
Fully Secure and Succinct Attribute Based Encryption for Circuits

from Multi-linear Maps

Nuttapong Attrapadung
AIST, Japan

n.attrapadung@aist.go.jp

Abstract

We propose new fully secure attribute based encryption (ABE) systems for polynomial-
size circuits in both key-policy and ciphertext-policy flavors. All the previous ABE systems
for circuits were proved only selectively secure. Our schemes are based on asymmetric graded
encoding systems in composite-order settings. The assumptions consist of the Subgroup Decision
assumptions and two assumptions which are similar to Multi-linear Decisional Diffie-Hellman
assumption (but more complex) and are proved to hold in the generic graded encoding model.
Both of our systems enjoy succinctness: key and ciphertext sizes are proportional to their
corresponding circuit and input string sizes. Our ciphertext-policy ABE for circuits is the first
to achieve succinctness, and the first that can deal with unbounded-size circuits (even among
selectively secure systems). We develop new techniques for proving co-selective security of key-
policy ABE for circuits, which is the main ingredient for the dual-system encryption framework
that uses computational arguments for enforcing full security.

Keywords. Attribute-based encryption for circuits, Full security, Multi-linear maps, Dual system
encryption, Ciphertext-policy, Key-policy, Succinctness

1 Introduction

Attribute-based encryption (ABE), introduced by Sahai and Waters [25], is an important paradigm
that generalizes traditional public key encryption. Instead of encrypting to a target recipient, a
sender can specify in a more general way about who should be able to view the message. There
are two variants of ABE: Key-Policy [18] and Ciphertext-Policy [4]. In a key-policy ABE system,
a ciphertext encrypting message M is associated with attribute x. A secret key, which is issued
by an authority, is associated with policy f which is a boolean function from some class F. The
decryption on a ciphertext associated with x by a secret key associated with f will succeed if and
only if f(x) = 1. In a ciphertext-policy ABE system, the roles of f and x are exchanged: they are
associated to ciphertext and secret key respectively.

A central theme to ABE has been to expand the class of allowable boolean functions F. Until
recently, there were only ABE for simple classes such as boolean formulae [18, 4, 23, 26] and inner
product predicate [19, 2, 27]. Only recently, ABE systems that allow any polynomial-size circuits
were proposed independently by Garg et al. (GGHSW) [9] and Gorbunov et al. (GVW) [17]. The
former is based on multi-linear maps (more precisely, graded encoding systems) [8, 7], while the
latter is based on the Learning-With-Error assumption. They proposed key-policy variants, and by
using universal circuits, ciphertext-policy systems can also be obtained albeit for only bounded-size
circuits. Subsequently, Garg et al. [12] proposed ABE for circuits based on witness encryption.



The standard security requirement for ABE is adaptive security which is also dubbed as full
security. However, all the available ABE systems for circuits [9, 17, 12] were proved only in a
weaker model called selective security. Such a notion requires the adversary to announce a target
string x? upfront before seeing the public key, after then, he can ask for secret keys for f such that
f(x?) = 0. This is in contrast with full security where the adversary receives the public key first
and can adaptively ask for secret keys and choose a target string in any order. There is a trivial
method to generally bootstrap selective security to full security called complexity leveraging. In this
approach, the reduction algorithm would guess which string will be chosen as x? and simulate the
security games from it. Hence, the reduction cost to the underlying hard problem will be reduced
by factor 2−n, where n is the length of string x, which the probability that the guess is correct.
Constructing ABE for circuits with polynomial reductions in all parameters (including n) to some
underlying problems has been an important open problem.

Our Contributions. We propose new fully secure ABE systems for circuits with polynomial
reduction (these are the first such schemes, along with concurrent and independent work, see below).
We provide both key-policy and ciphertext-policy variants. Both of our ABE systems allow circuits
with unbounded size and unbounded fan-out (but bounded depth and bounded input-size), which is
exactly the same property as obtained by the KP-ABE of GGHSW [9]. In particular, our CP-ABE
is the first scheme (even among selectively-secure ones) that allows unbounded-size circuits. The
CP-ABE of GGHSW allows only bounded-size circuits due to their use of universal circuits.

Both of our ABE systems enjoy succinctness, meaning that, for the key-policy variant, the
size of a key for circuit f is proportional to the size of circuit f , and the size of a ciphertext for
boolean string x is proportional to the number of 1’s in x. Our CP-ABE system also has analogous
efficiency; in particular, to the best of our knowledge, it is the first to achieve succinctness (even
among selectively-secure ones). We discuss this in §8.

Our ABE systems are based on multi-linear maps. More precisely, we use composite-order
asymmetric graded encoding systems. Such systems was proposed by Coron et al. [7] and was
recently extended by Gentry et al. [13] to the composite-order setting. In our schemes for circuits
of bounded depth `, we require 3`-multi-linear maps. We introduce some new assumptions on
graded encoding: two subgroup decision assumptions which are extended naturally from the case
of bilinear maps, and two assumptions which are similar to the Multi-linear Decisional Diffie-
Hellman Assumption (MDDH) [6, 7]. One of the MDDH-related assumptions is parameterized and
quite complex, but we prove that they hold in the generic graded encoding model. The parameters
for the assumption depend only on the size and depth of a circuit in one query (and not on the
number of key queries). The reduction cost to these assumptions is O(q1) where q1 is the number
of pre-challenge key queries (and hence we obtain polynomial reduction as desired).

Concurrent and Independent Work. Concurrently and independently, Garg et al. [11] (GGHZ)
recently proposed a fully-secure ABE scheme for circuits. Although, at a high-level view, both of
our work and the GGHZ system use similar ingredients, namely composite-order multi-linear maps
and dual-system encryption approaches [29], the methods for enforcing full security are completely
different. In their scheme, the use of “fixed-once and for all” universal circuits is essential. This has
a consequence that the system works for only bounded-size circuits. Moreover, in their scheme, both
ciphertexts and keys always have fixed sizes being roughly the size of the fixed universal circuits.
This means that they are equal to the worst-case sizes (among circuits and strings on which the fixed
universal circuit can process, respectively), i.e., the scheme is not succinct. On the other hand, our
ABE systems are succinct and can deal with unbounded-size circuits. Furthermore, their scheme
requires multi-linear maps with multi-linearity being roughly also the size of the fixed universal
circuits, while our systems require multi-linearity being proportional to the bounded depth (3`).
Nevertheless, their scheme enjoys simpler assumptions (but again with larger multi-linearity).

2



As another independent work, Waters [31] recently proposed fully-secure functional encryption
(FE) for circuits based on indistinguishability obfuscation (IO) [10, 14]. His result is thus stronger
than both ours and GGHZ. However, the current security proof of IO under a polynomial-size set
of assumptions requires complexity leveraging and hence exponential loss in reduction [14].

1.1 Difficulties and Our Approaches

Applying Dual System Frameworks. Dual system encryption techniques, introduced by Wa-
ters [29], have been successful approaches for constructing fully-secure ABE (for simple classes).
Our attempt will be to apply this approach to an existing (selectively-secure) KP-ABE for circuits,
namely the GGHSW scheme. Until recently, dual system approaches had been considered as se-
curity proof “techniques”, where many technical subtle details are buried deep inside the proof,
and sometimes this makes it hard to understand. To this end, Wee [32] and Attrapadung [1] in-
dependently proposed generic frameworks for dual system approaches. They introduce sufficient
primitives (called predicate encoding in [32], and pair encoding in [1]), defined for a predicate, that
imply fully-secure ABE for that predicate via generic constructions. Both works describe abstrac-
tions of information-theoretic arguments which seem to be essential but were implicit in previous
dual-system based schemes. Moreover, the framework of [1] describes also an computational analog,
which generalizes the technique in the ABE (for boolean formulae) of Lewko and Waters [22].

Difficulties in the Case of ABE for Circuits. We examine our canonical scheme, the GGHSW
ABE, using the framework of [1]. It turns out that the underlying structure of GGHSW does not
possess information-theoretic security required for the dual-system framework. We believe that an
intuitive reason for this can be described as follows. As emphasized by Garg et al. themselves [9],
an essential attack that needs to be prevented when considering general circuits is the so-called
“backtracking attack”. This attack exploits the distinctive feature of circuits over formulae in that
circuits can have gates with fan-out more than one. The attack would occur at an OR gate by
somehow “tracking backward”. Therefore, to prevent this was the reason why Garg et al. essentially
used graded multi-linear maps so that the information can flow only forward (towards the output
gate). Now, if we would consider their underlying structure in an information-theoretic sense, i.e.,
without encoding in multi-linear groups, the countermeasure to backtracking will then essentially
be lost. Hence, this is the reason why the dual system framework that uses information-theoretic
argument would not work for GGHSW. We indeed elaborate checking it concretely in §D.

Applying Computational Approach. The framework of [1] provides a variant of dual system
framework that uses computational arguments as ingredients, and was generalized from the ABE
for formulae by Lewko and Waters [22]. It was applied to ABE systems in which the information-
theoretic structure underlies does not possess required security, such as the ABE for regular lan-
guages of Waters [30], the short-ciphertext ABE for formulae of [3], the unbounded ABE for for-
mulae of [21, 24]. Fully secure variants of these primitives were then successfully obtained via
the framework of [1]. We would like to do the same to ABE for circuits of GGHSW. To work in
this framework, it is quite surprising that the requirement is roughly that the considering ABE is
both selectively secure and co-selectively secure at the same time. (There is a caveat, see below).
Co-selective security is a dual notion to (the more widely-known) selective security. Instead of an-
nouncing a target string x? for ciphertext upfront as in the selective security game, the adversary
A would announce a circuit f upfront, the challenger then gives the public key and a key for f ,
after that, A then asks for a challenge ciphertext for any string x? as long as f(x?) = 0.1 There is
a caveat that it is not exactly this requirement of selective and co-selective security of ABE itself,

1The number of key and ciphertext queries can be defined variedly. In our context, we will (implicitly) require one
query for each, similarly to [1].

3



we will actually need the analogous notions but of its underlying pair encoding of ABE. The two
analogous notions are called selective and co-selective master-key hiding. Nevertheless, by using
techniques similarly to [22, 1], we can convert selective security of ABE to selective master-key
hiding of pair encoding almost all the time. It is worth noting that proving co-selective security of
KP-ABE is likely to be similar to proving selective security of CP -ABE due to its dual nature.

The Missing Piece: Co-selectively Secure KP-ABE for Circuits. The GGHSW KP-ABE
is already selectively secure. However, the proof of co-selective security for KP-ABE (of GGHSW
or other schemes) or selective security proof of CP-ABE (without using universal circuits) is not
known. The main technical novelty in this paper is essentially to prove the co-selective security
of (a variant of) the GGHSW KP-ABE. (We will indeed prove the full security of our KP-ABE
directly, but the co-selective proof structure is essential).

Difficulties for Constructing Co-selectively Secure KP-ABE for Circuits. The first evi-
dence that constructing co-selectively secure KP-ABE for circuits, or somewhat equivalently, selec-
tively secure CP-ABE for circuits, can be hard is that the selectively secure CP-ABE scheme for
formulae by Waters [28] is proved under an already more complex assumption than the KP-ABE
counterpart [18], namely the Parallel BDHE assumption.2

Our goal is to generalize the selective security proof of Waters’ CP-ABE (or equivalently, we
may think of co-selective security of its dual KP-ABE) to the case of general circuits. This poses
two main issues. First, the output of a gate can be wired as an input to another gate (we call
this a hierarchy issue). Second, and more essentially, the output of a gate (or a circuit input) can
be wired as inputs of many gates (this is called multi-fanout). In the Waters’ CP-ABE, these two
issues were not problematic since the scheme can be thought of using one big gate (multi-fan-in)
that can express a linear secret-sharing scheme.

Dealing with Hierarchy. We explain the technical difficulty of this issue via a toy example of
circuit f2 in Figure 1. We would like to apply the simulation for CP-ABE with one gate (e.g., fAND

in Figure 1) to any gate of f2 in a modular way. In the co-selective proof, the reduction simulates
a key for circuit f2 first, gives SKf2 ,PK to the adversary, and receive a target string x. Suppose
that x? = 1100 (so that f2(x?) = 0). The reduction is in the situation where at the AND gate a,
the output of a is evaluated to 1 (denoted f2

a (x?) = 1). However, if we only use the “stand-alone”
proof technique for single gate to this gate a, we will not be able to simulate, since the restriction
was that the output of the gate must be 0! We resolve this issue by simulating the key for f2 in
such a way that the key elements for lower gates (e.g., gate a) are embedded with all information
of the gates (e.g., gate b) that are on their path to the output. Therefore, we effectively chain all
the information on the path aggregated to one element. To make the chaining technique work, we
have to have a mechanism that identifies gate w such that f2

w(x?) = 0. We do this by providing
“individual randomness” from the assumption to each gate. We elaborate more details in §2.

Dealing with Multi-fan-out. We explain the technical difficulty of this issue via a toy example of
circuit f3 in Figure 1. The above discussion suggests to simulate a key element at x2 by combining
all information from all the paths from it to the output gate, i.e., both the path through a and the
one through b. The combined information would cease the “stand-alone” proof technique since the
information from each path would interfere the simulation of each other. To solve this, we must
distinguish each path; we do this by introducing another set of “individual randomness” from the
assumption and dedicate each to each outgoing wire. Another problem that arises when considering
multi-fan-out is that we may have many paths from a certain gate to the output gate: it can be
exponential size in the depth of circuits. Hence, we cannot afford to have the size of assumption to
be as large so as to prepare for any possible chains. We resolve this by decomposing any of possible

2There are three schemes in [28]. Here we consider his only scheme that is without restriction of bounded repetition.

4



Figure 1: Toy Examples: circuit fAND, fOR, f2, f3 respectively. (Texts in colors are related to simulation).

∧

x1 x2

(1−a) a

∨

x1 x2

1 1

∧c

∧a ∨ b

x1 x2 x3 x4

(1−a3) a3

(1−a1) a1 1 1

∧c

∧a ∨ b

x1 x2 x3

(1−a3) a3

(1−a1) d1

a1

d2

1
1

chains to multiplicative combinations via the use of multi-linear maps in a confined manner so that
only required combinations can be produced and no more. We end up with 3`-multi-linear maps
for ABE that allows circuits of bounded depth `. We also must find an algorithm for producing
the chain information on the fly since the number of all paths can be exponential. We solve this
by providing sophisticated recursive algorithms that run in poly-time in the number of gates.

1.2 Other Related Work

Boneh et al. [5] proposed ABE for arithmetic circuits by extending the GVW system. They also
proposed KP-ABE for boolean circuits with constant-size ciphertexts. Their systems are selectively
secure. Goldwasser et al. [15, 16] proposed ABE and FE systems for Turing Machines that are secure
against bounded collusions. Our ABE systems are fully secure against unbounded collusions.

2 Toy Examples and Intuition in Technical Details

Before describing formal details, we describe the intuition of our scheme. Readers may skip this in
the first read. We illustrate how we solve the difficulties of proving co-selective security of ABE for
circuits, mentioned above. We use toy examples for concreteness. We describe these using multi-
linear maps in algebraic group setting like in bilinear pairings, which we assume that readers are
familiar with. For every system here, we would like prove its co-selective security. In this notion,
the adversary A gives the circuit f that it wants to query, the challenger then gives the PK, SKf to
A, who will then ask for the challenge ciphertext for any string x of its choice as long as f(x) = 0.
In the discussion below, decryption is not important here and we refer to §D.

Toy Example 1: Single-gate Circuit. We first consider a toy ABE system that allows only one
gate. Our toy scheme has public key PK = (gh1

1 , gh2
1 , e(g1, g2)α), and master key MSK = α. Keys for

AND,OR are SKAND = (gα+h1`+h2r
2 , g`2, g

r
2), SKOR = (gα+h1`

2 , gα+h2r
2 , g`2, g

r
2), resp. (The variable `, r

is random and specific to each key). For x ∈ {0, 1}∗, let Ax = { j | xj = 1 }. We define a ciphertext

for x ∈ {0, 1}2 as CTx = (Me(g1, g2)αs, gs1, {g
shj
1 }j∈Ax). We prove its co-selective security under an

assumption stating that given g1, g
c1
1 , g

c1a
1 , gz1 , g

z
a
1 , g

zc1
a

1 , gzc1a1 , g2, g
c1
2 , g

c2
2 , g

c1a
2 , it is hard to decide if

Z = e(g1, g2)c1c2z or Z ∈R GT . This extends the Bilinear-DH assumption (in asymmetric groups)
with additional elements involving a. The proof is as follows. We consider the case where A

chooses to obtain SKAND. The reduction programs α = c1c2, h1 = c1(1−a), h2 = c1a by setting PK
as gh1

1 = gc11 g
−c1a
1 , gh2

2 = gc1a2 , e(g1, g2)α = e(gc11 , g
c2
2 ). Here, we neglect re-randomizing parameters,

e.g., defining h2 = c1a+h′2 for some known random h′2, for simplicity. The reduction then programs

` = −c2, r = −c2 by setting SKAND as gα+h1`+h2r
2 = g

c1c2−c1(1−a)c2−c1ac2
2 = 1 (when parameters

are re-randomized, this implies that it is computable), and g`2 = gr2 = g−c22 . Simulating in this
manner allows us to produce a challenge ciphertext for every case: x = 10 or x = 01. If x = 10, we

programs s = z(1 + 1
a) by setting gs1 = gz1g

z
a
1 , gsh1

1 = g1
z(1+ 1

a
)c1(1−a) = g

zc1
a

1 g−zc1a1 , and the message

5



mask as Z · e(g
zc1
a

1 , gc22 ). If x = 01, we simply program s = z by setting gs1 = gz1 , gsh2
1 = gzc1a1 , and

the message mask as Z. An important point here is that in both cases, an unknown critical term

gzc11 is canceled out: the g
shj
1 terms only have gzc1x1 for some x 6= 1. We may say that (1+ 1

a) acts as
a “selector” that triggers canceling 1 in (1−a). The case for OR is similar but more straightforward
as the “coefficients” for the left child and right child become both 1 (that is, h1 = c1, h2 = c1).

Toy Example 2: Depth-two Circuit. Next, we show how to deal with hierarchy by considering
a toy circuit with depth two. The idea is to construct ABE for this class by using the single-circuit
scheme at each gate. We use asymmetric graded 3-linear maps G1×G2×G3 → GT . Let gi be a gener-
ator in each group. Denote g12 = e(g1, g2), and so on. This toy scheme has PK = (gh1

1 , . . . , gh4
1 , gα123),

MSK = α. For the circuit f2 in Figure 1, SKf = (Ka,Kb,Kc) where Ka = (gαa+h1`a+h2ra
2 , g`a2 , g

ra
2 ),

Kb = (gαb+h3`b
2 , gαb+h4rb

2 , g`b2 , g
rb
2 ), and Kc = (gα+αa`c+αbrc

23 , g`c3 , g
rc
3 ). Note that αw for gate w is

randomness dedicated to only this key. We define CTx = (Mgαs123, g
s
1, {g

shj
1 }j∈Ax). In 3-linear map,

the problem instance becomes to to distinguish gzc1c2c3123 with random. The explanation from §1.1
translates to the following: we will need an information embedded in h1, h2 so that the “selector”
at gate c can enable canceling even at the different gate a. We resolve this as follows. First, in
order to identify which gate where the selector was chosen, we prepare individual randomness a in
the assumption dedicated for every AND gate. (OR gates use coefficient 1). In this example, our
assumption would involve a1, a3 (instead of only one a) dedicated to gate a, c, respectively. Then,
the reduction programs h1, h2 by “chaining” the information from both gate a and c: it defines
h1 = c1(1− a1)(1− a3) and h2 = c1a1(1− a3). Here, for the left child node, we use (1− a), and for
the right child node we use a, as in the first toy example. (We illustrate this with red-colored texts
in Fig. 1). Moreover, to simulate SKf2 , the reduction programs αa = c1c2(1− a3) and `a, ra = −c2,

so that gαa+h1`a+h2ra
2 = g

c1c2(1−a3)−c1c2(1−a1)(1−a3)−c1c2(1−a1)(a3)
2 = 1. Now to simulate CT1100, the

reduction defines s = z(1 + 1
a3

) by setting gsh1
1 = g

z(1+ 1
a3

)c1(1−a1)(1−a3)

1 . Now, we have canceled out

an unknown critical term gzc11 by the term (1 + 1
a3

)(1 − a3). We can afford to put gzc1x1 for x 6= 1

that is a residue from the “gate mismatch”, e.g., g
zc1

a1
a3

1 , gzc1a1a3
1 in a new assumption, as long as

they do not help distinguish gzc1c2c3123 from random.

Toy Example 3: Fan-out-two Circuit. Next, we show how to deal with multi-fan-out. A key
SKf3 for circuit f3 is exactly the same as SKf2 except that now Kb = (gαb+h2`b

2 , gαb+h3rb
2 , g`b2 , g

rb
2 ).

Due to the fan-out two of the second input, the difficulty arises as h2 must contain the “chaining”
information for both paths from it to the output gate. A flawed attempt is to program h2 as the sum
of both chains: h2 = c1a1(1−a3)+c1 ·1 ·a3 (1 due to b being OR gate). However, this would fail the

cancelation when simulating key as: gαa+h1`a+h2ra
2 = g2

c1c2(1−a3)−c1c2(1−a1)(1−a3)−c1c2
(
a1(1−a3)+a3

)
=

gc1c2a3
2 results in a critical term (since it can be used to break the assumption as e(g

z/a3

1 , gc1c2a3
2 , gc33 ) =

gzc1c2c3123 ). We cannot afford modifying αa, h1 altogether to accommodate the path that passes
through gate b, since the chaining mechanism would not work anymore. To this end, we introduce
a technique so as to distinguish each outgoing wire and makes a mismatch term whenever that
wire does not correspond to a gate in consideration. This can be done by preparing individual
randomness dedicated for each outgoing wire: in our toy system we use d1, d2 for the two wires. We
now program h2 = c1a1(1−a3)d1 +c1a3d2 for PK. Then for gate a, we program ra = c2

d1
and thus set

g2
αa+h1`a+h2ra = g2

c1c2(1−a3)−c1c2(1−a1)(1−a3)−c1 c2d1

(
a1(1−a3)d1+a3d2

)
= g2

c1c2a3
d2
d1 . Now we can afford

to put the term occurred from the “outgoing-wire mismatch”, g2
c1c2a3

d2
d1 , to a new assumption.

Generalizing to Any Circuits. We list some difficulties when generalizing our ideas in toy
systems to any circuits and how we resolve them. We denote by ` the depth of the circuit.

6



First, the chaining mechanism requires terms of form g
c1a

e1
1 d1a

e2
2 d2···a

e`
` d`

1 , one term per one path,
to be given in the assumption, where each ai is dedicated to one gate on the path from an input
gate to the output gate, ei ∈ {0, 1}, and each di is dedicated to one outgoing wire on that path. The
problem is that since fan-out can be more than one, the number of possible paths from an input
gate to the output gate can be of exponential size in the number of circuit depth (`). Hence, the
size of the given terms in the assumption would grow exponentially. We resolve this by using multi-

linearity inside G1 also. That is, we define G1 = G′1×· · ·×G′`, prepare g′1
c1a

e1
j1
dj1 , g′2

a
e2
j2
dj2 , . . . , g′`

a
e`
j`
dj`

in separate groups G′i, and let the reduction computes pairing on the fly. This solves the problem of
the assumption size, but then poses another problem that the reduction might run in exponential
time due to an exponential number of chains. To this end, we propose a sophisticated polynomial-
time recursive algorithm for the reduction to compute chains. See the detail in the proof in §7.3.

Second, the residue from cancellation, e.g., remaining terms in g
shj
1 from “gate mismatch”, such

as g1
zc1a

e1
j1
a
e2
j2

1
aj3

a
e4
j4
···ae`j` , must also be decomposed to groups inside G1 due to the same reason as

above. However, this time if we decompose in a “freedom” manner, e.g., to g′1
zc1a

e1
j1 , g′2

a
e2
j2 , . . . , g′`

a
e`
j` ,

we would end up having a combination that leads to gzc11 (by choosing all ei = 0), which is a critical
term that leads to break the assumption. (We temporarily neglect di terms now for simplicity).
We need to decompose in a restricted way so that all allowed combination must have 1

aji
for some

ji. We resolve this by using multi-linearity with one more dimension: G1 = G′1 × · · · × G′`+1, and

prepare not only g′i
a
ei
ji for all i ∈ [1, `] but also e(g′i, g

′
`+1)

zc1
1
aji for all i ∈ [1, `]. In this way, to get

an element in G1, one must use exactly one element from the latter.
In our ABE, it turns out that we use G1, . . . ,G`+1 for defining the scheme as in [9], and we will

decompose G1,G2 respectively to ` + 1 and ` level of multi-linearity for utilizing the assumption.
Hence, we will use 3` level of multi-linearity in total. (Due to lengthy discussions here, we postpone
one more technique to §D).

3 Definitions

Circuit Notation. A circuit consists of six tuples f = (`, n, {mi}i∈[2,`], L, R,GateType). We first
note that it is wlog that we consider only monotone and layered circuits. (We refer to [9] for
the discussion). We let ` be the number of layers, n be the number of inputs, and mi be the
number of gates in the i-th layer for i ∈ [2, `]. We also define m1 = n for notational consistency.
We define Inputs = {w1,1, . . . , w1,n}, and for i ∈ [2, `], Gatesi = {wi,1, . . . , wi,mi}. We let Gates =⋃
i∈[2,n] Gatesi, and let Nodes = Inputs∪Gates. Since we consider only one output gate, we have that

m` = 1, and that w`,1 is the output gate, which we also denote it as wtop. We define Depth(wi,j) = i
and Num(wi,j) = j. Since we consider a layered circuit, each of the two inputs of gates in Gatesi
is wired from the output of gates in Gatesi−1. The two functions L : Gates → Gates r {wtop} and
R : Gates → Gates r {wtop} identify those two gates; that is, L(wi,j), R(wi,j) have outputs wired
to wi,j as the first input (left input) and the second input (right input), respectively. We require
that Num( L(wi,j)) < Num(R(wi,j)). We note that Depth( L(wi,j)) = Depth(R(wi,j)) = i − 1. The
function GateType : Gates → {OR,AND} specifies the type of gate as either OR or AND gate. We
also define GatesOR as the set of all OR gates, and similarly for GatesAND. We abuse notation and
denote f(x) as the output of circuit f evaluated with input string x. For w ∈ Gates, we also denote
fw(x) to be the evaluation of string x at the output of gate w.

ABE for Circuits: Syntax. Consider a circuit family Fn,` that consists of all circuits with input
length n and bounded depth `. A (key-policy) attribute based encryption scheme for circuits in
Fn,` with message space {0, 1}λ consists of the following algorithms.

7



• Setup(1λ, n, `)→ (PK,MSK): takes as input a security parameter 1λ, the length n of input strings
to circuits, and the bound ` on the circuit depth, and outputs a public key PK and a master
secret key MSK.

• Encrypt(PK, x,M)→ CT: takes as input the public key PK, a string x ∈ {0, 1}n, and a message
M ∈ {0, 1}λ. It outputs a ciphertext CT.

• KeyGen(MSK, f) → SK: takes as input the master key MSK and a circuit description f ∈ Fn,`.
It outputs a secret key SK.

• Decrypt(CT,SK) → M : takes as input a ciphertext CT and the decryption key SK. It attempts
to decrypt and outputs a message M if successful; otherwise, it outputs a special symbol ⊥.

Correctness. Consider all messages M ∈ {0, 1}λ, string x ∈ {0, 1}n, and circuit f ∈ Fn,` such that
f(x) = 1. If Encrypt(PK, x,M) → CT and KeyGen(MSK, f) → SK where (PK,MSK) is generated
from Setup(1λ, n, `), then Decrypt(CT,SK)→M .

Security Notion. An attribute based encryption scheme for circuits is fully secure if no prob-
abilistic polynomial time (PPT) adversary A has non-negligible advantage in the following game
between A and the challenger C. For our purpose of modifying games in next sections, we write
some texts in the boxes. Let q1, q2 be the numbers of queries in Phase 1,2, respectively.

1 Setup: C runs (0) Setup(1λ, n, `)→ (PK,MSK) and hands the public key PK to A.

2 Phase 1: A makes a j-th key query for a circuit f (j) ∈ Fn,`. C returns (1) SKj ← KeyGen(MSK, f (j)) .

3 Challenge: A submits equal-length messages M0,M1 and a target string x? ∈ {0, 1}n with the

restriction that f (j)(x?) = 0 for all j ∈ [1, q1]. C flips a bit b
$← {0, 1} and returns the challenge

ciphertext (2) CT? ← Encrypt(PK, x?,Mb) .

4 Phase 2: A continues to make a j-th private key query for f (j) ∈ Fn,`, under the restriction

f (j)(x?) = 0. C returns (3) SKj ← KeyGen(MSK, f (j)) .

5 Guess: The adversary A outputs a guess b′ ∈ {0, 1} and wins if b′ = b. The advantage of A

against the ABE scheme for circuits in Fn,` is defined as Adv
(n,`)-KPABE
A (λ) := |Pr[b = b′]− 1

2 |.

4 Graded Encoding

Our scheme will use asymmetric graded encoding systems in composite-order setting. Graded
encoding systems were proposed by Garg et al. [8] (GGH) and subsequently by Coron et al. [7]
(CLT) as cryptographically secure multi-linear maps. The main difference with bilinear pairings in
algebraic groups is that the encoding of a (which is ga in algebraic group setting) is not deterministic.
We work on the CLT system since it was shown to extend to composite-order settings by Gentry et
al. [13]. We recall their abstraction in this section and introduce some notations for it.

Definition 1 (Asymmetric Graded Encoding System). A κ-Asymmetric Graded Encoding System

for a ring R is a set system
{
E

(a)
S ⊂ {0, 1}∗

∣∣∣ a ∈ R, S ⊆ [1, κ]
}

, with the following properties:

1. For every set S ⊆ [1, κ], every distinct a1, a2 ∈ R, we have E
(a1)
S ∩ E

(a2)
S = ∅.

2. There are a binary operation ‘+’ and an unary operation ‘−’ on {0, 1}∗ such that for every

a1, a2 ∈ R, every S ⊆ [1, κ], every u1 ∈ E
(a1)
S , u2 ∈ E

(a2)
S , it holds that u1 + u2 ∈ E

(a1+a2)
S and

that −u1 ∈ E
(−a1)
S , where a1 + a2 and −a1 are addition and negation in R.

8



3. There is an associative binary operation ‘·’ on {0, 1}∗ such that for every a1, a2 ∈ R, every

S1, S2 ⊆ [1, κ] such that S1∩S2 = ∅, every u1 ∈ E
(a1)
S1

, u2 ∈ E
(a2)
S2

, it holds that u1 ·u2 ∈ E
(a1·a2)
S1∪S2

,
where a1 · a2 is multiplication in R.

Bracket Notation. For a ∈ R and S ⊆ [1, κ], we call an element in E
(a)
S as a level-S encoding of

a and denote it as [ a; r ]S , where r is the internal randomness (or noise) of this encoding. Let N

be the set of all possible noises. That is, E
(a)
S = { [ a; r ]S | r ∈ N }. From the definition, we have

that for every a1, a2 ∈ R, r1, r2 ∈ N, there exists r′, r′′ ∈ N such that

[ a1; r1 ]S + [ a2; r2 ]S = [ a1 + a2; r′ ]S , [ a1; r1 ]S1 · [ a2; r2 ]S2 = [ a1 · a2; r′′ ]S1∪S2 . (1)

For simplicity, from now on, unless noises are significant in the context, we abuse the notation by
suppressing implicit noises and denoting an encoding simply by [ a ]S . Hence we have

[ a1 ]S + [ a2 ]S = [ a1 + a2 ]S , [ a1 ]S1 · [ a2 ]S2 = [ a1 · a2 ]S1∪S2 . (2)

Composite-Order Setting. We will use a composite-order variant of graded encoding system
where the encoding space is a direct product of subrings: R = ZN1 × · · · ×ZNν , where each Ni is a
composite number with (non-public) large prime factors. In our ABE, we use ν = 3.

For a ∈ R and V ⊆ [1, ν], we denote [ a ]VS := [ a′ ]S , where we set a′ ∈ R to be such that a′ ≡ a
(mod Ni) for all i ∈ V and a′ ≡ 0 (mod Ni′) for all i′ 6∈ V . Hence we have [ a ]VS = [ a mod NV ]VS ,

where NV :=
∏
i∈V Ni. We sometimes abuse the notation as [ a ]

{i}
S = [ a ]iS and [ a ]

{i,j}
S = [ a ]i,jS . In

the composite setting we have some useful properties. First, due to Chinese-Remainder Theorem
(CRT), we have that for V1 ∩ V2 = ∅ and every a ∈ R, [ a ]V1∪V2

S can be decomposed uniquely

as [ a ]V1∪V2
S = [ a mod NV1 ]V1

S + [ a mod NV2 ]V2
S . We call [ a mod NV1 ]V1

S the NV1 component of

[ a ]V1∪V2
S . Second, we have orthogonality: for S1 ∩ S2 = ∅, V1, V2 ⊆ [1, ν], a1, a2 ∈ R, it holds that

[ a1 ]V1
S1
· [ a2 ]V2

S2
= [ a1 · a2 ]V1∩V2

S1∪S2
.

In particular, we have [ a1 ]iS1
· [ a2 ]S2 = [ a1 · a2 ]iS1∪S2

, [ 1 ]iS · [ a ]∅ = [ a ]iS , [ a1 ]∅ · [ a2 ]VS = [ a1 · a2 ]VS .

Noise. In all the current schemes of graded encoding systems, noise will grow after operations are
done on encodings, e.g., in Equation (1), we have r′, r′′ > r1, r2. To deal with noises abstractly,
we use a notion of noise level. Namely, we consider a sequence N1 ⊂ N2 ⊂ · · · ⊂ Nσ = N for some
σ ∈ N that progressively contains larger elements. We call Nj the set of possible noises of level j.
The noise level will be utilized in the re-randomization algorithm below.

Procedures. A graded encoding system comes equipped with some further procedures:

• InstGen(1λ, κ, ν) → (param, esk). Instance Generation algorithm takes a security parameter λ, a
multi-linearity level κ, and a subring dimension ν as inputs, and outputs public parameter param
and encoding secret key esk.

• PrivEncode(param, esk, S, V, a) → [ a ]VS . Private Encoding algorithm takes param, esk, a level-
index set S ⊆ [1, κ], a subring-index set V ∈ [1, ν], and a ∈ R as inputs, and outputs [ a ]VS .

• Samp(param) → [ a ]∅. Ring Sampling algorithm takes param as an input, and outputs a level-∅
encoding of a uniformly random element a ∈R R.

• Encode(param, [ 1 ]VS , [ a ]∅)→ [ a ]VS . Encoding algorithm simply computes [ 1 ]VS · [ a ]∅ = [ a ]VS .

9



• ReRand(param, η, S, [ a; r ]S) → [ a; r′ ]S . Re-randomization algorithm takes param, a noise level
η ∈ [1, σ], a level-index set S ⊆ [1, κ], and an encoding [ a; r ]S , where r ∈ Nj for some j < η, as
inputs. It outputs another encoding [ a; r′ ]S of the same element, where r′ ∈ Nη. We require that
if ReRand(param, η, S, [ a; r1 ]S) → [ a; r′1 ]S and ReRand(param, η, S, [ a; r2 ]S) → [ a; r′2 ]S , then r′1
and r′2 distribute statistically identically.

• IsZero(param, [ a ][1,κ]) → {0, 1}. Zero-Test algorithm takes param and a level-[1, κ] encoding
[ a ][1,κ], and outputs 1 if and only if a = 0.

• Ext(param, [ a ][1,κ])→ K ∈ {0, 1}λ. Extraction algorithm takes param and a level-[1, κ] encoding

[ a ][1,κ], and outputs a uniformly random string K ∈ {0, 1}λ. We have two properties. First,
for any r1, r2 ∈ N, it holds that Ext(param, [ a; r1 ][1,κ]) = Ext(param, [ a; r2 ][1,κ]). Second, for any
a ∈ R and i ∈ [1, ν], it holds that if b ∈R ZNi then Ext(param, [ a ][1,κ] +[ b ]i[1,κ]) is almost uniform.

Remark on the Encoding Procedure. We note that, unless possessing esk, without [ 1 ]VS , one
cannot encode to level-S for subring element modulo NV . We will explicitly publish these elements
exactly for required levels and subrings in the public key for our ABE schemes.

Remark on the Re-randomization Procedure. We also remark that ReRand can re-randomize
encodings for any level S. This is due to “re-randomizers” ξi =

{
ξi,j = [ 0; ri,j ]{i}

∣∣ j ∈ [1, υ]
}

for all i ∈ [1, κ] internally presented in param, for some sufficiently large υ. To re-randomize
[ a; r ]S , one simply adds it with the product of random subset-sum for each singleton level in S:∏
i∈S
∑

j∈[1,υ] bi,jξi,j . But this might be inefficient and may require more sophisticated distribution
of the random coefficients bi,j than the original CLT construction. A more efficient and ready-
to-use method is to directly publish also a “pre-computed” re-randomizer set for level-S: ξS =
{ ξS,j = [ 0; rS,j ]S | j ∈ [1, υ] }. In our schemes and assumptions, we assume that whenever [ 1 ]VS
appears, we also implicitly have a re-randomizer set for level S (e.g., in PK).

Simplifying Noise Levels. In every algorithm of ABE, we will re-randomize the encodings of
elements by artificially adding noise to a certain pre-defined level. This is to enforce the distributions
of elements in the scheme and the simulation to be the same. For simplicity of exposition, we use
only two levels: N1 for PK,MSK and N2 for CT,SK.

5 Assumptions

In this section, we introduce new assumptions. All are non-interactive and falsifiable assumptions.

Definition 2 (SD1). Let InstGen(1λ, 3`, 3) → (param, esk). Let z, c
$← R. The Subgroup Decision

Assumption 1 states that the following distributions are computationally indistinguishable:(
D,Z = [ z ]1[1,`+1]

)
and

(
D,Z = [ z ]1,2[1,`+1]

)
,

where D =

(
param,

{
[ 1 ]1{i}, [ 1 ]3{i}

}
i∈[1,3`]

, B = [ b ]1,2[`+2,3`]

)
.

Definition 3 (SD2). Let InstGen(1λ, 3`, 3) → (param, esk). Let a, b, c
$← R. For i ∈ [` + 2, 3`],

let zi
$← R. The Subgroup Decision Assumption 2 states that the following distributions are

computationally indistinguishable:(
D,Z =

{
[ zi ]1,2{i}

}
i∈[`+2,3`]

)
and

(
D,Z =

{
[ zi ]1,2,3{i}

}
i∈[`+2,3`]

)
,

where D =

(
param,

{
[ 1 ]1{i}, [ 1 ]3{i}

}
i∈[1,3`]

, A = [ a ]1,2[1,`+1], B = [ b ]1,2[`+2,3`], C = [ c ]2,3[`+2,3`]

)
.

10



The above two assumptions are naturally generalized from Subgroup Decision assumptions
in bilinear groups (the First and Second assumptions in [20]). Its generic hardness should be
immediate. The next two assumptions are similar to the Multi-linear DDH assumption (MDDH) [6,
8, 7] but with more given elements. We first describe the simpler of the two:

Definition 4 (`-EMDDH2). Let InstGen(1λ, 3`, 3) → (param, esk). Sample z, c1, · · · , c`+1, and
ζ from R. The Expanded Multi-linear Decisional Diffie-Hellman Assumption 2 states that the
following distributions are computationally indistinguishable:(

D,Z = [ c1 · · · c`+1z ]2[`+2,3`]

)
and

(
D,Z = [ ζ ]2[`+2,3`]

)
,

where D consists of: param,
{

[ 1 ]1{i}, [ 1 ]2{i}, [ 1 ]3{i}

}
i∈[1,3`]

and [ z ]2[1,`+1], [ c1z ]2[`+2,3`],

[ c1 ]2[1,`+1], [ c1 ]2[`+2,2`+1], [ c1 ]2{2`+2}, . . . , [ c1 ]2{3`}, [ c2 ]2[`+2,2`+1], [ c3 ]2{2`+2}, . . . , [ c`+1 ]2{3`}.

The EMDDH2 assumption extends the regular Multi-linear DDH (in asymmetric settings)3 by
giving out one more element [ c1z ]2[`+2,3`]. We can see that this would not help attacking since it

cannot be multiplied with available c2, . . . , c` as they are all encoded in level ⊂ [`+ 2, 3`].

Definition 5 ((`,m)-EMDDH1). Let InstGen(1λ, 3`, 3)→ (param, esk). Sample b, z, v, c1, · · · , c`+1,
µ1, · · · , µ`, ν1, · · · , ν`, ω1, · · · , ω`, {ai,j , di,j}i∈[1,`],j∈[1,m], and ζ from R.4 The (`,m)-Expanded Multi-
linear Decisional Diffie-Hellman Assumption 1 states that the following distributions are computa-
tionally indistinguishable:(

D,Z = [ c1 · · · c`+1b ]2[`+2,3`]

)
and

(
D,Z = [ ζ ]2[`+2,3`]

)
,

where D consists of: param,
{

[ 1 ]1S , [ 1 ]2S , [ 1 ]3S ,
}
S∈S=

{
[1,`+1],[`+2,2`+1],{2`+2},{2`+3},...,{3`}

} (also with

re-randomizers for level index in S), [ zb ]2[1,`+1], [ v ]2[1,`+1], [ v ]2[`+2,3`], [ vb ]2[`+2,3`], [
c1···c`+1

v ]2[`+2,3`], and

∀e∈{0,−1} [µia
e
i,j ]2{i}, [

1

µ1 · · ·µ`
z ]2{`+1},

∀e∈{0,1} [ νia
e
i,jdi,j ]2{i}, [

1

ν1 · · · ν`
c1 ]2{`+1},

∀e∈{0,−1} [ωia
e
i,j ]2{i}, [

1

ω1 · · ·ωi−1ωi+1 · · ·ω`
zv

1

ai,j
]2{i,`+1},

∀(e,e′)∈E [
aei,j

ae
′
i,j′
di,j ]2{i}, ∀(e,e′)∈E? [ zc1

aei,j

ae
′
i,j′
di,j ]2{i,`+1},

∀i∈[2,`]∀e∈{0,1} [ aei,jdi,j ]2{`+1+i},

∀e∈{0,1} [ c1 · · · ciaei,jdi,j ]2[`+2,`+1+i]∪
[2`+2,2`+i]

, ∀e∈{0,1} [ c1 · · · ci+1a
e
i,j

di,j
di,j′

]2[`+2,`+1+i]∪
[2`+2,2`+i]

,

[
c2

d1,j
]2[`+2,2`+1], ∀i∈[2,`] [

ci+1

di,j
]2{2`+i},

where the range for all subscripts (when appears and is not stated otherwise) is: for all i ∈ [1, `],
j ∈ [1,m], and j′ ∈ [1,m] such that j′ 6= j (note that if j′ appears, j also appears). We denote
E = {(0, 0), (0, 1), (1, 0), (1, 1), (−1, 0)} and E? = E \ {(0, 0)} = {(0, 1), (1, 0), (1, 1), (−1, 0)}. 5

3More precisely, we should say a variant of MDDH since the target element is in level [`+ 2, 3`], not the whole [1, 3`].
4The probability that a random element has no multiplicative inverse is negligible since R has large primes factors.
5We abuse notation and define [2`+ 2, 2`+ 1] = ∅, so that in the second line from the last of D, when i = 1, the level
index is simply the singleton set {`+ 2}.

11



We prove the generic hardness of the EMDDH1 Assumption in Lemma 10 in §A. We note that
our assumption (EMDDH1) is complex, but this is in the same vein as assumptions already used for
selectively secure ABE for simpler classes (such as boolean formulae [24] or regular languages [30]).
Contrastingly, we will use our assumption for fully-secure ABE for the class of any poly-size circuits.

An Interpretation of the EMDDH1 Assumption. The EMDDH1 assumption is defined in
such a way that only confined multiplicative combinations would be “useful”. We observe first that
the “generators” (the encodings of 1) are not given out for all singleton levels; only “bundled” levels
[1, ` + 1], [` + 2, 2` + 1] are given out among level 1 to 2` + 1. Therefore, intuitively, encodings of
which levels are subset of these must be combined to the whole bundle to make them useful. Such
useful combinations are completely listed as follows, where i ∈ [1, `], j1, . . . , j`, j

′
1, . . . , j

′
` ∈ [1,m]

such that j′1 6= j1, . . . , j
′
` 6= j`:

∀e1,...,e`∈{0,−1} [ zae11,j1
· · · ae``,j` ]2[1,`+1],

∀e1,...,e`∈{0,1} [ c1a
e1
1,j1
· · · ae``,j`d1,j1 · · · d`,j` ]2[1,`+1],

∀e1,...,ei−1,ei+1,...,e`∈{0,−1} [ zvae11,j1
· · · aei−1

i−1,ji−1

1

ai,ji
a
ei+1

i+1,ji+1
· · · ae``,j` ]2[1,`+1],

∀(ei,e′i)∈E?∀{(ek,e′k)}k∈[1,`]r{i}∈E`−1 [ zc1

ae11,j1

a
e′1
1,j′1

· · ·
ae``,j`

a
e′`
`,j′`

d1,j1 · · · d`,j` ]2[1,`+1],

∀ei,...,e`∈{0,1} [ c1 · · · ciaeii,ji · · · a
e`
`,j`
di,ji · · · d`,j` ]2[`+2,2`+i],

∀ei,...,e`∈{0,1} [ c1 · · · ci+1a
ei
i,ji
· · · ae``,j`

1

di,j′i
di,ji · · · d`,j` ]2[`+2,2`+i]

(3)

Now, to grasp a quick intuition for its hardness, we may see that

Z · [ z
b

]2[1,`+1], [ z ]2[1,`+1], [ c1d1,j1 · · · d`,j` ]2[`+2,2`+1], [
c2

d1,j1

]2[`+2,2`+1], [
c3

d2,j2

]2{2`+2}, . . . , [
c`+1

d`,j`
]2{3`}

forms a variant of the `-MDDH assumption. Here, the second and third element are from the first
and fifth line of (3), respectively. There are also other tuples that form the MDDH-like assumption,
hence we may think of it as a parallel version of MDDH (à la the Decisional Parallel BDHE [28]).

The combinations in List (3) come separately from each line of the assumption, except that both
line 5 and 6 come from combinations of line 5 and 6 of the assumption. For example, from the first
line of the assumption, we have [µ1a

e1
1,j1

]2{1} · · · [µ`a
e`
`,j`

]2{`} · [
1

µ1···µ` z ]2{`+1} = [ zae11,j1
· · · ae``,j` ]2[1,`+1].

The first four lines are essentially the only combinations that take place in level [1, `+ 1]. For these
first four lines, it is clear that we can only combine terms from the same line, since we must cancel
all “local” variables, such as µi on the first line, by the last element on the same line. On the fourth
line, we do not have any local variable but they must be combined together anyway since we do not
have [ 1 ]2{i} for i ∈ [1, `+ 1] available. (We only have the bundle [ 1 ]2[1,`+1]). For the third and the

fourth line, we must pick exactly one level-{i, `+ 1} term (on the right) to obtain level `+ 1. This
forcefully prevents further picking another level-{i} term (on the left), for the same i. Effectively,
this enforces including a “hard” term, such as aei,j/a

e′
i,j′ where (e, e′) 6= (0, 0) on the fourth line, into

all combinations (of this line). Intuitively, this kind of hard term will be useful for the “mismatch”
techniques for the security proof of ABE (see for intuition in §2). For combinations that contain
the second bundled level, [` + 2, 2` + 1], the assumption defines the elements on the sixth line in
such a way that there is a “hole” set of levels that must be filled in so as to obtain the bundle.

The main point is that it is exactly these kind of “aggregated” elements that we would like
to utilize in the first place, e.g., for simulating keys relating to each path of the circuits (since
intuitively, a path contains much information to be aggregated). However, we cannot afford putting
this list as the given part of the assumption, since they consist of exponential number of elements.

12



Definition 6. For an assumption X, we define the advantage function AdvXA(λ) for adversary A in
the standard manner: it is the distance AdvXA(λ) := |Pr[A(D,Z) = 1] − Pr[A(D,Z ′) = 1]|, where
Z,Z ′ refer to the term Z in each distribution in the definition of the assumption X.

6 A Fully Secure Key-Policy ABE Scheme for Circuits

We describe our KP-ABE for circuits in this section. It is based on the selectively-secure KP-ABE
of GGHSW [9]. Our scheme can be thought of their variant that is implemented in asymmetric
and composite-order multi-linear maps (graded encoding systems) with some additional terms.
Moreover, while the GGHSW implements on (` + 1)-multilinear maps, ours requires 3`-multi-
linearity: instead of using all singleton levels {1}, . . . , {`+1}, we implement the scheme on encodings
of level [1, ` + 1], [` + 2, 2` + 1], {2` + 2}, . . . , {3`}. In the scheme description, each of the first
two “bundled” levels will be always used as a whole bundle. We only decompose them in the
simulation to accommodate the assumption. Additional terms or modified terms that are different
from GGHSW are those “head” elements: in a ciphertext, these comprise T1, T2, while in a key,
these comprise D1, D2, defined below. These are for accommodating the embedding of (implicit)
master-key hiding in the semi-functional space in the proof. Our scheme description is as follows.

• Setup
(
1λ, n, `

)
→ (PK,MSK). Set κ = 3` and ν = 3. Run InstGen(1λ, κ, ν) → (param, esk).

Sample α, h1, . . . , hn, φ1, φ2
$← R. By using PrivEncode(esk, ·, ·, ·) and then re-randomizing by

ReRand(param, 1, ·, ·), it outputs:

PK =
(
param, [ 1 ]1[1,`+1], [α ]1[1,3`], [h1 ]1[1,`+1] . . . , [hn ]1[1,`+1], [φ1 ]1[1,`+1], [φ2 ]1[1,`+1]

)
,

MSK =
(
param,

{
[ 1 ]1S , [ 1 ]3S

}
S∈S=

{
[1,`+1],[`+2,2`+1],{2`+2},...,{3`}

} ,
[α ]1,2[`+2,3`], [h1 ]1[`+2,2`+1] . . . , [hn ]1[`+2,2`+1], [φ1 ]1[`+2,3`], [φ2 ]1[`+2,3`]

)
.

• Encrypt
(
PK, x ∈ {0, 1}n,M ∈ {0, 1}λ

)
→ CT. LetAx = { j ∈ [1, n] | xj = 1 }. Sample [ t ]∅, [ s ]∅ ←

Samp(param). Output a ciphertext CT =
(
C0, C, {Cj}j∈Ax , T1, T2

)
where the message is masked

as C0 = Ext(param, [αt ]1[1,3`])⊕M , and

C = [ s ]1[1,`+1], Cj = [hjs ]1[1,`+1], T1 = [ t ]1[1,`+1], T2 = [φ2t+ φ1s ]1[1,`+1].

All these encodings are re-randomized via ReRand(param, 2, ·, ·).

• KeyGen
(
MSK, f ∈ Fn,`

)
→ SK. Sample [ r ]∅ and [αw ]∅ for all w ∈ Nodes from Samp(param),

and set

D′1 = [α ]1,2[`+2,3`] + [φ2r ]1[`+2,3`], D′2 = [ r ]1[`+2,3`], D′3 = [φ1r − αwtop ]1[`+2,3`].

Compute the key element Kw for each w ∈ Nodes as follows.

1. For each input node w ∈ Inputs (i.e., Depth(w) = 1), sample [ vw ]∅ ← Samp(param). Let
j = Num(w). Compute K′w = (U ′w,K

′
w) as

U ′w = [ vw ]1[`+2,2`+1], K ′w = [αw + hjvw ]1[`+2,2`+1].

2. For each gate w ∈ Gates (i.e., Depth(w) > 1), sample [ `w ]∅, [ rw ]∅ ← Samp(param). Let
i = Depth(w). Compute

L′w = [ `w ]1{2`+i}, R′w = [ rw ]1{2`+i}.

It then computes:

13



− If GateType(w) = OR, then set K′w = (L′w, R
′
w,K

′
w,1,K

′
w,2) where

K ′w,1 = [αw + α L(w)`w ]1[`+2,2`+i], K ′w,2 = [αw + αR(w)rw ]1[`+2,2`+i].

− If GateType(w) = AND, then set K′w = (L′w, R
′
w,K

′
w) where

K ′w = [αw + α L(w)`w + αR(w)rw ]1[`+2,2`+i].

Then for each element X ′ in SK′ :=
(
{K′w}w∈Nodes, D′1, D′2, D′3

)
, the algorithm adds a ran-

dom mask from the subring ZN3 as follows. Let SX′ be the set index of X ′. It samples
[ γX ]∅ ← Samp(param) and sets X := X ′ + [ γX ]3SX′

. All these encodings are re-randomized

via ReRand(param, 2, ·, ·). Output the key as SK :=
(
{Kw}w∈Nodes, D1, D2, D3

)
.

• Decrypt(SK,CT) → M . Assume that f(x) = 1, so that the decryption is possible. Compute at
each node w such that fw(x) = 1 in the bottom-up manner as follows. More precisely, we show
how to compute Ew := [αws ]1[1,2`+i], where i = Depth(w), by induction on i from 1 to `.

1. For each input node w ∈ Inputs = [1, n] such that fw(x) = 1, we have xw = 1. Compute6

Ew = C ·Kw − Cw · Uw
= [ s ]1[1,`+1] · [αw + hjvw ]1[`+2,2`+1] − [hjs ]1[1,`+1] · [ vw ]1[`+2,2`+1] = [αws ]1[1,2`+1],

where j = Num(w). This effectively proves the base case of the induction statement.

2. For each gate w ∈ Gates such that fw(x) = 1, consider the following two cases.

− If GateType(w) = OR, then f L(w)(x) = 1 or fR(w)(x) = 1. Wlog, we can assume that
f L(w)(x) = 1. Hence, E L(w) = [α L(w)s ]1[1,2`+i−1] by the induction hypothesis, where we

note that Depth( L(w)) = i− 1. Then, compute

Ew = C ·Kw,1 − E L(w) · Lw
= [ s ]1[1,`+1] · [αw + α L(w)`w ]1[`+2,2`+i] − [α L(w)s ]1[1,2`+i−1] · [ `w ]1{2`+i} = [αws ]1[1,2`+i].

− If GateType(w) = AND, then f L(w)(x) = 1 and fR(w)(x) = 1. Hence, we have E L(w) =
[α L(w)s ]1[1,2`+i−1] and ER(w) = [αR(w)s ]1[1,2`+i−1], by the induction hypothesis. Then com-
pute

Ew = C ·Kw −
(
E L(w) · Lw + ER(w) ·Rw

)
= [ s ]1[1,`+1] · [αw + α L(w)`w + αR(w)rw ]1[`+2,2`+i]

−
(

[α L(w)s ]1[1,2`+i−1] · [ `w ]1{2`+i} + [αR(w)s ]1[1,2`+i−1] · [ rw ]1{2`+i}

)
= [αws ]1[1,2`+i].

This concludes the induction. Finally, at the top gate wtop, in which Depth(wtop) = `, we obtain
Ewtop = [αwtops ]1[1,3`]. From this, it computes

Ewtop + C ·D3 + T1 ·D1 − T2 ·D2

= [αwtops ]1[1,3`] + [ s ]1[1,`+1] · [φ1r − αwtop ]1[`+2,3`] + [ t ]1[1,`+1] · ([α ]1,2[`+2,3`] + [φ2r ]1[`+2,3`])

− [φ2t+ φ1s ]1[1,`+1] · [ r ]1[`+2,3`]

= [αt ]1[1,3`],

and computes the message mask Ext(param, [αt ]1[1,3`]) and obtains M from C0.

6In these following computations, the N3 components of elements in SK will be all canceled out by orthogonality;
and hence we do not write them explicitly for simplicity.

14



Properties of Our KP-ABE for Circuits. In our KP-ABE, the size of a ciphertext for string
x is proportional to the number of 1’s in x, the size of a key for circuit f is proportional to the size
of circuit f (the number of nodes). Hence, the scheme is said to be succinct. Moreover, it has no
bound on circuit size and fan-out, i.e., we can setup a fixed system, and keys for circuits of any size
and fan-out can be constructed (as long as they are polynomial sizes, since the key size is linear
to the circuit size). Putting it in other words, the public key PK does not depend on circuit size
and fan-out. We only require bounds on input length n and depth `. We remark that, however,
the assumption will be parameterized by the maximum number of (internal) gates per layer (and
hence the circuit size and the maximum fan-out) of circuits for which the adversary issues key
queries. We emphasize that this number is not bounded at the system setup. This is analogous
to previous ABE systems with unbounded nature [30, 24, 1], of which underlying assumptions are
parameterized by sizes of attributes related to the challenge or key queries made by the adversary.

7 Security Proof

We define semi-functional algorithms to be used in the security proof as follows.

• SFSetup
(
1λ, n, `

)
→ (PK,MSK, P̂K, M̂SKbase, M̂SKaux). This is exactly the same as the Setup

algorithm albeit it additionally outputs also P̂K, M̂SKbase, M̂SKaux defined as

P̂K =
(

[ 1 ]2[1,`+1], [α ]2[1,3`], [ ĥ1 ]2[1,`+1] . . . , [ ĥn ]2[1,`+1], [ φ̂1 ]2[1,`+1], [ φ̂2 ]2[1,`+1]

)
,

M̂SKbase =
({

[ 1 ]2S
}
S∈S=

{
[1,`+1],[`+2,2`+1],{2`+2},...,{3`}

} ),
M̂SKaux =

(
[ ĥ1 ]2[`+2,2`+1] . . . , [ ĥn ]2[`+2,2`+1], [ φ̂1 ]2[`+2,3`], [ φ̂2 ]2[`+2,3`]

)
,

where it samples ĥ1, . . . , ĥn, φ̂1, φ̂2
$← R. Again, all these encodings can be obtained using

PrivEncode(esk, ·, ·, ·) and then re-randomized using ReRand(param, 1, ·, ·).

• SFEncrypt
(
PK, x ∈ {0, 1}n,M ∈ {0, 1}λ, P̂K

)
→ CT. Let Ax = { j ∈ [1, n] | xj = 1 }. Sam-

ple [ t ]∅, [ s ]∅, [ t̂ ]∅, [ ŝ ]∅ ← Samp(param). Output a semi-functional ciphertext CT =
(
C0, C,

{Cj}j∈Ax , T1, T2

)
where C0 = Ext(param, [αt ]1[1,3`] + [αt̂ ]2[1,3`])⊕M , and

C = [ s ]1[1,`+1] + [ ŝ ]2[1,`+1], Cj = [hjs ]1[1,`+1] + [ ĥj ŝ ]2[1,`+1],

T1 = [ t ]1[1,`+1] + [ t̂ ]2[1,`+1], T2 = [φ2t+ φ1s ]1[1,`+1] + [ φ̂2t̂+ φ̂1ŝ ]2[1,`+1].

All these encodings are re-randomized via ReRand(param, 2, ·, ·).

• SFKeyGen
(
MSK, f ∈ Fn,`, M̂SKbase, M̂SKaux, type ∈ {1, 2, 3}, [β ]∅

)
→ SK. It takes additional

inputs M̂SKbase, M̂SKaux, type and [β ]∅, which is a level-∅ encoding of some β ∈ R. Sample
[ r ]∅, [ r̂ ]∅ ← Samp(param). It then sets

D′1 =


[α ]1,2[`+2,3`] + [φ2r ]1[`+2,3`] + [ φ̂2r̂ ]2[`+2,3`] if type = 1,

[α ]1,2[`+2,3`] + [φ2r ]1[`+2,3`] + [β + φ̂2r̂ ]2[`+2,3`] if type = 2,

[α ]1,2[`+2,3`] + [φ2r ]1[`+2,3`] + [β ]2[`+2,3`] if type = 3.

Next, we consider the two following cases:

− If type = 3, then we compute the remaining elements as in KeyGen.

15



− If type = 1 or 2, then we compute the remaining elements as follows. It samples [αw ]∅, [ α̂w ]∅ ←
Samp(param) for all w ∈ Nodes. It sets

D′2 = [ r ]1[`+2,3`] + [ r̂ ]2[`+2,3`], D′3 = [φ1r − αwtop ]1[`+2,3`] + [ φ̂1r̂ − α̂wtop ]2[`+2,3`].

Compute the key element Kw for each w ∈ Nodes as follows.

1. For each input node w ∈ Inputs (i.e., Depth(w) = 1), sample [ vw ]∅, [ v̂w ]∅ ← Samp(param).
Let j = Num(w). Compute K′w = (U ′w,K

′
w) as

U ′w = [ vw ]1[`+2,2`+1] + [ v̂w ]2[`+2,2`+1], K ′w = [αw + hjvw ]1[`+2,2`+1] + [ α̂w + ĥj v̂w ]2[`+2,2`+1].

2. For each gate w ∈ Gates (i.e., Depth(w) > 1), sample [ `w ]∅, [ rw ]∅, [ ˆ̀
w ]∅, [ r̂w ]∅ from

Samp(param). Let i = Depth(w). Compute

L′w = [ `w ]1{2`+i} + [ ˆ̀
w ]2{2`+i}, R′w = [ rw ]1{2`+i} + [ r̂w ]2{2`+i}.

− If GateType(w) = OR, then set K′w = (L′w, R
′
w,K

′
w,1,K

′
w,2) where

K ′w,1 = [αw + α L(w)`w ]1[`+2,2`+i] + [ α̂w + α̂ L(w)
ˆ̀
w ]2[`+2,2`+i],

K ′w,2 = [αw + αR(w)rw ]1[`+2,2`+i] + [ α̂w + α̂R(w)r̂w ]2[`+2,2`+i].

− If GateType(w) = AND, then set K′w = (L′w, R
′
w,K

′
w) where

K ′w = [αw + α L(w)`w + αR(w)rw ]1[`+2,2`+i] + [ α̂w + α̂ L(w)
ˆ̀
w + α̂R(w)r̂w ]2[`+2,2`+i].

Then for each element, the algorithm does exactly the same as in KeyGen: it adds a random
mask from the subring ZN3 and re-randomizes using ReRand(param, 2, ·, ·).

We say that semi-functional keys with β = 0 are of correlated type, and those with random β are of
uncorrelated type. Here, we consider the correlation to the message mask element of semi-functional
ciphertext: if β is random, it masks α mod N2 in the keys. Consequently, type-1 is classified as
correlated, while type-2, 3 is uncorrelated.

We note that in computing type 3 semi-functional keys, M̂SKaux is not required as input and
that in computing type 1 semi-functional keys, [β ]∅ is not required as inputs. In the proof, we
often refer to the additional part in semi-functional elements as semi-functional components and
denoted the element with hat, e.g., Ĉ = [ ŝ ]2[1,`+1] is semi-functional component of C.

Remark on Relations to the Framework of [1]. The scheme and the semi-functional element
structures mostly follow the framework of [1], which shows a generic construction of fully-secure
schemes (for a predicate) from underlying primitives called pair encodings (of the same predicate).
One advantage of using this framework is that the reduction is tighter than normal dual system
proofs: the cost is only O(q1), instead of O(qall), where q1, qall are the number of pre-challenge and
all key queries respectively. We remark that although the framework of [1] was defined for the case
of bilinear maps, we can generalize to work with multi-linear maps. In particular, we use our new
Subgroup Decision assumptions that are generalized from those used in [20, 1]. Nevertheless, we
do not build a whole new framework for multi-linear maps; instead, we construct our ABE directly.

One deviation from the framework of [1] is that we use a technique from [32] related to the
information-theoretic argument for the final transition (to the final game). This has an advantage
over [1] in that we can eliminate one assumption (namely, the Third Subgroup Decision assumption
in [20, 1]). To enable this, we define D1 to contain [α ]1,2[`+2,3`], instead of simply [α ]1[`+2,3`] (as would

be defined if [1] is used), and define the message mask element of semi-functional ciphertext to be
[αt ]1[1,3`] + [αt̂ ]2[1,3`], instead of only [αt ]1[1,3`].

16



Figure 2: The sequence of games in the security proof.

G0 :Modify (0) SFsetup(1λ, n, `)→ (PK,MSK, P̂K, M̂SKbase, M̂SKaux) .

Modify (2) CT? ← SFEncrypt(PK, x?,Mb, P̂K) .

Gk,1 :Modify (1) [βj ]∅ ← Samp(param), SKj ←


SFKeyGen(MSK, f (j), M̂SKbase, − , 3, [βj ]∅) if j < k

SFKeyGen(MSK, f (j), M̂SKbase, M̂SKaux, 1, − ) if j = k

KeyGen(MSK, f (j)) if j > k

Gk,2 :Modify (1) [βj ]∅ ← Samp(param), SKj ←


SFKeyGen(MSK, f (j), M̂SKbase, − , 3, [βj ]∅) if j < k

SFKeyGen(MSK, f (j), M̂SKbase, M̂SKaux, 2, [βj ]∅) if j = k

KeyGen(MSK, f (j)) if j > k

Gk,3 :Modify (1) [βj ]∅ ← Samp(param), SKj ←

{
SFKeyGen(MSK, f (j), M̂SKbase, − , 3, [βj ]∅) if j ≤ k

KeyGen(MSK, f (j)) if j > k

Gq1+1:Modify (3) SKj ← SFKeyGen(MSK, f (j), M̂SKbase, M̂SKaux, 1, − )

Gq1+2:Insert [β ]∅ ← Samp(param) at the begin of Phase 2.

Modify (3) SKj ← SFKeyGen(MSK, f (j), M̂SKbase, M̂SKaux, 2, [β ]∅ )

Gq1+3:Modify (3) SKj ← SFKeyGen(MSK, f (j), M̂SKbase, − , 3, [β ]∅ )

Gfinal :Modify (2) M
$← {0, 1}λ, CT? ← SFEncrypt(PK, x?,M, P̂K) .

7.1 Security Theorem and Proof Overview

We obtain the following security theorem for our KP-ABE for circuits. We recall that Fn,` is the
class of polynomial size circuits with bounded input-size n and bounded depth `.

Theorem 1. Suppose that the SD1, SD2,EMDDH1,EMDDH2 Assumptions hold. Then our KP-
ABE for circuits is fully secure. More precisely, for any PPT adversary A that attacks our KP-
ABE for circuits in Fn,`, there exist PPT algorithms B1,B2,B3,B4, whose running times are that
of A plus some polynomial times, such that for any λ,

Adv
(n,`)-KPABE
A (λ) ≤ AdvSD1

B1
(λ) + (2q1 + 2)AdvSD2

B2
(λ) + q1Adv

(`,m)-EMDDH1
B3

(λ) + Adv`-EMDDH2
B4

(λ),

where q1 is the number of key queries by A in phase 1, and m is the maximum number of (internal)
gates per layer of circuits for which A issues key queries in phase 1.

Security Proof Structure for Theorem 1. We use a sequence of games in the following order:

Greal G0 G1,1

· · ·
Gk−1,3 Gk,1 Gk,2 Gk,3

· · ·
Gq1,3 Gq1+1 Gq1+2 Gq1+3 Gfinal

SD1

12

SD2

13

EMDDH1

3

SD2

14

SD2

15

EMDDH2

16

SD2

17

=

18

where each game is defined as follows. Greal is the actual security game, and each of the following
game is defined exactly as its previous game in the sequence except the specified modification that
is defined in Fig. 2. For notational purpose, let G0,3 := G0. In the final game, the advantage of
A is trivially 0. We prove the indistinguishability between all these adjacent games (under the
underlying assumptions as written in the diagram). These comprise Lemma 12,13,3,14,15,16,17,18
(also depicted in the diagram). From these lemmata, we obtain Theorem 1.

17



Outline for the Proof of Each Lemma. We first consider the proofs for game transitions
that are based on subgroup decision assumptions (SD1, SD2): which are the game pair Greal/G0,
Gk−1,3/Gk,1, Gk,2/Gk,3, Gq1,3/Gq1+1, Gq1+2/Gq1+3. Although some of these proofs are lengthy, they
all share the same idea. We thus summarize their proof sketch together below (§7.2) and postpone
each of the full proofs to §B (Lemma 12,13,14,15,17 respectively).

The most non-trivial proofs are indistinguishability of Gk,1/Gk,2 and of Gq1+1/Gq1+2. Both
transitions switch semi-functional keys from type-1 (the correlated type) to type 2 (an uncorrelated
type). When the switching occurs in the phase 1 (corresponding to game Gk,1/Gk,2), we will
essentially use the co-selective security techniques. We will not, however, explicitly show it in
a modular manner here. Instead, we reduce the indistinguishability directly to the assumption
(EMDDH1). Nevertheless, the proof will exhibit clearly the nature of co-selective type of proof.
That is, the adversary A first announces circuit f , the reduction algorithm B then simulates
parameters (in semi-functional space) and SKf . The key is then returned to A. After then, A in
the challenge phase will ask for ciphertext for x?, and B simulates it in the consistent way with
SKf based on the simulated parameters. The proof for co-selective security of ABE for circuits is
the main novelty in this paper. Hence, we show the full proof in the paper body below in §7.3.

On the other hand, if the switching occurs in the phase 2 (corresponding to game Gq1+1/Gq1+2),
we will essentially, but again implicitly, use the selective security techniques, and hence we can
follow from the selective security proof of the GGHSW KP-ABE [9], upon which our scheme is
constructed. We prove it directly to the `-EMDDH2 assumption. We postpone this proof to §B.5.

Finally, it is easy to see that Gq1+3 is the same as Gfinal, due to the fact that all the semi-
functional keys become those of uncorrelated type. We clarify the detail in Lemma 18 in §B.7.

We define GjAdv
(n,`)-KPABE
A (λ) to be the advantage of A in the game Gj .

7.2 Sketch of Proofs for Subgroup-Decision Based Transitions

Lemma 2 (informal). Consider pairs of games: Greal/G0, Gk−1,3/Gk,1, Gk,2/Gk,3, Gq1,3/Gq1+1,
Gq1+2/Gq1+3. If there exists an adversary A that has non-negligible difference in advantage between
the two games in question, then we can construct an algorithm B that breaks SD1 in the first case,
and SD2 in all the other four cases.

Proof Sketch. The algorithm B obtains an input (D,Z) from the underlying assumption (SD1 in
the first case, SD2 in all the other cases). B will use the adversary A against either of the two games
in question as subroutines to answer whether Z has ZN2 component being zero or random. All the
proofs simulate the setup phase in exactly the same way. First, B samples [ α̃ ]∅ ← Samp(param)
and sets [α ]1,2[`+2,3`] = [ α̃ ]∅ ·[ b ]1,2[`+2,3`] for MSK, and [α ]1[1,3`] = [α ]1,2[`+2,3`] ·[ 1 ]1[1,`+1] for PK. The other

terms in PK are trivially computed: for each variable y in H := {h1, . . . , hn, φ1, φ2}, B samples
[ ỹ ]∅ ← Samp(param) and computes [ y ]1S = [ ỹ ]∅ · [ 1 ]1S for every needed term in PK,MSK. Note
that [ 1 ]1S is computable from [ 1 ]1{i}, [ 1 ]3{i} for all i ∈ [1, 3`]. On the other hand, B cannot simulate

P̂K, M̂SKbase, M̂SKaux since it does not possess any [ 1 ]2S . However, we implicitly define [ ŷ ]2S = [ ỹ ]∅ ·
[ 1 ]2S for each variable ŷ ∈ Ĥ := {ĥ1, . . . , ĥn, φ̂1, φ̂2}. Due to CRT, y = ỹ mod N1 and ŷ = ỹ mod N2

is independent as required. This allows B to simulate ciphertexts and keys by multiplying [ ỹ ]∅
with, say F being [X ]1S or [X ]1,2S (for some X). If F = [X ]1S , then [ ỹ ]∅ · F = [ yX ]1S produces

a normal element (whether ciphertext or key depends on contexts), while if F = [X ]1,2S , then

[ ỹ ]∅ · F = [ yX ]1S + [ ŷX̂ ]2S produces a semi-functional element, with X̂ = X mod N2. Hence, if F
is the problem instance, which is the term Z from SD1,SD2, we can use it to simulate the game
transitions which modify normal components to semi-functional ones. On the other hand, if F is
an given known term, which is A,B,C in the assumptions, we can use it to simulate corresponding
element types (whether normal or semi-functional depends on contexts). In Table 1, we summarize

18



Table 1: Summary of proofs for subgroup-decision based transitions (for Lemma 2).

Between Difference Assumption MSK SKj in phase 1 CT SKj in phase 2

(j<k) (j=k) (j>k) (∀j)

Greal /G0 CT = normal/semi SD1 B X Z X
Gk−1,3/Gk,1 SKk = normal/semi-1 SD2 B C Z X A X
Gk,2 /Gk,3 SKk = semi-2 /semi-3 SD2 B C Z,C X A X

Gq1,3 /Gq1+1 SK∀j= normal/semi-1 SD2 B C A Z
Gq1+2 /Gq1+3 SK∀j= semi-2 /semi-3 SD2 B C A Z,C

Table 2: Overview for Simulation of Elements in Lemma 3

Element For Used Terms from the EMDDH1 Assumption Note

[ ĥj ]2[`+2,2`+1] SK [ c1a
e1
1,j1
· · · ae``,j`d1,j1 · · · d`,j` ]2[`+2,2`+1]

[ α̂w ]2[`+2,2`+i] SK [ c1 · · · ciaeii,ji · · · a
e`
`,j`
di,ji · · · d`,j` ]2[`+2,2`+i] Depth(w) = i− 1

[ α̂w + α̂ L(w)
ˆ̀
w ]2[`+2,2`+i] SK [ c1 · · · ci+1a

ei
i,ji
· · · ae``,j`

1
di,j′

i

di,ji · · · d`,j` ]2[`+2,2`+i] Depth(w) = i

[ ˆ̀
w ]2{2`+i} SK [ ci+1

di,j
]2{2`+i} Depth(w) = i

[ ŝ ]2[1,`+1] CT [ zae11,j1 · · · a
e`
`,j`

]2[1,`+1]

[ ĥj ]2[1,`+1] CT [ c1a
e1
1,j1
· · · ae``,j`d1,j1 · · · d`,j` ]2[1,`+1]

[ φ̂2t̂+ φ̂1ŝ ]2[1,`+1] CT [ zvae11,j1 · · · a
ei−1

i−1,ji−1

1
ai,ji

a
ei+1

i+1,ji+1
· · · ae``,j` ]2[1,`+1]

[ sĥj ]2[1,`+1] CT [ zc1
a
e1
1,j1

a
e′1
1,j′1

· · ·
a
e`
`,j`

a
e′
`

`,j′
`

d1,j1 · · · d`,j` ]2[1,`+1] ∃i : (ei, e
′
i) 6= (0, 0)

how we use elements Z,A,B,C from the assumption SD1, SD2 to simulate what elements in the five
game transitions that is based on SD1, SD2. X means that we can trivially compute. We note that
type-3 keys are exactly like normal keys but with additional [β ]2`+2,3` in D1; this can be simulated
using C. Also note that transitions of keys in phase 2 differ from those of phase 1 in that instead
switching one key at a time, all key queries (in phase 2) are changed altogether at once.

7.3 Proof for Transition of Type-1 to Type-2 Semi-functional Key in Phase 1

Lemma 3 (Gk,1 to Gk,2). For any adversary A that makes the k-th key query for a circuit of which
the maximum number of (internal) gates per layer is m, there exists an algorithm B that breaks the

(`,m)-EMDDH1 with |Gk,1Adv
(n,`)-KPABE
A (λ)− Gk,2Adv

(n,`)-KPABE
A (λ)| ≤ Adv

(`,m)-EMDDH1
B (λ).

Proof Overview. The algorithm B obtains an input (D,Z) from the (`,m)-EMDDH1 Assumption.
Denote Z = [ δ + c1 · · · c`+1b ]2[`+2,3`]. Its task is to guess whether δ = 0 or δ ∈R R. The idea is that
B will define βk = δ in the simulation for the k-th key, so that if δ = 0, it will be a type-1 semi-
functional key, otherwise δ is random, and it will be a type-2 semi-functional key. B will construct
the normal component as in the scheme while it will simulate all the semi-functional components

by using the assumption. B will not define all the hatted variables (and hence, P̂K, M̂SKaux) until
the first query that requires using them, which is the k-th key. This resembles to the co-selective
security notion. As an overview, we highlight which element in the scheme can be simulated by
which term from the assumption (in the form of List (3)). We summarize important terms in
Table 2. The intuition basically follows from explanation in §2. We review the main ideas as
follows.

19



• Chaining Information on Paths. First, for any input node j ∈ [1, n], the element [ ĥj ]2[1,`+1]

(for ciphertext) and [ ĥj ]2[`+2,2`+1] (for key) are simulated by chaining information on all paths

from the output gate to it. We use ai,ji for AND gate wi,ji . For its left child we use (1 − ai,ji),
while for its right child we use ai,ji as the information to aggregate.

• Gate Mismatch. The variable ai,ji will be also served as “individual randomness” for identifying

a gate in the circuit. The purpose is to enforce cancellation of non-trivial terms in [ sĥj ]2[1,`+1] so
that only terms with “gate mismatch” will remain. Intuitively, this is represented by the term

aeii,ji/a
e′i
i,j′i

, where ji 6= j′i, (ei, e
′
i) 6= (0, 0), which appears when two gates mismatch.

• Outgoing-wire Mismatch. The variable di,ji is served as “individual randomness” for iden-
tifying an outgoing wire when we gather many paths for chaining. The purpose is to enforce
cancellation of non-trivial terms in [ α̂w + α̂ L(w)

ˆ̀
w ]2[`+2,2`+i] so that only terms with “outgoing-

wire mismatch” will remain. Intuitively, this is represented by the term di,ji/di,j′i , where ji 6= j′i,
which appears when out-going wires mismatch.

In the proof, we will indeed not use the elements as in the form of List (3), instead we will use
more sophisticated recursive algorithms that will multiply the original elements from the assumption
on the fly so that the running time are kept efficient.

We are now ready to describe the full proof.

Proof (of Lemma 3). The algorithm B obtains an input (D,Z) from the (`,m)-EMDDH1 Assump-
tion. Denote Z = [ δ + c1 · · · c`+1b ]2[`+2,3`]. Its task is to guess whether δ = 0 or δ ∈R R. B will
implicitly define βk = δ in the simulation for the k-th key below.

Setup. The algorithm B simulates SFSetup(1λ, 3`, 3) as follows. B will compute PK,MSK, M̂SKbase.
We first note that B can compute [ 1 ]1S , [ 1 ]2S , [ 1 ]3S for any S that is a union of sets from S,
where S ∈ S =

{
[1, ` + 1], [` + 2, 2` + 1], {2` + 2}, . . . , {3`}

}
. B begins by sampling [α ]∅ ←

Samp(param) and computing [α ]1[1,3`], [α ]1,2[`+2,3`], for PK,MSK, respectively. For each variable y in

H := {h1, . . . , hn, φ1, φ2}, B samples [ y ]∅ ← Samp(param). B then computes each [ y ]1S term that
appears in PK,MSK. All these terms are computable and completely define PK,MSK. PK is given

to A. Moreover, M̂SKbase is computable from [ 1 ]2S , for S ∈ S. We remark that B will not define all

the hatted variables (and hence, P̂K, M̂SKaux) until the first query that requires using them, which
is the k-th key query below.

Phase 1. When A makes the j-th key query for f (j), B generates a key as follows

[Case j > k]. B generates a normal key as SKj ← KeyGen(MSK, f (j)).

[Case j < k]. B samples [βj ]∅ ← Samp(param). B generates a type-3 semi-functional key by

setting SKj ← SFKeyGen(MSK, f (j), M̂SKbase,−, 3, [βj ]∅).

[Case j = k]. B generates a type-1 or type-2 semi-functional key as follows. First it generates
a normal key SKk ← KeyGen(MSK, f (k)). A type-1 or type-2 semi-functional key is different from
a normal key by having additional N2 components. To define these components, we begin with

programming hatted variables in P̂K, M̂SKaux and in semi-functional key components, using the
information on the circuit f (k).

(Programming Parameters and Randomness in Key). B first samples [h′1 ]∅, . . . , [h
′
n ]∅,

[φ′1 ]∅, [φ
′
2 ]∅ ← Samp(param). We implicitly set parameters for P̂K, M̂SKaux:

φ̂1 = v + φ′1, φ̂2 = vb+ φ′2. (4)

20



The remaining parameters ĥj ’s depend on the key query, which is the circuit f (k). We define them
along with programming randomness for simulating the key for the circuit. For i ∈ [1, `], let mi be
the number of nodes of depth i. Note that m1 = n. Let m be the maximum among m2, . . . ,m`.
We recall that each node is indexed by its depth and its number in the lexicographical order in
that layer: node wi,j has depth i and is the j-th node in the depth-i layer.

We implicitly set α̂w for all w ∈ Nodes and ĥj for all j ∈ [1, n] as

α̂wi,j = yi,jc1 · · · ci+1, ĥj = d1,1y1,jc1 + h′j . (5)

where yi,j is defined recursively from the output gate (of which depth is `) to the input gates (of
which depth is 1) as follows. First at the output gate wtop = w`,1, we set y`,1 = 1.7 Then, for i
ranges from ` to 2, and for j′ ∈ [1,mi−1], we set

yi−1,j′ =
∑

ι∈[1,mi]

ρ(i−1,j′)→(i,ι)di,ιyi,ι = ρ(i−1,j′)→(i,1)di,1yi,1 + · · ·+ ρ(i−1,j′)→(i,mi)di,miyi,mi , (6)

where for j ∈ [1,mi], we also define

ρ(i−1,j′)→(i,j) =


1 if GateType(wi,j) = OR and wi−1,j′ ∈ { L(wi,j), R(wi,j)},
1− ai,j if GateType(wi,j) = AND and wi−1,j′ = L(wi,j),

ai,j if GateType(wi,j) = AND and wi−1,j′ = R(wi,j),

0 if wi−1,j′ 6∈ { L(wi,j), R(wi,j)}.

(7)

For wi,j ∈ Nodes, we denote path(i,j) to be the set of all sequences of node numbers in the path in
the circuit between wi,j and w`,1 (the output gate) inclusively. That is, we say (j, ji+1, . . . , j`−1, 1) ∈
path(i,j) iff (wi,j , wi+1,ji+1 , . . . , w`−1,j`−1

, w`,1) is a path from wi,j to w`,1. From this, we can derive
an explicit form of yi,j for i ∈ [1, `− 1], j ∈ [1,mi] as

yi,j =
∑

(j,ji+1,...,j`−1,1)∈path(i,j)

(ρ(i,j)→(i+1,ji+1)di+1,ji+1) · · · (ρ(`−1,j`−1)→(`,1)d`,1) (8)

For the remaining randomness in key, we set βk = δ, r̂ =
c1···c`+1

v , and

∀w1,j∈Inputs : v̂w1,j = − c2

d1,1
, ∀wi,j∈Gates : ˆ̀

wi,j = −ci+1

di,j
, r̂wi,j = −ci+1

di,j
. (9)

Note that these values are not properly randomly distributed yet. We separately describe the
re-randomization process later for simplicity.

(Simulating Key). From the above (implicit) definitions, the semi-functional components for
key are well defined. B computes them as follows. First, B trivially sets D̂2 = [

c1···c`+1

v ]2[`+2,3`],

Ûw1,j = −[ c2
d1,1

]2[`+2,2`+1] for all w1,j ∈ Inputs, and L̂wi,j = R̂wi,j = −[ ci+1

di,j
]2{2`+i} for all wi,j ∈ Gates.

Then B computes

D̂1 = Z + [φ′2 ]∅ · [
c1 · · · c`+1

v
]2[`+2,3`] = [βk + φ̂2r̂ ]2[`+2,3`],

where we observe that in Z = [β+c1 · · · c`+1b ]2[`+2,3`], the last term can be expressed as (vb)(
c1···c`+1

v ).

vb is then combined with φ′2 to produce φ̂2. Next, B computes

D̂3 = [φ′1 ]∅ · [
c1 · · · c`+1

v
]2[`+2,3`] = [ φ̂1r̂ − α̂w`,1 ]2[`+2,3`],

∀w1,j∈Inputs K̂w1,j = −[h′j ]∅ · [
c2

d1,1
]2[`+2,2`+1] = [ α̂w1,j + ĥj v̂w1,j ]2[`+2,2`+1],

7Note that in this layer, there is only one gate wtop but we write its number, 1, for notation consistency.

21



where in the former, c1 · · · c` is canceled out, while in the latter c1c2 is canceled out. To keep
notation compact in the next computation, for every i ∈ [2, `], j′ ∈ [1,mi−1], j ∈ [1,mi], we define

σ(i−1,j′),(i,j) :=
∑

ι∈[1,mi]
s.t. ι6=j

ρ(i−1,j′)→(i,ι)
di,ι
di,j

yi,ιc1 · · · ci+1. (10)

For all wi,j ∈ Gates, we compute corresponding elements as follows. Let wi−1,jL = L(wi,j), wi−1,jR =
R(wi,j). If wi,j is an OR gate, then B computes

K̂wi,j ,1 = −[σ(i−1,jL),(i,j) ]2[`+2,2`+i] = [ α̂wi,j + α̂ L(wi,j)
ˆ̀
wi,j ]2[`+2,2`+i],

K̂wi,j ,2 = −[σ(i−1,jR),(i,j) ]2[`+2,2`+i] = [ α̂wi,j + α̂R(wi,j)r̂wi,j ]2[`+2,2`+i].
(11)

We verify this by substituting α̂wi,j = yi,jc1 · · · ci+1 , α̂ L(wi,j) = (yi−1,jLc1 · · · ci), ˆ̀
wi,j = − ci+1

di,j
, and

seeing α̂wi,j + α̂ L(wi,j)
ˆ̀
wi,j = yi,jc1 · · · ci+1 −

(
1di,jyi,j +

∑
ι∈[1,mi]
s.t. ι6=j

ρ(i−1,jL)→(i,ι)di,ιyi,ι

)
c1 · · · ci( ci+1

di,j
),

where we use Eq.(6),(10), and the fact that wi,j is an OR gate, hence ρ(i−1,jL)→(i,j) = 1 from Eq.(7).
The last equation cancels out yi,jc1 · · · ci+1 and we obtain Eq.(11).

If wi,j is an AND gate, B computes

K̂wi,j = −[σ(i−1,jL),(i,j) ]2[`+2,2`+i] − [σ(i−1,jR),(i,j) ]2[`+2,2`+i]

= [ α̂wi,j + α̂ L(wi,j)
ˆ̀
wi,j + α̂R(wi,j)r̂wi,j ]2[`+2,2`+i].

This can be verified similarly as above, but this time, wi,j is an AND gate, hence ρ(i−1,jL)→(i,j) =
1− ai,j and ρ(i−1,jR)→(i,j) = ai,j . Nevertheless, both terms sum up to 1 and the same cancellation
takes place. It remains to verify that [σ(i−1,jL),(i,j) ]2[`+2,2`+i] can be computed. We claim the
following.

Claim 4. For i ∈ [1, `− 1] and j ∈ [1,mi], j
′ ∈ [1,mi+1], B can efficiently compute

[ yi,j ]2[`+2+i,2`+1], [ α̂wi,j ]2[`+2,2`+1+i], [σ(i,j),(i+1,j′) ]2[`+2,2`+1+i].

Proof (of the claim). We prove by induction for i from ` − 1 to 1. Starting from gates of depth
`− 1, B can compute for any j′ ∈ [1,m`−1],

[ y`−1,j′ ]
2
{2`+1} = [ ρ(`−1,j′)→(`,1)d`,1 ]2{2`+1},

[ α̂w`−1,j′ ]
2
[`+2,3`] = [ c1 · · · c`ρ(`−1,j′)→(`,1)d`,1 ]2[`+2,2`+1]∪[2`+2,3`],

[σ(i−1,j′),(`,1) ]2[`+2,3`] = [ 0 ]2[`+2,2`+1]∪[2`+2,3`]

where we note that the last equation is due to m` = 1. B computes the elements for depth i − 1
from those of depth i as follows.

[ yi−1,j′ ]
2
[`+1+i,2`+1] =

∑
ι∈[1,mi]

[ ρ(i−1,j′)→(i,ι)di,ι ]2{`+1+i} · [ yi,ι ]2[`+2+i,2`+1],

[ α̂wi−1,j′ ]
2
[`+2,2`+i] =

∑
ι∈[1,mi]

[ c1 · · · ciρ(i−1,j′)→(i,ι)di,ι ]2[`+2,`+1+i]∪[2`+2,2`+i] · [ yi,ι ]2[`+2+i,2`+1],

[σ(i−1,j′),(i,j) ]2[`+2,2`+i] =
∑

ι∈[1,mi]
s.t. ι6=j

[ c1 · · · ci+1ρ(i−1,j′)→(i,ι)
di,ι
di,j

yi,ι ]2[`+2,`+1+i]∪[2`+2,2`+i] · [ yi,ι ]2[`+2+i,2`+1]

All the encodings are available in D from the assumption. This concludes the proof of the claim.

22



For further uses, for j ∈ [1, n], B also computes

[ ĥj ]2[`+2,2`+1] = [ c1d1,1 ]2{`+2} · [ y1,j ]2[`+3,2`+1] + [h′j ]∅ · [ 1 ]2[`+2,2`+1] (12)

(Re-randomizing Key). The simulated key is not perfectly distributed yet since their random-
ness are still correlated. Consider every variable ŷ in {r̂} ∪ {α̂wi,j}wi,j∈Nodes ∪ {v̂w1,j}w1,j∈Inputs ∪
{ˆ̀wi,j , r̂wi,j}wi,j∈Gates. We re-randomize them by implicitly setting new randomness as ŷ′′ = ŷ + y′,
where B samples [ y′ ]∅ ← Samp(param). To be able to compute corresponding keys with updated
randomness, it amounts to verify that the encoding of the term that ŷ is multiplied to in the key
can be computed. For example, r̂ appears in D̂1 = [βk + φ̂2r̂ ]2[`+2,3`]. This can be re-randomized to

D̂′′1 = [βk + φ̂2(r̂ + r′) ]2[`+2,3`] by computing D̂′′1 = D̂ + [ r′ ]∅ · [ φ̂2 ]2[`+2,3`], which can be done since

[ φ̂2 ]2[`+2,3`] is computable (and we have [ vb ]2[`+2,3`] from the assumption). The other terms can be

verified as follows. [ φ̂1 ]2[`+2,3`] is computable since we have [ v ]2[`+2,3`]. For j ∈ [1, n], [ ĥj ]2[`+2,2`+1]

can be computed as in Eq.(12). Finally, for wi,j ∈ Gates, [ α̂ L(wi,j) ]2[`+2,2`+i] [ α̂R(wi,j) ]2[`+2,2`+i] can

be computed due to Claim 4, where we note that L(wi,j), R(wi,j) have depth i−1. B re-randomizes

all terms and obtain a new semi-functional component ŜK
′′
k =

(
{K̂′′w}w∈Nodes, D̂′′1 , D̂′′2 , D̂′′3

)
.

(Returning Key). B adds the above semi-functional components to the normal components and

returns SKk + ŜK
′′
k.

Challenge. The adversary A outputs messages M0,M1 ∈ {0, 1}λ along with a target string x?.

B chooses b
$← {0, 1}. Due to the game condition, it must be that f(x?) = 0. B first computes

a normal ciphertext (C0,C)← Encrypt(PK, x?,Mb), where we denote C = (C, {Cj}j∈Ax , T1, T2). B

also computes the message mask K = [αt ]1[1,3`] in the process. B then produces semi-functional
components as follows.

(Programming Randomness in Ciphertext). We first implicitly set t̂ = − z
b . Let

S =
{
w ∈ Nodes

∣∣ fw(x?) = 0 and f L(w)(x
?) = 1

}
.

For i ∈ [2, `], let Si = S ∩ { w ∈ Nodes | Depth(w) = i }. We then implicitly set

ŝ = z

1 +
∑

w2,j∈S2

1

a2,j

 · · ·
1 +

∑
w`,j∈S`

1

a`,j

 . (13)

(Simulating Ciphertext). From the above (implicit) definitions, the semi-functional component
for ciphertext is well defined. B computes them as follows:

Ĉ = [
1

µ1 · · ·µ`
z ]2{`+1} · [µ1 ]2{1} ·

∏
i∈[2,`]

[µi ]2{i} +
∑

wi,j∈Si

[µi
1

ai,j
]2{i}

 = [ ŝ ]2[1,`+1],

T̂1 = −[
z

b
]2[1,`+1] = [ t̂ ]2[1,`+1].

Recall that B possesses [α ]∅ and hence can compute the semi-functional component of message
mask as K̂ = T̂1 · [α ]2[`+2,3`] = [αt̂ ]2[1,3`]. Next, B computes T̂2 = [ φ̂2t̂ + φ̂1ŝ ]2[1,`+1] as follows.

Substituting terms, we have φ̂2t̂+ φ̂1ŝ = (vb+ φ′2)(− z
b ) + (v + φ′1)z

∏
i∈[2,`]

(
1 +

∑
wi,k∈Si

1
ai,k

)
. A

critical term zv is canceled out. Let V = zv
∏
i∈[2,`]

(
1 +

∑
wi,k∈Si

1
ai,k

)
− zv. As for intuition, B

23



could compute the corresponding encoding of each monomial zv
ai1,j1 ···aiε,jε

that appears in V and

sum them up. However, the number of such terms in V could be of an exponential size in `. We

resolve this by instead writing V =
∑

i∈[2,`]

(∑
wi,k∈Si

zv
ai,k

)∏
j∈[i+1,`]

(
1 +

∑
wj,k∈Sj

1
aj,k

)
, where we

purposely use zv in the sum that does not have the term 1, so that B can efficiently compute

[V ]2[1,`+1] =
∑
i∈[2,`]

 ∏
j∈[2,i−1]

[ωj ]2{j}

 ·
 ∑
wi,k∈Si

[
1∏

ι∈[1,`]\{i} ωι
zv

1

ai,k
]2{i,`+1}


·

 ∏
j∈[i+1,`]

[ωj ]2{j} +
∑

wj,k∈Sj

[ωj
1

aj,k
]2{j}

 ,

and T̂2 = [φ′2 ]∅ · [ t̂ ]2[1,`+1] + [φ′1 ]∅ · [ ŝ ]2[1,`+1] + [V ]2[1,`+1].

The trickiest part is to compute the remaining elements Ĉj = [ ŝĥj ]2[1,`+1] for all j ∈ Ax? . From

ĥj = d1,1y1,jc1 + h′j , we have

ŝĥj = ŝh′j + zc1d1,1

∏
i∈[2,`]

1 +
∑

wi,k∈Si

1

ai,k

 · ∑
(j2,...,j`−1)∈path(1,j)

∏
ι∈[2,`]

(ρ(ι−1,jι−1)→(ι,jι)dι,jι)

= ŝh′j +
∑

(j2,...,j`−1)∈path(1,j)

zc1d1,1

∏
i∈[2,`]

1 +
∑

wi,k∈Si

1

ai,k

 ρ(i−1,ji−1)→(i,ji)︸ ︷︷ ︸
denote P(i−1,ji−1)→(i,ji)

di,ji

where here we denote j1 = j and j` = 1. For i ∈ [2, `], we denote P(i−1,ji−1)→(i,ji) as above.

(Flawed Algorithm). For intuition, we first show a flawed algorithm for B to compute [ ŝĥj ]2[1,`+1].
Namely B would compute each product term in the sum. Each product term corresponds to one
path from w1,j to w`,1 and the sum consists of all such paths. Consider a path (w1,j , w2,j2 , . . . ,
w`,1). Since fw1,j (x

?) = 1 and fw`,1(x?) = f(x?) = 0, we have that there must be a node on the
path, say wτ,jτ , with the largest depth such that fwτ,jτ (x?) = 0 but fwτ−1,jτ−1

(x?) = 1. B would

compute the corresponding encoding for this path as [ zc1d1,1
∏
i∈[2,`] P(i−1,ji−1)→(i,ji)di,ji ]2[1,`+1] =

[ d1,1 ]2{1} · [ zc1P(τ−1,jτ−1)→(τ,jτ )dτ,jτ ]2{τ,`+1} ·
∏
i∈[2,`]

s.t. i 6=τ

[P(i−1,ji−1)→(i,ji)di,ji ]2{i}.

This can be computed due to the two following claims.

Claim 5. For i ∈ [2, `], ji−1 ∈ [1,mi−1], ji ∈ [1,mi], B can efficiently compute [P(i−1,ji−1)→(i,ji)di,ji ]2{i}.

Proof (of the claim). By definition, P(i−1,ji−1)→(i,ji) =
(

1 +
∑

wi,k∈Si
1
ai,k

)
(b1 · 1 + b2 · ai,ji), where

b1, b2 ∈ {0, 1,−1}. By inspection, P(i−1,ji−1)→(i,ji) is a linear combination of 1, ai,ji ,
1
ai,k

,
ai,ji
ai,k

for any

k ∈ [1,mi], with coefficients in {0, 1,−1}. We have the corresponding encodings in D.

Claim 6. For any node wi,ji and wi−1,ji−1 ∈ { L(wi,ji), R(wi,ji)} such that fwi,ji (x
?) = 0 but

fwi−1,ji−1
(x?) = 1, B can efficiently compute [ zc1P(i−1,ji−1)→(i,ji)di,ji ]2{i,`+1}.

Proof (of the claim). Due to the definition of wi,ji , it must be that GateType(wi,ji) = AND. There
are two cases.

24



• Suppose wi−1,ji−1 = L(wi,ji). Hence, we have wi,ji ∈ Si and ρ(i−1,ji−1)→(i,ji) = 1−ai,ji . Therefore,

P(i−1,ji−1)→(i,ji) =

1 +
∑

wi,k∈Si

1

ai,k

 (1− ai,ji).

We observe that the critical term, 1, is canceled out via (1+ 1
ai,ji

)(1−ai,ji). Indeed, P(i−1,ji−1)→(i,ji)

is a linear combination of ai,ji ,
1

ai,ji
, 1
ai,k

,
ai,ji
ai,k

, for k 6= ji, with coefficients in {0, 1,−1}.

• Suppose wi−1,ji−1 = R(wi,ji). Hence, we have wi,ji 6∈ Si and ρ(i−1,ji−1)→(i,ji) = ai,ji . Therefore,

P(i−1,ji−1)→(i,ji) =

1 +
∑

wi,k∈Si

1

ai,k

 (ai,ji).

We observe that the critical term, 1, does not appear since wi,ji 6∈ Si. Indeed, P(i−1,ji−1)→(i,ji) is

a linear combination of ai,ji ,
ai,ji
ai,k

, for k 6= ji, with coefficients in {0, 1}.

All the encodings are available in D from the assumption. This concludes the proof of the claim.

The above algorithm is indeed flawed since although the term for each path can be efficiently
computed as above, the number of all paths in the sum can be of an exponential size in `.

(Corrected Algorithm). To resolve this issue, we present an efficient algorithm for B that
outputs [ ŝĥj ]2[1,`+1] and runs in polynomital time in the number of all nodes in the circuit. For

i ∈ [1, `− 1], ji ∈ [1,mi], define path
(0)
(i,ji)

⊆ path(i,ji) as the set of all paths in path(i,ji) of which all

gates on the path evaluates x? to 0. That is, (ji, ji+1, . . . , j`−1, 1) ∈ path
(0)
(i,ji)

iff for all k ∈ [i, `] it

holds that fwk,jk (x?) = 0. Let path
(1)
(i,ji)

:= path(i,ji) r path
(0)
(i,ji)

. We define

Yi,ji :=
∑

(ji,ji+1,...,j`−1,1)∈path(0)
(i,ji)

∏
k∈[i+1,`]

P(k−1,jk−1)→(k,jk)dk,jk ,

Wi,ji := zc1·
∑

(ji,ji+1,...,j`−1,1)∈path(1)
(i,ji)

∏
k∈[i+1,`]

P(k−1,jk−1)→(k,jk)dk,jk .

This implies that for j ∈ Ax? , we have ŝĥj = ŝh′j + W1,jd1,1. This is since for j ∈ Ax? we have

fw1,j (x
?) = 1, hence path

(1)
1,j = path1,j .

Claim 7. For i ∈ [1, `− 1], ji ∈ [1,mi], B can efficiently compute [Yi,ji ]2[i+1,`] and [Wi,ji ]2[i+1,`+1].

Proof. We prove by induction for i from `− 1 to 1. We first prove for the base case. Consider node
w`−1,j`−1

for any j`−1 ∈ [1,m`−1]. Note that pathw`−1,j`−1
= {(j`−1, 1)}. There are two cases:

• Case fw`−1,j`−1
(x?) = 0. We have path

(0)
w`−1,j`−1

= {(j`−1, 1)}, path
(1)
w`−1,j`−1

= ∅. Therefore,

[W`−1,j`−1
]2[`,`+1] = [ 0 ]2[`,`+1]. B computes [Y`−1,j`−1

]2{`} = [P(`−1,j`−1)→(`,1)d`,1 ]2{`} as in Claim 5.

• Case fw`−1,j`−1
(x?) = 1. We have path

(0)
w`−1,j`−1

= ∅, path(1)
w`−1,j`−1

= {(j`−1, 1)}. Thus, [Y`−1,j`−1
]2{`}

= [ 0 ]2{`}. B computes [W`−1,j`−1
]2[`,`+1] = [ zc1P(`−1,j`−1)→(`,1)d`,1 ]2[`,`+1] as in Claim 6.

25



Next, we show how to compute [Yi−1,ji−1 ]2[i,`] and [Wi−1,ji−1 ]2[i,`+1] for ji−1 ∈ [1,mi−1] from

[Yi,ji ]2[i+1,`] and [Wi,ji ]2[i+1,`+1] for ji ∈ [1,mi]. There are two cases:

• Case fwi−1,ji−1
(x?) = 0. Thus, path

(ι)
wi−1,ji−1

=
⋃
ji

{
(ji−1, ji, . . . , j`)

∣∣∣ (ji, . . . , j`) ∈ path
(ι)
wi,ji

}
, for

both ι ∈ {0, 1}, where the union range is ji ∈ [1,mi] such that wi−1,ji−1 ∈ { L(wi,ji), R(wi,ji)}.
Therefore, we have that

[Yi−1,ji−1 ]2[i,`] =
∑

ji∈[1,mi]

[P(i−1,ji−1)→(i,ji)di,ji ]2{i} · [Yi,ji ]2[i+1,`],

[Wi−1,ji−1 ]2[i,`] =
∑

ji∈[1,mi]

[P(i−1,ji−1)→(i,ji)di,ji ]2{i} · [Wi,ji ]2[i+1,`].

Due to Claim 5, B can compute [P(i−1,ji−1)→(i,ji)di,ji ]2{i}. Note also that for ji such that

wi−1,ji−1 6∈ { L(wi,ji), R(wi,ji)}, P(i−1,ji−1)→(i,ji) = 0 by definition Eq.(7).

• Case fwi−1,ji−1
(x?) = 1. Thus path

(1)
wi−1,ji−1

=
⋃
ji

{
(ji−1, ji, . . . , j`)

∣∣∣ (ji, . . . , j`) ∈ pathwi,ji

}
,

where the union range is ji ∈ [1,mi] such that wi−1,ji−1 ∈ { L(wi,ji), R(wi,ji)}. On the other

hand, we have path
(0)
wi−1,ji−1

= ∅. Therefore, [Yi−1,ji−1 ]2[i,`] = [ 0 ]2[i,`] and

[Wi−1,ji−1 ]2[i,`] =
∑

ji∈[1,mi]

(
[ zc1P(i−1,ji−1)→(i,ji)di,ji ]2{i,`+1} · [Yi,ji ]2[i+1,`]

+ [P(i−1,ji−1)→(i,ji)di,ji ]2{i} · [Wi,ji ]2[i+1,`]

)
.

B can compute [ zc1P(i−1,ji−1)→(i,ji)di,ji ]2{i,`+1} due to Claim 6.

This concludes the proof of the claim.

Finally, B computes for j ∈ Ax? , [ ŝĥj ]2[1,`+1] = [ ŝ ]2[1,`+1] · [h
′
j ]∅ + [ d1,1 ]2{1} · [W1,j ]2[2,`+1].

(Re-randomizing Ciphertext). The simulated ciphertext is not perfectly distributed yet since
the randomness ŝ, t̂ are still correlated. We will re-randomize ŝ, so that it is independent from
t̂. This can be done by sampling [ s′ ]∅ ← Samp(param) and computing a new semi-functional
component Ĉ′′ = (Ĉ ′′, {Ĉ ′′j }j∈Ax , T̂ ′′1 , T̂ ′′2

)
as Ĉ ′′0 = Ĉ0, T̂ ′′1 = T̂1, and

Ĉ ′′ = Ĉ + [ s′ ]∅ · [ 1 ]2[1,`+1], ∀j∈Ax? Ĉ
′′
j = Ĉj + [ s′ ]∅ · [ ĥj ]2[1,`+1], T̂ ′′2 = T̂2 + [ s′ ]∅ · [ φ̂1 ]2[1,`+1],

Note that the semi-functional message mask is unchanged K̂ ′′ = K̂. Note that [ φ̂1 ]2[1,`+1] =

[φ′1 ]∅ · [ 1 ]2[1,`+1] + [ v ]2[1,`+1] is computable from D. For j ∈ [1, n], B computes [ ĥj ]2[1,`+1] in exactly

the same recursive manner as computing [ ĥj ]2[`+2,2`+1] in Eq.(12), except that this time B uses a
different set of elements of D. To do so, we first claim:

Claim 8. For i ∈ [1, `− 1] and j ∈ [1,mi], B can efficiently compute [ νi+1 · · · ν` · yi,j ]2[i+1,`], where
νi is defined in D from the assumption.

Proof (of the claim). We prove by induction for i from ` to 2. For the base case, B can compute
for any j′ ∈ [1,m`−1], [ ν`y`−1,j′ ]

2
{`} = [ ν`ρ(`−1,j′)→(`,1)d`,1 ]2{`}. (This is available from D). Next

the inductive step is [ νi · · · ν` · yi−1,j′ ]
2
[i,`] =

∑
ι∈[1,mi]

[ νiρ(i−1,j′)→(i,ι)di,ι ]2{i} · [ νi+1 · · · ν` · yi,ι ]2[i+1,`].

Note that [ νiρ(i−1,j′)→(i,ι)di,ι ]2{i} is available from D. This concludes the proof of the claim.

26



B then compute [ ĥj ]2[1,`+1] = [ 1
ν1···ν` c1 ]2{`+1} · [ ν1d1,1 ]2{1} · [ ν2 · · · ν` · y1,j ]2[2,`] + [h′j ]∅ · [ 1 ]2[1,`+1].

(Returning Ciphertext). B computes C0 from the message mask: C0 = Ext(param,K + K̂ ′′)⊕
Mb. It returns a semi-functional ciphertext as (C0,C + Ĉ′′).

Phase 2. When A makes the j-th key query for f (j) , B generates a key SKj ← KeyGen(MSK, f (j)).

Guess. The algorithm B has properly simulated Gk,1 if δ = 0, and Gk,2 if δ ∈R R. Hence, B can
use the output of A to break the EMDDH1 Assumption. This concludes the proof of Lemma 3.

8 A Fully Secure Ciphertext-Policy ABE Scheme for Circuits

In this section, we describe our CP-ABE for circuits. The scheme is dual to our KP-ABE: the
key and ciphertext elements are swapped. We use the same variable notations from KP-ABE for
unmodified terms. The difference is at the head elements, and both key and ciphertext will have
one element more than KP-ABE. We note that the definition for CP-ABE is analogous to KP-ABE.

• Setup
(
1λ, n, `

)
→ (PK,MSK). Set κ = 3` and ν = 3. Run InstGen(1λ, κ, ν) → (param, esk).

Sample α, h1, . . . , hn, φ1, ψ2, ψ3
$← R. Output

PK =
(
param,

{
[ 1 ]1S , [ 1 ]3S

}
S∈S=

{
[1,`+1],[`+2,2`+1],{2`+2},...,{3`}

} ,
[α ]1[1,3`], [h1 ]1[`+2,2`+1] . . . , [hn ]1[`+2,2`+1], [φ1 ]1[`+2,3`], [ψ2 ]1[`+2,3`], [ψ3 ]1[`+2,3`]

)
.

MSK =
(
param, [ 1 ]1[1,`+1], [α ]1,2[1,`+1], [h1 ]1[1,`+1] . . . , [hn ]1[1,`+1], [φ1 ]1[1,`+1], [ψ2 ]1[1,`+1], [ψ3 ]1[1,`+1]

)
.

• Encrypt
(
PK, f ∈ Fn,`

)
→ CT. Sample [ r ]∅, [u ]∅ and [αw ]∅ for all w ∈ Nodes from Samp(param),

and set

W0 = [u ]1[`+2,3`], W1 = [ψ3u+ ψ2r ]1[`+2,3`], D2 = [ r ]1[`+2,3`], D3 = [φ1r − αwtop ]1[`+2,3`].

Compute the element Kw for each w ∈ Nodes in exactly the same way as in the KP-ABE
scheme except that we do not add masks from the ZN3 subring. The message is masked in C0 =
Ext(param, [αu ]1[1,3`])⊕M . Output the ciphertext as CT =

(
C0, {Kw}w∈Nodes,W0,W1, D2, D3

)
.

• KeyGen
(
MSK, x ∈ {0, 1}n,M ∈ {0, 1}λ

)
→ SK. Let Ax = { j ∈ [1, n] | xj = 1 }. Sample

[ τ ]∅, [ s ]∅ ← Samp(param). Compute C ′ = [ s ]1[1,`+1], C
′
j = [hjs ]1[1,`+1], and

Q′1 = [ τ ]1[1,`+1], Q′2 = [ψ2τ + φ1s ]1[1,`+1], Q′3 = [α ]1,2[1,`+1] + [ψ3t ]1[1,`+1].

The algorithm then adds a random mask from the ZN3 subring to each element as usual. It
outputs the key SK =

(
C, {Cj}j∈Ax , Q1, Q2, Q3

)
.

• Decrypt(SK,CT) → M . Assume that f(x) = 1. We compute exactly as in KP-ABE until we
obtain Ewtop = [αwtops ]1[1,3`] at the top gate. From this, it computes

− Ewtop − CD3 −Q1W1 +Q2D2 +Q3W0

= −[αwtops ]1[1,3`] − [ s ]1[1,`+1] · [φ1r − αwtop ]1[`+2,3`] − [ τ ]1[1,`+1] · [ψ3u+ ψ2r ]1[`+2,3`]

+ [ψ2τ + φ1s ]1[1,`+1] · [ r ]1[`+2,3`] + ([α ]1,2[1,`+1] + [ψ3τ ]1[1,`+1]) · [u ]1[`+2,3`]

= [αu ]1[1,3`],

and computes the message mask Ext(param, [αu ]1[1,3`]) and obtains M from C0.

27



Properties of Our CP-ABE for Circuits. Our CP-ABE system is succinct, in an analogous
manner to our KP-ABE. The size of a ciphertext for circuit f is proportional to the size of circuit
f (the number of nodes), while the size of a key for string x is proportional to the number of 1’s in
x. Also similarly to our KP-ABE, our CP-ABE system does not require any bound on circuit size
and fan-out, i.e., we can setup a fixed system, and ciphertexts for circuits of any size and fan-out
can be constructed (as long as they are polynomial sizes, since the ciphertext size is linear to the
circuit size). We only require bounds on input length n and depth `. We remark as in our KP-ABE
case that, however, the assumption for CP-ABE will be parameterized by the maximum number of
gates per layer (and hence the circuit size and the maximum fan-out) of the circuit for which the
adversary issues the challenge query. We emphasize that this number is not bounded at the system
setup.

Comparison to the CP-ABE of GGHSW. We compare our CP-ABE to the (selectively secure)
CP -ABE system of GGHSW [9] for the bounded/unbounded property and succinctness. The
GGHSW system requires a bound for circuit sizes (for ciphertexts) when the system is setup. This
is essential, due to their use of universal circuits. Next, we consider succinctness of their scheme.
In their scheme, a string x (for key) will be converted to a (variant of) universal circuit, Ux, while
a circuit f (for ciphertext) will be converted to a string yf (to be input to Ux). The efficiency of
conversion to Ux and yf will depend on the implementation scheme of the universal circuit. Hence,
even though the resulting scheme has ciphertext size proportional to the number of 1 in yf and
key size proportional to the size of Ux (as in their KP-ABE), whether their scheme is succinct will
depend on the conversion efficiency. Therefore, we cannot conclude that their scheme is succinct
or not. On the other hand, our CP-ABE scheme will always be succinct.

8.1 Assumptions and Security Theorem for CP-ABE

The security proof for CP-ABE works in a dual manner to that of KP-ABE. Essentially, the proof
of co-selective security based transition in KP-ABE will be used as that of selective security based
transition in CP-ABE (and vice-versa in the dual way). Hence, EMDDH1,EMDDH2 will be used
in phase 2 and 1 respectively. We indeed use slight variants of the assumptions as follows.

Definition 7 ((`,m)-EMDDH1-dual). Let InstGen(1λ, 3`, 3)→ (param, esk). Sample b, z, v, c1, · · · , c`+1,
µ1, · · · , µ`, ν1, · · · , ν`, ω1, · · · , ω`, {ai,j , di,j}i∈[1,`],j∈[1,m], and ζ from R. The Dual (`,m)-Expanded
Multi-linear Decisional Diffie-Hellman Assumption 1 states that the following distributions are
computationally indistinguishable:(

D̄, Z = [ bz ]2[1,`+1]

)
and

(
D̄, Z = [ ζ ]2[1,`+1]

)
,

where D̄ := D ∪ {[ c1···c`+1

b ]2[`+2,3`], [ b ]2[1,`+1]} r {[
z
b ]2[1,`+1], [ vb ]2[`+2,3`]}, where D is defined in the

definition of the EMDDH1 assumption (Definition 5).

We prove the generic hardness of the EMDDH1-dual Assumption in Lemma 11 in §A.

Definition 8 (`-EMDDH2-dual). Let InstGen(1λ, 3`, 3)→ (param, esk). Sample z, c1, · · · , c`+1, and
ζ from R. The Dual `-Expanded Multi-linear Decisional Diffie-Hellman Assumption 2 states that
the following distributions are computationally indistinguishable:(

D,Z = [ c1 · · · c`+1z ]2[1,`+1]

)
and

(
D,Z = [ ζ ]2[1,`+1]

)
,

where D consists of: param,
{

[ 1 ]1{i}, [ 1 ]2{i}, [ 1 ]3{i}

}
i∈[1,3`]

and [ z ]2[1,`+1], [ c1 · · · c`+1 ]2[1,`+1],

[ c1 ]2[1,`+1], [ c1 ]2[`+2,2`+1], [ c1 ]2{2`+2}, . . . , [ c1 ]2{3`}, [ c2 ]2[`+2,2`+1], [ c3 ]2{2`+2}, . . . , [ c`+1 ]2{3`}.

28



The EMDDH2-dual assumption extends the regular Multi-linear DDH (in asymmetric settings)
by also giving out one more element [ c1 · · · c`+1 ]2[1,`+1]. This is also the only difference from
EMDDH2. We can see that this would not help attacking since it cannot be multiplied with
available [ z ]2[1,`+1].

We can now state the security theorem for our CP-ABE for circuits.

Theorem 9. Suppose that the SD1, SD2,EMDDH1-dual,EMDDH2-dual Assumptions hold. Then
our CP-ABE for circuits is fully secure. More precisely, for any PPT adversary A that attacks our
CP-ABE for circuits in Fn,`, there exist PPT algorithms B1,B2,B3,B4, whose running times are
that of A plus some polynomial times, such that for any λ,

Adv
(n,`)-CPABE
A (λ) ≤ AdvSD1

B1
(λ) + (2q1 + 2)AdvSD2

B2
(λ) + q1Adv

`-EMDDH2-dual
B3

(λ)+

Adv
(`,m)-EMDDH1-dual
B4

(λ),

where q1 is the number of key queries by A in phase 1, and m is the maximum number of (internal)
gates per layer of the circuit f? for which A issues the challenge query.

The security proof for CP-ABE has exactly the same structure as that of KP-ABE. The semi-
functional elements can be defined analogously. The proofs for transitions that are based on Sub-
group Decision Assumptions can be done in almost the same manner as those of KP-ABE. There-
fore, we present only the proofs for the transitions that modify semi-functional keys from type-1 to
type-2 for both phases. Nevertheless, they are also quite similar to the proofs for KP-ABE albeit
in a dual manner. We present the two Lemmata and their proofs in §C.

Acknowledgement. I would like to thank Takahiro Matsuda, Shota Yamada, and Goichiro
Hanaoka for their helpful comments on this paper. I would like to also thank Mehdi Tibouchi
for answering my questions about the CLT scheme.

References

[1] N. Attrapadung. Dual System Encryption via Doubly Selective Security: Framework, Fully-secure
Functional Encryption for Regular Languages, and More. In Eurocrypt 2014, pp. 557-577, 2014.

[2] N. Attrapadung, B. Libert. Functional Encryption for Inner Product: Achieving Constant-Size Cipher-
texts with Adaptive Security or Support for Negation. In PKC 2010, pp. 384–402, 2010.

[3] N. Attrapadung, B. Libert, E. Panafieu. Expressive Key-Policy Attribute-Based Encryption with
Constant-Size Ciphertexts In PKC 2011, pp. 90–108, 2010.

[4] J. Bethencourt, A. Sahai, B. Waters. Ciphertext-Policy Attribute-Based Encryption. In IEEE Sympo-
sium on Security and Privacy (S&P) 2007, pp. 321-334, 2007.

[5] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikuntanathan, D. Vinayaga-
murthy. Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE and Compact Garbled Circuits.
In Eurocrypt 2014, pp. 533–556, 2014.

[6] D. Boneh, A. Silverberg. Applications of multilinear forms to cryptography. Contemporary Mathematics
Vol. 324, pp. 71–90, 2003.

[7] J. Coron, T. Lepoint, M. Tibouchi. Practical Multilinear Maps over the Integers. In Crypto 2013, pp.
476-493, 2013.

[8] S. Garg, C. Gentry, S. Halevi. Candidate multilinear maps from ideal lattices In Eurocrypt 2013, pp.
1–17, 2013.

[9] S. Garg, C. Gentry, S. Halevi, A. Sahai, B. Waters. Attribute-based encryption for circuits from multi-
linear maps. In Crypto 2013, pp. 479-499, 2013.

29



[10] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, B. Waters. Candidate Indistinguishability Obfus-
cation and Functional Encryption for all circuits. In FOCS 2013, pp. 40–49, 2013.

[11] S. Garg, C. Gentry, S. Halevi, M. Zhandry. Fully Secure Attribute Based Encryption from Multilinear
Maps. Cryptology ePrint Archive: Report 2014/622. (Retrieved version posted 13-Aug-2014).

[12] S. Garg, C. Gentry, A. Sahai, B. Waters. Witness encryption and its applications. In STOC 2013, pp.
467–476, 2013.

[13] C. Gentry, A. Lewko, B. Waters. Witness Encryption from Instance Independent Assumptions. In
Crypto 2014, pp. 426–443, 2014.

[14] C. Gentry, A. Lewko, A. Sahai, B. Waters. Indistinguishability Obfuscation from the Multilinear Sub-
group Elimination Assumption. Cryptology ePrint Archive: Report 2014/309.

[15] S. Goldwasser, Y. Kalai, R.A. Popa, V. Vaikuntanathan, N. Zeldovich. Reusable garbled circuits and
succinct functional encryption. In STOC 2013, pp. 555–564, 2013.

[16] S. Goldwasser, Y. Kalai, R.A. Popa, V. Vaikuntanathan, N. Zeldovich. How to run Turing machines on
encrypted data. In Crypto 2013, pp. 536-553, 2013.

[17] S. Gorbunov, V. Vaikuntanathan, H. Wee. Attribute-based encryption for circuits. In STOC 2013, pp.
545-554, 2013.

[18] V. Goyal, O. Pandey, A. Sahai, B. Waters. Attribute-based encryption for fine-grained access control
of encrypted data. In ACM CCS 2006, pp. 89–98, 2006.

[19] J. Katz, A. Sahai, B. Waters. Predicate Encryption Supporting Disjunctions, Polynomial Equations,
and Inner Products. In Eurocrypt 2008, pp. 146-162, 2008.

[20] A. Lewko, B. Waters. New Techniques for Dual System Encryption and Fully Secure HIBE with Short
Ciphertexts. In TCC 2010, pp. 455-479, 2010.

[21] A. Lewko, B. Waters. Unbounded HIBE and Attribute-Based Encryption In Eurocrypt 2011, pp.
547-567, 2011.

[22] A. Lewko, B. Waters. New Proof Methods for Attribute-Based Encryption: Achieving Full Security
through Selective Techniques. In Crypto 2012, pp. 180-198, 2012.

[23] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, B. Waters. Fully Secure Functional Encryption:
Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In Eurocrypt 2010, pp. 62-91,
2010.

[24] Y. Rouselakis, B. Waters New Constructions and Proof Methods for Large Universe Attribute-Based
Encryption Cryptology ePrint Archive: Report 2012/583.

[25] A. Sahai, B. Waters. Fuzzy Identity-Based Encryption In Eurocrypt 2005, pp. 457–473, 2005.

[26] T. Okamoto, K. Takashima, Fully secure functional encryption with general relations from the decisional
linear assumption.In Crypto 2010, pp. 191-208, 2010.

[27] T. Okamoto, K. Takashima, Adaptively Attribute-Hiding (Hierarchical) Inner Product Encryption. In
Eurocrypt 2012, pp. 591-608, 2012.

[28] B. Waters. Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably
Secure Realization. In PKC 2011. pp. 53-70, 2011.

[29] B. Waters. Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions.
In Crypto 2009, pp. 619-636, 2009.

[30] B. Waters. Functional Encryption for Regular Languages. In Crypto 2012, pp. 218-235, 2012.

[31] B. Waters. A Punctured Programming Approach to Adaptively Secure Functional Encryption. Cryp-
tology ePrint Archive: Report 2014/588. (Retrieved version posted on 30-Jul-2014).

[32] H. Wee. Dual System Encryption via Predicate Encodings. In TCC 2014, pp. 616-637, 2014.

30



A Generic Hardness of Our Assumptions

Lemma 10. The EMDDH1 Assumption holds in the generic graded encoding model.

Proof. Similar to [30], it suffices to prove that there is no generic attack, and that the number of
elements in D and the maximum degree of elements (which are monomials) in D are of polynomial
size. The elements with the most flexible range vary with i ∈ [1, `], j ∈ [1,m], j′ ∈ [1,m], (e, e′) ∈
E. Hence, the number of elements is O(`m2). More specifically, it is about 11(`m2 + `m). To
inspect the maximum degree monomial, we must first normalize all monomials so that they have
no denominator. We normalize all µi, νi, ωi, ai,j , di,j which takes 2`m+ 3` degrees. The maximum
degree in numerator is `+ 3, hence the maximum degree of normalized monomials is 2`m+ 4`+ 3.

Next, we prove that there is no [X1 ]2S1
, . . . , [Xk ]2Sk , [Y1 ]2T1

, . . . , [Yt ]2Tt in D such that

[X1 ]2S1
· · · [Xk ]2Sk · [ c1 · · · c`+1b ]2[`+2,3`] = [Y1 ]2T1

· · · [Yt ]2Tt

where
⋃
j∈[1,k] Sj = [1, `+1] and

⋃
j∈[1,t] Tj = [1, 3`] (such that for j 6= j′, Sj ∩Sj′ = ∅, Tj ∩Tj′ = ∅).

Intuitively, the equation models the zero-test procedure. We observe that since b appears only in
[ zb ]2[1,`+1] and [ vb ]2[`+2,3`] in D, to make the equation hold, it must be that either [X1 ]2S1

= [ zb ]2[1,`+1]

or [Y1 ]2T1
= [ vb ]2[`+2,3`] (wlog for the index of X,Y ). We first assume that [Y1 ]2T1

= [ vb ]2[`+2,3`].

This implies that wlog X1 must contain v or Y2 must contain v−1 so as to make it hold. In the
latter case, no such Y2 encoded in level ⊆ [1, ` + 1] exists in D. In the former case, there are
only two such elements for X1, namely, [ v ]2[1,`+1] and [ 1

ω1···ωi−1ωi+1···ω` zv
1
ai,j

]2{i,`+1}. To make the

equation hold, there must be a combination of Y ’s that contains c1 · · · c`+1 encoded in [1, ` + 1],
but we do not have such elements. Hence, by contradiction, the assumption is wrong and it must
be the other case: [X1 ]2S1

= [ zb ]2[1,`+1]. In this case, the left-hand side of the equation becomes

[ zb ]2[1,`+1] · [ c1 · · · c`+1b ]2[`+2,3`] = [ zc1 · · · c`+1 ]2[1,3`].

Now we must pick a combination of Yj ’s that equals to [ zc1 · · · c`+1 ]2[1,3`]. In particular, we

observe that the combination must cover the whole level [1, 3`], and that variables that appear in
Yj but do not appear in zc1 · · · c`+1 needed to be canceled out in the combination. Since z appears
in the left-hand-side, we must pick an element containing z; there are only three cases:

• [Y1 ]2T1
= [ 1

ω1···ωi−1ωi+1···ω` zv
1

ai,ji
]2{i,`+1}. In this case, we must cancel all ωi by combining to

[
1

ω1 · · ·ωi−1ωi+1 · · ·ω`
zv

1

ai,ji
]2{i,`+1} ·

∏
k=[1,`]r{i}

[ωka
ek
k,jk

]2{k} = [ zv
1

ai,ji

∏
k=[1,`]r{i}

aekk,jk ]2[1,`+1].

Then, we must use [
c1···c`+1

v ]2[`+2,3`] to cancel out v. But this would result in a term that always

contain 1
ai,ji

for some i, ji that cannot be canceled.

• [Y1 ]2T1
= [ 1

µ1···µ` z ]2{`+1}. In this case, we must cancel all µi by combining to

[µ1a
e1
1,j1

]2{1} · · · [µ`a
e`
`,j`

]2{`} · [
1

µ1 · · ·µ`
z ]2{`+1} = [ zae11,j1

· · · ae``,j` ]2[1,`+1].

Then, to obtain [ zc1 · · · c`+1 ]2[1,3`], we must pick the rest of combination to contain c1 · · · c`+1,

encoded in level [`+ 2, 3`]. The only possible combinations having this are

[ c1 · · · ci+1a
ei
i,ji

di,ji
di,j′i

]2[`+2,`+1+i]∪
[2`+2,2`+i]

·

 ∏
ι∈[i+1,`]

[ aeιι,jιdι,jι ]2{`+1+ι}

 ·
 ∏
ι∈[i+1,`]

[
cι+1

dι,jι
]2{2`+ι}


for any i ∈ [1, `]. But this would result in a term that always contains di,ji/di,j′i for some ji 6= j′i,
which cannot be canceled out.

31



• [Y1 ]2T1
= [ zc1

a
ei
i,ji

a
e′
i
i,j′
i

di,ji ]2{i,`+1}, where (ei, e
′
i) ∈ E?. In this case, to cover level [1, ` + 1], we have

only combinations:

[ zc1

aeii,ji

a
e′i
i,j′i

di,ji ]2{i,`+1} ·
∏

k∈[1,`]r{i}

[
aekk,jk

a
e′k
k,j′k

dk,jk ]2{k}

Note that we cannot multiply [Y1 ]2{i,`+1} with other terms of level ⊂ [1, ` + 1] since they would
contain some µι, νι, ωι, and to cancel, we must use another element that contains their inverse,
but it is encoded in level {i, `+ 1}, and we cannot multiply to. Also note that we do not possess
[ 1 ]2S for any S ⊂ [1, ` + 1]. Next, to obtain [ zc1 · · · c`+1 ]2[1,3`], the rest of combination must

contain c2 · · · c`+1, encoded in level [` + 2, 3`]. The only possible combinations that containing
this are

[
c2

d1,j1

]2[`+2,2`+1] · [
c3

d2,j2

]2{2`+2} · · · [
c`+1

d`,j`
]2{3`}.

But this would result in a term that always contains aeii,ji/a
e′i
i,j′i

for some i ∈ [1, `], ji 6= j′i,

(ei, e
′
i) ∈ E?, which cannot be canceled out since (0, 0) 6∈ E?.

This concludes all the cases and hence the proof.

Lemma 11. The EMDDH1-dual Assumption holds in the generic graded encoding model.

Proof. It suffices to prove that there is no [X1 ]2S1
, . . . , [Xk ]2Sk , [Y1 ]2T1

, . . . , [Yt ]2Tt in D̄ such that

[ bz ]2[1,`+1] · [X1 ]2S1
· · · [Xk ]2Sk = [Y1 ]2T1

· · · [Yt ]2Tt

where
⋃
j∈[1,k] Sj = [`+2, 3`] and

⋃
j∈[1,t] Tj = [1, 3`] (such that for j 6= j′, Sj∩Sj′ = ∅, Tj∩Tj′ = ∅).

We observe that since b appears only in [
c1···c`+1

b ]2[`+2,3`] and [ b ]2[1,`+1] in D̄, to make the equation

hold, it must be that either [X1 ]2S1
= [

c1···c`+1

b ]2[`+2,3`] or [Y1 ]2T1
= [ b ]2[1,`+1] (wlog for the index of

X,Y ). We first assume the latter case. This implies that X1 must contain z−1 or Y2 must contain
z for some j so as to make it hold. There is no such element in the first case. For the second
case, there is also no z encoded in level ⊆ [` + 2, 3`]. Therefore, by contradiction, the assumption
is wrong, and it must be the case that [X1 ]2S1

= [
c1···c`+1

b ]2[`+2,3`]. In this case, the product in the

equation becomes [ bz ]2[1,`+1] · [
c1···c`+1

b ]2[`+2,3`] = [ zc1 · · · c`+1 ]2[1,3`]. From this point on, the analysis
is exactly the same as Lemma 10.

B Security Proof for KP-ABE

B.1 Normal to Semi-functional Ciphertext

Lemma 12 (Greal to G0). For any adversary A, there exists an algorithm B that breaks the Subgroup

Decision Assumption 1 with |GrealAdv
(n,`)-KPABE
A (λ)− G0Adv

(n,`)-KPABE
A (λ)| ≤ AdvSD1

B (λ).

Proof. The algorithm B obtains an input (D,Z) from the SD1 Assumption, where D consists of
param, {[ 1 ]1{j}, [ 1 ]3{j}}j∈[1,3`], [ b ]1,2[`+2,3`]. B needs to guess whether Z = [ z ]1[1,`+1] or Z = [ z ]1,2[1,`+1].

We may write Z = [ z1 ]1[1,`+1] + [ z2 ]2[1,`+1], and B’s task is equivalent to guess if z2 = 0 or z2 ∈R R.

Setup. The algorithm B simulates SFSetup(1λ, 3`, 3) as follows. First, B samples [ α̃ ]∅ ←
Samp(param) and sets [α ]1,2[`+2,3`] = [ α̃ ]∅ · [ b ]1,2[`+2,3`] for MSK, and [α ]1[1,3`] = [α ]1,2[`+2,3`] · [ 1 ]1[1,`+1] for

32



PK. Next, we observe that from [ 1 ]1{i}, [ 1 ]3{i} for all i ∈ [1, 3`], we can compute [ 1 ]1S and [ 1 ]3S for any

S. This is done by computing
∏
i∈S [ 1 ]j{i} = [ 1 ]jS . For each variable y in H := {h1, . . . , hn, φ1, φ2},

B does as follows. It samples [ ỹ ]∅ ← Samp(param). For each [ y ]1S term that appears in PK,MSK,
B sets [ y ]1S = [ ỹ ]∅ · [ 1 ]1S . Hence we have y = ỹ mod N1. Note that these can be computed since
B possesses [ 1 ]1S . All these terms completely define PK,MSK. PK is given to A.

Similarly, for each variable ŷ ∈ Ĥ := {ĥ1, . . . , ĥn, φ̂1, φ̂2}, we also define each [ ŷ ]2S term that

appears in P̂K by implicitly setting [ ŷ ]2S = [ ỹ ]∅ · [ 1 ]2S . Note that these are not computable, since
B does not possess any of [ 1 ]2S . This implicit definition will be used when defining the challenge

ciphertext. From this we have ŷ = ỹ mod N2. Therefore, due to CRT, each y ∈ H and ŷ ∈ Ĥ

distribute independently, as required by definition of SFSetup. We note that M̂SKbase, M̂SKaux are
also completely defined, but they are not used here in Greal or G0.

Phase 1. When A makes the j-th key query for f (j), B generates a key SKj ← KeyGen(MSK, f (j)).

Challenge. The adversary A outputs messages M0,M1 ∈ {0, 1}λ along with a target string x?. B

chooses b
$← {0, 1}. B samples [ t̃ ]∅, [ s̃ ]∅ ← Samp(param). B then sets

C0 = Ext(param, [α ]1,2[`+2,3`] · [ t̃ ]∅ · Z)⊕Mb = Ext(param, [αt̃z1 ]1[1,3`] + [αt̃z2 ]2[1,3`])⊕Mb,

C = [ s̃ ]∅ · Z = [ s̃z1 ]1[1,`+1] + [ s̃z2 ]2[1,`+1],

Cj = [ h̃j ]∅ · [ s̃ ]∅ · Z = [hj s̃z1 ]1[1,`+1] + [ ĥj s̃z2 ]2[1,`+1],

T1 = [ t̃ ]∅ · Z = [ t̃z1 ]1[1,`+1] + [ t̃z2 ]2[1,`+1],

T2 =
(

[ φ̃2 ]∅ · [ t̃ ]∅ + [ φ̃1 ]∅ · [ s̃ ]∅

)
· Z = [φ2t̃z1 + φ1s̃z1 ]1[1,`+1] + [ φ̂2t̃z2 + φ̂1s̃z2 ]2[1,`+1].

(14)

We can see that CT distributes as a normal or semi-functional ciphertext with s = s̃z1 mod N1 and
t = t̃z1 mod N1. Moreover, if z2 = 0, then CT distributes as a normal ciphertext. Otherwise z2 ∈R
R, then CT distributes as a semi-functional ciphertext with ŝ = s̃z2 mod N2 and t̂ = t̃z2 mod N2.
From CRT, we have that s, ŝ, t, t̂ are independently distributed as required.

Phase 2. B does the same as in Phase 1.

Guess. The algorithm B has properly simulated Greal if z2 = 0, and G0 if z2 ∈R R. Hence, B can
use the output of A to break the SD1 Assumption.

B.2 Normal to Type-1 Semi-functional Key in Phase 1

Lemma 13 (Gk−1,3 to Gk,1). For any adversary A, there exists an algorithm B that breaks the Sub-

group Decision Assumption 2 with |Gk−1,3Adv
(n,`)-KPABE
A (λ)− Gk,1Adv

(n,`)-KPABE
A (λ)| ≤ AdvSD2

B (λ).

Proof. The algorithm B obtains an input (D,Z = {Zi}i∈[`+2,3`]) from the SD2 Assumption, whereD

consists of param, {[ 1 ]1{j}, [ 1 ]3{j}}j∈[1,3`], [ a ]1,2[1,`+1], [ b ]1,2[`+2,3`], [ c ]2,3[`+2,3`]. B needs to guess whether

Z = {[ zi ]1,2{i}}i∈[`+2,3`] or Z = {[ zi ]1,2,3{i} }i∈[`+2,3`]. When we write Zi = [ zi,1 ]1,3{i} + [ zi,2 ]2{i} for

i ∈ [`+ 2, 3`], B’s task is equivalent to guess whether zi,2 = 0 for all i ∈ [`+ 2, 3`] or zi,2 ∈R R for
all i ∈ [`+ 2, 3`].

Setup. The algorithm B simulates SFSetup(1λ, 3`, 3) in exactly the same manner as in the pre-

vious proof (of Lemma 12). These completely defines PK,MSK, P̂K, M̂SKbase, M̂SKaux, albeit only
PK,MSK are computable.

Phase 1. When A makes the j-th key query for f (j), B generates a key as follows

33



[Case j > k]. B generates a normal key SKj ← KeyGen(MSK, f (j)).

[Case j < k]. B generates a type-3 semi-functional key as follows. First it generates a normal key(
{Kw}w∈Nodes, D1, D2, D3

)
← KeyGen(MSK, f (j)). A type-3 semi-functional key is different from a

normal key at only D1. B samples [ β̃j ]∅ ← Samp(param) and sets

D̄1 = D1 + ([ β̃j ]∅ · [ c ]2,3[`+2,3`]) = D1 + [ β̃jc ]2,3[`+2,3`]. (15)

B returns SKj =
(
{Kw}w∈Nodes, D̄1, D2, D3

)
. This is a type-3 semi-functional key with βj =

β̃jc mod N2.

[Case j = k]. B generates a normal key or a type-1 semi-functional key as follows. From Zi
for all i ∈ [` + 2, 3`], compute ZS :=

∏
i∈S Zi for S = [` + 2, 2` + 1] to [` + 2, 3`]. We have

ZS = [
∏
i∈S zi,1 ]1,3S + [

∏
i∈S zi,2 ]2S = [ zS,1 ]1,3S + [ zS,2 ]2S by orthogonality, where we denote zS,j :=∏

i∈S zi,j , for j = 1, 2. B uses Samp(param) to sample [ r̃ ]∅, {[ ṽw ]∅}w∈Inputs, {[ α̃w ]∅}w∈Nodes, and

{[ ˜̀
w ]∅, [ r̃w ]∅}w∈Gates. B then sets

D′1 = [α ]1,2[`+2,3`] + [ φ̃2 ]∅ · [ r̃ ]∅ · Z[`+2,3`]

D′2 = [ r̃ ]∅ · Z[`+2,3`]

D′3 = ([ φ̃1 ]∅ · [ r̃ ]∅ − [ α̃wtop ]∅) · Z[`+2,3`]

∀w∈Inputs U ′w = [ ṽw ]∅ · Z[`+2,2`+1]

∀w∈Inputs K ′w = ([ α̃w ]∅ + [ h̃w ]∅ · [ ṽw ]∅) · Z[`+2,2`+1]

∀w∈Gates L′w = [ ˜̀
w ]∅ · Z2`+iw

∀w∈Gates R′w = [ r̃w ]∅ · Z2`+iw

∀w∈GatesOR K ′w,1 = ([ α̃w ]∅ + [ α̃ L(w) ]∅ · [ ˜̀
w ]∅) · Z[`+2,2`+iw]

∀w∈GatesOR K ′w,2 = ([ α̃w ]∅ + [ α̃R(w) ]∅ · [ r̃w ]∅) · Z[`+2,2`+iw]

∀w∈GatesAND K ′w = ([ α̃w ]∅ + [ α̃ L(w) ]∅ · [ ˜̀
w ]∅ + [ α̃R(w) ]∅ · [ r̃w ]∅) · Z[`+2,2`+iw],

(16)

where we denote iw = Depth(w). B then adds random masks from subring ZN3 as in KeyGen, and
returns SKi. Analogously to Equation (14) in the previous proof, we can deduce the following.
The simulated SKi distributes as a normal or type-1 semi-functional with r = r̃z[`+2,3`],1 mod N1,

vw = ṽwz[`+2,2`+1],1 mod N1, αw = α̃wz[`+2,2`+iw],1 mod N1, `w = ˜̀
wz2`+iw,1 mod N1, and rw =

r̃wz2`+iw,1 mod N1. Moreover, if zi,2 = 0 for all i ∈ [` + 2, 3`], then SKi distributes as a normal
key. Otherwise zi,2 ∈R R for all i ∈ [` + 2, 3`], then SKi distributes as a type-1 semi-functional

key with r̂ = r̃z[`+2,3`],2 mod N2, v̂w = ṽwz[`+2,2`+1],2 mod N2, α̂w = α̃wz[`+2,2`+iw],2 mod N2, ˆ̀
w =

˜̀
wz2`+iw,2 mod N2, and r̂w = r̃wz2`+iw,2 mod N2. Again due to CRT, any hatted variable (e.g., α̂w)

is independent from its non-hatted counterpart (e.g., αw), as required.

Challenge. The adversary A outputs messages M0,M1 ∈ {0, 1}λ along with a target string x?. B

chooses b
$← {0, 1}. B samples [ t̃ ]∅, [ s̃ ]∅ ← Samp(param). B then sets

C0 = Ext(param, [α ]1,2[`+2,3`] · [ t̃ ]∅ · [ a ]1,2[1,`+1])⊕Mb = Ext(param, [αt̃a1 ]1[1,3`] + [αt̃a2 ]2[1,3`])⊕Mb,

C = [ s̃ ]∅ · [ a ]1,2[1,`+1] = [ s̃a1 ]1[1,`+1] + [ s̃a2 ]2[1,`+1],

Cj = [ h̃j ]∅ · [ s̃ ]∅ · [ a ]1,2[1,`+1] = [hj s̃a1 ]1[1,`+1] + [ ĥj s̃a2 ]2[1,`+1],

T1 = [ t̃ ]∅ · [ a ]1,2[1,`+1] = [ t̃a1 ]1[1,`+1] + [ t̃a2 ]2[1,`+1],

T2 =
(

[ φ̃2 ]∅ · [ t̃ ]∅ + [ φ̃1 ]∅ · [ s̃ ]∅

)
· [ a ]1,2[1,`+1] = [φ2t̃a1 + φ1s̃a1 ]1[1,`+1] + [ φ̂2t̃a2 + φ̂1s̃a2 ]2[1,`+1],

(17)

34



where we write [ a ]1,2[1,`+1] = [ a1 ]1[1,`+1] + [ a2 ]2[1,`+1]. We can see that CT distributes as a semi-

functional ciphertext with s = s̃a1 mod N1, t = t̃a1 mod N1, ŝ = s̃a2 mod N2, and t̂ = t̃a2 mod N2.
From CRT, we have that s, ŝ, t, t̂ are independently distributed as required.

Phase 2. When A makes the j-th key query for f (j), B generates a key SKj ← KeyGen(MSK, f (j)).

Guess. The algorithm B has properly simulated Gk−1,3 if zi,2 = 0 for all i ∈ [`+ 2, 3`], and Gk,1 if
zi,2 ∈R R for all i ∈ [`+2, 3`]. Hence, B can use the output of A to break the SD2 Assumption.

B.3 Type-2 to Type-3 Semi-functional Key in Phase 1

Lemma 14 (Gk,2 to Gk,3). For any adversary A, there exists an algorithm B that breaks the

Subgroup Decision Assumption 2 with |Gk,2Adv
(n,`)-KPABE
A (λ)−Gk,3Adv

(n,`)-KPABE
A (λ)| ≤ AdvSD2

B (λ).

Proof. The proof is exactly the same as that of Lemma 13, where we moved from normal to type-1
semi-functional key, except only one simulated element D′1 for the k-th key query. We modify D′1
from Equation (16) to the following. B samples [ β̃i ]∅ ← Samp(param) and sets

D′1 = [α ]1,2[`+2,3`] + [ φ̃2 ]∅ · [ r̃ ]∅ · Z[`+2,3`] + [ β̃i ]∅ · [ c ]2,3[`+2,3`], (18)

where we note that the difference is the last term in the sum, which is [ β̃ic ]2,3[`+2,3`]. The simulated
key SKi is a type-2 or type-3 with the same randomness as stated in the proof of Lemma 13 but now
also with βj = β̃jc mod N2. The rest of the proof follows exactly the same as that of Lemma 13.

B.4 Normal to Type-1 Semi-functional Keys in Phase 2

Lemma 15 (Gq1,3 to Gq1+1). For any adversary A, there exists an algorithm B that breaks the Sub-

group Decision Assumption 2 with |Gq1,3Adv
(n,`)-KPABE
A (λ)− Gq1+1Adv

(n,`)-KPABE
A (λ)| ≤ AdvSD2

B (λ).

Proof. The proof is exactly the same as when we modify normal to type-1 semi-functional key in
phase 1 (the proof of Lemma 13), except that this time we modify the post-challenge keys all at
once, instead of one key at a time. In particular, the simulation of PK,MSK and the challenge
ciphertext is exactly the same. The simulation for type-3 semi-functional key queries in phase 1
is done using [ c ]2,3[`+2,3`] as in Eq.(15). The simulation of every key in phase 2 can be done using

the problem instance Z in exactly the same way as in Eq.(16), with a remark that the randomness
([ r̃ ]∅, {[ ṽw ]∅}w∈Inputs, {[ α̃w ]∅}w∈Nodes, {[ ˜̀

w ]∅, [ r̃w ]∅}w∈Gates) is sampled fresh for each key.

B.5 Type-1 to Type-2 Semi-functional Keys in Phase 2

Lemma 16 (Gq1+1 to Gq1+2). For any adversary A, there exists an algorithm B that breaks the

`-EMDDH2 with |Gq1+1Adv
(n,`)-KPABE
A (λ) − Gq1+2Adv

(n,`)-KPABE
A (λ)| ≤ Adv`-EMDDH2

B (λ), where ` is
the bounded depth.

Proof. The algorithm B obtains an input (D,Z) from the EMDDH2 Assumption. Denote Z =
[ δ+ c1 · · · c`+1b ]2[`+2,3`]. Its task is to guess whether δ = 0 or δ ∈R R. B will implicitly define β = δ
in the simulation for all the post-challenge keys.

Setup. The algorithm B simulates PK,MSK, M̂SKbase in exactly the same manner as when we
modified semi-functional key from type-1 to type-2 in phase 1 (the full proof of Lemma 3 in §7.3).
In particular,B knows all [ y ]∅ for all variables y in H := {h1, . . . , hn, φ1, φ2}. B also knows [α ]∅,
which will be used for simulating challenge ciphertext. Note that B will not define all the hatted

35



variables (and hence, P̂K, M̂SKaux) until the first query that requires using them, which is the
challenge query below.

Phase 1. When A makes the j-th key query for f (j), B samples [βj ]∅ ← Samp(param) and

generates a type-3 semi-functional key by setting SKj ← SFKeyGen(MSK, f (j), M̂SKbase,−, 3, [βj ]∅).

Challenge. The adversary A outputs messages M0,M1 ∈ {0, 1}λ along with a target string x?. B

chooses b
$← {0, 1}. B first computes a normal ciphertext (C0,C)← Encrypt(PK, x?,Mb), where we

denote C = (C, {Cj}j∈Ax , T1, T2). B also computes the message mask K = [αt ]1[1,3`] in the process.
B then produces semi-functional components as follows.

(Programming Parameters and Randomness in Ciphertext). B first samples [h′1 ]∅, . . . , [h
′
n ]∅,

[φ′1 ]∅, [φ
′
2 ]∅ ← Samp(param). B then implicitly sets

ĥj =

{
h′j if j ∈ Ax? ,
h′j + c1 if j 6∈ Ax? .

B also samples [φ′1 ]∅, [φ
′
2 ]∅ ← Samp(param) and implicitly sets φ̂1 = φ′1 +c1 and φ̂2 = φ′2 +c1z. For

the randomness in ciphertext, B implicitly sets t̂ = 1, ŝ = −z (this will be re-randomized later).

(Simulating Ciphertext). From the above (implicit) definitions, the semi-functional component
for ciphertext is well defined. B computes them as follows.

Ĉ = −[ z ]2[1,`+1] = [ ŝ ]2[1,`+1], ∀j∈Ax? Ĉj = −[h′j ]∅ · [ z ]2[1,`+1] = [ ĥj ŝ ]2[1,`+1],

T̂1 = [ 1 ]2[1,`+1] = [ t̂ ]2[1,`+1], T̂2 = [φ′2 ]∅ · [ 1 ]2[1,`+1] − [φ′1 ]∅ · [ z ]2[1,`+1]. = [ φ̂2t̂+ φ̂1ŝ ]2[1,`+1],

where we notice that in T̂2, a critical term c1z from φ̂2t̂ and φ̂1ŝ is canceled out. Next, from [α ]∅,
B computes the semi-functional component of message mask K̂ = T̂1 · [α ]2[`+2,3`] = [αt̂ ]2[1,3`].

(Re-randomizing Ciphertext). The simulated ciphertext is not perfectly distributed yet. B

re-randomize it as follows. B first samples [ s′ ]∅, [ t
′ ]∅ ← Samp(param) and computes a new semi-

functional component Ĉ′′ = (Ĉ ′′, {Ĉ ′′j }j∈Ax , T̂ ′′1 , T̂ ′′2
)

that has new randomness ŝ′′ = t′ŝ + s′ and

t̂′′ = t′ as follows. B sets T̂ ′′1 = [ t′ ]∅ · T̂1 and T̂ ′′2 = [ t′ ]∅ · T̂2 + [ s′ ]∅ · [ φ̂1 ]2[1,`+1], and

Ĉ ′′ = [ t′ ]∅ · Ĉ + [ s′ ]∅ · [ 1 ]2[1,`+1], ∀j∈Ax? Ĉ
′′
j = [ t′ ]∅ · Ĉj + [ s′ ]∅ · [ ĥj ]2[1,`+1].

Note that [ φ̂1 ]2[1,`+1] = [φ′1 ]∅ · [ 1 ]2[1,`+1] + [ c1 ]2[1,`+1] and [ ĥj ]2[1,`+1] = [h′j ]∅ · [ 1 ]2[1,`+1] for j ∈ Ax?
are computable. ([ c1 ]2[1,`+1] is available from D). B also computes K̂ ′′ = [ t′ ]∅ · K̂ = [αt̂′′ ]2[1,3`].

(Returning Ciphertext). B computes C0 from the message mask: C0 = Ext(param,K + K̂ ′′)⊕
Mb. It returns a semi-functional ciphertext as (C0,C + Ĉ′′).

Phase 2. B implicitly sets β = δ. B will use Z = [ δ + c1 · · · c`+1z ]2[`+2,3`] from the challenge to

embed it to each key. When A makes the j-th key query for f (j), B generates a type-1 or type-2
semi-functional key as follows. First it generates a normal key SKj ← KeyGen(MSK, f (j)). A type-1
or type-2 semi-functional key is different from a normal key by having additional N2 components.
B defines these semi-functional components as follows.

(Programming Randomness in Key). B implicitly sets r̂ = c2 · · · c`+1 and

∀w1,j∈Inputs : v̂w1,j =

{
−c2 if j 6∈ Ax? ,
0 if j ∈ Ax?

, ∀wi,j∈Nodes : α̂wi,j =

{
c1 · · · ci+1 if fwi,j (x

?) = 0,

0 if fwi,j (x
?) = 1.

It then sets ˆ̀
wi,j , r̂wi,j for all wi,j ∈ Gates as follows. There are three cases:

36



• If fwi,j (x
?) = 1, then B sets ˆ̀

wi,j = r̂wi,j = 0.

• If fwi,j (x
?) = 0 and GateType(wi,j) = OR, then B sets ˆ̀

wi,j = r̂wi,j = −ci+1.

• If fwi,j (x
?) = 0 and GateType(wi,j) = AND, then

− if f L(wi,j)(x
?) = 0, then B sets ˆ̀

wi,j = −ci+1 and r̂wi,j = 0,

− otherwise fR(wi,j)(x
?) = 0, then B sets ˆ̀

wi,j = 0 and r̂wi,j = −ci+1.

(Simulating Key). From the above (implicit) definitions, the semi-functional component for key
is well defined. B computes them as follows.

D̂1 = Z + [φ′2 ]∅ · [ c2 · · · c`+1 ]2[`+2,3`] = [β + φ̂2r̂ ]2[`+2,3`],

D̂2 = [ c2 · · · c`+1 ]2[`+2,3`] = [ r̂ ]2[`+2,3`],

D̂3 = [φ′1 ]∅ · [ c2 · · · c`+1 ]2[`+2,3`] = [ φ̂1r̂ − α̂w`,1 ]2[`+2,3`],

where we note that [ c2 · · · c`+1 ]2[`+2,3`] = [ c2 ]2[`+2,2`+1][ c3 ]2{2`+2} · · · [ c`+1 ]2{3`} is computable, and

that a critical term α̂w`,1 = c1 · · · c`+1 is canceled out in D̂3. Next, for all w1,j ∈ Inputs, B computes

Ûw1,j , K̂w1,j as follows. If j ∈ Ax? , then we have v̂w1,j = 0 and fw1,j (x
?) = 1. Hence, α̂w1,j = 0. B

thus trivially computes

Ûw1,j = [ 0 ]2[`+2,2`+1] = [ v̂w1,j ]2[`+2,2`+1], K̂w1,j = [ 0 ]2[`+2,2`+1] = [ α̂w1,j + ĥj v̂w1,j ]2[`+2,2`+1].

On the other hand, if j 6∈ Ax? , then we have v̂w1,j = −c2 and fw1,j (x
?) = 0. Hence, α̂w1,j = c1c2.

In this case, B computes

Ûw1,j = −[ c2 ]2[`+2,2`+1] = [ v̂w1,j ]2[`+2,2`+1], K̂w1,j = −[h′j ]∅ · [ c2 ]2[`+2,2`+1] = [ α̂w1,j + ĥj v̂w1,j ]2[`+2,2`+1],

where we note that since ĥj = h′j + c1, a critical term c1c2 in K̂w1,j is canceled out.
For each gate wi,j ∈ Gates, B computes their corresponding elements as follows. For the case

fwi,j (x
?) = 1, we have ˆ̀

wi,j = r̂wi,j = 0 and α̂wi,j = 0. Hence, in this case, all the elements are
the encodings of zero, which can be trivially constructed. Now, we suppose that fwi,j (x

?) = 0.

If GateType(wi,j) = OR, then we have ˆ̀
wi,j = r̂wi,j = −ci+1 and f L(wi,j)(x

?) = fR(wi,j)(x
?) = 0.

Hence, α̂wi,j = c1 · · · ci+1 and α̂ L(wi,j) = α̂R(wi,j) = c1 · · · ci. B thus computes

L̂wi,j = −[ ci+1 ]2{2`+i} = [ ˆ̀
wi,j ]2{2`+i}, R̂wi,j = −[ ci+1 ]2{2`+i} = [ r̂wi,j ]2{2`+i},

K̂wi,j ,1 = [ 0 ]2[`+2,2`+i] = [ c1 · · · ci+1 + (c1 · · · ci)(−ci+1) ]2[`+2,2`+i] = [ α̂wi,j + α̂ L(wi,j)
ˆ̀
wi,j ]2[`+2,2`+i],

K̂wi,j ,2 = [ 0 ]2[`+2,2`+i] = [ c1 · · · ci+1 + (c1 · · · ci)(−ci+1) ]2[`+2,2`+i] = [ α̂wi,j + α̂R(wi,j)r̂wi,j ]2[`+2,2`+i].

For the case GateType(wi,j) = AND, wlog we can assume f L(wi,j)(x
?) = 0. (The case where

f L(wi,j)(x
?) = 1 but fR(wi,j)(x

?) = 0 can be done analogously). Therefore, ˆ̀
wi,j = −ci+1, r̂wi,j = 0

and α̂ L(wi,j) = c1 · · · ci. B thus computes

L̂wi,j = −[ ci+1 ]2{2`+i} = [ ˆ̀
wi,j ]2{2`+i}, R̂wi,j = −[ 0 ]2{2`+i} = [ r̂wi,j ]2{2`+i},

and

K̂wi,j = [ 0 ]2[`+2,2`+i] = [ c1 · · · ci+1 + (c1 · · · ci)(−ci+1) + α̂R(wi,j) · 0 ]2[`+2,2`+i]

= [ α̂wi,j + α̂ L(wi,j)
ˆ̀
wi,j + α̂R(wi,j)r̂wi,j ]2[`+2,2`+i].

37



(Re-randomizing Key). The simulated key is not perfectly distributed yet since their random-
ness are still correlated. Consider every variable ŷ in {r̂} ∪ {α̂wi,j}wi,j∈Nodes ∪ {v̂w1,j}w1,j∈Inputs ∪
{ˆ̀wi,j , r̂wi,j}wi,j∈Gates. We re-randomize them by implicitly setting new randomness as ŷ′′ = ŷ + y′,
where B samples [ y′ ]∅ ← Samp(param). To be able to compute corresponding keys with updated
randomness, it amounts to verify that the encoding of the term that ŷ is multiplied to in the key
can be computed. For example, r̂ appears in D̂1 = [βk + φ̂2r̂ ]2[`+2,3`]. This can be re-randomized

to D̂′′1 = [βk + φ̂2(r̂ + r′) ]2[`+2,3`] by computing D̂′′1 = D̂ + [ r′ ]∅ · [ φ̂2 ]2[`+2,3`], which can be done

since [ φ̂2 ]2[`+2,3`] is computable (since we have [ c1z ]2[`+2,3`] from the assumption). The other terms

can be verified as follows. [ φ̂1 ]2[`+2,3`] = [φ′1 ]2[`+2,3`] + [ c1 ]2[`+2,3`] is computable. For j 6∈ Ax? ,

[ ĥj ]2[`+2,2`+1] can be computed from [ c1 ]2[`+2,2`+1], while for j ∈ Ax? , it can be computed triv-

ially. For wi,j ∈ Gates, note that L(wi,j), R(wi,j) have depth i − 1, hence [ α̂ L(wi,j) ]2[`+2,2`+i] =

[ α̂R(wi,j) ]2[`+2,2`+i] = [ c1 · · · ci ]2[`+2,2`+i] = [ c1 ]2{2`+i}[ c2 ]2[`+2,2`+1][ c3 ]2{2`+2} · · · [ ci ]2{2`+i−1} can be
computed from D.

(Returning Key). B adds the above semi-functional components to the normal components and

returns SKk + ŜK
′′
k.

Guess. The algorithm B has properly simulated Gq1+1 if δ = 0, and Gq1+2 if δ ∈R R. Hence, B
can use the output of A to break the EMDDH2 Assumption.

B.6 Type-2 to Type-3 Semi-functional Keys in Phase 2

Lemma 17 (Gq1+2 to Gq1+3). For any adversary A, there exists an algorithm B that breaks the Sub-

group Decision Assumption 2 with |Gq1+2Adv
(n,`)-KPABE
A (λ)− Gq1+3Adv

(n,`)-KPABE
A (λ)| ≤ AdvSD2

B (λ).

Proof. The proof is exactly the same as when we modify type-2 to type-3 semi-functional key in
phase 1 (the proof of Lemma 14), except that this time we modify the post-challenge keys all at
once, instead of one key at a time. In particular, the simulation of PK,MSK and the challenge
ciphertext is exactly the same. The simulation for type-3 semi-functional key queries in phase 1 is
done using [ c ]2,3[`+2,3`] as in Eq.(15). The simulation of every key in phase 2 can be done using the

problem instance Z in exactly the same way as in Eq.(16) for all elements except D′1. B simulates
D′1 in a similar way as in Eq.(18) except that this time the same β̃ is used for every key. Namely
at the beginning of phase 2, B samples [β ]∅ ← Samp(param). For the j-th key query, B computes

D′1
(j)

= [α ]1,2[`+2,3`] + [ φ̃2 ]∅ · [ r̃(j) ]∅ · Z[`+2,3`] + [ β̃ ]∅ · [ c ]2,3[`+2,3`]. (19)

Again we remark that the randomness in a key, e.g., ([ r̃(j) ]∅, is sampled fresh for each key. We
can see that the simulated keys are all type-2 or all type-3 with β = β̃c mod N2.

B.7 Final Game

Lemma 18 (Gq1+3 to Gfinal). We have Gq1+3Adv
(n,`)-KPABE
A (λ) = GfinalAdv

(n,`)-KPABE
A (λ).

Proof. We first claim that in Gq1+3, α mod N2 is uniformly random in ZN2 in the adversary A’view.
This is since all the appearance of α mod N2 in all the semi-functional keys (of type-3) is added by
uniformly random values (βj for the pre-challenge keys and β for the post-challenge keys). Hence,
α mod N2 in C0 in the challenge ciphertext is uniformly random to A. From this claim and from
the property of Ext, we have that the message mask Ext(param, [αt ]1[1,3`] + [αt̂ ]2[1,3`]) is uniformly

random in {0, 1}λ and hence Mb is completely hidden. Therefore, we can modify to encrypt any
random message.

38



C Security Proof for CP-ABE

Lemma 19 (Gk,1 to Gk,2). For any adversary A, there exists an algorithm B that breaks the

`-EMDDH2-dual with advantage |Gk,1Adv
(n,`)-CPABE
A (λ)−Gk,2Adv

(n,`)-CPABE
A (λ)| ≤ Adv`-EMDDH2-dual

B (λ),
where ` is the bounded depth.

Proof. The proof follows almost the same way as for that of KP-ABE in phase 2 (Lemma 16),
where we simulate ciphertext for string x? before simulating key for circuits f . This time, we
simulate key for string x before simulating ciphertext for circuit f?. We will only describe the
difference here. The setup is exactly the same except the following two points. First, it computes
[α ]1,2[1,`+1] for MSK. (This is due to the difference in the scheme). Second, B additionally samples

[ψ2 ]∅, [ψ3 ]∅ ← Samp(param) and defines PK,MSK accordingly.

Phase 1. When A makes the j-th key query for x(j), B simulates a type-3 semi-functional key
if j < k and a normal key if j > k straightforwardly as usual. When j = k, B simulates SKk for
string x(k) in almost the same manner as the simulation of the ciphertext for string x? in the KP-
ABE proof (Lemma 16). It programs parameters φ̂1, {ĥj}j∈[1,n] and key randomness ŝ in exactly
the same manner. (Note that we do not use φ2 in CP-ABE). B further simulates the additional
parameters for CP-ABE as follows. It samples [ψ′2 ]∅, [ψ

′
3 ]∅ ← Samp(param) and implicitly defines

ψ̂2 = c1 + ψ′2, ψ̂3 = c1 · · · c`+1 + ψ′3, τ̂ = z, βk = δ.

where B will use Z = [ δ + c1 · · · c`+1z ]2[1,`+1] from the problem instance to embed δ below. From

these implicit definitions, B then computes Ĉ, Ĉj exactly as in the KP-ABE proof. The additional
elements are computed as: Q̂1 = [ z ]2[1,`+1] = [ τ̂ ]2[1,`+1], and

Q̂2 = [ψ′2 ]∅ · [ z ]2[1,`+1] − [φ′1 ]∅ · [ z ]2[1,`+1]. = [ ψ̂2τ̂ + φ̂1ŝ ]2[1,`+1],

Q̂3 = Z + [ψ′3 ]∅ · [ z ]2[1,`+1] = [βk + ψ̂3τ̂ ]2[1,`+1]

where we notice that in Q̂2, a critical term c1z from ψ̂2τ̂ and φ̂1ŝ is canceled out, and in Q̂3,
c1 · · · c`+1z in Z combines with ψ′3 to yield ψ̂3. B then re-randomizes all randomness in key, say to
τ̂ + τ ′, ŝ+ s′. This can be done since for the additional elements to CP-ABE, [ ψ̂2 ]2[1,`+1], [ ψ̂3 ]2[1,`+1]

are computable (since we have [ c1 ]2[1,`+1], [ c1 · · · c`+1 ]2[1,`+1] respectively).

Challenge. B simulates a challenge ciphertext for circuit f? in almost the same way as the
simulation of the key for circuit fk in the KP-ABE proof (Lemma 16). It programs ciphertext
randomness r̂, {α̂wi,j}wi,j∈Nodes, {v̂w1,j}w1,j∈Inputs, {ˆ̀wi,j , r̂wi,j}wi,j∈Gates in exactly the same manner.
Additionally for CP-ABE, B defines û = −1 (this will be re-randomized later). From these implicit
definitions, B computes {K̂w}w∈Nodes and D̂2, D̂3 as in Lemma 16. The remaining additional
elements are computed as: Ŵ0 = −[ 1 ]2[`+2,3`] = [ û ]1[`+2,3`], and

Ŵ1 = −[ψ′3 ]∅ · [ 1 ]2[`+2,3`] + [ψ′2 ]∅ · [ c2 · · · c`+1 ]2[`+2,3`] = [ ψ̂3û+ ψ̂2r̂ ]2[`+2,3`],

where we recall that r̂ = c2 · · · c`+1 and see that a critical term c1 · · · c`+1 is canceled out in Ŵ1. B

also computes the semi-functional component of message mask as K̂ = [α ]1,2[1,`+1] · Ŵ0 = [αû ]2[1,3`].

B re-randomizes the ciphertext by first sampling [u′ ]∅ ← Samp(param). It also samples [ y′ ]∅ ←
Samp(param) for every variable ŷ in {r̂}∪{α̂wi,j}wi,j∈Nodes∪{v̂w1,j}w1,j∈Inputs∪{ˆ̀wi,j , r̂wi,j}wi,j∈Gates.
It then sets the new randomness as û′′ = u′ · û = −u′, and ŷ′′ = u′ŷ + y′ for every variable ŷ listed
above. The original elements can be re-randomized due to the same reason for re-randomizing
key in Lemma 16. One difference is that this time we also have factor u′ (multiplied to ŷ), but

39



this is straightforward to deal with. (This is indeed analogous to re-randomizing ciphertext for
KP-ABE in Lemma 16). For the additional elements to CP-ABE, we re-randomize as follows. B

sets Ŵ ′′0 = [u′ ]∅ · Ŵ0, and Ŵ ′′1 = [u′ ]∅ · Ŵ1 + [ r′ ]∅ · [ ψ̂2 ]2[`+2,3`], where we note that [ ψ̂2 ]2[`+2,3`] is

computable (since we have [ c1 ]2[`+2,3`]). B also computes K̂ ′′ = K̂ · [u′ ]∅ = [αû′′ ]2[1,3`]. B adds the
normal part and the simulated semi-functional component of ciphertext and returns the challenge.

Guess. The algorithm B has properly simulated Gk,1 if δ = 0, and Gk,2 if δ ∈R R. Hence, B can
use the output of A to break the EMDDH2-dual Assumption.

Lemma 20 (Gq1+1 to Gq1+2). For any adversary A which issues the challenge query for a circuit
f? of which the maximum number of (internal) gates per layer is m, there exists an algorithm

B that breaks the (`,m)-EMDDH1-dual with |Gq1+1Adv
(n,`)-CPABE
A (λ) − Gq1+2Adv

(n,`)-CPABE
A (λ)| ≤

Adv
(`,m)-EMDDH1-dual
B (λ).

Proof. The proof follows almost the same way as for that of KP-ABE in phase 1 (Lemma 3),
where we simulate key for circuit f before simulating ciphertext for string x?. This time, we
simulate ciphertext for circuit f? before simulating key for string x. We will only describe the
difference here. The setup is exactly the same except the following two points. First, it computes
[α ]1,2[1,`+1] for MSK. (This is due to the difference in the scheme). Second, B additionally samples

[ψ2 ]∅, [ψ3 ]∅ ← Samp(param) and defines PK,MSK accordingly. In phase 1, answering type-3 semi-
functional keys can be done straightforwardly in an analogous manner to KP-ABE.

Challenge. B simulates a challenge ciphertext for circuit f? in almost the same way as the
simulation of the key for circuit fk in KP-ABE (in Lemma 3). It programs parameters φ̂1, {ĥj}j∈[1,n]

and ciphertext randomness r̂, {α̂wi,j}wi,j∈Nodes, {v̂w1,j}w1,j∈Inputs, {ˆ̀wi,j , r̂wi,j}wi,j∈Gates in exactly the
same manner. (Note that we do not use φ2 in CP-ABE). B further simulates the additional
parameters for CP-ABE as follows. It samples [ψ′2 ]∅, [ψ

′
3 ]∅ ← Samp(param) and implicitly defines

ψ̂2 = v + ψ′2, ψ̂3 = −b+ ψ′3, û =
c1 · · · c`+1

b
.

From these implicit definitions, B computes {K̂w}w∈Nodes and D̂2, D̂3 as in Lemma 3. The remaining
additional elements are computed as:

Ŵ0 = [
c1 · · · c`+1

b
]2[`+2,3`], Ŵ1 = [ψ′3 ]∅ · [

c1 · · · c`+1

b
]2[`+2,3`] + [ψ′2 ]∅ · [

c1 · · · c`+1

v
]2[`+2,3`]

where c1 · · · c`+1 is canceled out in Ŵ1. B also computes the semi-functional component of message
mask as K̂ = [α ]1,2[1,`+1] · Ŵ0 = [αû ]1[1,3`]. B then re-randomizes the ciphertext as usual, to have all

randomness to be independent from û. The additional component Ŵ1 can be re-randomized since
[ ψ̂2 ]2[`+2,3`] can be computed (since we have [ v ]2[`+2,3`]). B adds the normal part and the simulated
semi-functional component of ciphertext and returns the challenge.

Phase 2. B implicitly sets β = δ. B will use Z = [ δ+bz ]2[1,`+1] from the problem instance to embed

it to each key. When A makes the j-th key query for x(j), B generates a type-1 or type-2 semi-
functional key as follows. First it generates a normal key SKj ← KeyGen(MSK, x(j)). B then defines
semi-functional components as follows. It implicitly defines ŝ as in the ciphertext in the KP-ABE
proof. Additionally for CP-ABE, B defines τ̂ = −z. B then computes Ĉ, Ĉj exactly as in the KP-
ABE proof. The additional elements are computed as follows. First, Q̂1 = −[ z ]2[1,`+1]. To compute

Q̂2, we substitute terms and see ψ̂2τ̂ + φ̂1ŝ = (v + ψ′2)(−z) + (v + φ′1)z
∏
i∈[2,`]

(
1 +

∑
wi,k∈Si

1
ai,k

)
.

40



A critical term zv is canceled out and Q̂2 can be computed almost exactly as D̂2 in the KP-ABE
proof. B then computes

Q̂3 = Z − [ψ′3 ]∅ · [ z ]2[1,`+1] = [β + ψ̂3τ̂ ]2[1,`+1].

where we recall Z = [β + bz ]2[1,`+1] and ψ̂3 = −b + ψ′3. B then re-randomizes all randomness to

say, ŝ + s′, τ̂ + τ ′. The additional elements can be re-randomized since [ ψ̂2 ]2[1,`+1], [ ψ̂3 ]2[1,`+1] are

computable (since we have [ v ]2[1,`+1], [ b ]2[1,`+1] respectively).

Guess. The algorithm B has properly simulated Gq1+1 if δ = 0, and Gq1+2 if δ ∈R R. Hence, B
can use the output of A to break the EMDDH1-dual Assumption.

D Omitted Discussions

Why Traditional Dual System Would Fail for GGHSW. (Continued from §1.1). We examine
our canonical scheme, the KP-ABE of GGHSW. We use a toy circuit f3 in Figure 1. This toy
circuit seems to be a suitable representative for general circuits since it contains fan-out 2 (albeit
from the input). We consider the following variant of their scheme. We use asymmetric graded
3-linear maps G1 × G2 × G3 → GT . Let g1, g2, g3 be a generator in each group respectively.
Denote g12 = e(g1, g2), g23 = e(g2, g3), g123 = e(g1, g2, g3). Our toy scheme has a public key
PK = (gh1

1 , gh2
1 , gh3

1 , gα123), and a master key MSK = α. A key for f3 is SKf3 = (Ka,Kb,Kc) where

Ka = (gαa+h1`a+h2ra
2 , g`a2 , g

ra
2 ), Kb = (gαb+h2`b

2 , gαb+h3rb
2 , g`b2 , g

rb
2 ), and Kc = (gα+αa`c+αbrc

23 , g`c3 , g
rc
3 ).

Note that αw, `w, rw for gate w are randomness dedicated to only this key. A ciphertext encrypting
a message M for x = 101 are CT101 = (gsα123M, gs1, g

h1s
1 , gh3s

1 ).
The underlying pair encoding of the above scheme is indeed the set of all polynomials in the

exponents that define a key and a ciphertext (the one with M is the only exception that we do
not include). We refer to the details in [1]. We note that, although only the case of bilinear maps
was provided in [1], we expect the framework to function also in multi-linear map settings. The
encoding function for x in this scheme is a polynomial set (s, h1s, h3s). The case for the encoding
of f is similar. We claim that this pair encoding is not information-theoretically secure, meaning
that α is exposed given encodings of x, f such that f(x) = 0. Since f3(101) = 0, we can give out
the encoding functions of SKf3 and CT101. We can see that α is exposed as follows. First, we have
h1, h3 from CT101. From h3 and Kb, we obtain αb and then h2. From h1, h2 and Ka, we obtain
αa. From αa, αb and Kc, we obtain α. This concludes our claim. We note that the very nature
of multi-fan-out allows this “backtracking” attack: h2, which is not expected to be exposed since
x2 = 0, is exposed from h3 via their parent OR gate. Since the multi-fan-out feature is essential for
general circuits, we could not hope much to use the information-theoretic approach.

Decryption for Toy Examples. (Continued from §2). For the first toy example, to decrypt
CT10 by SKOR, one computes e(gs1, g

α+h1`
2 )e(gh1s

1 , g`2)−1 = e(g1, g2)sα. To decrypt CT11 by SKAND,
one computes e(gs1, g

α+h1`+h2r
2 )e(gh1s

1 , g`2)−1e(gh2s
1 , gr2)−1 = e(g1, g2)sα. For the second toy exam-

ple, as an example, to decrypt CT1110 by SKf , we compute from input gates a, b to the output

gate c as follows. First, we compute e(gs1, g
αa+h1`a+h2ra
2 )e(gh1s

1 , g`a2 )−1e(gh2s
1 , gra2 )−1 = gαas

12 , and

e(gs1, g
αb+h3`b
2 )e(gh3s

1 , g`b2 )−1 = gαbs
12 . Then, we compute e(gs1, g

α+αa`c+αbrc
23 )e(gαas

12 , g`c3 )−1e(gαbs
12 , grc3 )−1

= gsα123.

One More Technical Intuition. (Continued from §2). When generalizing to circuits, we also
have one more technique for simulation. This is continued from the end of §2. As an attempt
for the simulation of s in the ciphertext when generalizing to larger circuits, we can set s =

41



z(1+ 1
ai1

) · · · (1+ 1
aik

), where each (1+ 1
ai

) would “select ” some corresponding gate in chains defined

for hj to enable the canceling in g
shj
1 . To be able to compute such s, again we must decompose the

multiplication. However, this time, the number of multiplication can be as large as the number of
all gates in the circuit, which would then define multi-linearity required to be as many. This would
not be desirable. We resolve this by observing that in each path, there is only one corresponding
gate of each depth. Hence, gathering all selectors in corresponding the same depth as a sum would
not cause any problem. That is, we have s = z(1 + 1

ai11
+ · · ·+ 1

ai1t
) · · · (1 + 1

ai`1
+ · · ·+ 1

ai`t
), where

aiju is corresponding to gates with the same depth j. This allows us to use only ` multi-linearity.
In the simulation, this translates to Eq. (13). (If there were two selectors in the sum that trigger
canceling in the same chain, an unexpected canceling might occur that leads to a critical term gzc11 ,
but we do not elaborate here).

42



Contents

1 Introduction 1
1.1 Difficulties and Our Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Toy Examples and Intuition in Technical Details 5

3 Definitions 7

4 Graded Encoding 8

5 Assumptions 10

6 A Fully Secure Key-Policy ABE Scheme for Circuits 13

7 Security Proof 15
7.1 Security Theorem and Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.2 Sketch of Proofs for Subgroup-Decision Based Transitions . . . . . . . . . . . . . . . . . . . . 18
7.3 Proof for Transition of Type-1 to Type-2 Semi-functional Key in Phase 1 . . . . . . . . . . . 19

8 A Fully Secure Ciphertext-Policy ABE Scheme for Circuits 27
8.1 Assumptions and Security Theorem for CP-ABE . . . . . . . . . . . . . . . . . . . . . . . . . 28

References 29

A Generic Hardness of Our Assumptions 31

B Security Proof for KP-ABE 32
B.1 Normal to Semi-functional Ciphertext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
B.2 Normal to Type-1 Semi-functional Key in Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . 33
B.3 Type-2 to Type-3 Semi-functional Key in Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . 35
B.4 Normal to Type-1 Semi-functional Keys in Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . 35
B.5 Type-1 to Type-2 Semi-functional Keys in Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . 35
B.6 Type-2 to Type-3 Semi-functional Keys in Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . 38
B.7 Final Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

C Security Proof for CP-ABE 39

D Omitted Discussions 41

43


	Introduction
	Difficulties and Our Approaches
	Other Related Work

	Toy Examples and Intuition in Technical Details
	Definitions
	Graded Encoding
	Assumptions
	A Fully Secure Key-Policy ABE Scheme for Circuits
	Security Proof
	Security Theorem and Proof Overview
	Sketch of Proofs for Subgroup-Decision Based Transitions
	Proof for Transition of Type-1 to Type-2 Semi-functional Key in Phase 1

	A Fully Secure Ciphertext-Policy ABE Scheme for Circuits
	Assumptions and Security Theorem for CP-ABE

	References
	Generic Hardness of Our Assumptions
	Security Proof for KP-ABE
	Normal to Semi-functional Ciphertext
	Normal to Type-1 Semi-functional Key in Phase 1
	Type-2 to Type-3 Semi-functional Key in Phase 1
	Normal to Type-1 Semi-functional Keys in Phase 2
	Type-1 to Type-2 Semi-functional Keys in Phase 2
	Type-2 to Type-3 Semi-functional Keys in Phase 2
	Final Game

	Security Proof for CP-ABE
	Omitted Discussions

