
Cut-and-Choose Bilateral Oblivious Transfer and Its Application
in Secure Two-party Computation

Han Jiang, Xiaochao Wei, Chuan Zhao, and Qiuliang Xu

School of computer science and technology, Shandong University
jianghan@sdu.edu.cn

weixiaochao2008@163.com

zhaochuan.sdu@gmail.com

xql@sdu.edu.cn

Abstract. In secure two-party computation protocols, the cut-and-choose paradigm is used to prevent
the malicious party who constructs the garbled circuits from cheating. In previous realization of the cut-
and-choose technique on the garbled circuits, the delivery of the random keys is divided into multiple
stages. Thus, the round complexity is high and the consistency of cut-and-choose challenge should be
proved.

In this paper, we introduce a new primitive called cut-and-choose bilateral oblivious transfer, which
transfers all necessary keys of garbled circuits in one process. Specifically, in our oblivious transfer
protocol, the sender inputs two pairs (x0, x1), (y0, y1) and a bit τ ; the receiver inputs two bits σ and
j. After the protocol execution, the receiver obtains xτ , yσ for j = 1, and x0, x1, y0, y1 for j = 0.

By the introduction of this new primitive, the round complexity of secure two-party computation
protocol can be decreased; the cut-and-choose challenge j is no need to be opened anymore, therefore
the consistency proof of j is omitted. In addition, the primitive is of independent interest and could be
useful in many cut-and-choose scenarios.

Keywords: Secure Two-party Computation, Round Complexity, Cut-and-choose Inverse OT, Cut-
and-choose Bilateral OT

1 Introduction

1.1 Background

Secure two-party computation considers the setting where two distinct parties P1 and P2 holding
secret inputs x and y want to compute a desired function f(x, y) such that each party obtains an
output, and it satisfies some security requirements. These requirements contain privacy, correctness,
independence of inputs, guaranteed output delivery and fairness (see [1]). The security defined for
two-party computation is based on ideal/real simulation paradigm [1–3], where in the ideal
world there exists a trusted third party who receives inputs of the participants and sends corre-
sponding outputs to each party, but in the real world the participants run some actual protocols.
A protocol is said to be secure if no adversary can do more harm in a real execution than in an
execution that takes place in the ideal world. For a specific protocol, we judge its security for a
function by comparing the outputs of the adversary and honest party in a real execution to their
outputs in the ideal world. For the reason of the different adversarial behavior, we mainly consider
the following three kinds of model: semi-honest model, malicious model and covert model. For more
details see the chapter 3,4,5 in [1].



1.2 The Cut-and-choose Technique for Secure Computation

The primary work of secure two-party computation proposed by Yao [16] is secure only in semi-
honest model, the cut-and-choose technique used for constructing secure protocols in the presence
of malicious adversary was firstly proposed by Lindell and Pinkas [4]. The basic idea behind cut-
and-choose is that P1 constructs many copies of the garbled circuit computing the desired function,
then P2 instructs P1 to open a subset of these circuits (called check-circuits) and checks them, if
any misbehavior is detected in check-circuits, P2 aborts the protocol. The remaining circuits (called
evaluation-circuits) are evaluated to derive the final output.

The results of all of the evaluation-circuits may be different because the faked circuits can be
selected as evaluation-circuits. To resist a so called selective failure attack [9], an efficient strategy
is that P2 takes the majority outputs of evaluation-circuits as result, then P1 can only cheat if the
majority of the unopened circuits are incorrect, while all of the opened circuits are correct. The
majority outputs are correct except with negligible probability, which is related to s (the number
of circuits P1 constructs), i.e, in [4, 8, 5, 7, 6] the error probability respectively are 2−s/17, 2−s/4,
2−0.311s, 2−0.32s and 2−s. In [8] it shows that the bottleneck factors influencing the efficiency are
the number of circuits and commitments used for consistency check.

In [5] a new technique called cut-and-choose OT was given and the number of the check circuits
is just half of all circuits, whose error probability is 2−0.311s; in [7] the number of check-circuits is
60% of all circuits, which leads the probability to be 2−0.32s.

In Crypto 2013, Lindell presented a protocol in [6] satisfying that the error probability is 2−s.
Comparing with the protocol in [5], the new protocol’s advantage reflects in the following aspects.
In his protocol, P1 and P2 run a batch single-choice cut-and-choose OT to transfer the garbled
circuits, and then P2 evaluates the evaluation-circuits at first which is opposite to [5]. Through this
process, if P1 has cheated, P2 can obtain two different values in one output wire of a evaluation-
circuit (we call it a proof), then P2 participates another small protocol using this proof aiming
at obtaining P1’s input for computation. After the above steps, P2 checks the check-circuits and
aborts the protocol if there exists any mistakes. This changes the awkward situation in previous
work that though P2 knows that P1 is cheating, but he can do nothing about it. This protocol gives
the best error probability 2−s until now, but in the small protocol there needs additional two-party
computation circuits to detect the cheating (verify the correctness of P2’s proof).

At the same conference, Yan Huang et al. introduce the idea of symmetric cut-and-choose
protocol [11], in which each party generates κ circuits to be checked by the other party, and then
evaluates the remaining garbled circuits of the other party. The final outputs are combined by both
parties’ results. Compare with the one-side cut-and-choose two-party computation, where P1 can
only cheat if the majority of the evaluation circuits are incorrect and all of the check circuits are
correct, a malicious party in Yan’s protocol can successfully cheat only if they generate exactly
κ − c fake garbled circuits and none of them is checked by the other party. When setting c = κ/2
(which minimizes the cheating probability), the error probability reaches 2−κ+o(log κ).

1.3 Motivation and Contributions

In this paper, we introduce a new primitive called cut-and-choose bilateral oblivious transfer, which
is inspired by the work of Lindell and Pinkas [5], in which a primitive called cut-and-choose oblivious
transfer was presented and used in secure-two-party computation to intertwine the oblivious transfer
and the circuit checks, and solved the selective failure attack problem. The motivation of our



primitive, however, is to further improve the efficiency of secure two-party computation protocol
in respect of round complexity. Specifically, our work can reduce the round complexity of the
cut-and-choose phase in the protocol to only one round.

In previous works mentioned above, the delivery of the keys associated with the input wires
in garbled circuits is divided into multiple stages. Thus, the round complexity is high and the
consistency of challenge set J should be proved. In this paper, we construct an oblivious transfer
protocol that can transfer all necessary keys of garbled circuits in one process. Specifically, in our
oblivious transfer primitive, the sender inputs two pairs (x0, x1), (y0, y1) and a bit τ . The receiver
inputs two bits σ and j. Then, the receiver obtains xτ , yσ for j = 1, and x0, x1, y0, y1 for j = 0.
In traditional OT2

1 protocol, even the cut-and-choose OT protocol mentioned above, the sender is
passive in the sense that he prepares the garbled keys for receiver to choose. Our new primitive
works in a different pattern in which the sender is active in the sense that he also decides which
part of the keys should be obtained by the receiver.

By the introduction of this new primitive, we obtain a number of benefits:

– The round complexity of secure two-party computation protocol is decreased;

– The challenge set J is no need to be opened anymore, therefore the consistency proof of J is
omitted;

– This primitive is of independent interest and could be useful in many cut-and-choose scenarios,
not just in secure two-party computation.

In this paper, we give the efficient construction of cut-and-choose bilateral oblivious transfer
based on decisional Diffied-Hellman assumption. The construction is divided into two stages. At
first, we “inverse” the right of key choice from R to S in cut-and-choose OT; then we combine
the cut-and-choose OT with cut-and-choose inverse OT to form cut-and-choose bilateral OT. Our
cut-and-choose bilateral oblivious transfer protocol is secure against malicious adversaries and the
security is proven under the standard ideal/real simulation paradigm.

1.4 Organization

We present some preliminaries such as garbled circuits and RAND function in Section 2 and extract
a simplified version of cut-and-choose OT in Section 3. Then we give a detailed construction and
security proof of cut-and-choose inverse OT protocol in Section 4 and cut-and-choose bilateral OT
protocol in Section 5. At last, we show the application of cut-and-choose bilateral OT in secure
two-party computation in Section 6.

2 Preliminaries and Notations

2.1 Notations of Cut-and-choose Two-party Computation

Functionality and Inputs. Let f be a polynomial-time functionality, and let x is P1’s input and
y is P2’s input. For simplicity, we assume that the input length, output length and the security
parameter are all of the same length n, then we write the binary form of the inputs as x = τ1τ2 . . . τn
and y = σ1σ2 . . . σn.



Garbled Circuits. Let C(x, y) is a boolean circuit that computes the function f , that receives
two inputs x, y ∈ {0, 1}n and outputs C(x, y) ∈ {0, 1}n. The circuit C(x, y) is computed gate by
gate. Each gate can be represented by a function g : {0, 1} × {0, 1} → {0, 1}, so it has two input
wires and one output wire. Let m be the number of all wires in the circuit C, and let w1, . . . , wm be
the labels of these wires. In these m wires, let w1, . . . , wn be the circuit-input wires corresponding
to input x, and wn+1, . . . , w2n be the circuit-input wires corresponding to input y. For each wire
wi (i = 1, . . . ,m), randomly choose two independent keys ki0, k

i
1. Given these keys, we can compute

four garbled values of each gate g whose input wires are wi and wj , and output wire is wl as:

c0,0 = Eki0
(E

kj0
(klg(0,0))), c0,1 = Eki0

(E
kj1

(klg(0,1))),

c1,0 = Eki1
(E

kj0
(klg(1,0))), c1,1 = Eki1

(E
kj1

(klg(1,1))).

where E is from a private-key encryption scheme (G,E,D). The results of random permutation of
above values are called garbled table for gate g. For every circuit-output wire wt, the table consisted
of the values (0, kt0) and (1, kt1) is called the output table (or decryption table). Then all the garbled
tables and the output tables form the entire garbled circuit of C, denoted by G(C).

In malicious adversaries model, for the same circuit of C, we should independently generate s
garbled circuits, denoted by G1(C), G2(C), . . . , Gs(C). We denote the keys associated with ith wire
of Gj(C) as ki,j0 , ki,j1 .

The Partition of Garbled Circuits. For s garbled circuits, we use a s-bits binary string j =
j1j2 . . . js to divide them. For all i = 1, 2, . . . , s, if ji = 0, then the circuit Gi(C) is a check-circuit,
otherwise, it is a evaluation-circuit.

2.2 Randomization Algorithm RAND and Its Properties

In [12], Peikert et al. proposed a randomization algorithm that is based on DDH assumption as
follows.

Algorithm 1: RAND(g, h, g̃, h̃)

Let (G, g0, q) be such that G is a group of prime order q, with generator g0, and g, h, g̃, h̃ ∈ G.
Choose s, t← Zq independently, compute u = gs · ht and v = (g̃)s · (h̃)t.
Output (u, v).

Algorithm RAND has some properties and Lindell described them in [6] as follows.

Proposition 1. Let (G, g0, q) be as above and the input to RAND is a DH-tuple. Let g, h ∈ G and
a ∈ Zq. Then, for (u, v)← RAND(g, h, ga, ha), it holds that ua = v.

Proof. By the definition of algorithm RAND, u = gs · ht, v = (ga)s · (ha)t = ga·s · ha·t. Then

ua = (gs · ht)a = ga·s · ha·t = v.

Proposition 2. Let (G, g0, q) be as above and let g, h, g̃, h̃ ∈ G. If (g, h, g̃, h̃) is not a DH-tuple, then

the distributions (g, h, g̃, h̃, RAND(g, h, g̃, h̃)) and (g, h, g̃, h̃, gα0 , g
β
0 ) are equivalent, where α, β ← Zq

are random.



Proof. Since (g, h, g̃, h̃) is not a DH-tuple, there exist a, b ∈ Zq and a 6= b, such that g̃ = ga and
h̃ = hb. We show that Pr[RAND(g, h, g̃, h̃) = (gα, gβ)] = 1

q2
where the probability is taken over

s, t used to compute RAND.
Let γ ∈ Zq be such that h = gγ , then (u, v) ← RAND(g, h, g̃, h̃) = RAND(g, gγ , ga, (gγ)b), so
u = gs · (gγ)t = gs+γ·t and v = (ga)s · (gγ·b)t = ga·s+γ·b·t. Thus (u, v) = (gα, gβ) if and only if{

s+ γ · t = α
a · s+ γ · b · t = β

These equations have a single solution if and only if the matrix(
1 γ
a γb

)
is invertible, which holds here since the determinant is 1 · γb − γ · a = γ(b − a) 6= 0, where the
inequality holds since a 6= b. Thus, there is a single pair s, t such that (u, v) = (gα, gβ) implying
that the probability is 1

q2
, as required.

2.3 An Encryption Scheme Based on RAND

Based on algorithm RAND, Peikert et al. construct a public key cryptosystem in [12], whose
correctness and security are based on Proposition 1 and Proposition 2.

Scheme 1: Basic Public-key Encryption Scheme Based on RAND: Encryption1.

• KeyGen(1n): Choose (G, g0, q) on the security parameter 1n, where G is a group of prime
order q with generator g0, and q is of length n. The message space of the system is G.
Randomly choose g, h ∈ G and exponent x ∈ Zq. Let pk = (g, h, gx, hx) and sk = x.
• Enc(pk,m): Parse pk as (g, h, g̃, h̃). Let (u, v)← RAND(g, h, g̃, h̃). Output the ciphertext

(u, v ·m).
• Dec(sk, c): Parse c as (c0, c1). Output m = c1/c

sk
0 = c1/c

x
0 .

Notice that if we set a DH-tuple as public key in Encryption1, then the ciphertext can be
decrypted correctly. Otherwise, if we set a Non-DH-tuple as public key, then we can only get a
random element in G.

3 Cut-and-choose OT Protocol

In [5], Lindell et al. proposed their cut-and-choose OT protocol, and then modified it in [6]. In this
section, we extract a simplified version of their protocol, and describe it in a different way.

3.1 The Functionality of Cut-and-choose OT Protocol

Functionality: FCACOT

– Inputs: The sender’s input is a pair (k0, k1), the receiver’s inputs are bits σ and j.
– Auxiliary input: Both parties hold a security parameter 1n and (G, g0, q), where G is a group

of order q with a generator g0, and q is of length n.



– Output:

• The sender outputs nothing;

• The receiver outputs that
if j = 0 then outputs k0, k1;

else if j = 1 then outputs kσ;

3.2 First Variant of RAND: ExtenedRAND

The output of RAND is one pair and can be used to encrypt only one message. In the OT protocol,
we must encrypt two messages at the same time. So we construct an algorithm based on RAND
whose outputs are two pairs, which is called ExtenedRAND.

Algorithm 2: ExtenedRAND(g, h, g1, h1, g̃, h̃)

Let (G, g0, q) be such that G is a group of order q, with generator g0. Let g, h, g1, h1, g̃, h̃ ∈ G.
Computes

1. (u0, v0)← RAND(g, h, g̃, h̃)
2. (u1, v1)← RAND(g1, h1, g̃, h̃)

Output ((u0, v0), (u1, v1)).

3.3 Cut-and-choose OT from ExtenedRAND

Protocol: We describe the cut-and-choose OT protocol as follows:

Protocol 1: Cut-and-choose OT From ExtenedRAND: OT1.

1. The receiver R chooses randomly h0 ∈ G and a ∈ Zq, computes g1 = (g0)
a, h1 = (h0)

a+j , that
is

if j = 0 then computes h1 = (h0)
a;

else if j = 1 then computes h1 = (h0)
a+1;

2. P sends (h0, g1, h1) to S.
3. R proves to S that he know the discrete logarithm of g1 relative to g0.
4. R chooses a random b ∈ Zq, and computes g̃ = (gσ)b, h̃ = (hbσ), that is

if σ = 0 then computes g̃ = gb0, h̃ = hb0;

else if σ = 1 then computes g̃ = gb1, h̃ = hb1;

5. S computes ((u0, v0), (u1, v1))← ExtenedRAND(g0, h0, g1, h1, g̃, h̃), and w0 = v0 · k0,
w1 = v1 · k1.

6. S sends ((u0, w0), (u1, w1)) to R.
7. R computes that

if j = 0 then

if σ = 0 then computes k0 = w0/(u0)
b, k1 = w1/(u1)

ba−1
;

else if σ = 1 then computes k0 = w0/(u0)
ab, k1 = w1/(u1)

b;

else if j = 1 then
if σ = 0 then computes k0 = w0/(u0)

b;

else if σ = 1 then computes k1 = w1/(u1)
b;



Correctness: We summarize all cases of the combination of j and σ’s values. The correctness of
the protocol is easy to see from Table 1.

Table 1.The running branches of Protocol 1

(j, σ) Input:

g, h
g1, h1
g̃, h̃

Output of ExtenedRAND(g, h, g1, h1, g̃, h̃) Properties

(0, 0)
g0, h0
ga0 , h

a
0

(g0)
b, (h0)

b

– (u0, v0)← RAND(g0, h0, (g0)
b, (h0)

b)
– (u1, v1)← RAND(ga0 , h

a
0, g

b
0, h

b
0)

= RAND(ga0 , h
a
0, (g

a
0)ba

−1
, (ha0)ba

−1
)

– v0 = ub0
– v1 = uba

−1

1

(0, 1)
g0, h0
ga0 , h

a
0

(ga0)b, (ha0)b

– (u0, v0)← RAND(g0, h0, (g
a
0)b, (ha0)b)

= RAND(g0, h0, (g0)
ab, (h0)

ab)
– (u1, v1)← RAND(ga0 , h

a
0, (g

a
0)b, (ha0)b)

– v0 = uba0
– v1 = ub1

(1, 0)

g0, h0
ga0 , h

a+1
0

(g0)
b, (h0)

b

– (u0, v0)← RAND(g0, h0, (g0)
b, (h0)

b)
– (u1, v1)← RAND(ga0 , h

a+1
0 , gb0, h

b
0)

– v0 = ub0
– (. . . , u1, v1)

c
≈ (. . . , gα0 , g

β
0 )

where α, β ∈R Zq

(1, 1)

g0, h0
ga0 , h

a+1
0

(ga0)b, (ha+1
0 )b

– (u0, v0)← RAND(g0, h0, (g0)
b, (ha+1

0 )b)
– (u1, v1)← RAND(ga0 , h

a+1
0 , gb0, (h

a+1
0 )b)

– (. . . , u0, v0)
c
≈ (. . . , gα0 , g

β
0 )

where α, β ∈R Zq.
– v1 = ub1

Security: The security proof is as same as the proof in [6], so we omit it here.

Efficiency: To construct the inputs of ExtenedRAND (the inputs can be viewed as a public
key to the encryption scheme based on RAND), R computes 4 exponentiations; to construct
the ciphertext, S computes 8 exponentiations and 6 multiplications; to decrypt the ciphertext,
if j = 0, R computes 2 exponentiations, 2 modular inverses and 2 multiplications, if j = 1, R
computes 1 exponentiation, 1 modular inverse and 1 multiplication, the expectation of computes
are 1.5 exponentiations, 1.5 modular inverses and 1.5 multiplications. The protocol takes 3 rounds
of communication, and the parties exchange 9 group elements (5 of them are elements of the public
key, and 4 of them are ciphertexts). It also needs 1 zero knowledge proof of discrete logarithm.

4 Cut-and-choose Inverse OT Protocol

4.1 The Functionality of Cut-and-choose Inverse OT Protocol

Functionality: FCACIOT

– Inputs: The sender S’s inputs are a key-pair (k0, k1), a bit τ and a bit m, m indicates whether
the order of the keys is permuted; the receiver R’s input is a bit j.



– Auxiliary input: Both parties hold a security parameter 1n and (G, g0, q), where G is a group of
order q with a generator g0, and q is of length n. The commitments com(km), com(k1−m), com(m)
to (km, k1−m) and m, that is:
if m = 0 then the commitments are com(k0), com(k1), com(m);

else if m = 1 then the commitments are com(k1), com(k0), com(m);

– Output:

• The sender outputs nothing;

• The receiver outputs that
if j = 0 then outputs k0, k1 and m;

else if j = 1 then outputs kτ ;

In order to realize FCACIOT , the following four aspects must be paid attention to.

– From the definition of FCACIOT , we observe that the key kτ corresponding to the sender’s input
bit τ is always obtained by the receiver, no matter with the value of j, but the other key k1−τ
and m are obtained by the receiver only when j = 0. Just as in protocol OT1, R sends S a
DH-tuple when j = 0 and a Non-DH-tuple when j = 1, this tuple is suitable for encrypting
k1−τ and m, but not for kτ (because when j = 1, R can not get kτ ). So we make S construct
a DH-tuple himself based on the tuple received from R. When receiving (g0, g

a
0 , g̃, h̃) from R, S

can randomly select r ∈ Zq, construct (g0, g
r
0, g

a
0 , (g

a
0)r) as a DH-tuple, and use it to encrypt kτ .

R can then decrypt the ciphertext using a.

– We must randomly permute the order of the k0 and k1, otherwise, it will leak the input τ . For
example, if j = 1 and R gets the first key, then R knows that τ = 0. We permute the order of
the keys by a random bit m, if m = 0, we keep the order; if m = 1, we change the order.

– Compared with j = 0, the situation is more complicate in the case of j = 1. In this case, R
does not know S’s input τ , and the key order perhaps be changed, so he is not aware of which
ciphertext should be decrypted. To solve this problem, we use the approach of committed OT.
S computes com(k0), com(k1), com(m), randomly changes their order and transfers them to R
before OT is executed, so those commitments can be viewed as auxiliary input of the OT. Then
R can know which one is kτ by verifying the auxiliary commitments.

– We must use the same decryption key to decrypt all of kτ , k1−τ and m, otherwise, it will leak
the input τ . For example, when j = 0, R can get both k0, k1 and m, because m and k1−τ are
encrypted by same key and kτ is decrypted by the other key, we can get τ by this difference.

4.2 Second Variant of RAND: SelfExtendedRAND

We construct an algorithm ShrinkedRAND based on RAND, which forms a DH-tuple from a
DH-pair firstly, and then calls the algorithm RAND.

Algorithm 3: ShrinkedRAND(g, h)

Let (G, g0, q) be such that G is a group of order q, with generator g0. Elements g, h ∈ G.
Choose r ← Zq, computes g̃ = gr and h̃ = hr and

(u, v)← RAND(g, g̃, h, h̃)

Output (u, v).



Algorithm SelfExtendedRAND’s input is as same as RAND, but outputs three pairs, which
can be used to encrypt three messages kτ , k1−τ ,m.

Algorithm 4: SelfExtendedRAND(g, h, g1, h1)

Let (G, g0, q) be such that G is a group of order q, with generator g0. Elements
g, h, g1, g2 ∈ G.
Computes

1. (u0, v0)← ShrinkedRAND(g, h)
2. (u1, v1)← RAND(g, g1, h, h1)
3. (u2, v2)← RAND(g, g1, h, h1)

Output ((u0, v0), (u1, v1), (u2, v2)).

Note 1. (u1, v1) and (u2, v2) are generated by RAND with same inputs, but different random
numbers, and the order of inputs to RAND is different to the inputs order in SelfExtendedRAND,
which can make (u0, v0), (u1, v1), (u2, v2) be DH-pairs with same exponent.

4.3 Cut-and-choose Inverse OT from SelfExtenedRAND

Protocol: We describe the cut-and-choose inverse OT protocol as follows:

Protocol 2: Cut-and-choose Inverse OT From SelfExtenedRAND: OT2.

1. The receiver R chooses randomly a, b ∈ Zq, computes h0 = (g0)
a,g1 = (g0)

b, h1 = (h0)
b+j , that

is
if j = 0 then computes h1 = (h0)

b = ((g0)
a)b;

else if j = 1 then computes h1 = (h0)
b+1 = ((g0)

a)b+1;
2. P sends (h0, g1, h1) to S.
3. R proves to S that he know the discrete logarithm of g1 relative to g0.
4. S computes ((u0, v0), (u1, v1), (u2, v2))← SelfExtenedRAND(g0, h0, g1, h1), and w0 = v0 · kτ ,
w1 = v1 · k1−τ , w2 = v2 ·m.

5. S permutes the order of (u0, w0), (u1, w1) randomly as (u′0, w
′
0), (u

′
1, w

′
1), sends

((u′0, w
′
0), (u

′
1, w

′
1), (u2, w2)) to R.

6. R computes d0 = w′0/(u
′
0)
a,d1 = w′1/(u

′
1)
a.

– If j = 0, R computes m = w2/(u2)
a, verifies if com(m) is the commitment of m, com(km)

is the commitment of one of d0, d1, and com(k1−m) is the commitment of the other one. If
not, R outputs ⊥, otherwise, he can rearrange the order of com(km), com(k1−m) as
com(k0), com(k1), and then rearrange the order of d0 and d1 as k0, k1.

– If j = 1, R verifies whether only one of com(km), com(k1−m) is the commitment of one of
d0 and d1, if not, R outputs ⊥, otherwise it outputs the one in d0 and d1, which is
correctly verified as kτ .

Note 2. In the protocol, the encryption algorithm is not suitable to encrypt a single bit, so it can
not encrypt m directly. This problem can be solved by message padding, we omit the details here.



Correctness: The correctness of the protocol is easy to see from Table2.

Table 2.The running branches of Protocol 2

j Input: g, h, g1, h1 Outputs of SelfExtenedRAND:(g, h, g1, h1) Properties

0 g0, g
a
0 , g

b
0, (g

a
0)b

– (u0, v0)← RAND(g0, g
r
0, g

a
0 , (g

r
0)a)

where r ∈R Zq
– (u1, v1)← RAND(g0, g

b
0, g

a
0 , (g

a
0)b)

– (u2, v2)← RAND(g0, g
b
0, g

a
0 , (g

a
0)b)

– v0 = ua0 (encrypt kτ )
– v1 = ua1 (encrypt k1−τ )
– v2 = ua2 (encrypt m)

1 g0, g
a
0 , g

b
0, (g

a
0)b+1

– (u0, v0)← RAND(g0, g
r
0, g

a
0 , (g

r
0)a)

where r ∈R Zq
– (u1, v1)← RAND(g0, g

b
0, g

a
0 , (g

a
0)b+1)

– (u2, v2)← RAND(g0, g
b
0, g

a
0 , (g

a
0)b+1)

– v0 = ua0 (encrypt kτ )

– (. . . , u1, v1)
c
≈ (. . . , gα0 , g

β
0 )

where α, β ∈R Zq
(encrypt k1−τ )

– (. . . , u2, v2)
c
≈ (. . . , gα

′
0 , g

β′

0 )
where α′, β′ ∈R Zq
(encrypt m)

Security: The security of the protocol is proved by following theorem.

Theorem 1. If the Decisional Diffie-Hellman assumption holds in group G, then the protocol 1
securely computes FCACIOT functionality in the presence of malicious adversaries.

Proof. We prove security in a hybrid model where the zero-knowledge proofs and proofs of knowl-
edge (ZKPOK) are computed by ideal functionalities.

R is corrupted: Let A be an adversary that controls the receiver R in real world. We construct
a simulator S that invokes A on its input and works as follows:

1. S receives (h0, g1, h1) from A and verifies the zero-knowledge proof as the honest sender would.

(a) If the verification fails, S sends ⊥ to the trusted party and halts.

(b) Otherwise, S runs the extractor and extracts a witness α. Then S sets j = 0 if (h0)
α = h1

and j = 1 otherwise.

2. The simulator S sends j to the trusted party:

(a) If j = 0, S receives back k0, k1 and m.

(b) If j = 1, S receives back kτ .

3. Like the honest sender, S simulates the transfer of k0, k1,m as follows: S computes

((u0, v0), (u1, v1), (u2, v2))← SelfExtenedRAND(g0, h0, g1, h1),

and w0 = v0 · kτ , w1 = v1 · k1−τ , w2 = v2 · m, and permutes the order of (u0, w0), (u1, w1)
randomly as (u′0, w

′
0), (u

′
1, w

′
1).

4. S sends (u′0, w
′
0), (u

′
1, w

′
1), (u2, w2) to A and outputs whatever A outputs.



It is easy to see that the outputs of the ideal execution between S and an honest sender S is
identical to the outputs of a real execution with A and an honest sender S.

S is corrupted: We now consider the case that A controls S. We construct a simulator S that
invokes A on its inputs and works as follows:

1. S chooses random a, b ∈ Zq and computes h0 = (g0)
a, g1 = (g0)

b. Then it sets h1 = (g1)
a which

means that j = 0, and sends (h0, g1, h1) to A.
2. S proves to A that he knows the discrete logarithm of h0 relative to g0.
3. S receives (u′0, w

′
0), (u

′
1, w

′
1), (u2, w2) fromA, like an honestR, S can decrypts (u′0, w

′
0), (u

′
1, w

′
1), (u2, w2)

and verifies the commitments. If there exists a commitment that does not hold, the S outputs
⊥, otherwise, because in this case j = 0, S can get k0, k1,m.

4. S rewinds to the first step, and sets h1 = (g1)
a+1, which means that j = 1.

5. S interacts with A as an honest R, if S outputs ⊥, then S rewinds to step 1 just like step4.
Repeats this process until S extracts kτ .

6. S compares kτ with k0, k1, then he can get τ .
7. S sends k0, k1,m, τ to the trusted party, outputs whatever A outputs and halts.

The main observation of the simulation is how to extract the input of τ . The simulator firstly sets
j = 0 and obtains values (k0, k1,m) (by m, it can get the correct order of k0 and k1), then it rewinds
to the first step by setting j = 1 again and again until it gets kτ . Just like discussion in [4] and
[5], the rewind process can be finished in expected polynomial time. Comparing kτ with k0 and k1,
then the simulator gets τ . It is easy to see that the outputs of the ideal execution between S and
an honest receiver R is identical to the outputs of a real execution with A and an honest honest
receiver R.

Efficency: To construct the inputs of SelfExtenedRAND (the inputs can be view as a public
key to encryption scheme based on RAND), R computes 3 exponentiations; to construct the
ciphertext, S computes 14 exponentiations and 8 multiplications; to decrypt the ciphertext, if
j = 0, R computes 3 exponentiations, 3 modular inverses, 3 multiplications and 3 commitments
verifications, if j = 1, R computes 2 exponentiations, 2 modular inverses, 2 multiplications and
2 commitments verifications, the expectation of computes are 2.5 exponentiations, 2.5 modular
inverses, 2.5 multiplications and 2.5 commitments verifications. The protocol takes 3 rounds of
communications, and the parties exchange 9 group elements (3 of them are elements of the public
key, and 6 of them are ciphertexts). It also need 1 zero knowledge proof of discrete logarithm.

About Selective Failure Attack We do not specify the commitment scheme used in the protocol.
If we adapt the method of commited OT that is discussed in [11], it can ensure our scheme against
the selective failure attack. This method is also taken in [5] and [6], which used a DDH type
commitment with a proof of knowledge of discrete logarithm.

5 Cut-and-choose Bilateral Oblivious Transfer

5.1 The Functionality of Cut-and-choose Bilateral OT Protocol

Functionality: FCACBOT



– Inputs: The sender S’s inputs are a a bit τ and (k10, k
1
1,m), (k20, k

2
1), which m indicates the

order of the key (k10, k
1
1); the receiver R’s input are bit j and σ.

– Auxiliary input: Both parties hold a security parameter 1n and (G, g0, q), where G is a group of
order q with a generator g0, and q is of length n. The commitments com(k1m), com(k11−m), com(m)
to (km, k1−m) and m, that is
if m = 0 then the commitments are com(k10), com(k11), com(m);

else if m = 1 then the commitments are com(k11), com(k10), com(m);

– Output:

• The sender outputs nothing

• The receiver outputs that
if j = 0 then outputs (k10, k

1
1, k

2
0, k

2
1) and m;

else if j = 1 then outputs (kτ , kσ);

5.2 A Combination of ExtendedRAND and SelfExtendedRAND:
CombinedRAND

Combining the ExtendedRAND and SelfExtendedRAND, we form the CombinedRAND, it
outputs five pairs that can encrypt five messages.

Algorithm 5: CombinedRAND(g, h, g1, h1, g̃, h̃)

Let (G, g0, q) be such that G is a group of order q, with generator g0. Elements
g, h, g1, h1, g̃, h̃ ∈ G.
Computes

1. ((u0, v0), (u1, v1), (u2, v2))← SelfExtendedRAND(g, h, g1, h1)
2. ((u3, v3), (u4, v4))← ExtenedRAND(g, h, g1, h1, g̃, h̃)

Output ((u0, v0), (u1, v1), (u2, v2), (u3, v3), (u4, v4)).

5.3 Cut-and-choose Bilateral OT from CombinedRAND

Protocol: We describe the cut-and-choose bilateral OT protocol as follows:



Protocol 3: Cut-and-choose Bilateral OT From CombinedRAND: OT3.

1. The receiver R chooses randomly a, b ∈ Zq, computes h0 = (g0)
a,g1 = (g0)

b, h1 = (h0)
b+j , that

is
if j = 0 then computes h1 = (h0)

b = ((g0)
a)b;

else if j = 1 then computes h1 = (h0)
b+1 = ((g0)

a)b+1;
2. P sends (h0, g1, h1) to S.
3. R proves to S that he knows the discrete logarithm of g1 relative to g0.
4. R chooses a random c ∈ Zq, and computes g̃ = (gσ)c, h̃ = (hcσ), that is

if σ = 0 then computes g̃ = gc0, h̃ = hc0;

else if σ = 1 then computes g̃ = gc1, h̃ = hc1;

5. S computes ((u0, v0), (u1, v1), (u2, v2), (u3, v3), (u4, v4))← CombinedRAND(g0, h0, g1, h1, g̃, h̃),
and w0 = v0 · k1τ , w1 = v1 · k11−τ , w2 = v2 ·m, w3 = v3 · k20, w4 = v4 · k21.

6. S randomly permutes the order of (u0, w0), (u1, w1) as (u′0, w
′
0), (u

′
1, w

′
1), sends

((u′0, w
′
0), (u

′
1, w

′
1), (u2, w2)(u3, w3), (u4, w4)) to R.

7. R computes d0 = w′0/(u
′
0)
a, d1 = w′1/(u

′
1)
a.

– If j = 0,
• R computes m = w3/(u3)

a, verifies if com(m) is the commitment of m, com(k1m) is the
commitment of one of d0, d1, and com(k11−m) is the commitment of the other one. If
not, R outputs ⊥, otherwise, he can rearrange the order of com(k1m), com(k11−m) as
com(k10), com(k11), and then rearrange the order of d0 and d1 as k10, k

1
1.

• if σ = 0 then computes k20 = w3/(u3)
c, k21 = w4/(u4)

cb−1
;

• else if σ = 1 then computes k20 = w3/(u3)
bc, k21 = w4/(u4)

c;
– If j = 1,
• R verifies whether only one of com(k1m), com(k11−m) is the commitment of one of d0 and
d1, if not, R outputs ⊥, otherwise it outputs the one in d0 and d1, which is correctly
verified as kτ .
• if σ = 0 then computes k20 = w3/(u3)

c;
• else if σ = 1 then computes k21 = w4/(u4)

c;

Correctness: The correctness of the protocol is easy to see from Table3.

Table 3. The running branches of Protocol 3

(j, σ) Input:

g, h
g1, h1
g̃, h̃

Output of CombinedRAND(g, h, g1, h1, g̃, h̃) Properties

(0, 0)
g0, g

a
0

(g0)
b, (ga0)b

(g0)
c, (ga0)c

– (u0, v0)← RAND(g0, g
r
0, g

a
0 , (g

r
0)a)

where r ∈R Zq
– (u1, v1)← RAND(g0, (g0)

b, ga0 , (g
a
0)b)

– (u2, v2)← RAND(g0, (g0)
b, ga0 , (g

a
0)b)

– (u3, v3)← RAND(g0, g
a
0 , (g0)

c, (ga0)c)
– (u4, v4)← RAND((g0)

b, (ga0)b, (g0)
c, (ga0)c)

– v0 = ua0 (encrypt k1τ )
– v1 = ua1 (encrypt k11−τ )
– v2 = ua2 (encrypt m)
– v3 = uc3 (encrypt k20)
– v4 = ucb

−1

4 (encrypt k21)



(0, 1)
g0, g

a
0

(g0)
b, (ga0)b

(gb0)
c, ((ga0)b)c

– (u0, v0)← RAND(g0, g
r
0, g

a
0 , (g

r
0)a)

where r ∈R Zq
– (u1, v1)← RAND(g0, (g0)

b, ga0 , (g
a
0)b)

– (u2, v2)← RAND(g0, (g0)
b, ga0 , (g

a
0)b)

– (u3, v3)← RAND(g0, g
a
0 , (g

b
0)
c, ((ga0)b)c)

– (u4, v4)← RAND((g0)
b, (ga0)b, (gb0)

c, ((ga0)b)c)

– v0 = ua0 (encrypt k1τ )
– v1 = ua1 (encrypt k11−τ )
– v2 = ua2 (encrypt m)
– v3 = ubc3 (encrypt k20)
– v4 = uc4 (encrypt k21)

(1, 0)
g0, g

a
0

gb0, (g
a
0)b+1

(g0)
c, (ga0)c

– (u0, v0)← RAND(g0, g
r
0, g

a
0 , (g

r
0)a)

where r ∈R Zq
– (u1, v1)← RAND(g0, (g0)

b, ga0 , (g
a
0)b+1)

– (u2, v2)← RAND(g0, (g0)
b, ga0 , (g

a
0)b+1)

– (u3, v3)← RAND(g0, g
a
0 , (g0)

c, (ga0)c)
– (u4, v4)← RAND((g0)

b, (ga0)b+1, (g0)
c, (ga0)c)

– v0 = ua0 (encrypt k1τ )

– (. . . , u1, v1)
c
≈ (. . . , gα0 , g

β
0 )

(encrypt k11−τ )

– (. . . , u2, v2)
c
≈ (. . . , gα

′
0 , g

β′

0 )
(encrypt m)

– v3 = uc3 (encrypt k20)

– (. . . , u4, v4)
c
≈ (. . . , gα

′′
0 , gβ

′′

0 )
(encrypt k21)

(1, 1)
g0, g

a
0

gb0, (g
a
0)b+1

(gb0)
c, ((ga0)b+1)c

– (u0, v0)← RAND(g0, g
r
0, g

a
0 , (g

r
0)a)

where r ∈R Zq
– (u1, v1)← RAND(g0, (g0)

b, ga0 , (g
a
0)b+1)

– (u2, v2)← RAND(g0, (g0)
b, ga0 , (g

a
0)b+1)

– (u3, v3)← RAND(g0, g
a
0 , ((g0)

b)c, ((ga0)b+1)c)
– (u4, v4)← RAND((g0)

b, (ga0)b+1,
((g0)

b)c, ((ga0)b+1)c)

– v0 = ua0 (encrypt k1τ )

– (. . . , u1, v1)
c
≈ (. . . , gα0 , g

β
0 )

(encrypt k11−τ )

– (. . . , u2, v2)
c
≈ (. . . , gα

′
0 , g

β′

0 )
(encrypt m)

– (. . . , u3, v3)
c
≈ (. . . , gα

′′
0 , gβ

′′

0 )
(encrypt k20)

– v4 = uc4 (encrypt k21)

In the table, α, β, α′, β′, α′′, β′′ ∈R Zq

Security: The security of the protocol is proved by following theorem.

Theorem 2. If the Decisional Diffie-Hellman assumption holds in group G, then the protocol 3
securely computes FCACBOT functionality in the presence of malicious adversaries.

Proof. We prove security in a hybrid model where the zero-knowledge proofs and proofs of knowl-
edge (ZKPOK) are computed by ideal functionalities.

R is corrupted: Let A be an adversary that controls the receiver R in real word. We construct a
simulator S that invokes A on its input and works as follows:

1. S receives (h0, g1, h1) from A and verifies the zero-knowledge proof as the honest sender would.
(a) If the verification fails, S sends ⊥ to the trusted party and halts.
(b) Otherwise, S runs the extractor and extracts a witness α. Then S sets j = 0 if (g1)

α = h1
and j = 1 otherwise.



2. S receives (g̃, h̃) from A
3. If j = 0, S set σ = 0 if (g̃)α = h̃ and σ = 1 otherwise.

4. If j = 1, S set σ arbitrarily, say to equal 0.

5. The simulator S sends σ, j to the trusted party:

(a) If j = 0, S receives back k10, k
1
1,m, k

2
0, k

2
1.

(b) If j = 1, S receives back k1τ , k
2
σ.

6. Like the honest sender, S simulates the transfer of k10, k
1
1,m, k

2
0, k

2
1 as follows: S computes

((u0, v0), (u1, v1)), (u2, v2), (u3, v3), (u4, v4)) ← CombinedRAND(g0, h0, g1, h1, g̃, h̃), and w0 =
v0 · k1τ , w1 = v1 · k11−τ , w2 = v2 ·m, w3 = v3 · k20, w4 = v4 · k21 and randomly permutes the order
of (u0, w0), (u1, w1) as (u′0, w

′
0), (u

′
1, w

′
1).

7. S sends (u′0, w
′
0), (u

′
1, w

′
1), (u2, w2), (u3, w3), (u4, w4) to A and outputs whatever A outputs.

It is easy to see that the outputs of the ideal execution between S and an honest sender S is
identical to the outputs of a real execution with A and an honest sender S.

S is corrupted: We now consider the case that A controls S. We construct a simulator S that
invokes A on its inputs and works as follows:

1. S chooses random a, b ∈ Zq and computes h0 = (g0)
a, g1 = (g0)

b. Then it sets h1 = (g1)
a which

means that j = 0, and sends (h0, g1, h1) to A.

2. S proves to A that he know the discrete logarithm of h0 relative to g0.

3. S chooses random c ∈ Zq, computes g̃ = (gσ)c, h̃ = (hσ)c, and sends (g̃, h̃) to A.

4. S receives (u′0, w
′
0), (u

′
1, w

′
1), (u2, w2), (u3, w3), (u4, w4) from A, like an honest R. Because in this

case j = 0, S can decrypt (u3, w3), (u4, w4) and gets (k20, k
2
1), also S can decrypt (u′0, w

′
0), (u

′
1, w

′
1), (u2, w2)

and verifies the commitments. If there exists a commitment that does not hold, the S outputs
⊥, otherwise, S can gets k10, k

1
1,m.

5. S rewinds to the first step, and sets h1 = (g1)
a+1, which means that j = 1.

6. S interacts with A as and honest R, if S outputs ⊥, then S rewinds to step 1 just like step4.
Repeats this process until S extracts k1τ .

7. S compares k1τ with k10, k
1
1, then he can get τ .

8. S sends k10, k
1
1, k

2
0, k

2
1,m, τ to the trusted party, outputs whatever A outputs and halts.

It is easy to see that the outputs of the ideal execution between S and an honest receiver R is
identical to the outputs of a real execution with A and an honest honest receiver R.

Efficency: To construct the inputs of CombinedRAND(the inputs can be view as a public key to
encryption scheme based on RAND), R computes 5 exponentiations; to construct the ciphertext, S
computes 20 exponentiations and 10 multiplications; to decrypt the ciphertext, if j = 0, R computes
5 exponentiations, 5 modular inverses if σ = 1 or 6 modular inverses if σ = 0, 5 multiplications
and 3 commitments verifications, if j = 1, R computes 3 exponentiations, 3 modular inverses, 3
multiplications and 2 commitments verifications, the expectation of computes are 4 exponentiations,
4.25 modular inverses, 4 multiplications and 2.5 commitments verifications. The protocol takes 3
rounds of communication, and the parties exchange 15 group elements (5 of them are elements
of the public key, and 10 of them are ciphertext). It also need 1 zero knowledge proof of discrete
logarithm.



6 Application in Secure Two-party Computation

6.1 Batch Cut-and-choose Bilateral OT

The protocol of the cut-and-choose bilateral OT in section 5.3 is designed only for one garbled
circuit and the circuit has only two input wires, one is for P1 and the other is for P2. In this section,
we extend it to batch cut-and-choose bilateral OT, that can be used in s garbled circuits and each
circuit has 2n input wires, n of them are for P1 and the other n of them are for P2.

In order to simplify the description of the protocol, we define some vector symbols based on the
notations in section 2.1. In the kth garbled circuit Gk(C) (k = 1, . . . , s),

– Vector k1,k
0 is composed of all the keys corresponding to 0 in P1’s n input wires, that is k1,k

0 =

{k1,k0 , . . . , ki,k0 , . . . , kn,k0 }, where 1 < i < n;

– Vector k1,k
1 is composed of all the keys corresponding to 1 in P1’s n input wires, that is k1,k

1 =

{k1,k1 , . . . , ki,k1 , . . . , kn,k1 }, where 1 < i < n;
– Vector mk = {m1,k, . . . ,mi,k, . . . ,mn,k}, where the elements mi,k indicates the order of the key

ki,k0 and ki,k1 ;

– Vector k2,k
0 is composed of all the keys corresponding to 0 in P2’s n input wires, that is k2,k

0 =

{kn+1,k
0 , . . . , kj,k0 , . . . , k2n,k0 }, where n+ 1 < j < 2n;

– Vector k2,k
1 is composed of all the keys corresponding to 1 in P2’s n input wires, that is k2,k

1 =

{kn+1,k
1 , . . . , kj,k1 , . . . , k2n,k1 }, where n+ 1 < j < 2n;

The symbols can be described in Table 4.

Table 4.The random keys in s Garbled circuits

G1(C) ∼
Gs(C)

P1’s input wires: w1 ∼ wn P2’s input wires: wn+1 ∼ w2n

Symbol w1 · · · wi · · · wn Symbol wn+1 · · · wj · · · w2n

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Gk(C)
k1,k
0 = { k1,k0 , · · · , ki,k0 , · · · , kn,k0 } k2,k

0 = { kn+1,k
0 , · · · , kj,k0 , · · ·, k2n,k0 }

k1,k
1 = { k1,k1 , · · · , ki,k1 , · · · , kn,k1 } k2,k

1 = { kn+1,k
1 , · · · , kj,k1 , · · ·, k2n,k1 }

mk = { m1,k, · · · , mi,k, · · · , mn,k}
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Functionality: FBCACBOT

– Inputs: The sender S’s inputs are x = τ1 . . . τn, for k = 1 to s, (k1,k
0 ,k1,k

1 ,mk,k2,k
0 ,k2,k

1 ); the
receiver R’s input are y = σ1 . . . , σn and j = j1 . . . js.

– Auxiliary input: Both parties hold a security parameter 1n and (G, g0, q), where G is a group of
order q with a generator g0, and q is of length n. The commitments ((com(k0

1,1), com(k1,1
1 ), com(m1)), . . . ,

(com(k1,s
0 ), com(k1,s

1 ), com(ms)), where the commitments to a vector includes commitments to
every components of the vector and the order of those commitments should be changed accord-
ing to mk.

– Output:

• The sender outputs nothing
• The receiver outputs that



For k = 1 to s

if jk = 0 then For l = 1 to n outputs (kl,k0 , kl,k1 ,ml,k), (kn+l,k0 , kn+l,k1 );

else if jk = 1 then For l = 1 to n outputs (kl,kτl , k
n+l,k
σl );

Protocol 4: Batch Cut-and-choose Bilateral OT: OT4.
1. The receiver R chooses randomly a ∈ Zq, computes h0 = (g0)

a and send
2. For k = 1 to s, R chooses randomly bk ∈ Zq, computes gk1 = (g0)

bk and
if jk = 0 then hk1 = (h0)

bk = ((g0)
a)bk ;

else if jk = 1 then computes hk1 = (h0)
bk+1 = ((g0)

a)bk+1;
3. P sends (h0, g

1
1, h

1
1, . . . , g

s
1, h

s
1) to S.

4. For k = 1 to s, R proves to S that he know the discrete logarithm of gk1 relative to g0.
5. For k = 1 to s, R chooses a random ck ∈ Zq, and computes g̃k = (gkσ)ck , h̃k = (hkσ)ck , that is

if σ = 0 then computes g̃k = (gk0 )ck , h̃k = (hk0)ck ;

else if σ = 1 then computes g̃k = (gk1 )ck , h̃k = (hk1)ck ;
6. For k = 1 to s

For l = 1 to n
− S computes ((ul,k0 , vl,k0 ), (ul,k1 , vl,k1 ), (ul,k2 , vl,k2 ), (ul,k3 , vl,k3 ), (ul,k4 , vl,k4 ))←
CombinedRAND(g0, h0, g

k
1 , h

k
1, g̃

k, h̃k), and wl,k0 = vl,k0 · k
l,k
τl , wl,k1 = vl,k1 · k

l,k
1−τl ,

wl,k2 = vl,k2 ·ml,k, wl,k3 = vl,k3 · k
n+l,k
0 , wl,k4 = vl,k4 · k

n+l,k
1 .

− S permutes the order of (ul,k0 , wl,k0 ), (ul,k1 , wl,k1 ) randomly as

((ul,k0 )′, (wl,k0 )′), ((ul,k1 )′, (wl,k1 )′),

− S sends (((ul,k0 )′, (wl,k0 )′), ((ul,k1 )′, (wl,k1 )′), (ul,k2 , wl,k2 )(ul,k3 , wl,k3 ), (ul,k4 , wl,k4 )) to R.
7. For k = 1 to s

– If jk=0, For l = 1 to n
• R computes dl,k0 = (wl,k0 )′/((ul,k0 )′)a,dl,k1 = (wl,k1 )′/((u′1)

l,k)a, ml,k = vl,k3 /((u3)
l,k)a.

• R verifies if com(ml,k) is the commitment of ml,k, and com(kl,k
ml,k

) is the commitment of

one of dl,k0 , dl,k1 , and com(kl,k
1−ml,k) is the commitment of the other one. If not, R outputs

⊥, otherwise, he can rearrange the order of com(kl,k
ml,k

), com(kl,k
1−ml,k) as

com(kl,k0 ), com(kl,k1 ), and then rearrange the order of dl,k0 and dl,k1 as kl,k0 , kl,k1 .

• If σl = 0, computes kn+l,k0 = wl,k3 /((u3)
l,k)ck , kn+l,k1 = wl,k4 /((u4)

l,k)ckb
−1
k

• ElseIf σl = 1, computes kn+l,k0 = wl,k3 /(ul,k3 )bkck , kn+l,k1 = wl,k4 /(ul,k4 )ck

– Elseif jk = 1 For l = 1 to n
• R computes dl,k0 = (wl,k0 )′/((ul,k0 )′)a,dl,k1 = (wl,k1 )′/((u′1)

l,k)a.

• R verifies whether only one of com(kl,k
ml,k

), com(kl,k
1−ml,k) is the commitment of one of

dl,k0 and dl,k1 , if not, R outputs ⊥, otherwise it outputs the one in dl,k0 and dl,k1 , which is

correctly verified as kl,kτl .

• If σl = 0, computes kn+l,k0 = wl,k3 /(ul,k3 )ck

• ElseIf σl = 1, computes kn+l,k1 = wl,k4 /(ul,k4 )ck



6.2 Secure Two-party Computation Based on Batch Cut-and-choose Bilateral OT

Based on the protocol of batch cut-and-choose bilateral OT, a secure two-party computation pro-
tocol can basically be divided into stages as follows:

– Garbled circuit preparation: P1 constructs s copies of a Yao garbled circuit for computing
the function.

– Commitments preparation: For each P1’s input wires, P1 randomly selects permutation
factor, permutes the key associated with it, and commits to the keys and permutation factor.

– Oblivious transfer: P1 and P2 perform the batch cut-and-choose bilateral OT protocol.
– Circuit check: P2 verifies the correctness of the check-circuits.
– Circuit evaluation: P2 computes the evaluation circuits and gets the output.

From the high level description of the protocol based on batch cut-and-choose bilateral OT, it
is easily to see that the round complexity is decreased.

Acknowledgments. This work is supported by the National Natural Science Foundation of China
under grant No.61173139, Key Project of Natural Science Foundation of Shandong province under
grant No.ZR2011FZ005, and Doctoral Foundation of Ministry of Education of China under grant
No.20110131110027. Thanks a lot to an anonymous reviewer of Asiacrypt 2014, who gives us some
very useful advices.

References

1. C.Hazay and Y.Lindell. Efficient Secure Two-Party Protocols:Techniques and Constructions. Springer,November
2010.

2. O. Goldreich. Foundations of Cryptography: Volume 2 C Basic Applications. Cambridge University Press, 2004.
University Press, 2004.

3. O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game C A Completeness Theorem for Protocols
with Honest Majority. In the 19th STOC, pages 218C229, 1987.

4. Y. Lindell and B. Pinkas. An Efficient Protocol for Secure Two-Party Computation in the Presence of Malicious
Adversaries. In EUROCRYPT 2007, Springer (LNCS 4515), pages 52-78, 2007.

5. Y. Lindell and B. Pinkas. Secure Two-Party Computation via Cut-and-Choose Oblivious Transfer. In TCC 2011,
Springer (LNCS 6597), pages 329-346, 2011.

6. Y. Lindell. Fast Cut-and-Choose Based Protocols for Malicious and Covert Adversaries. In CRYPTO 2013,
Springer (LNCS 8043), pages 1-17.

7. Abhi shelat, Chih-hao Shen. Two-Output Secure Computation with Malicious Adversaries.Eurocrypt 2011, LNCS
6632, pp. 386C405, 2011.

8. B. Pinkas, T. Schneider,N. Smart, S. Williams. Secure Two-Party Computation Is Practical. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 250C267.Springer, Heidelberg (2009)

9. Yan Huang, Johathan Katz and Davis Evans. Efficient secure Two-Party Computation using symmetric Cut-and-
choose. In CRYPTO 2013, Springer (LNCS 8043), pages 18-35.

10. A Afshar, P Mohassel, B Pinkas, B Riva. Non-Interactive Secure Computation Based on Cut-and-Choose. Ad-
vances in CryptologyCEUROCRYPT 2014, 387-404.

11. Kiraz M S, Schoenmakers B, Villegas J. Efficient committed oblivious transfer of bit strings[M]//Information
Security. Springer Berlin Heidelberg, 2007: 130-144.

12. C. Peikert, V. Vaikuntanathan and B. Waters. A Framework for Efficient and Composable Oblivious Transfer.
In CRYPTO08, Springer (LNCS 5157), pages 554C571, 2008.

13. M. Kiraz and B. Schoenmakers. A Protocol Issue for the Malicious Case of Yaos Garbled Circuit Construction.
In the Proceedings of the 27th Symposium on Information Theory in the Benelux, pages 283C290, 2006.

14. M. Naor and B. Pinkas. Efficient Oblivious Transfer Protocols. In 12th SODA, pages 448C457, 2001.
15. Y. Dodis, R. Gennaro, J. Hastad, H. Krawczyk and T. Rabin. Randomness Extraction and Key Derivation Using

the CBC, Cascade and HMAC Modes. In CRYPTO 2004, Springer (LNCS 3152), pages 494-510, 2004.
16. A.C. Yao. How to Generate and Exchange Secrets. In the 27th FOCS, pages 162C167, 1986.


