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Abstract

We build the first public-key broadcast encryption systems that simultaneously achieve
adaptive security against arbitrary number of colluders, have small system parameters, and have
security proofs that do not rely on knowledge assumptions or complexity leveraging. Our schemes
are built from either composite order multilinear maps or obfuscation and enjoy a ciphertext
overhead, private key size, and public key size that are all poly-logarithmic in the total number of
users. Previous broadcast schemes with similar parameters are either proven secure in a weaker
static model, or rely on non-falsifiable knowledge assumptions.

1 Introduction

A broadcast encryption (BE) scheme [FN93] consists of N users, each with their own secret key,
and a broadcaster. The broadcaster can dynamically choose any set S of users, and broadcast an
encryption of a message so that each user in S can decrypt the broadcast with their own secret
key, but users outside of S cannot, even if they all collude and pool their secret keys. Broadcast
encryption has applications to paid digital TV and radio services, where broadcasts are encrypted
to the current set of subscribers. Broadcast encryption also has applications to access control
in encrypted file systems and more generally to group communication. In this work, we will be
considering public key broadcast schemes, where anyone can play the role of broadcaster and encrypt.

There are many ways to model the security of a broadcast scheme, the most desirable being
called adaptive security. Here, the adversary may adaptively corrupt users, learning their secret
keys, and then he chooses an arbitrary uncorrupted “challenge” set S* of users that he wants to
attack. At this point, the adversary is given a broadcast encrypted to S*, and his goal is to learn
some information about the plaintext broadcast. The adversary may continue corrupting users to
achieve this goal, so long as he does not corrupt any of the intended recipients of the broadcast.
Adaptive security best captures real-world settings; for example, the adversary may register many
"dummy” users in the system, and then try to persuade or dissuade other users from subscribing for
a broadcast based on the secret keys the adversary has acquired for the dummy users. We focus on
adaptive security for this work.

Broadcast encryption admits a trivial adaptively-secure solution, where each user’s secret key
is the secret decryption key for a public key encryption scheme, and the broadcast key consists of
all the corresponding public keys. To encrypt to a set .S, the broadcaster encrypts separately to
each public key corresponding to users in S. The scheme can easily be proved secure based on the
semantic security of the underlying public key encryption scheme.



Therefore, the main interest in broadcast encryption, besides security, is to minimize the
parameter sizes. Minimizing ciphertext size is important for reducing the bandwidth required for
broadcasting. Minimizing the size of the broadcast key and user secret keys is important for reducing
the storage requirements for the broadcaster and receiver.

Since the ciphertext size must at a minimum encode the entire message m and recipient set S?,
the measure of interest for ciphertexts is the overhead, namely the amount of information that must
be transmitted in addition to (the description of) S and the symmetric encryption of the actual
plaintext. In the trivial system, public keys have size proportional to the number of users N, secret
keys are constant size, and the ciphertext overhead can be made proportional to the size |S| of the
recipient set. Using identity-based encryption (IBE), the public key size can even be reduced to
constant size, and the resulting broadcast scheme is even identity-based?.

In this work, we ask the following:

Can we construct adaptively-secure broadcast encryption with
“short” ciphertexts, secret keys, and broadcast keys.

Boneh, Gentry, and Waters [BGWO05] give the first broadcast scheme with sub-linear sized
ciphertexts from bilinear maps, called the BGW construction. This scheme has constant size
ciphertexts and secret keys (in terms of the number of users V), but a public key that is linear
in N. One trade-off of their scheme is that it is only proved secure in a static model, where the
adversary may still choose the challenge set S* arbitrarily, but must choose it before corrupting
any users and before even seeing the public parameters of the scheme. Some other schemes with
constant-sized ciphertexts based on bilinear maps [DPP07, GW09] have been proven adaptively
secure and/or are identity based, but the public broadcast key in all of these schemes is at least
linear in the maximum number of recipients.

Existing constructions based on multilinear maps. The first constructions of broadcast
encryption from multilinear maps [BS02, GGH13a, CLT13, BW13] were all secret key schemes,
where the broadcast key has to be kept secret. Moreover, for NV users, these schemes require N-linear
maps, resulting in systems super-linear secret keys?.

Boneh, Waters, and Zhandry [BWZ14a| show how to build broadcast encryption for N users
from O(log N)-linear maps by generalizing the BGW construction above. In their scheme, all
parameters — ciphertext overhead, secret key size, and public key size — are poly-logarithmic in V.
By increasing the number of users to 2%, they are even able to obtain an identity-based scheme with
constant-size parameters (namely, with no upper bound on the size of the recipient set). However,
similar to the BGW scheme, their scheme is only proved statically secure. Boneh, Waters, and
Zhandry additionally present a scheme derived from [GW09]. However, they are unable to prove
security relative to static assumptions, and instead prove security in a generic model for multilinear
maps, obtaining adaptive security in this model.

1With the secret key sk; for user 3, it is possible to determine if i € S by running the decryption procedure and
seeing if it succeeds. With all secret keys, it is therefore possible to completely reconstruct S.

2The broadcast key would be the master public key for the system, and the secret for an identity is the secret key
for the underlying IBE. To encrypt to a set S, simply encrypt separately to each identity in S.

3In all current constructions of N-linear maps [GGH13a, CLT13, LSS14, GGH14], the description of the map as
well as group elements have size at least w(NV)



Existing Constructions based on obfuscation. Boneh and Zhandry [BZ14] show how to build
broadcast encryption from indistinguishability obfuscation (i0) [BGIT01, GGH'13b], where the
ciphertext size and secret key size are independent of the number of users. Their scheme also has
the novel property of being distributed, where each user chooses their own secret key. However, the
public keys in their scheme consist of obfuscated programs whose size is at least Q(NN), and actually
much larger with current obfuscation implementations [GGH*13b, AGIS14].

Ananth et al. [ABG"13] show how to shrink the public key size in Boneh and Zhandry’s
scheme [BZ14], but at the cost of losing the distributed property, and security only being proved in
the static model. Their scheme relies on stronger knowledge version of obfuscation, called differing
inputs obfuscation (diO) [BGIT01, BCP14, ABG"13]. Zhandry [Zhal4] shows how to resurrect the
distributed property and achieve adaptive security using a primitive called witness PRFs, which can
be seen as a special case of obfuscation. However, Zhandry also requires a strong knowledge version
of witness PRFs, called extractable witness PRFs. Both diO and extractable witness PRFs are
non-falsifiable assumptions. Moreover, Garg et al. [GGHW14] give evidence that the most general
forms of these assumptions may not hold, and avoiding the attack in [GGHW14] often requires
the use of application-specific assumptions (that is, the assumptions make explicit reference to the
scheme).

Schemes with CCA security. Boneh, Gentry, and Waters [BGW05] show how to modify their
scheme to be secure against a chosen ciphertext attack, where the adversary is additionally given
access to a decryption oracle. The rough idea is to embed the verification key for a one-time
signature into the ciphertext, and sign the resulting ciphertext using the corresponding signing key.
Boneh, Waters, and Zhandry [BWZ14a] show that the same modification can be carried out on
their low-overhead scheme. Phan et al. [PPSS12] give a different modification to [BGWO05] that
replaces the signature scheme with a universal one-way hash function, which can be more efficient
than signatures. However, their proof implicitly requires that the representation of group elements
is unique, and is therefore inapplicable to schemes based on current “noisy” multilinear maps®.

Boneh et al. [BCHKO07] show how to generically convert any identity-based (non-broadcast)
encryption scheme into a chosen ciphertext attack (CCA)-secure public key encryption scheme using
a similar high-level strategy. The idea is that the encrypter encrypts to the identity encoding the
verification key (thus “embedding” the verification key into the ciphertext), and then signs the
resulting ciphertext using the signing key as in [BGWO05].

In the case of identity-based broadcast encryption, one may hope that the same conversion can
be used. The idea would be that the encrypter adds to the recipient set the identity corresponding
to a verification key vk € VIC for a one-time signature, encrypts to the expanded set, and then signs
the resulting ciphertext. Unfortunately, as observed in [PPSS12] this conversion is insufficient for
proving chosen ciphertext security. For example, for the trivial scheme based on identity-based
encryption, it is not difficult to show that the converted scheme is CCA-insecure. The reason is that,
in the case of broadcast encryption, a decryption query allows the adversary to specify which user
should decrypt the ciphertext®. The reduction could decrypt the ciphertext using the secret key
corresponding to vk’ € VI, but the adversary may require decryption by a different user for which

“Indeed, their scheme is CCA-insecure using these multilinear maps

For correctly generated ciphertexts, the correctness of broadcast encryption implies that all users decrypt the
same way. However, improperly generated ciphertexts may decrypt differently for different users. Thus, decryption is
not well-defined, unless a particular user is specified.



the reduction may not have a secret key. While for correctly generated ciphertexts, two users will
always produce the same decryption, it is not necessarily true of malformed ciphertexts. Therefore,
the reduction might not be able to determine the correct response to decryption queries.

On complexity leveraging. For many cryptographic protocols, such as digital signatures,
attribute-based encryption, and functional encryption, it is possible to achieve adaptive secu-
rity from static security though complexity leveraging: the reduction guesses the adversary’s
challenge before seeing the public key, and will abort if the challenge does not match the guess.
This approach requires assuming the sub-exponential hardness of the underlying cryptographic
assumption.

In the case of broadcast encryption, adaptive security can be obtained from static security in
this way by guessing the challenge set S before seeing the public parameters, with a 2~ chance of
guessing correctly where IV is the number of users. Therefore, the scheme must not be polynomial-
time breakable in the static setting, except with probability significantly smaller than 2=~ . However,
such a security level necessarily involves setting the security parameter A to be larger than V. Since
parameters grow at least linearly with A, this results in secret keys, ciphertexts, and public keys all
being at least linear in the number of users, worse than the trivial system. Hence, the question of
adaptive security for broadcast schemes is interesting even in the setting of sub-exponential hardness
assumptions. Indeed, no existing work simultaneously achieved small parameters and adaptive
security even relative to sub-exponential static hardness assumptions.

Developments in functional encryption. From a functionality perspective, broadcast encryp-
tion is a special case of functional encryption. In functional encryption, users can obtain secret keys
corresponding to functions, and using a secret key for a function f on a ciphertext encrypting m
yields f(m). Intuitively, security says that given secret keys for functions fi, ..., f,,, nothing can be
learned about a plaintext except for fi(m), ..., fn(m). Statically secure functional encryption was first
built by Garg et al. [GGH"13b]. Subsequently, Waters [Wat14] and Ananth et al. [ABSV14] show
how to obtain adaptively secure functional encryption from obfuscation, and Garg et al. [GGHZ14b]
show how to obtain the same results from multilinear maps. However, the parameter sizes grow
polynomially with the description size of f. This means that the resulting broadcast scheme, while
adaptively secure, has parameters growing with polynomially with |S|. Thus, these results are not
immediately useful in the setting of broadcast encryption.

1.1 Owur Contributions

In this work, we give adaptively secure broadcast schemes where all parameters — ciphertexts,
secret keys, and public keys — are poly-logarithmic in the number of users. As the number of users
is polynomial, such poly-logarithmic terms can be bounded by the security parameter. Thus the
parameter sizes can be taken to be independent of the number of users, which is the best possible.
We give three main contributions:

 Our obfuscation-based scheme builds on the statically-secure schemes of Boneh and Zhandry [BZ14]
and Ananth et al. [ABG"13]|. The main idea behind those schemes is that the user has an
obfuscated program that can decrypt the ciphertext only if the user provides a “proof” that
she is allowed to decrypt. In the Boneh and Zhandry scheme, the program required as input a
description of the recipient set S. This description is potentially as large as S, which results in



a program size at least |\S|. Ananth et al. show how to reduce the program size by hashing the
description of S using a Merkle hash tree, but the resulting scheme can only be proved using
the stronger notion of differing-inputs obfuscation (diO). Their scheme is still only statically
secure.

To restore security from iO while keeping programs short, we apply the techniques of Hubacek
and Wichs [HW14]. Essentially, by replacing the Merkle hash with a somewhere statistically
binding (SSB), security can be obtained using only iO. [HW14] constructs SSB hashes from
fully homomorphic encryption. The resulting broadcast scheme is only statically secure, and
we use additional techniques to obtain adaptive security.

Along the way, we show a conversion from secret key functional encryption to public key
functional encryption using obfuscation which preserves adaptive security. While Ananth
et al. [ABSV14] show a similar result®, ours is conceptually simpler and has more compact
ciphertexts, which will be needed for the application to broadcast encryption.

e Our multilinear-map scheme is proved secure using polynomial reductions to simple falsifiable
assumptions on composite-order symmetric multilinear maps. The scheme is based on the
generically secure scheme of Boneh, Waters, and Zhandry [BWZ14a] (henceforth called the
BWZ scheme), which in turn is based on the Gentry and Waters [GW09] scheme (the GW
scheme). Interestingly, while the GW scheme was proved secure, the proof does not carry
over to the BWZ scheme because of additional correlations between public key components.
Instead, as mentioned above, Boneh, Waters, and Zhandry prove the scheme secure in a
generic model of multilinear maps.

We further modify the BWZ scheme, and prove full adaptive security while preserving the poly-
logarithmic sizes for ciphertexts, secret keys, and public keys of the BWZ scheme. Our proof
follows the dual system framework [Wat09, Weel4], and security is based natural multilinear
subgroup decision assumptions similar to those recently made by Garg et al. [GGHZ14a), as
well as a multilinear DDH-style assumption. Due to lack of space, we present our multilinear
map construction in Appendix 3.

e We also observe that if the output of decryption is statistically independent of the secret key
used, then the CPA-to-CCA conversion sketched above goes through. While this conversion
requires an identity-based scheme, we show a different conversion that leverages the broadcast
property of the system (as apposed to the identity-based property), and therefore works
for even non-identity-based broadcast schemes. We demonstrate that our adaptively secure
schemes have the required statistically independent decryption, and we thus achieve full
adaptive chosen ciphertext security under static assumptions.

We give a comparison of our work to existing works in Table 1.

Similar to [BWZ14a], we can set the number of users to be 2* for a security parameter A, and
obtain identity-based schemes that are both adaptively secure, and allows for an unbounded number
of recipients with constant ciphertext size.

STheir conversion uses a staticaly-secure public key functional encryption scheme instead of obfuscation



Table 1: Comparing parameters sizes and security of our scheme to some existing protocols. N is
the maximum number of users, m is the maximum number of receivers (for schemes where m < N is
determined at setup time). |bk|, |ct|, |sk| respectively denote the size of the broadcast key, ciphertext
overhead, and each user’s secret key. All sizes hide multiplicative constants dependent on the
security parameter (but not m or N). The column labeled “type” indicates which schemes are secret
broadcast key (sk), public broadcast key (pk), or identity-based with public broadcast key (id).
Finally, the “assump.” column indicates which schemes are based on public key encryption (PKE),
identity-based encryption (IBE), bilinear maps (BM), multilinear maps (MLM), or obfuscation-
related primitives (Obf). “RO” denotes that the security proof is in the random oracle model, and
“KNO” represents that the underlying assumptions are non-falsifiable knowledge assumptions

Scheme |b| |ct| |sk| security type assump.
. N 15| 1 ' pk PKE
Trivial adaptive
1 15| 1 id IBE
N 1 1
[BGWO05] static pk BM
VN | VN 1
[Del07] m 1 1 static id BM
m 1 1 semi-static pk BM
[GW09] m 1 1 adaptive 1 BM (RO)
i
vm VS| 1 adaptive BM
([BS02] or [BW13]) )
N°€ 0 N°¢ static sk MLM
and [GGH13a]
log¢ N | log¢ N | log® N k
[BWZ14a] & g & static P MLM
1 1 1 id
[BZ14] Ne 1 1 static | pk/id Obf
[ABGT13] log® N 1 1 static pk | Obf (KNO)
[Zhal4] log¢ N | log® N | log® N | adaptive pk | Obf (KNO)
log® N | logc N | log® N k MLM or
This work 5 8 5 adaptive P
1 1 1 id Obf




Instantiating our scheme. Our obfuscation-based scheme can be based on any one-way function,
a somewhere statistically binding hash (which in turn can be build from FHE using [HW14]), and
any indistinguishability obfuscator, such as the original candidate of Garg et al. [GGH"13b].

For our multilinear map scheme, we present the construction and security proof assuming “ideal”
multilinear maps in order to simplify the exposition and highlight our ideas. However, certain
complications arise when using current multilinear map candidates such as [GGH13a]. Namely,
current candidates are “noisy” and have a slightly different functionality than ideal maps. We
explain how to adapt our construction an proof to these non-ideal maps.

A more serious issue with current multilinear candidates is the security of our computational
assumptions: our assumptions belong to a class of “source group” assumptions that have proven
problematic on current multilinear map candidates. In particular, due to a recent line of at-
tacks [CHL'14, GHMS14, BWZ14b, CLT14], our confidence of these assumptions on current maps
is considerably diminished. In particular, the state-of-the-art — both in terms of constructions
and attacks — is continuously changing, and the only viable candidate currently supporting these
assumptions is the very recent candidate of Coron, Lepoint, and Tibouchi [CLT15]. Much more
research is needed to gain confidence in these assumptions.

Since we describe our construction and assumptions generically, not relying on any specific
candidate, our construction and proof can be ported to any multilinear map for which the assumptions
hold (whether or not those maps are based on current candidates).

We also stress that, while our assumptions may be broken on many current candidates, the
security of our scheme itself is still plausible. In particular, the assumption that the scheme is secure
is actually a “target group” assumption on multilinear maps, for which the current attacks do not
apply. Therefore, it is possible to instantiate our scheme on, say, a composite-order variant of the
Garg-Gentry-Halevi [GGH13a] maps’.

1.2 Technical Difficulties

Obfuscation-based scheme. As mentioned above, our obfuscation-based construction builds on
the obfuscation-based protocols of Boneh and Zhandry [BZ14] and Ananth et al. [ABG13]. The
rough idea in these schemes is that the ciphertext for a set S of users is obtained by XORing the
message with the output of a pseudorandom function applied to S. To enable users in S to decrypt,
the public parameters contain a public program that takes as input a set S, a user u € S, and
the secret key for user u, and outputs the pseudorandom function applied to S. There are several
challenges in obtaining an adaptively secure scheme with small parameters from indistinguishability
obfuscation (iO) using this strategy:

e During the security proof, Boneh and Zhandry hard-code S* into the program, and the
behavior of the program on this set is altered. Thus, S* must be known at the setup time,
which corresponds to the static security setting.

e Even specifying S* requires space that grows linearly with the number of recipients, and so this
altered program must be at least as large as S*. To use iO (even iO for Turing machines), the
altered program and the original program must be the same size. Thus, the public parameters
must grow with the number of users. Ananth et al. get around this issue by instead having

"[GGH13a] do not describe a composite-order version of their scheme, but it is straightforward to modify the
scheme to support composite-order groups



the program take a hash h of S as input, and have the user supply a “proof” 7 that v € S.
Using Merkle hash trees, m can be made logarithmic in the number of users.

However, since the hash function must be compressing for h to be much smaller than 5,
false proofs exists, though they are hard to find. This necessitates using differing-inputs
obfuscation (diO) to prove security. diO is a knowledge-type assumption, and in its simplest
form seems implausible [GGHW14]. Avoiding the arguments in [GGHW14] usually requires
making application-specific assumptions.

o A crucial step in Boneh and Zhandry’s proof is to alter public parameters so that the secret
key for users u € S* do not exist. Again, this seems to require knowing S* during setup time.

We circumvent the first issue above using a recent development by Hubacek and Wichs [HW14].
Namely, they describe a special type of hash function, called a somewhere statistically binding hash,
which allows short proofs 7 as in Merkle hashing, but can also be used with iO.

To circumvent the second issue, we essentially place the obfuscated program in the ciphertext,
instead of in the public parameters. This allows us to embed (a hash of) the set S* into the program
at the time of the challenge query, as needed to adaptive security.

However, we are still left with the third issue, namely that in order to use iO, we need to ensure
that secret keys for users in S* do not even exist (since such keys correspond to inputs that can
decrypt the ciphertext. Even if such inputs are hard to find, using iO requires that they do not
exist). The notion of “existence” of a secret key is relative to the public key, and therefore it seems
that we need to know the set S* when generating the public key at the beginning of the experiment,
which again corresponds to static security. Note that this last issue is only present in the public
key setting: in the secret key setting, no key is provided to the adversary at the beginning of the
experiment. We therefore construct a single-ciphertert secret key broadcast system from obfuscation,
where the “existence” property of a secret key is defined relative to the (single) ciphertext. When
the challenge ciphertext is generated, the set S* is known, so we can construct the ciphertext to
guarantee that no secret keys for users in S* exist.

Finally, we present a transformation from such a single-ciphertext secret key broadcast scheme
into a public key (many-time) scheme using obfuscation. This transformation preserves adaptivity
and roughly preserves parameter sizes, so that the obtained scheme obtains adaptive security with
short system parameters. As mentioned above, this conversion can also be applied to functional
encryption, obtaining adaptively secure public-key functional encryption from adaptively secure
single-ciphertext secret key functional encryption. Thus, we offer an alternative to the work Ananth
et al. [ABSV14]. Our conversion uses obfuscation and is conceptually very simpler, whereas theirs
uses the weaker primitive of statically secure public key functional encryption but is conceptually a
bit more complicated.

In the case of functional encryption, ciphertext size is not a concern, and single-ciphertext secret
key functional encryption can be built from one-way functions. Piecing together, we obtain another
adaptively-secure public key functional encryption scheme from obfuscation and one-way functions,
offering a very simple alternative to the schemes of Waters [Wat14] and Ananth et al. [ABSV14].

Multilinear map-based scheme. Our multilinear map scheme is proven secure using multilinear
analogs of the dual system framework [Wat09, Weel4]. In the dual system framework, the challenge
ciphertext and each secret key the adversary receives are gradually altered into a semi-functional
form, where semi-functional secret keys cannot reveal any information about a semi-functional



ciphertext, but otherwise decryption always works as expected (in other words, a semi-functional key
can decrypt a normal ciphertext, and a normal secret key can decrypt a semi-functional ciphertext).
Once the ciphertext and secret keys are semi-functional, security becomes information theoretic.

A crucial step in much of the dual system literature [Wat09, LOST10, LW10, Weel4] is an
information theoretic step for each secret key. In this step, a secret key is altered, and the change
is information-theoretically undetectable exactly because the secret key is not allowed to decrypt
the challenge ciphertext. In other words, if the adversary had a secret key that could decrypt the
challenge, this step would be detectable. It is exactly because this step is information theoretic that
the dual system schemes obtain adaptive security.

In the case of broadcast encryption, this step provably cannot be information theoretic while
maintaining small ciphertexts. The reason is that the number of recipient sets is 2%V, while the
ciphertexts space has size 2l¢tl = 20(N)  For large (but still polynomial) N, there will necessarily be
multiple sets S giving the same ciphertext. Therefore, security of low-overhead broadcast schemes
must involve some form of collision resistance, and this need for collision resistance breaks the
information theoretic step.

In more detail, suppose an adversary randomly chooses a set S, asks for all the secret keys
outside of S, and then challenges on S. He should not be able to decrypt the resulting challenge
ciphertext ct. However, there is some other set S’ # S such that ct is also an encryption to S’.
With probability at least /2, S” will not be a subset of S, and will therefore contain a user i ¢ S
for which the adversary has a secret key. Therefore, the adversary is allowed to decrypt ct, in the
sense that he could decrypt if he could determine S’. If the information theoretic step were valid, it
would mean that changing the secret key for user ¢ would be undetectable to even computationally
unbounded adversaries. But such an adversary could interpret ct as an encryption to S/, which
he can decrypt (because he has the secret key for user i € S’), and therefore this change would
be detectable. The only apparent way to resolve this contradiction is to rely on computational
assumptions for this step.

Relying on computational assumptions for this “information-theoretic” step presents several
challenges for our scheme. First, the assumption we need is a multilinear analog of the DDH
assumption. However, the assumption needs to hold in mid-levels of the multilinear map (since
all components of the scheme exist in intermediate levels), which is usually not the case in the
symmetric setting. The analog in the bilinear setting is that the DDH problem — distinguishing
(9,9% g%, g™) from (g, g%, ¢°, ¢g¢) for random a, b, c — is easy in bilinear groups. This is because we
can always “lift” the challenge ¢¢ to e(g, g)¢ by pairing with g, which we can then compare with
e(g 9") = e(g.9)™,

The natural workaround is to use asymmetric multilinear maps, which severely restricts the
operations the adversary can perform, and thus allows more decisional problems to be hard,
analogous to how DDH can hold in asymmetric bilinear groups. However, the asymmetry also
restricts the operations that can be performed by our security reduction. As a result, the proofs
for the other computational steps become more challenging. In particular, we will need to embed
the challenge elements in multiple levels. Because of the limited interaction between levels in the
asymmetric setting, we actually need a separate challenge element in every level. Moreover, our
scheme has elements in different levels that are highly correlated, and we would need to simulate
these correlations using the challenge elements. Unfortunately, it does not appear that the reduction
can create these correlations on its own, and instead the assumption itself must provide correlated
challenge elements. This results in somewhat complicated assumptions, which we wish to avoid.



Instead, we continue to use symmetric multilinear maps, but modify the scheme by introducing
more correlations so that the new computational assumption needed does hold for mid-levels
of symmetric multilinear maps. For example, in the bilinear setting, consider the distributions
(9, 9% g% g% g®) and (g, g%, ¢°, g¢, g?) for random a, b, ¢, d. Given (g, g%, g%, g°), it is not possible to
even compute e(g, g)*¢, meaning even though we can “lift” our challenge g to the target group by
pairing with g, it does not help us in distinguishing the two distributions. Basically, by having the
number of variables multiplied in the exponent exceed the levels of multilinearity, we arrive at an
assumption that presumably holds. This is the style of assumption we use.

This alone is not enough, however, because in the other computational steps, we can only
produce the needed correlations by carrying out the multilinear pairing operation. Increasing
the multilinearity naively to allow the reduction to simulate these correlations results in fewer
of the DDH-style assumptions holding (for example, (g, g%, ¢°, g¢, g**°) can be distinguished from
(g,9% g%, g% g%) on a tri-linear map). Therefore, we need to introduce even more correlations into
our scheme so that the required DDH-style assumption holds, setting off a vicious cycle. Put another
way, we have two competing interests: we need to restrict operations an adversary can perform
while maximizing the operations our reduction can perform. We show how to achieve a balance
between these two by carefully controlling exactly which levels of the map elements are given out
at. The result is that the level of multilinearity we need is somewhat larger than in the BWZ
scheme [BWZ14a]. However, the number of pairing operations required by our scheme is comparable
to the BWZ scheme. In current multilinear maps, it is the number of multiplications that determines
the parameter sizes, so the effective multilinearity required by our scheme is essentially the same as
in the BGW scheme.

The second challenge is that maintaining adaptivity while transitioning to a static computational
assumption is problematic. In the information theoretic setting, adaptivity is free. However, in
the computational setting, the transformation step needs to be handled carefully. In particular,
the step involves simulating the challenge ciphertext and a secret key, but the simulations occur at
different points in the reduction, and we have to start simulating with incomplete information. For
example, if the ciphertext query occurs before the secret key query, we will have to simulate the
ciphertext before knowing which user the secret key will be for. Somehow we need to embed our
static assumption into the ciphertext while reserving the ability to generate any subsequent secret
key query the adversary may ask for (namely, for users outside the challenge set). Conversely, if the
ciphertext query occurs after the secret key query, we will have to embed our assumption into the
secret key, and ensure that we can simulate all possible ciphertexts the adversary may ask for.

This means the reduction will have to embed the challenge differently, depending on whether
the challenge ciphertext or the particular secret key query we are modifying come first. Similar
difficulties were faced (and overcome) by Attrapadung [Att14] in constructing adaptively secure
functional encryption for regular languages, and by Garg et al. [GGHZ14a] in constructing adaptively
secure attribute-based encryption for circuits. In spite of these difficulties, we show how to perform
this computational step using a static assumption, thus preserving adaptivity.
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2 Preliminaries

2.1 Broadcast Encryption

We begin by defining broadcast encryption. A (public key) identity-based broadcast encryption
scheme consists of four randomized algorithms:

Setup(ZD): Sets up a broadcast scheme for identity space ZD. It outputs public parameters params
as well as a master secret key msk

KeyGen(msk, u): Takes the master secret key and a user u € ZD and outputs a secret key sk, for
user u.

Enc(params, S): The encryption algorithm takes the public parameters and a polynomial sized set
S C ID of recipients, and produces a pair (Hdr, K'). We refer to Hdr as the header, and K as
the message encryption key.

The message is encrypted using a symmetric encryption scheme with the key K to obtain a
ciphertext ¢. The overall ciphertext is (Hdr, ¢).

Dec(params, u, sky, S, Hdr): The decryption algorithm takes the header Hdr and the secret key for
user u, and if u € S, outputs the message encryption key K. If u ¢ S, the decryption algorithm
outputs L.

To actually decrypt the overall ciphertext (Hdr,c), user u runs Dec to obtain K, and then
decryption ¢ using K to obtain the message.

For correctness, we require that the decryption algorithm always succeeds when it is sup-
posed to. That is, for every (params, msk) outputted by Setup(ZD), every set S C ZID, every
sk, outputted by KeyGen(msk,u), and (Hdr, K') outputted by Enc(params,S) where u € S, that
Dec(params, u, sky, S, Hdr) = K.

If we set ZD = [N] for a polynomial N, and redefine the setup procedure to also run
KeyGen(msk, u) for all v € [N], then we can eliminate the need for a persistent master secret
key. We then recover the notion of (non-identity-based) broadcast encryption [FN93].

We now define adaptive security using the following experiment EXP(b) on adversary \A:

Setup: The challenger runs (params, msk) < Setup(ZD), and gives A the public key params.

Secret Key Queries: A may adaptively make secret key queries for user u. In response, the
challenger runs sk, <— KeyGen(msk, u) and gives sk, to A.

CCA Queries: A may adaptive make chosen ciphertext queries on header Hdr, set S and user
u € S. The challenger responds by computing sk, <+ KeyGen(msk, ), and then returning
K < Dec(params, u, sky, S, Hdr)

Challenge: A submits a set S* C ZD, subject to the restriction that u ¢ S* for any user u
requested in a secret key query. The challenger lets (Hdr*, K}) < Enc(params, S*). If b = 0,
the challenger gives (Hdr*, K§) to the adversary. If b = 1, the challenger computes a random
key K7 and gives (Hdr*, K7) to the adversary.

More Secret Key Queries: A may continue making secret key queries for users u ¢ S*
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More CCA queries: A may continue making CCA queries, conditioned on (Hdr, S) # (Hdr*, S*).

Guess: A produces a guess i for b.

Using a simple hybrid argument, we can assume the adversary makes only a single challenge query.

Let W, be the event that A outputs 1 in EXP(b). We define the adaptive advantage of A, as

BEEde) = | Pr[Wo] — Pr[wy]|

Definition 2.1. A broadcast encryption scheme is adaptively CCA secure if, for all polynomial

time adversaries A, BEEde) is negligible.

We can also define several weaker variants. CPA security is obtained if we prevent the adversary
from making CCA queries. Static (CCA or CPA) security is obtained by requiring the adversary to
commit to S* before seeing the public parameters params. The intermediate notion of semi-static
(CCA or CPA) security is obtained by requiring the adversary to commit to a set S before seeing
the public parameters, and then restricting secret key queries to be on users u ¢ S and the challenge
query to be on a set S* C S. For this work, we will be mainly focusing on adaptive CPA and CCA
security.

Statistically independent decryption. Beyond correctness and security, another property we
are interested in this work is called statistically independent decryption. This means that the
output of decryption does not depend on the user who decrypts. Of course, for correctly generated
ciphertexts, the choice of user is irrelevant due to the correctness of the scheme. However, we
wish this property to hold for even improperly generated ciphetexts. More precisely, we allow for
a randomized decryption procedure, and require, with overwhelming probability over the choice
of (params, msk) «<— Setup(), that for all users ug, u1, all sets S with ug,u; € S and all headers Hdr
(even invalid ones) the following distributions on K are statistically close:

K <+ Dec(params, ug, sky,, S, Hdr) where sk, < KeyGen(msk, up) and
K <+ Dec(params, u, sky, , S, Hdr) where sk,, < KeyGen(msk,u1)

3 Multilinear Map-Based Construction

3.1 Multilinear Maps

Now, we describe multilinear maps, mostly following [GGH13a, CLT13, GLW14]. We will use
graded encoding notation, rather than group notation. Our notation for composite order maps
comes from [GGHZ14a], except that we will use symmetric maps instead of asymmetric maps.

A symmetric multilinear map consists of two algorithms:

Setup(t, R, k): Sets up an t-linear symmetric map over the ring SR, where R = Ry x - -+ x Ry, for

some hidden rings fR; of roughly equal size. It outputs public parameters Params, and a secret
key sk.
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Encode(sk,a € R,i < t): The secret encoding procedure® outputs the “encoding” of o at some level
i <t. Levels above t are not permitted. We write the output as [«];.

+, —: There are two binary public procedures + and — written in infix notation. + takes as input two
encodings at the same level, and outputs an encoding of the sum. That is, [a]; + [8]; = [+ B];.
The level ¢ must be the same on both summands. The operation — simply negates the second
summand: [o]; — [8]; = [ + [—F)i. For any i, the encodings []; form a commutative group
under 4+, —. We call the set of encodings at level 1 the source group, and each level-1 encoding
is a source group encoding or source group element. We call the set of encodings at level ¢ the
target group, and each encoding a target group encoding or target group element.

x: We will also represent this by -. X takes as input two encodings [a]; and [3];. We require that
i+ j < t. It outputs the encoding [af];+;. We will also associate ring elements a € R with
“level-0 encodings” a = [a]o. Thus we can compute a x [(]; = [a]g % [5]; = [@B];. Therefore,
even though it is not possible to publicly compute [a]; for a given a € PR, once given an
encoding [3];, it is possible to compute the encoding [af];.

ext(Params, e): The public extraction procedure takes a level ¢ encoding e, and extracts a A-bit
string s from e. We require that, for any i € [k], if « is sampled such that the SR; component
is uniform and independent of the other components, then ext(Params, [];) is statistically
close to a uniform string, even given Params.

In our applications, a master party will know the rings fR;, and can therefore project any a € R
down to a sub-product of the R;. Let Ry = [[;c7 Ri. The master party will also coincide with
the secret key holder. We will therefore define the combined secret project-and-encode procedure
Encode(sk, a, 4, T") which first projects « to Ry obtaining ap, and then encodes ap at level i. For
convenience, we will write such encodings as [a]]: for example, if T = {1, 3}, the we write [a] 11 3,
We note that encodings of elements in subrings obey the following properties, which can be derived

from the definitions above:
/ / T’ T\T / /
T + 8 = o+ BT + [N+ [8)] T x 81 = [aB)TF

To instantiate multilinear maps, we can use the Boneh, Wu, and Zimmermans modifica-
tion [BWZ14b] to the Coron-Lepoint-Tibouchi (CLT) multilinear maps [CLT13]. This modification
is designed to emulate multilinear groups of composite order, and to allow assumptions regarding
subgroups of the multilinear groups?. However, current candidate multilinear maps, including
the Boneh-Wu-Zimmerman maps, do not quite fit the abstraction presented in Section 2, which
complicate applications of the abstraction. However, these complications are easily overcome in our
application.

e Encodings are not unique. That is, there are multiple valid encodings of each « relative to
each set S, and Encode(Params, «, i) is a randomized procedure, which samples from the set

8Current multilinear map candidates [GGH13a, CLT13] allow either a secret or public encoding procedure. The
public version of the procedure requires publishing slightly more information in Params, which may impact the security
of the maps. Our scheme does not require a public encoding procedure, so we use the secret procedure to maximize
security. However, our scheme is still correct, and our assumptions still presumably hold, even when using the public
encoding procedure.

9The Garg-Gentry-Halevi [GGH13a] and basic Coron-Lepoint-Tibouchi [CLT13] multilinear maps do not satisfy
these subgroup assumptions.
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of possible encodings of « relative to S. In this case, the notation [« + §]; = [a]; + [5]; no
longer makes sense. Instead, we require that the sum of an encoding of « and an encoding of
B is an encoding of « + 3 relative to the same set. A similar statement holds for multiplying
encodings.

e The fact that encodings are not unique means that an encoding may reveal the sequence of
operations that lead to that element. Therefore, we require a re-randomization procedure to
re-randomize the encoding, and make it statistically independent of the procedures that lead
to that element. Note that when performing operations, we do not need to re-randomize after
every operation; instead, we will only need to re-randomize when we send the encoding to
someone else. All current graded encoding candidates support this randomization procedure.

o For functionality, we will also need that ext(Params, e) = ext(Params, ¢’) for any two encodings
e, e’ of the same ring element. This is true of current candidates.

e Encodings have noise. This means, after every operation, the noise grows, and if the noise
grows too large, ext may fail to give the correct output. Re-randomization also increases the
noise. Note that additions only cause mild noise growth, so the noise growth is dominated
by the number of multiplications and the re-randomization procedure. In our applications,
we will only re-randomize a constant number of times, and the number of multiplications is
bounded by multilinearity of the map, so it is straightforward to set the parameters so that
the noise never grows too large.

e The public interface does not give direct access to the ring R itself. The schemes do allow
users to sample “level 0” encodings of random elements [a]g, which can be multiplied by
higher-level encodings: for example, [a]o can be multiplied by [§]; to obtain an encoding [a/3];.
For our scheme, this functionality will be sufficient.

e Finally, in CLT encodings, and thus Boneh-Wu-Zimmerman encodings, we do not have
complete control over the rings R;. In particular, R; = Zy;, for some composite integers NV;
with large prime factors. However, for simplicity we describe our application in terms of Z,,
for prime p;, making R; a field. Note that in Zy;,, the set of zero divisors is sparse, and the
prime factors are unknown, meaning a randomly chosen element will be invertible. Therefore,
the rings Zy, are in some sense “as good as” a field, and will suffice for our purposes.

We mostly describe our scheme in the ideal multilinear map setting, rather than relying on a
particular candidate. We do this for two reasons:

e To cleanly present our ideas without the complications involved in non-ideal multilinear maps.
However, to give a more complete picture using current candidates, we describe at a high level
how to cope with the difficulties above as they arise.

e To make our results more general. If new candidate multilinear maps are found that side-step
the issues above or have new issues of their own, then having our scheme described generically
facilitates porting our scheme over to the new map.
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3.2 The Construction

We now give our construction from composite-order symmetric multilinear maps. The construction
is based on the third and final construction of Boneh, Waters, and Zhandry [BWZ14a] (the BWZ
scheme), which in turn is based on the broadcast scheme of Gentry and Waters [GW09] (the GW
scheme). While the GW scheme could be proven secure in a semi-static model, it contained a large
public key. Boneh, Waters, and Zhandry showed how to shrink the public key using multilinear
maps, but where unable to prove security of the resulting BWZ scheme relative to non-interactive
assumptions. They proved that their scheme had no trivial attacks by proving it adaptively secure,
but in a generic model for multilinear maps.

Construction 3.1. Setup({): takes as input the length ¢ of identities. That is, ZD = {0, 1}5.
Choose three large primes p1, p2, p3, let R; = Z,,, and let R = Ry x Ry x R3. Run the setup
algorithm for an multilinear map, Setup’(¢(¢ + 2),%R, 3), to construct an ¢t = (¢ + 2)-linear
map with three subgroups and parameters Params!?. Draw a random «, 7, §,0 € % and for
i €[] and b € {0,1}, draw random f;;, € R. The public key is

pk = (ParamS, {Ang = [ﬁi,bﬁu} B =i L= 1614s1) T = [0Viey2), M = M?)

i€lf),be{0,1}
The master secret key for the system is msk = (a7, 6, {pi }ie[3), {Bib bien) bef0,1})
Enc(pk,.S): Choose a random ¢ € R and compute
J=t-I=aytlypq , C=t-B=[t]; ,

D=t- <L+Z HAW) = t(5+z Hﬁw)]l

ves e[l veSicll o(e+1)

The message encryption key is K = ext(Params, J) and the ciphertext header is Hdr = (C, D)

KeyGen(msk,u): Pick a random r* € PR and random s € R for ¢ € [¢|]. Also pick random
Niby Gir &, o € R. Output the secret key components

sk = <{ i = [S?Bibﬁﬂ + [Th',b]?ﬂ}

iclf),be{0,1}’

iclg’

{Fiu = [r"s Bit—ulps + [Ci]?ﬂ} ¢ = [’YTU H g

u 12
H® = [a]yi,q) +

1
U H S;l (5 + H /Bl,ul):| + [IU’}?(Z—{-I))
1€[4]

icld] 0(+1)

10T CLT encodings, the p; must be composite integers with large prime factors. However, as described in Section 2,
such p; are sufficient for our application.

15



Notice that all the $R3 components are just uniformly random, and, with the exception of « in
H"Y, all the Ry components are empty. Note that from sk, it is possible to compute

1
r IS L A vz] + (08101

1€[¢] i€[f] sy

for any v # u where ¢} is some ring element as follows. Choose some ¢* such that v # w;«.
Since MRy is empty, and N3 is arbitrary, we can just focus on R;. F¥ encodes 7"sk B 1y, =
5% Bix v, - Therefore, compute

e IT R, = [ﬁ H(s?ﬂim] = [r“Hs;*H@-,w] (in 91)
£(641) £(6+1)

ic[f\{i*} 1A icl] i€l

Dec(sk", S, (C, D)): Our decryption procedure is randomized. Choose a random p,&’, i/ € R, and

compute
1
G'=G"+pB+E&M = p—i—r“Hs + [0+ €]}
1€[{] )
H =H"+ Y Z¢+p (L+ il A,,vi) + /MY
veS\{u} veS gl

= lelgizn) +

(p—l—?”uHS) (5+ZH5MZ)] +{ +”L(z+1)

1€ Z] veSiie E] f(f+1)

Then compute

J=H -C-D-G

Correctness. It suffices to show that (1) J' = J in decryption and (2) G', H' are statistically
independent of the user u performing decryption. The statistical independence of decryption on u
follows from G’, H' being statistically independent of u.

First, define p’ = p+ 7" [[;¢ s} Since p is uniformly random in Ry, so is p’. Moreover, {'o +¢
and /ot + p are uniformly random in %s. Therefore, the R; and Qs distributions of G/, H' are
independent of u. Moreover, the i3 components are fixed (as 0 and «, respectively). Therefore, the
distributions of G’, H' are independent of u.

Notice that since C' and D have no Ry or R3 component, the result J' will only have a R,
component. Therefore, we have

1
(a + 0 (5 +> 11 Bv)> (vt) — (o) (t (5 +> 11 Bv)ﬂ
veS e[l veS e[l 0(6+2)

= [O"Yt]%(zn) =J

J' =
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Implementation Details. Since we instantiate our multilinear maps using the non-ideal noisy
maps of [CLT13], we need to ensure that all components that might be given to the adversary are
re-randomized. In order to ensure that G’, H' are statistically independent of u, we will need to re-
randomized G’, H' before computing .J’. This means we need to publish re-randomization parameters
for the levels £, £(£+1). We will also need to keep in the master secret key randomization parameters
for level £ + 1 for computing secret key encodings. Notice that the total number of sets that require
re-randomization parameters is just 3, meaning the total size of all parameters (ciphertext, master
secret, public, and user secret keys) are polynomial in ¢, or equivalently logarithmic in the number
of users.

We will also need to ensure our scheme can handle the noise growth associated with the encryption
and decryption operations (plus the operations in the security reduction). The total number of
additions and multiplications that lead to the term J (from which the message encryption key is
derived) is proportional to |S| additions and ¢ multiplications. Since additions do not increase the
noise by much, it is straight-forward but tedious to set the parameters of the scheme so that these
additions can be handled. The size of the parameters will be poly(log |S|, ¢) = polylog(|ZD|).

Next, we will prove the security of our scheme.

3.3 Security Proof for Multilinear Map-Based Construction
3.4 Assumptions

We now introduce the assumptions we will be using to prove the security of our scheme. We believe
our assumptions are new to this work; however they are very similar to existing assumptions on
multilinear maps. The first two assumptions are basically symmetric variants of those made by
Garg et al. [GGHZ14a], and can be seen as generalizing the assumptions made in dual system
works [Wat09, Weel4] to the multilinear setting. Our third assumption is closely related to the
multilinear DDH assumption.

First, we state our assumptions in their simplest form. Later, we will define minor variants of
these assumptions that we actually use to prove security of our scheme. We can prove security
relative to either set of assumptions.

Definition 3.2 (Assumption 1). For any ¢, for a ¢-linear map, no efficient adversary can distinguish
the following two distributions, where m, n, o, ¢ are sampled uniformly from fR:

M= [mlh, N = [)}2,0 = [0}, Q = [g]} and
M= [mlh, N = [l}2,0 = o}, Q = g}

The problem of distinguishing these two cases appears hard because there is no way to isolate
the Ry component of () by multiplying with M, N, O.

Definition 3.3 (Assumption 2). For any ¢, ¢, for a t-linear map, no efficient adversary can distinguish
the following two distributions, where m, n, o, ¢, p are sampled uniformly from R:

M = [ml}, N =[]y, 0 = o}, P = [pl?, Q = [qy* and
M = [ml, N = ), 0 = o}, P = [P}, Q = [t
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These two appear indistinguishable as well. In order to distinguish, both the 2’; and fR3
component of () must be eliminated, while preserving Po. $R; can be eliminated by multiplying
with O or P, but multiplying by O eliminates PRy as well. Multiplying by P does leave fRa, but the
result is encoded at level t — ¢+ 1. The only way to eliminate PR3 while preserving fRs is to multiply
by N, but as N is encoded at level ¢, and we only have £ — 1 levels remaining, it is not possible to
carry out this step. Therefore, there appears no way to distinguish the two cases.

Definition 3.4 (Assumption 3). For any ¢, for a ¢t-linear map, no efficient adversary can distinguish
the following two distributions:

M =[1)i, N = [1]{,0 = [}, {P; = [pi]i bieprr): Q = [af and

2
M =[1];,N = 11,0 = 1]} {P; = [pi]i Yier1), Q = [ 1T pz’]

i€lt+1] ]y

Since ) encodes the product of ¢t + 1 variables, namely more than the level of multilinearity, the
adversary cannot compute the product of the P; at any level, so this assumption seems hard.

Derived assumptions. Here we describe three alternate assumptions which are implied by the
assumptions above. These assumptions are the ones we will actually use in our proof. We present
these assumptions for two reasons:

e They are closer to what we will actually use in our proof, and therefore make the proof simpler.

o Our scheme nominally requires a £(¢+2)-linear map. However, in current candidates [GGH13a,
CLT13], what matters for setting the parameter sizes is not the multilinearity, but the number
of multiplications the scheme needs to support. Therefore, the effective multilinearity might
actually be lower. In our scheme, the number of multiplications is O(¢). However, to maintain
security, we also need to incorporate the multiplications performed by our reductions. Using
Assumptions 1, 2, and 3, the number of multiplications would be ¢(¢+ 2), meaning the effective
multilinearity is still O(¢2). However, using Assumptions 1’, 2’, and 3’ below, the total number
of multiplications would remain O(¢). Thus, by basing security on Assumptions 1’, 2, and 3’,
we can set the effective multilinearity to O(¢). This results in a more efficient scheme.

Definition 3.5 (Assumption 1’). For any /,t, for a t-linear map, no efficient adversary can
distinguish the following two distributions, where m,n, 0,0, ¢ are sampled uniformly from fR:

M =[m]},N = [n],;*,0 = [0]},0" = [0]},1,Q = [q]} and
M = [m]},N = [n];*,0 =[0},0" = [0]},1,Q = [¢]}”

The only differences between Assumption 1 and 1’ are the levels N and O are encoded at, plus
the addition of O’.

Lemma 3.6. Assumption 1 implies Assumption 1’

Proof. Suppose an adversary distinguishes the two cases in Assumption 1. Given a challenge
(M, N,O,Q) for Assumption 1, draw random ny, 01,02 € R, and give the adversary the challenge
(M,n1N*% 010%, 0001, Q). Tt is straightforward to see that the challenge the adversary sees consists
of encodings of random elements at the right levels and in the correct sub-rings, consistent with
Assumption 1. Therefore, if the adversary breaks Assumption 17, it will also break Assumption 1. [
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Definition 3.7 (Assumption 2’). For any /,t, for a t-linear map, no efficient adversary can
distinguish the following two distributions, where m,n, 0,0, q, p are sampled uniformly from fR:
1,2 2,3 1,3
M = [m], N = [n],*,0 = [o]§,0" = [0']{1, P = [p],", Q = lal;” and
1,2 2,3 1,2,3
M = [mH’N = [n]e 0 = [0]370, = [0,]3+1?P = [p]t—er = [Q]l

The only difference between Assumption 2 and 2’ is the level for O and the addition of O'.
Lemma 3.8. Assumption 2 implies Assumption 2’

Proof. Suppose an adversary distinguishes the two cases in Assumption 2. Given a challenge
(M,N,O, P,Q) for Assumption 1, draw random 01,05 € R, and give the adversary the challenge
(M, N,0,0% 0,01, P, Q). Tt is straightforward to see that the challenge the adversary sees consists
of encodings of random elements at the right levels and in the correct sub-rings, consistent with
Assumption 2. Therefore, if the adversary breaks Assumption 2’, it will also break Assumption 2. [

Definition 3.9 (Assumption 3’). For any /,t, for a t-linear map, no efficient adversary can
distinguish the following two distributions, where j = [(¢ +1)/(¢ 4+ 1)]:

M = [1]%’ M = [1]%-{-17 N = [H?v N' = [H?—i—lv 0= [1]?7 0 = [1]%4-1’
{p= [pi]?+1}i€[j]a Q= [Q]%Z-H)(j—l) and

M = [HbM, = [1]%+17N = [H?aN’ = [1]?4—170 = [1]?70, = [1]%4-1’

2
{Pi = [pilf1 biep) @ = [H pi]

bl JernG-n
Lemma 3.10. Assumption 8 implies Assumption 3’

Proof. Suppose an adversary distinguishes the two cases in Assumption 3’. Suppose we are given a
challenge (M, N, O, {P,}c(41), Q) for Assumption 3, where P; = [p;]{ and Q = [[T;e(4 1) Pil7 or Q is
a random encoding in Ry. Let k = j(¢ + 1). Notice that since j = [(t +1)/({ +1)], k > ¢t + 1. For
i € [t + 2, k], choose random p; € R, and set P; = p;N = [p;]3. Output the tuple

MZ’ME+17NZ’N€+1,OZ70€+17 { H P(il)(éJrl)Jri’} 7 ( H pz) QNkfefQ
iV ee+1] i) \iElt+24

The first 6 elements are encodings of 1 in Ri,%R2,R3 at levels £,¢ + 1, as desired. The
H,L'/e[g 1] Pli-1y(e41)+i are level ¢ + 1 encodings of random independent elements p,. Moreover,
if Q@ = [ILicpq] p;)?, then the final element is a level k— ¢ —1 = (5 —1)(£+ 1) encoding of [Licjj+1) Pl
and if ¢ is random, the final element is a random encoding. Thus, we’ve simulated the challenge for
Assumption 3, as desired. O

Because Assumptions 1°, 2’, and 3’ follow from Assumptions 1, 2, and 3, respectively, we can base
the security of our scheme on either set of assumptions. However, the reductions from the unprimed
to primed assumptions involve O(f) multiplications, which will give a total of O(¢?) multiplications
for the total reduction from our scheme to Assumptions 1, 2, and 3. We note that if we wish to set
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the effective multilinearity to O(¢), we would not be able to handle both the multiplications in the
reductions above and those in our broadcast scheme, and therefore Assumptions 1’, 2°, and 3’ no
longer follow from Assumptions 1, 2, and 3. Therefore, we have a trade-off: a less efficient scheme
from very simple assumptions, or a more efficient scheme from more complicated assumptions.

Details for non-ideal encodings. We use a multilinear map with ¢t = ¢(¢ 4+ 2). Since we will
actually be using non-ideal noisy encodings, we need to publish all of the necessary parameters the
simulator may need. It suffices to provide randomization parameters in the levels 1,¢,£+1,({+1) =
t — £. As the total number of randomization parameters is only 4, the size of our challenges is
polynomial in £, or equivalently logarithmic in the number of users. We also need to make sure
the parameters are set so that the noise introduced by the reduction does not cause any errors.
However, our reductions perform very few operations in addition to the operations performed by
our scheme, so it is easy to handle the minor extra noise growth.

3.5 Security Theorem and Proof

Here we prove the adaptive CPA security of our scheme.
Theorem 3.11. If Assumptions 1°, 2°, and 3’ hold, then our scheme is adaptively CPA secure.

We prove security through a sequence of hybrid games, ultimately arriving at a game where
information-theoretic security holds. Our hybrids will roughly follow the dual system framework
of Waters [Wat09, Weel4], gradually changing the challenge ciphertext and secret keys to a semi-
functional form. We note one important difference: in [Wat09, Weel4], there is a crucial information
theoretic step that no longer holds in our setting. Instead, we need to replace the information-
theoretic step with a computational one. However, this adds some complication, as this step will
depend on whether the challenge ciphertext comes before or after the particular secret key we are
transforming.

Hybrid Real. This is the normal game where, on challenge set S*, the adversary receives the
header Hdr = (C*, D*), and either the correct message encryption key K*, or a randomly chosen
key. Let ¢ be advantage the adversary has in guessing which key he is given.

Hybrid 0. This is identical to Hybrid Real, except that the challenge ciphertext (C*, D*) and
message encryption key K* are semi-functional. This means that the challenge ciphertext is now
generated in the subring Y31 X Py, as opposed to Ry as in Hybrid Real. The challenge ciphertext

1S:
1,2

T =lovtlys,g » C =0tly* . D = [t[s+ > ] Biw
VGS* ze[ﬁ] £(€+1)

and K* = ext(Params, J*). The following is proved in Section 3.5.1:

Lemma 3.12. Given Assumption 1’, Hybrid Real and Hybrid 0 are indistinguishable.
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Hybrid k. Hybrid £ is identical to Hybrid 0 with the challenge ciphertext being semi-functional,
but the first k secret keys are also semi-functional, while the remaining secret keys are generated
normally. In a semi-funcitonal secret key, the Ry component of H" is a random ring element,
as opposed to encoding « as in a functional secret key. More precisely, a semi-functional key is
AF e G HY) where:

generated as sk = ({Ei“b

) }ie[e],be{o,l}

z'ljb = [Szl'lﬂi,b}é_ﬂ + [ni,b]g_ﬂ Fiu = [Tuszl'llgi71—ui]é+1 + [CZ]?Jrl
1 1
G = [y L st | + ek} H* = |a+r [] s [] ﬂzgui] + [l
ZG[K] ) ZE[Z] ’LE[E] £(5+1)

The only difference between a normal secret key and a semi-functional secret key is the Jio component
of H", which is random for semi-functional secret keys but encodes « in normal secret keys. Also
note that k& = 0 corresponds to Hybrid 0, and that the only difference between Hybrid k£ — 1 and
Hybrid k is that secret key k goes from normal to semi-functional.

Lemma 3.13. Given Assumptions 2’ and 3’, Hybrid k — 1 and Hybrid k are indistinguishable.
Proving 3.13 is non-trivial, and involves introducing additional intermediate hybrids:
Hybrid k.1. This is identical to Hybrid k — 1, except that the kth secret key (which was normal

in Hybrid k — 1) is now correlated semi-functional. In a correlated semi-functional secret key, all
secret key components are generated in fR; X PRo. This means that it is generated as

12 3 B 1,2 3
i = [5i Bipley + sl F = [r"siBia—u] it + [Gloga
1,2 12
GU= [y [] st + €7 H = la+r" [] s [1 5zu] + [ er )
i€lf] ‘ i€ll]  i€ll] 0(e+1)

The only different from Hybrid k — 1 is that all the secret key components are now encoded in Rs.
The following lemma is proved in Section 3.5.2:

Lemma 3.14. Given Assumption 2’, Hybrid k — 1 and Hybrid k.1 are indistinguishable.

Hybrid k£.2. This is identical to Hybrid k.1, except that the ¢th secret key is now uncorrelated
semi-functional, which means that it is generated as

z!,lb = [S?ﬁi,b]éfl + [Ui,b}?ﬂ B = [Tusfﬁi,l—ui];i + [Ci]gﬂ
1,2 1
ar =y s+l = e ] s (6 +1I 6)] + el
iclf] , icle] i€[(]

0(0+1)

The only difference from Hybrid k.1 is that the SR3 component of H" is random and uncorrelated
with the other Ry components.

Lemma 3.15. Given Assumption 3’, Hybrid k.1 and Hybrid k.2 are indistinguishable.
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In [Wat09, Weel4], this step is an information theoretic step based on the fact that user u is
not a part of the recipient set S*. However, in our case, the hybrids are information-theoretically
distinguishable, and instead we must rely on computational arguments. However, this is problematic
in the adaptive setting, because we will not necessarily know how to embed the Assumption 3’
challenge until we know both the challenge set S* and the kth identity u. This means the reduction
will depend on whether the kth secret key comes before or after the ciphertext. In Section 3.5.3, we
show how to handle both cases, each with a single invocation of Assumption 3’.

To finish the proof of Lemma 3.13, we need to prove the following, proved in Section 3.5.2:
Lemma 3.16. Given Assumption 2°, Hybrid £.2 and Hybrid ¢ are indistinguishable.

Notice that the only difference between Hybrid ¢.2 and Hybrid ¢ is that the /th secret key is
not semi-functional. This means that the $Rs components of all terms except H" are empty.

At this point, we have shown that Hybrid Real is computationally indistinguishable from
Hybrid ¢, where all secret keys are semi-functional. It remains to show that the adversary has
negligible advantage in Hybrid ¢:

Lemma 3.17. Any (potentially unbounded) adversary has negligible advantage in Hybrid q.

Proof. In Hybrid ¢, the $Rs component of a only appears in J*, and is thus only visible to the
adversary through K* = ext(Params, J*). Therefore, the second component of J* is random and
independent of the rest of the view of the adversary, and by the extraction property of the multilinear
map, K* is statistically close to a uniform bit string in {0, l}A. O

This completes the proof of Theorem 3.11. Now we fill in the proofs of the hybrids.

3.5.1 Proof of Lemma 3.12

Proof. Obtain the challenge for Assumption 1’: M = [m]}, N = [n];*,0 = [0]},0' = [0']},1,Q
where Q = [¢]} or Q:[q]}’z. Also choose random B{»b,a’,fy’,y, €R. Let 4 = BLb - M - N. This
formally sets B;, = mnf;,. Set B = VM T =o'y M N and L = ¢ MYNY. This formally

1o/ v =mly, and § = n’ms’. Note that all the formal variables are statistically close

setsa =n
to random!!.
Next, for a secret key for user u, choose random s} € R, r%, as well as 7; ,,, ¢/, &', ' € R, and set
o= s Aip + 15,0’ Ft ="' Ai 1, + GO’
GU=r"{[]s] B+¢&O H =o'/ N e [T s8] 2+ ] Aie | + 10"
i€[f] i€[f) i€[f]

This is consistent with the setting of variables for the public parameters, and the i3 components
of each term are fresh random elements. Finally, choose a random t' € R and set the challenge
ciphertext elements as:

J* t/a/’)/-NZ—H'Qé O = t’w'Qe . D=+t (5/+ Z H @{M) .QZNK

veS* e[l

"The variables are statistically close to random provided the set zero divisors is sparse. This holds whether %; are
prime order or composite with large prime factors.
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In the case where @ is encoded in R, this correctly simulates the challenge ciphertext in
Hybrid Real, formally setting t = t'¢‘/m’. In the case where Q is encoded in R, this correctly
simulates the challenge ciphertext in Hybrid 0, also formally setting ¢t = t/q‘/m*. Thus, if an
adversary can distinguish Hybrid Real from Hybrid 0, our reduction will distinguish the two
cases of Assumption 1’, a contradiction. O

3.5.2 Proof of Lemma 3.14 and Lemma 3.16

Proof of Lemma 3.14. Obtain the challenge for Assumption 2’:
1,2
M = [mH7 N = [n]ﬂ ,O0 = [0]27 0 = [0/]?—&-17 P = [ ]Z(Z—i—l)’ Q

where @ = [qH’3 or Q = [q]%’m. We simulate the public parameters and challenge ciphertext exactly
as we did in the proof of Lemma 3.12, except that we use NV instead of ) to simulate the challenge
ciphertext. This formally sets 3;;, = mnﬁab,'y =mly,a = n 1/, 5 = n*m'’. To simulate jth
secret key query, there are three cases: j < k, j = k, and j > k. Secret keys for j > k are also
simulated exactly as in the proof of Lemma 3.12. Secret keys for j < k are simulated as:

By = st Aip + 11,0 Ff =r"siAi 1, + GO’
ielf] i€lf] i€lf]

It is straightforward to see that this is the correct simulation. Secret key j = k is simulated using
the challenge element Q) as

W= Bipsi N -Q+mi,0" F =15, siN-Q+ GO’
GY = Tu’y/ H SgQé-i-f/O HY = a/NZJrl +ru H 82 (5/+ H 54,%) 'QZNZ _’_M/O/é
i€l €[] i€l

Notice that the O, O’ components ensure that the Y3 component is completely random. In the case
where @ is encoded relative to i1 x Rs, this correctly simulates Hybrid k — 1, formally setting
st = stg/m. In the case where @ is encoded relative to R = Ry x Ry x Ra, this correctly simulates
Hybrid k.1 with s* = siq/m. Thus if an adversary can distinguish the two hybrids, it will break
Assumption 2, a contradiction. O

Proof of Lemma 3.16. The proof is almost identical to the proof of Lemma 3.14, except that we

randomize the Ry component of the H"™ for the kth secret key by using P instead of Ot O

3.5.3 Proof of Lemma 3.15

We first handle the simpler case where the kth secret key query comes before the challenge ciphertext.
Let gpefore be the number of secret key queries made before the challenge ciphertext.

Lemma 3.18. Given Assumption 3’, Hybrids k.1 and k.2 are indistinguishable for k < qpefore-
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Proof. The only difference between Hybrid k.1 and Hybrid k.2 is in the Ry component, and
Assumption 3’ gives us generators for all components. Therefore, we can focus on simulating fRs.
Obtain the Rz components of Assumption 3": N = [1]o, N' = [1]e41,{P; = [piles1}icje1), @ =
[@le(e+1) Where ¢ = [Licfe41) pi or ¢ is random.

The public key has no Ry components. The first k£ — 1 secret keys have no fRs components
either, except H" has a random fRp. Therefore, we can generate a random p%, and set H® = "N’

Now consider secret key k for identity u. We will drop the u superscript in the secret key
components for notational convenience. Remember that this key comes before the challenge
ciphertext. We choose random «, v/, 4,7/, s;. Also choose random 3;1_,,, and set:

Eil—u; = Bin—wSiN' Eiu, =siP;  Fy=1"Bi1_wsiPiy1  G=~" H silN
1€[¢]

H=aN"* +¢ H S; <5Pz+1N/K71 + Q)
i€[¢)

In the case where ¢ = []icpqq)pi, this formally sets B4, = pi,r = pev1,y = ' /pes1 in
Hybrid k.1. In the case where ¢ is random, this gives the same settings for the formal variables,
but makes H random in fRs, as in Hybrid k.2. It remains to simulate the rest of the secret keys
and the challenge ciphertext to be consistent with these formal variables. For secret keys after k,
the Ry component is empty except for H", which contains «, so we can easily simulate these. For
the challenge ciphertext, we will choose a random ', and our goal will be to set the formal variable
t to be t'pgy1. Thus, we need to compute

I =[0v]ypyey C =0t D =|tpa |6+ D | I] » I Biw
veS* \i:v;=u; LV FUG 0(0+1)

Since we know a,~',t’, 0, we can generate most of the terms above ourselves. We only need to

show how to generate the terms
Pet1 ( 11 pz’) ( I1 ﬁ%}w)}
LU =Ug 10 U 0(0+1)

for v € S*. We will show how to compute these terms for any v # u, which is sufficient since u ¢ S*.
Since v # u, there is at least one j such that v; # u;. Therefore, we can compute

Cy =

pes1 [ m

Goi=ui ] (g 41)(041)

from the P;, where x < ¢ — 1 is the number of bits v and u have in common. Then, if necessary, we
can lift this to level £(¢ + 1) and multiply by [[;.,, 2y, Bin; (Which we know) to compute Cy. This
completes the simulation.

If an adversary can distinguish between Hybrid k.1 and Hybrid k.2, our reduction will therefore
distinguish the two cases in Assumption 3’, a contradiction. ]
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For k > gpefore, the proof of Lemma 3.18 no longer applies, since we will not know the kth
identity u until after the challenge query is made, meaning we do not know how to embed the
Assumption 3’ challenge into the challenge ciphertext. One possibility is to guess the identity u,
and abort if the guess was incorrect. While this works when the total number of users is polynomial,
when we move to the identity-based setting, this results in an exponential loss in the security
reduction. We therefore need an alternate approach to proving Lemma 3.15 for k > gpefore-

Lemma 3.19. Given Assumption 3’, Hybrids k.1 and k.2 are indistinguishable for k > qpefore-

Proof. Like the proof of Lemma 3.18, we can focus on simulating $Rs. Obtain the Ry components
of Assumption 3" N = [1]¢, N’ = [1e41, {5 = [Pile+1ticper1), @ = [dleqer1) where g = [Tigjoqq) pi or
q is random.

The public key has no Ry components. The first gyerore secret keys have no Ry components
either, except H" has a random ,. Therefore, we can generate a random %, and set H® = p*N",

Now consider generating the challenge ciphertext. We do not want to commit to the f3;; at this
time, because we will then be unable to embed our challenge in the kth secret key query. Instead,
we will generate the ciphertext in such a way that we will not commit to the values at this point.
Choose random «, ', ¢, ¢, and set the challenge ciphertext as

J = tyeray C =0t D" =[t'0es1y

Our goal will be to formally set v =~/ /ppi1,t = t'ppy1 and § = (5/ + >ves i ﬁ@b) /Dest,
which will all be uniform random variables. The point is that, even though this is the formal setting
of variables we are targeting, we do not need to know the f3;; at this point. We simply need to make
sure that when we generate components later, they are consistent with this setting of variables.

We generate secret key queries gpefore + 1 through k£ —1 as we did for queries before the challenge
ciphertext. Secret key queries after the kth query have an empty Ry component, except that H"
is an encoding of «, which we now know, so we can simulate these. It remains to simulate the
kth secret key query on identity u. We will drop the u superscript in the secret key components
for notational convenience. Remember that this key comes after the challenge ciphertext, so we
know S*. We choose random 7, s;. Also choose random f; 1—,,. We wish to formally set 3; ., = p;
and 7 = r'pyy1 in Hybrid k.1. This amounts to generating the secret key as

Eiru, = [siBit-wlis1  Biw, = [sipilem1 Fi=[r'pesisiBig—wlesr G =" [] sile
i€[l]

H= oz+7“'HSz‘ De+1 5,—2 H Di H Biv; + H pi

icll] veS* \iw;=u; 10 FU; 1€[0+1] 0(0+1)

We know o, 7/, 77, s;,0, so we can easily simulate E; 5, Fj, G. To simulate H, we generate the term
involving « for ourselves, the ' [];c(y sipe+16” term from Pyiq, and the term involving [[;c(o; 1) pi
from Q). Now we need to simulate the terms

Cv: DPe+1 H Di H /Bi,vi

10, =U; 10 U £(0+1)
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We can compute Cy from the P; exactly as in Lemma 3.18. If ¢ = Hz’e[é +1] Pi, we simulate
Hybrid k.1. If ¢ is random, then the only difference is the SRy component of H" for the kth identity
is random. Thus we simulate Hybrid k.2. Therefore, if an adversary can distinguish between
Hybrid k.1 and Hybrid k.2, our reduction will distinguish the two cases in Assumption 3’. O

4 Obfuscation-Based Construction

4.1 Primitives Needed

Indistinguishability Obfuscation. An indistinguiability obfuscator iO for a circuit class {Cy}
is a PPT uniform algorithm satisfying the following conditions:

o iO(), C) preserves the functionality of C. That is, for any C' € C,, if we compute C' = iO(), C),
then C’'(z) = C(x) for all inputs z.

o For any A and any two circuits Cp, C; € Cy with the same functionality, the circuits iO(\, C') and
iO(\, C") are indistinguishable. More precisely, for all pairs of PPT adversaries (Samp, D) there
exists a negligible function « such that, if Pr[Vz, Co(z) = Ci(x) : (Cp, Cy,0) < Samp(N)] >
1—a(\), then | Pr[D(q,iO(\, Cp)) = 1] — Pr[D(a,iO(\, C1)) = 1]| < a(N)

The circuit classes we are interested in are polynomial-size circuits — that is, when C) is the
collection of all circuits of size at most A. We call an obfuscator for this class an indistinguishability
obfuscator for P/poly. The first candidate construction of such obfuscators is due to Garg et
al. [GGHT13b].

When clear from context, we will often drop A as an input to iO.

Puncturable PRFs. A puncturable PRF is a PRF that can be “punctured” at an input, allowing
the computation of the PRF at all points except the punctured input. More formally, for sets X, ),
a punctured PRF is a pair of algorithms (Gen, Punc) where:

e Gen outputs an efficiently computable function F: X — )

o Punc(F, ) takes as input a function F outputted by Gen and an input z € X, and outputs a
“punctured” function F® such that

Fo(2') = {F(m’) if e/ #£x

1 ife! ==z

For security, we require that, for any input z € X, y = F(z) is indistinguishable from a
random element in ), even given the punctured function F* = Punc(F,z). The original GGM
construction [GGMS86] is an example of a puncturable PRF.

Somewhere statistically binding hash. We will also be relying on the work of Hubdcek and
Wichs [HW14], namely their new tool called somewhere statistically binding hash functions (SSB
Hash). SSH Hashes where used in [HW14] as a special type of collision resistant hash function that
can be used with indistinguishability obfuscation. Let ¥, Z be sets. Recall from [HW14] that a SSB
Hash is a triple of algorithms (Gen, Open, Ver) where:

26



o Gen(s,i) takes as input two integers s and i, where s denotes the number of blocks that will
be hashed, and 7 € [s] indexes a particular block. The output is a function H : ¥° — Z. The
size of the descrption of H is independent of s and ¢ (though it will depend on the security
parameter).

o« Open(H,x = {x¢}¢e[g, j) for z, € ¥ and j € [s] produces an “opening” m that “proves” that
the jth element in x is x;.

o Ver(H,h € Z,j € [s],u € X, ) either accepts or rejects. The idea is that Ver should only
accept when h = H(x) where z; = u.

o Correctness: Ver(H, H(x), j,x;,Open(H,z, j)) accepts.
o Index hiding: Gen(s,ig) is computationally indistinguishable from Gen(s, 1) for any g, ;.
o Somewhere Statistically Binding: If H < Gen(s, ), then if Ver(H, h,i,u, ) and Ver(H, h,i,u’, 7’)
accept, it must be that u = /.
4.2 Secret Key to Public Key Conversion

First, we show a conversion from secret key broadcast encryption to public key broadcast encryption
using obfuscation.

Let (Setup’, Enc’, KeyGen’, Dec’) be a secret key scheme (that is, the master secret key msk’ is
required to encrypt, and there is no public parameters). The security notion that is of interest
to us is called 1-ciphertext security, which corresponds to the security notion in Section 2 with
only a single challenge. While in the public key setting, such a notion implies security when there
are multiple challenges, this is not the case in the symmetric setting since users cannot encrypt
messages for themselves. Nonetheless, the single challenge security is sufficient for our purposes.

Construction 4.1. Let G be a PRG that maps X into ) with || > |X|. Let F be a puncturable
PRF from Y into R, where R is the space of random coins used by Setup’.

Setup(ZD) Choose a random F as the master secret key. The public key is pk = Pene = iO(PE,)
where PEFnc is the program given in Figure 1.

Enc(pk, S) Choose a random s < X and let r = G(s). Run msk! = Penc(s). Then compute
(K,Hdr') = Enc/(msk., S). The header is Hdr = (r, Hdr') and the message encryption key is K.

KeyGen(msk,u) Compute and output sk, = Py = iO(PS';’”“i"’u) where Psi’”“""’u is the program in
Figure 2.

Dec(sky, S, Hdr) Run sk/, = Py (r) and then Dec’(sk,, S, Hdr')

Correctness. Correctness follows easily from the correctness of the underlying symmetric scheme.
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Inputs: s
Constants: F

1. Let r = G(s)

2. Output msk!. = Setup’(F(r))

Figure 1: The program Pgnc.

Inputs: r
Constants: F,u

1. msk!. = Setup’(F(r))

2. Output KeyGen’(msk!., u)

Figure 2: The program PSF,;".

Parameter sizes. Let |msk’|,|sk’|,|Hdr’| be the sizes of the master secret key, user secret keys,
and headers, respectively, in the secret key scheme, and |msk|, |pk|, |sk|, |[Hdr| be the parameter sizes
of the resulting public key scheme. Let t(KeyGen’) and #(Setup’) be the running times of KeyGen’
and Setup’, respectively. Then, ignoring the security parameter,

Imsk| = O(1) |pk| = t(Setup’) !
Isk| = (¢(KeyGen') + t(Setup'))°™ IHdr| = |Hdr| + O(1)

Thus if (Setup’, Enc’, KeyGen’, Dec’) is low-overhead and has efficient setup and key generation, then
so does (Setup, Enc, KeyGen, Dec).

Application to functional encryption. The above conversion can be trivially extended to boost
adaptively secure 1-ciphertext many-key secret key functional encryption into adaptively secure
public key functional encryption. As observed by Ananth et al. [ABSV14], such secret key schemes
can be built from one-way functions using known techniques. Thus, we obtain another construction
of adaptively secure functional encryption from obfuscation. We believe ours is conceptually simpler
than the schemes of Waters [Wat14] and Ananth et al. [ABSV14], though the conversion of [ABSV14]
has the advantage of requiring weaker primitives than obfuscation.

Theorem 4.2. If (Setup’, Enc’, KeyGen’, Dec’) is 1-ciphertext adaptively CCA (resp. CPA) secure, F
is a secure puncturable PRF, G is a secure PRG, and iO is a secure indisitnguishability obfuscation,
then (Setup, Enc, KeyGen, Dec) in Construction 4.1 is adaptively CCA (resp. CPA) secure.

Proof. We prove security through a sequence of hybrid games.

Hybrid 0. This is the normal game where, on challenge set S*, the adversary receives the header
Hdr* = (r*,Hdr"), and either the correct message encryption key K*, or a random key. Let € be
advantage the adversary has in guessing which key he is given. We can assume r* = G(s*) is sampled
at the beginning of the experiment, and msk’™ = Setup’(F(r*)) is computed directly from F rather
than through P/E:c.
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Hybrid 1. This is the same as Hybrid 0, except that r* is replaced with a uniformly random
string. The security of G shows that this modification is undetectable.

Hybrid 2. This is the same as Hybrid 1, except that F is punctured at r*, obtaining F"", and
P/E:C is replaced with an obfuscation of PE:(’:FT given in Figure 3. Since G is expanding, with

overwhelming probability r* is not in the image of G, and therefore the programs PE:’CFT and PEFnc
are functionally equivalent. Thus, by the security of iO, this change is undetectable.

Inputs: s
Constants: 7*,F"

1. Let r = G(s)
2. If r =r* abort and output L.

3. Output msk!. = Setup’(F(r))

*

Figure 3: The program PE;(’:FT .

Hybrid 3. This is the same as Hybrid 2, except that, for each secret key query on user u, first

skl = KeyGen’(msk™, u) is computed, and the I/Ds\k is replaced with an obfuscation of PSTk*’FT sk

given in Figure 4. Notice that the programs P:k*’Fr sk and Psi’“ are functionally equivalent for
this coice of skj,, so the security of iO shows that these changes are undetectable.

Hybrid 4. This is the same as Hybrid 3, except that msk™ is chosen freshly at random from
Setup’, instead of as Setup’(F(r*)). This amounts to replacing F(r*) with a fresh random string.
Since the entire security game, except for the generation of msk’*, only uses the punctured PRF F"",
PRF security shows that this change is undetectable.

Now we observe that Hybrid 4 can be simulated using the challenger for (Setup’, Enc’, KeyGen’, Dec’).
Namely, at the begining of the experiment, we give the adversary an indistinguishability obfuscation

of PE:&FT for a random 7* and random PRF F. On the adversary’s challenge query, we forward the

Inputs: r
Constants: 7*,F"", u, sk’

1. If » = r*, then abort and output sk,.
2. msk]. = Setup’(F(r))

3. Output KeyGen'(msk!., u)

*
T *
,u,sKy,

Figure 4: The program P;:’F
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query to the challenger, obtaining Hdr'"*, K* where K* is the correct key for the secret key scheme
or a random key. Then we give the adversary Hdr* = (r* Hdr™*). When the adversary makes a
secret key query for a user u, we make the same query to the challenger, obtaining sk}, which we

. * Fr* K*
then use to compute the obfuscation of Psrk S

that guess.

Our advantage is identical to the advantage of the adversary in Hybrid 4, and must be negligible
by the security of (Setup’, Enc’, KeyGen’, Dec’). Therefore, the adversary’s advantage in Hybrid 0
must also have been negligible.

. When the adversary makes a guess, we output

O]

4.3 A Secret Key Scheme

We now present our 1-ciphertext secret key scheme, which combined with the conversion above
gives a public key scheme with small parameters.

Construction 4.3. Let F be a puncturable PRF from ZD into X. Let (Gen, Open, Ver) be a SSB
hash function with ¥ = ZD.

Setup(ZD) Choose a random F as the master secret key.

Enc(msk, S) Choose a random message encryption key K. Run H < Gen(|S],1) and compute
H(S) where S is treated as a list. Let Pepp = iO(PCFi;Dl;Lh’K) where PCFZ.;JIZ’}Z’K is the program in
Figure 5. The header is Hdr = Ei;z.

KeyGen(msk,u) Output F(u)

Dec(sky, S, Hdr) Let £ be the index of u in S when S is sorted (if u ¢ S, abort and output ).
Compute (h, ) < Open(H, S,¢). Now run K’ < P, (¢, u, m,sk,). Output K’.

Inputs: 4, u,w,t
Constants: F, H, h, K

1. Run Ver(H, h,¢,u, ) to check that 7 is an opening of h at index ¢ to identity u. If the check
fails, abort and output L.

2. Check that G(t) = G(F(u)). If the check fails, abort and output L.

3. Output K.

Figure 5: The program PcFi})IZ’h’K.

In Section 4.4, we explain how to modify the scheme to make decryption statistically independent

of the user secret key.

Theorem 4.4. IfF is a secure puncturable PRF's, (Gen, Open, Ver) is a secure somewhere statistically
binding hash, and iO is a secure indistinguishability obfuscator, then Construction 4.3 is an adaptively
secure 1-ciphertext secret key broadcast encryption scheme.

Proof. We prove security through a sequence of hybrid games.
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Hybrid 0. This is the normal game where, on challenge set S*, the adversary receives the header
Hdr* = (H*, ]gci;*), and either the correct message encryption key K*, or a random key. Let € be
advantage the adversary has in guessing which key he is given.

Let gpefore be the number of secret key queries made before the challenge ciphertext. WE define
the following hybrids for i = 0, ..., gpefore:

Hybrid . This is the same as Hybrid 0, except that on the first ¢ secret key queries, the secret
key given is just a uniform random string.

We now wish to show that Hybrid (i — 1) is indistinguishable from Hybrid i for each i =
L, ..., @pefore- We do this through a sequence of hybrids.

Pui,F“i,H*,h*,K*)

Hybrid i.1 This is the same as Hybrid (i—1), except that Ez‘;h* is replaced with iO( ciph

where F% is F punctured at the point wu; (the ith secret key query), and Pg;;;;ui’H*’h*’K* is the
program given in Figure 6.

Inputs: 4, u,w,t
Constants: u;, F*, H*, h*, K*

1. Run Ver(H*, h*, ¢, u, ) to check that 7 is an opening of h* at index ¢ to identity w. If the
check fails, abort and output L.

2. Check that u # w;. If the check fails, abort and output L.
3. Check that G(t) = G(F“(u)). If the check fails, abort and output L.

4. Output K*.

. . ug, Fui H* b K*
Figure 6: The program Pciph .

To prove that Hybrid .1 is indistinguishable from Hybrid (i — 1), we need to perform several
intermediate hybrids.

Hybrid i.1.j. This is identical to Hybrid (i—1), except that @* is replaced with iO( P;;’;?H K *,j)

where P;ZD,E A7RKTT iS the program given in Figure 7.
Notice that if j = 0, the check in Line 2 of Figure 7 never fails, so P;;,f R0
equivalent to PCFZ.},JZ*’h*’K*. Thus Hybrid 4.1.0 is indistinguishable from Hybrid (i — 1).
) - ) 7 I
Now, if j = |S*|, then the check in Line 2 of Figure 7 always fails on input u;. Therefore
wi P HEREEIS) g functionally equivalent to P4T *H """ K" Thuys Hybrid 4.1.|S] is indistinguish-
ciph ciph
able from Hybrid i.1.

Now we wish to show that Hybrid i.1.j is indistinguishable from Hybrid i.1.(j — 1). We do
this though additional intermediate hybrids.

is functionally

Hybrid 4.1.5.1. This is identical to Hybrid i.1.(j — 1), except that H* < Gen(|S*|,j). By the
index hiding property of the hash, this change is undetectable.
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Inputs: ¢, u,n,t
Constants: u;,F, H*, h*, K*, j

1. Run Ver(H* h* ¢, u,7) to check that 7 is an opening of h* at index ¢ to identity w. If the
check fails, abort and output L.

2. If u = u;, check that ¢ < j. If the check fails, abort and output _L.
3. Check that G(t) = G(F(u)). If the check fails, abort and output L.

4. Output K*.

s FH WK

Figure 7: The program ciph

Hybrid i.1.5.2. This is identical to Hybrid i.1.j.1 except that Pupy, is now set to iO(
i H R K1
ciph

ciph
)). Since H* is statistically binding on index j, and since S*
puoFt HY A K -1

(as apposed to iO(

does is not contain wu; as it’s jth identity (since u; ¢ S*), the programs and

: * Pk * C’Lph

PZ;,'; DHTRGETT are equivalent programs. Thus by the indistinguishability of obfuscations, this
change is undetectable.

Finally, notice that Hybrid ¢.1.5.2 is identical to Hybrid i.1.j, except that in the first hybrid,

H* < Gen(]S*|,j), whereas in the second, H* <— Gen(|S*|,1). By the index hiding property of the

hash, this change is undetectable.

Thus we have proved that Hybrid (i — 1) is indistinguishable from Hybrid i.1. Now notice
that in Hybrid 4.1, the entire experiment except for sk,, = F(u;) can be simulated with F":.

Hybrid ¢.2. This is identical to Hybrid i.2, except that sk,, is replaced with a fresh random

element. The security of F shows that this change is undetectable.

Now notice that Hybrid : is identical to Hybrid .2, except that ]fm-p\h* is converted back to
Pc':iﬁ*’h*’K*. This can be proved indistinguishable to Hybrid .2 the same way Hybrid (i — 1) and
i.1 where proved indistinguishable. Thus, Hybrid (¢ — 1) is indistinguishable from Hybrid .

At this point, we can move to Hybrid gy fore without the adversary noticing, where we have
converted all of the secret keys before the challenge ciphertext into random elements. Now we define
our target hybrid:

Hybrid Final. This hybrid is identical to Hybrid guefore, except that ]fci;h is replaced with
an obfuscation of the circuit that outputs L on all inputs. Notice that this circuit information-
theoretically contains no information about the message encryption key K*, and therefore the
adversary has no advantage in this game.

It remains to show that Hybrid Final is indistinguishable from Hybrid gyefore. The proof is
somewhat similar to the proof that Hybrid (i — 1) and Hybrid i are indistinguishable. We do
this through a sequence of hybrids.
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Inputs: ¢, u,n,t
Constants: j,F, H* h* K*

1. Run Ver(H* h* ¢, u,7) to check that 7 is an opening of h* at index ¢ to identity w. If the
check fails, abort and output L.

2. If £ < 7, abort and output L.
3. Check that G(t) = G(F(u)). If the check fails, abort and output L.

4. Output K*.

Pj7F7H*7h*’K*

Figure 8: The program ciph

Hybrid Final.j. for j = 0,...,|S|. In this hybrid, Puy, is replaced by iO(P27 T K") where
PCJ;;;LH*’h*’K* is the program in Figure 8.

Notice that if 5 = 0, then prH* K0

) ) FH* h* K*
ciph is equivalent to P,

ciph , and by IO, we have that

Hybrid Final.0 is indistinguishable from Hybrid gy fore. Also, if j = |S], then P;;Dh*7h*’K*"S| is
equivalent to the circuit that always outputs L, and so by 10, we have that Hybrid Final.|S| is
indistinguishable from Hybrid Final.

Therefore, it remains to show that Hybrid F'inal.j is indistinguishable from Hybrid Final.(j—

1). We do this through several more intermediate hybrids.

Hybrid Final.j.1. This is identical to Hybrid Final.j, except that H* <— Gen(|S|, j). The index
hiding property of H* shows that this change is undetectable.

Hybrid Final.j.2. This is identical to Hybrid Final.j.1, except that Ei;z is replaced with
iO(PCJZ.’;Z’y’F DISRETY where w; is the jth identity in S*, y = G(F(u;)), and nggg’y’F DHTRLET g
the program given in Figure 9.

P-y’uj7y’FuJ 7H*’h*’K* a,nd Pj._17F7H*7h*7K*

wiph eiph only act differently in the ¢ = j case. If u # u;, then

since H* is statistically binding at position j and S* has u; at position j, PC]%;;’F’H*’}L*K* would
have aborted. In the case where u = u;, then Pg;;i’F’H*’h*’K* would have checked that G(t) =

G(F(u;)) = y. Thus, the two programs have identical behavior, and 10 shows that Hybrid Final.j.2
is indistinguishable from Hybrid Final.j.1.

Write y = G(x) where = F(u;). Notice that the entire experiment in Hybrid Final.j.2, except
for computing z, can be simulated with F“i.

Hybrid Flinal.j.3 This hybrid is identical to Hybrid Final.j.2 except that y = G(z) for a random
x. The security of F shows that this change is undetectable.

Hybrid Final.j.4 This hybrid is identical to Hybrid Final.j.3, except that y is chosen uniformly
at random. The security of G shows that this change is undetectable.
At this point, since G is expanding, y is, with high probability, not in the image space of G.
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Inputs: £, u,m,t
Constants: j,u;,y, F*, H* h* K*

1. Run Ver(H* h* ¢, u,7) to check that 7 is an opening of h* at index ¢ to identity w. If the
check fails, abort and output L.

2. If ¢ < j—1, abort and output L.
3. If £ = j, then:
(a) If u # wuj, abort and output L.
(b) If u = uj, then check that G(t) = y. If not, abort and output L.
4. If ¢ > j, check that G(t) = G(F(u)). If the check fails, abort and output L.

5. Output K*.

P]7u],y7Fu] 7H*7h'*7K*

Figure 9: The program iph

Hybrid Final.j.5 This hybrid is identical to Hybrid F'inal.j.4, except that P/cz';z is replaced with
P]7u] :nyuj 7H* 7h*’K*

. j,F,H*,h*,K* . . . .

IO(Pciph ). Since y is not in the image space of G, the program iph aborts
. Uy ’Fuj7H*’h*’K* j *h* * .

whenever ¢ = j, and therefore PCJZ.;L,JL 4 and PCJZ.’;;LH PET are equivalent programs. Thus

this change is undetectable.

Finally, notice that Hybrid Final.j is identical to Hybrid Final.j.5, except that H* <«
Gen(|S|,1). The index hiding of H* shows that these hybrids are indistinguishable. Thus Hybrid
Final.j is indistinguishable from Final.(j — 1).

To summarize, we have gradually moved to a situation where the ciphertext contains no
information about the message encryption key K*. All these changes were undetectable to the
adversary, and the adversary has advantage zero in the final setting. Therefore, the adversary’s

advantage in the actual security experiment must have been negligible.
O

4.4 Making Decryption Statistically Independent

In order to use our conversion to CCA security described in Section 5, we need our decryption
procedure to have outputs that are statistically independent of the secret key used. We can assume
the secret keys are well-formed, but this property must hold for any possible ciphertext, even
malformed ones. Since our ciphertexts are obfuscated programs, it is fairly easy for the adversary
to create malformed ciphertexts. Therefore, we need a way for the adversary to prove that the
ciphertext is generated correctly. It is straightforward to use non-interactive zero knowledge (NIZK)
proofs to achieve this goal. Essentially, the key generation procedure also outputs a common
reference string for a statistically sound NIZK. The encrypter then proves that his ciphertext is
generated correctly. The soundness of the NIZK shows that the ciphertext is correctly generated.
Once we guarantee that all ciphertexts are correctly formed, the statistically independent decryption
follows from the correctness of the scheme.
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5 Boosting to CCA Security

In this section, we show how to transform our schemes into CCA-secure broadcast scheme. More
generally, we show how to transform any broadcast scheme with statistically-independent decryption
into a CCA-secure broadcast scheme.

Construction 5.1. Let the tuple (Setup’, Enc’, KeyGen’, Dec’) be a broadcast encryption scheme.
Let the tuple (Gen,sign,Ver) be a strongly unforgeable one-time signature scheme with w-bit
verification keys.

« Setup(ZD) = Setup’(ZD' = ID U {u;p}ic[w]pefo,1})- That is, the identity space of the underly-
ing CPA-secure broadcast scheme consists of “real” identities for the derived scheme, and 2w
special identities u; .

o KeyGen(msk,u) = KeyGen’(msk, u)

o Enc(Params, S): Run (vk,sk) < Gen(). Let S’ = S U {uju, }icpr)- That is, use the bits of
vk to select half of the u;p, and add those to S. Run (Hdr', K) + Enc’(Params, S’) and
o < sign(sk, (S, Hdr’)). Output (Hdr = (Hdr', vk, o), K).

o Dec(Params, u, sky, S, (Hdr', vk, o)): Check that Ver(vk, (S, Hdr’), o) accepts, and if not output
1. Otherwise, use vk to construct S’ as above. Then run K’ < Dec’(Params, u, sky, S’, Hdr').

Correctness. The correctness of the scheme follows immediately from the correctness of the
underlying scheme and the fact that S C S’.

Parameter Sizes. 2w identities are added to the identity space and w recipients are added, where
w is related to the security parameter (namely, w is independent of the size of the identity-space
ID). For non-identity-based schemes (where ZD is polynomial in size) the number of possible
identities is still polynomial, so this conversion can be used with such schemes. Since all system
parameters already grow with the security parameter, the cost of this conversion is absorbed into
terms involving the security parameter. Thus the asymptotics of the scheme are not significantly
affected. Furthermore, when the number of recipients is far larger than the security parameter
(which is the interesting domain for broadcast encryption), the overhead for this conversion is
minimal.

Security. We now prove the security of our scheme. The idea behind the proof is simple: the
reduction will choose (vk*,sk*) <— Gen() for the challenge ciphertext, and obtain the secret keys
for users w; 1_yk,. Now during any decryption query targeting user u, if vk # vk*, the reduction
will be able to decrypt the ciphertext using one of its secret keys. The statistical independence of
decryption insures that the result “looks” like it was decrypted using u, even though the reduction
may not have the secret key for u. If vk = vk*, and the ciphertext is not equal to the challenge
ciphertext, then the ciphertext query constitutes a forgery for the signature scheme. Thus, our
reduction will be able to either respond to the decryption queries, or break the signature scheme.

Theorem 5.2. Let (Setup’, Enc’, KeyGen’, Dec’) be an adaptively (resp. semi-statically, statically)
CPA secure broadcast scheme with statistically independent decryption. Let (Gen,sign, Ver) be a
strongly one-time secure signature scheme. Then Construction 5.1 is adaptively (resp. semi-statically,
statically) CCA secure.
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Proof. We prove the adaptive case, the other cases being similar. Let A be an adaptive CCA
security adversary for Construction 5.1. We prove security though a sequence of games:

Game 0. This corresponds to the real security game. We can assume that (vk*, sk*) for the
challenge ciphertext are chosen at the start of the game. Let € = ¢y be the advantage of A in this
game.

Game 1. In this game, if the challenger ever receives a decryption query with vk = vk*, it outputs
a random bit and aborts. Let €1 be the advantage of A in Game 1. If the adversary is able to query
on a ciphertext with vk = vk* that is different from the challenge ciphertext, it must have forged
a new signature relative to vk*. Therefore, such an adversary can be used to break the one-time
security of (Gen,sign, Ver). The security of (Gen,sign, Ver) then shows that € is negligibly close to

€0-

Game 2. In this game, the challenger runs sk; < KeyGen(msk, Uz‘,l—vk;) for i € [w] after generating
the scheme parameters. Now, in every decryption query with verification key vk, since vk # vk*,
there is some i such that vk; = 1 — vk;. The challenger uses then sk; to decrypt the underlying
header Hdr’ instead of the secret key for the user specified by the adversary. Let e» be the advantage
of A in Game 2. The statistical independence of decryption implies that this change is undetectable
to A. Therefore, €2 is negligibly close to e;.

Observe that in Game 2, the challenger never computes a secret key for users Uj vk (by the
definition of Game 2) or users u ¢ S* (since such secret key queries are not allowed in the security
game). Moreover, the challenge query yields and encryption to the set S’ = S* U {umk; }ie[w]. Since
the challenger never computes any secret key for users in S’ the challenger and adversary A can be
used to break the CPA security of (Setup, KeyGen, Enc, Dec) with advantage €2, which must therefore
be negligible. Thus € = ¢y is negligible as well, as desired. O
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