMsupp[l2, 2], ω2Msupp[l2, 2]}, {Msupp[l2, 3], ωMsupp[l2, 3], ω2Msupp[l2, 3]}
}
6= ∅
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according to Algorithm 4.3. This means mξ+el1+el2
≤ mξ + 5 holds for any ξ � ηs − el1 − el2 . It is clear

that mξ+el1
≤ mξ + 3 and mξ+el2

≤ mξ + 3 for the other ξ. According to Lemma 4.6, we get∑
ξ�ηs

22
n−mξ

=
∑

ξ�ηs−el1

22
n−mξ +

∑
el1�ξ+el1�ηs−el2

22
n−mξ+el1 +

∑
el1+el2�ξ+el1+el2�ηs

22
n−mξ+el1

+el2

=
∑

ξ�ηs−el1

22
n−mξ +

∑
ξ�ηs−el1−el2

22
n−mξ+el1 +

∑
ξ�ηs−el1−el2

22
n−mξ+el1

+el2

≥ 9

8

∑
ξ�ηs−el1−el2

22
n−mξ +

∑
ξ�ηs−el1−el2

22
n−mξ−3 +

∑
ξ�ηs−el1−el2

22
n−mξ−5

=
41

32

∑
ξ�ηs−el1−el2

22
n−mξ .

The proof is completed. �
Assume that there exists a series of vectors with ascending order from ~0 to η, satisfying mηs ≥ mηs−1

+2
for any 1 ≤ s ≤ wt(η) as an approximation. Following the approximation above, and assuming that
ms = ms−1 + 2 happens t times, we have mη = |Lz| + |Lx| + 3wt(η) − t. This means mηs = mηs−1

+ 2
happens 3wt(η) + |Lz|+ |Lx| −mη = 3wt(η)− |Lh| times and mηs = mηs−1

+ 3 happens |Lh| − 2wt(η)
times. Then we can give a compact estimation of BF (n, η) according to Lemma 4.6 and Lemma 4.8.∑

ξ�η
22

n−mξ ≈ (
41

32
)3wt(η)−|Lh|(

9

8
)(|Lh|−2wt(η))−(3wt(η)−|Lh|)2

2n+2

3

= (
82

81
)3wt(η)−|Lh|(

9

8
)wt(η)2

2n+2

3 .

Then we give a compact estimation of the number of η-partly 4-Uniform BFIs. Particularly it is a compact
estimation of the number of 4-Uniform BFIs when η = ~1.

Proposition 4.9: Let n be an even integer and η ∈ F|Lz|2 . Then

BF (n, η) ≈ BF (n, η) ≈ (
82

81
)3wt(η)−|Lh|(

9

8
)wt(η)2

2n+2

3 .

Particularly, the number of 4-Uniform BFIs is

BF (n, 1) ≈ (
82

81
)2
n−1−2−|Lh|(

9

8
)

2n−1−2

3 2
2n+2

3 .

Since the method that we use to estimate the number of η-partly 4-Uniform BFIs in this subsection is not
a rigorous method, we also do some experiments to show the accuracy of the our method. We calculate the
exact number of η-partly 4-Uniform BFIs for some η. By observing the trend of η-partly 4-Uniform BFIs
when wt(η) grows, we check the accuracy of our compact estimation in Proposition 4.9. Experiment results
show that our compact estimation of the number of 4-Uniform BFIs is reliable.

Let ηr be the column vector with the first r elements are 1 and others are 0. We have calculated the exact
number of BF (n, ηr) for some small n, r by Magma to compare with our compact estimation. Here we
only list the data of BF (8, ηr) when r ≤ 29 to indicate the accuracy of our compact estimation.
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Fig. 1: The trend of BF (8, ηr) when r grows

The figure above is the trend of BF (8, ηr) and the trend of our compact estimation when r grows from
0 to 29. We also draw the curve (98)r2

2n+2

3 as a rough estimation according to Proposition 4.7. As can be
seen in figure 1, our compact estimation is further better than the rough estimation and the method we use
is reliable. Due to Rank(Mξ) − Rank([Mξ, vξ]) + 1 = 0 for any e17 � ξ � η17, the data of r = 16 and
r = 17 is equal. However, our compact estimation still regards vξ as a random vector and uses the total
expected value E(Rank(Mξ)−Rank([Mξ, vξ])+1) instead as an approximation. This leads to a larger error
but this error is counteracted with the growth of r.

Now we list the number of |Lh| when 6 ≤ n ≤ 22 is an even integer. Then the number of 4-Uniform
BFIs in our compact estimation is calculated by BF (n, 1) ≈ (8281)2

n−1−2−|Lh|(98)
2n−1−2

3 2
2n+2

3 .

TABLE II: The estimation of BF (n, 1) when 6 ≤ n ≤ 22 is even
n 6 8 10 12 14 16 18 20 22

|Lh| 18 69 310 1189 4746 19189 76398 305845 1223266

BF (n, 1) ≈ 15780877 1028.34 10112.7 10450.7 101802 107207 1028831 10115321 10461286

Here we make two comments. First, according to Proposition 4.9, the number of differentially 4-uniform
permutations constructed by 4-Uniform BFIs is much bigger than those constructed by PBFs. Second,
BF (n, η) may be estimated more accurately if one consider more details. It is an interesting problem to
enhance the precision of the estimation, or to decide the exact number of 4-Uniform BFIs when n ≥ 8.

As an application, we can estimate the number of differentially 4-uniform functions constructed in Theorem
3.6. Each of those constructions is corresponding to different ξ with wt(ξ) = 2, which means Eq.(21) have
solutions for these ξ. Then the number of differentially 4-uniform functions constructed in Theorem 3.6 is
at least T (n)× 2

2n−13

3 , where T (n) is the exact number of f(x) in Table I.

V. CONCLUDING REMARKS

In this paper, a sufficient and necessary condition for the switching construction of differentially 4-uniform
permutations from the inverse function is presented. Then we give a compact estimation to the number of
this class of differentially 4-uniform permutations. As an application, a new infinite family of differentially
4-uniform permutations is also constructed. The newly obtained functions may provide more choices for
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the design of substitution boxes. For further research, it is interesting to find subclasses of the functions
constructed by Theorem 3.4 with other good cryptographic properties such as high nonlinearity. To decide
the exact number of this class of functions is also an interesting problem. A more important challenge is
the BIG APN Problem.
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