
Server-Aided Two-Party Computation with Minimal
Connectivity in the Simultaneous Corruption Model

Ignacio Cascudo∗1, Ivan Damgård 1, Oriol Farràs †2, and Samuel Ranellucci1

1Aarhus University,
{ignacio,ivan,samuel}@cs.au.dk

2Universitat Rovira i Virgili, Tarragona,
oriol.farras@urv.cat

Abstract

We consider secure two-party computation in the client-server model. In our scenario, two ad-
versaries operate separately but simultaneously, each of them corrupting one of the parties and a
restricted subset of servers that they interact with. We model security in this setting via the lo-
cal universal composability framework introduced by Canetti and Vald and show that information-
theoretically secure two-party computation is possible if and only if there is always at least one
server which remains uncorrupted. Moreover, in our protocols each of the servers only needs to
communicate with the two clients, i.e. no messages are exchanged directly between servers. This
communication pattern is minimal.

Keywords: two-party computation, simultaneous corruption, universal composability with local
adversaries, oblivious transfer.

∗The authors from Aarhus University acknowledge support from the Danish National Research Foundation and The Na-
tional Science Foundation of China (under the grant 61361136003) for the Sino-Danish Center for the Theory of Interactive
Computation and from the Center for Research in Foundations of Electronic Markets (CFEM), supported by the Danish Strate-
gic Research Council.
†Oriol Farràs is supported by the Spanish Government through a Juan de la Cierva grant, TIN2011C27076-C03-01,

TIN2014-57364-C2-R, by the European Union through H2020-ICT-2014-1644024, and by the Government of Catalonia
through Grant 2014 SGR 537.

0

1 Introduction

This paper considers secure computation, where two parties (Alice and Bob) hold inputs and want to
compute an agreed upon function on those inputs in such a way that the intended output is the only new
information released.

More specifically, our goal is to implement secure two-party computation with information theo-
retic security. It is well-known that this is impossible without assuming either preprocessing, additional
auxiliary functionalities, or help from additional parties. The reason why shooting for unconditional
security is nevertheless interesting is that information theoretic methods are typically computationally
much more efficient than the heavy public-key machinery one needs for the two-party case if no addi-
tional help is assumed. In our approach, we assume that the two parties get help from n servers. This is
essentially the client-server model of MPC introduced in [DI05], with 2 clients and n servers.

We depart from earlier work in this model in two ways. First, we strive for minimal connectivity.
Our goal is to have each server communicate only with the two clients (i.e., the servers do not talk to
each other). This communication pattern is minimal since, in order to be of any use in letting Alice
and Bob do secure computation, a server must communicate with both of them. The minimality of the
communication pattern has obvious advantages: it is easier to implement a protocol where servers do
not need to communicate or even be aware of each other; in fact, as we will see later, in some cases the
amount of work made by each of the servers in our protocol can even be made independent from the
number of servers; it is also easier to set up the required secure communication channels if the servers
only need public keys for Alice and Bob; finally, when running the protocol, a server can proceed as
soon as he gets the next messages from Alice and Bob, instead of waiting to hear from all other servers,
which would be required if the protocol was synchronous and involved interaction between all servers.

The second point that sets our work apart is the way we model adversarial behaviour. The standard
model assumes one adversary who may corrupt one of the clients and some number of servers, typi-
cally some constant fraction of them. If we want unconditional security, we need to assume an honest
majority (or Q2 for general adversary structures [HM00]). In this paper, we ask whether we can tol-
erate more corruptions and still have unconditional security, if we assume two adversaries, A,B that
operate separately, but simultaneously. We will characterise the capabilities of these adversaries by two
anti-monotone families of server subsets A,B, so-called adversary structures.

We think of these adversary structures as follows: we want to design protocols such that if you
manage to corrupt Alice and a set of servers in A, you have of course broken Alice’s privacy, but you
should not be able to break Bob’s – and vice versa for B.

More concretely, A is allowed to corrupt Alice and a set of servers A ∈ A (it may decide to not
corrupt servers). Corruption may be semi-honest or malicious. Likewise we allow B to corrupt Bob and
a set B ∈ B. We call this the double adversary model. An obvious question now is how we should
define security for a protocol in this model. To this end, one can first observe that if either A or B decide
to not corrupt anyone, we are back in the standard single adversary model and security means what it
usually does. But we also define meaningful security requirements in the more general case where both
adversaries operate at the same time. Loosely speaking, we require that an adversary should learn as
little information as possible and be unable to affect the result achieved by parties that he did not corrupt.
We will discuss this in more detail in a moment. Our main result gives a positive answer to the above
question: it says that secure computation is possible in our model even in cases where all but one of the
servers has been corrupted by one of the two adversaries, and moreover, this is the best we can hope for.

THEOREM 1.1 (INFORMAL) The pair (A,B) is said to beR2 if for anyA ∈ A, B ∈ B,A∪B is not the
entire set of servers. Two-party computation is possible in the double adversary model w.r.t. adversary
structures A and B if and only if (A,B) isR2.

TheR2 property looks a bit like the well known Q2 property for a single adversary structure, intro-

1

duced by Hirt and Maurer [HM00]1. Q2 is necessary and sufficient for statistically secure MPC in the
single adversary case assuming also a broadcast channel.

For the case of threshold adversary structures, where we assume that Alice can corrupt at most tA
servers, and Bob can corrupt at most tB ,R2 means that tA+ tB < n. However, more general cases may
occur as well: assume, for instance, that there is a cost associated with corrupting each server, which
does not have to be the same for all servers. Now, if both adversaries have a certain budget they can
spend, this corresponds to certain adversary structures containing the sets that they can corrupt. In this
case the R2 condition intuitively says that the joint wealth of the adversaries is limited to some extent.
Interestingly, we will see that there are even examples ofR2 pairs (A,B), yet neitherA nor B isQ2. On
the other hand, a pair (A,B) naturally defines an adversary structure U in the extended set P of n + 2
players consisting of Alice, Bob and the n servers, where the maximal sets in U are the sets that consist
of Alice and a set from A, or Bob and a set from B. It turns out that (A,B) isR2 if and only if U isQ2.

This last observation means that Alice and Bob could also use general results on MPC forQ2 struc-
tures to compute their desired function securely. We want to emphasise that our result distinguishes itself
from this approach in several respects: first, we already mentioned that general secure MPC protocols
against an active adversary with a Q2 structure must assume the existence of a broadcast channel and
can only achieve statistical security. In contrast, our protocol does not assume broadcast and achieves
perfect security. Second, even if one makes the necessary additional assumptions, using generic MPC
protocols would not achieve our minimal communication pattern, where each server only needs to talk
to Alice and Bob and does not even need to be aware of the other servers. Finally, we are not aware of
any results that imply that known generic MPC protocols are still secure in our double adversary model
(see below for a more detailed description of this security notion).

We can already now observe that one part of the theorem is easy to show, namely if (A,B) is notR2

then we cannot hope for an unconditionally secure protocol. This is simply because a secure protocol for
a non-R2 case would imply general 2-party unconditionally secure computation in the standard model
which is well known to be impossible. This follows by a standard emulation argument: Consider semi-
honest corruption and assume we have a multiparty protocol secure against corruption of Alice as well
as server set A by A and Bob as well as server set B by B, where A ∪ B is the full set of servers. Then
the entire protocol can be emulated by two players where one plays for Alice and servers in A while
another plays for Bob and servers in B. This would give us a secure two-party protocol in the standard
model.

Techniques and Details

We now discuss our security notion. As we said, the corruption (if any) done by A,B may be semi-honest
or malicious, but not all combinations make sense.

The first case is when B does semi-honest corruption. This means that Bob will follow the protocol.
Then we require that Bob gets correct output, no matter what A does. Furthermore, we require that A
learns a minimal amount of information, which means that A learns (of course) Alice’s private input,
but nothing more, even under malicious corruption.

The second case is when B is malicious. Note that we do not put restrictions on the behaviour of
malicious parties, and hence B could choose to send out his entire view to all players. This means that
A would see information from a set in A and Alice’s view as well, in addition to information from its
own corruptions. Therefore, in general, we cannot hope to keep anything private from A in such a case.
But a special case where we can give a guarantee is when A corrupts no one, since then it will of course
learn nothing more than B. Conditions symmetric to the above two are required when A is semi-honest,
respectively malicious.

We will not treat the case where both adversaries are malicious: since they can choose to broadcast
everything they know, it does not make sense to consider this as two separate adversaries.

1A is Q2 if for all A,B ∈ A, A ∪B is not the set of all players.

2

We also do not explicitly treat the case where adversaries corrupt servers in A or B only (and not
Alice or Bob). In fact our model excludes this case. This is because we think of our problem as
being inherently a two-party computation to be applied in scenarios where Alice believes that any attack
against her will be initiated by Bob (and vice versa). Therefore we insist that if you corrupt a set of
servers in A, this counts as if you also corrupted Alice. This distinction may seem unnecessary in that
an adversary who corrupts only servers seems weaker than one who may also corrupt Alice or Bob. This
is true for semi-honest corruption, but the malicious case is different: with malicious servers only, we
need to guarantee that the correct result is output, based on the honest inputs of Alice and Bob (that you
cannot change in a simulation proof).

Nevertheless, our protocol does give meaningful (but non-standard) security gurantees for corrupted
sets of only servers. We explain these in Appendix A where we also use an impossibility result from
[FHM99] to argue that standard security cannot in general be obtained unless we put stronger conditions
on (A,B) (and extend the security notion).

A technical detail we need to handle is that it may be the case that both adversaries corrupt the same
server. In that case we just assume that both players see the entire view of the server in question. So, in
particular, if A is semi-honest and B is malicious, A can see the potentially malicious behaviour of B in
that server.

A few works have considered adversaries that operate separately and simultaneously. The closest to
our scenario is [KMR11], where several clients are assisted in a (computationally) secure MPC protocol
by a single server. They develop special-purpose security definitions for this problem.

Nevertheless, we choose to formalise the above ideas using the notion of Universal Composability
with local adversaries of Canetti and Vald [CV12]. This allows us not only to consider separate adver-
saries but also to give guarantees for composition. On the other hand, some technical issues arise with
respect to how we define the ideal functionality we implement, see more details within.

For the case of semi-honest adversaries, a protocol can be obtain in an almost straightforward manner
from the results by Hirt and Maurer [HM00] on MPC secure against semi-honest adversaries, as we
explain in Section 5. However, we also show a simpler protocol in that section whose complexity (in n)
is essentially that of a linear secret sharing scheme realizing the structure A.

Our protocol for the malicious case, described in Section 6, is considerably more involved. The
difficulty comes from the fact that none of the adversary structures may be Q2, as mentioned above,
and this means that we cannot directly use known solutions for verifiable secret sharing to commit
the players to values they hold. Therefore, we cannot make our semi-honest solution be secure in the
standard way. Instead, we use specially engineered linear secret sharings schemes for the two adversary
structures to construct a protocol for oblivious transfer (OT) [Rab81, EGL82], and use the fact that OT is
complete for two-party computation [Kil88]. The complexity (in n) of this protocol is again essentially
that of the linear secret sharing scheme realizing A. Quite surprisingly, the description of both our
protocols does not involve the structure B. The idea for our OT protocol is to let each of the servers
implement an OT, which may be faulty because of the corruptions, and we suggest a new technique
to make a secure OT from these n imperfect ones. In this regard, our notion is similar to that of OT
combiners [HKN+05, HIKN08]. However, the adversarial model we consider is different.

2 Q2 structures andR2 pairs of structures

We denote by Pn the set {1, 2, . . . , n}. Furthermore, 2Pn is the family of all subsets of Pn. An anti-
monotone (or adversary) structure A ⊆ 2Pn is a family of subsets of Pn such that ∅ ∈ A and for every
A ∈ A and B ⊆ A we have B ∈ A.

DEFINITION 2.1 We say that an adversary structureA isQ2 if for all A,B ∈ A, we have A∪B 6= Pn.

DEFINITION 2.2 We say that a pair (A,B) of adversary structures is R2 if for all A ∈ A, B ∈ B, we
have A ∪B 6= Pn.

3

R2 is a generalization of Q2. More precisely, the pair of adversary structures (A,A) is R2 if and
only if A is Q2. However, there exist adversary structures A,B such that neither A nor B are Q2, while
the pair (A,B) isR2. For example: n = 4, and A and B are the adversary structures with maximal sets
{1, 2}, {3, 4} in the case of A, and {1, 3}, {2, 4} in the case of B.

For an adversary structure A, the dual adversary structure Ā is defined as follows: A ∈ Ā if and
only if Ā 6∈ A, where Ā = Pn \A.

LEMMA 2.3 If (A,B) isR2, then B ⊆ Ā.

Indeed, if B ∈ B, then B̄ 6∈ A byR2, and then B ∈ Ā by definition of the dual adversary structure.

3 Secret sharing

Our protocols use secret sharing, a well-known cryptographic primitive introduced by Shamir [Sha79]
and, independently, Blakley [Bla79]. We recall some terminology and results which will be needed later.

Let S be a secret sharing scheme for the set of players Pn. We say that a set A ⊆ Pn is unqualified
if the set of shares corresponding to A gives no information about the secret. Note that the family
A ⊆ 2Pn of all unqualified sets of S is an adversary structure. A set A ⊆ Pn is qualified if the set
of shares corresponding to A uniquely determines the secret. The family of all qualified sets is called
the access structure of S. We say that a secret sharing scheme is perfect if every set A ⊆ Pn is either
qualified or unqualified (there are no sets of shares which give partial information about the secret).

ShareS is a probabilistic algorithm that takes as input s and outputs a valid sharing for it. We also
define ReconstructS , an algorithm that takes as input a set of pairs {(i, ai) : i ∈ A} where A ⊆ Pn
and for every i, ai is an element of the space of shares corresponding to player i and outputs s if A is a
qualified set for S and the values {ai : i ∈ A} are part of a valid sharing of the secret s, and outputs ⊥
otherwise (note that if A is qualified, at most one secret can be consistent with the values {ai : i ∈ A}).

Let F be a finite field. A linear secret sharing scheme S (over F), LSSS for short, is one where
the space of secrets is a vector space F`0 , the space of the i-th shares is F`i for i = 1, . . . , n, and the
shares are computed as a linear function of the secret and a uniformly random vector u ∈ Fe. We denote
by [s,u]S ∈ F` the vector resulting of concatenating the shares of secret s with randomness u, where
` =

∑n
i=1 `i. When we do not need to make the randomness explicit, then we write [s]S . Moreover, we

say that ` is the complexity of the LSSS. We note that ShareS runs in polynomial time in `. It is easy
to see that we can define an algorithm ReconstructS , based on solving systems of linear equations,
that runs in polynomial time in `.

It is a well known result [ISN87] that every adversary structure is the adversary structure of a LSSS.

THEOREM 3.1 For every finite field F and integer `0 ≥ 1 and for every adversary structure A there
exists a perfect LSSS SA with secrets in F`0 and adversary structure A.

In general the complexity of the LSSS SA in [ISN87] is exponential in n.
We say that a LSSS is ideal if `i = 1 for all i.2 The complexity of an ideal LSSS is n, which is

smallest possible. Given a field F and an adversary structureA, it is not necessarily true that there exists
an ideal LSSS over F withA as its adversary structure. In fact, there are families of adversary structures
A such that for any finite field F, the smallest complexity of an LSSS with A as its adversary structure
is superpolynomial in n. See [Bei11] for more information.

4 Security Model

Our model is the client-server model. We have two clients who wish to realize secure computation
with the aid of n servers. Each client can corrupt a certain set of servers and its corruption capability

2We include the case in which some shares are dummy, i.e., always zero.

4

is defined by an adversary structure. In this paper, we ignore the case where servers are corrupted by
an entity which is not one of the players. In our protocol, we will first consider cases where only one
player is malicious and corrupts servers while the other player is honest and does not corrupt servers.
We will prove security of our protocol in the Universal Composability (UC) framework, introduced by
Canetti [Can01]. We will then also consider the case where they both are corrupted, one semi-honestly
and the other either in a malicious or semi-honest fashion, and in addition both may corrupt servers. We
use the Universal Composability with Local Adversaries framework (abbreviated by Local Universal
Composability or LUC), introduced by Canetti and Vald [CV12], to prove security in those cases.

Universal Composability is based on the simulation paradigm. Roughly, the idea is to compare the
execution of the actual protocol (the real world) with an idealized scenario (the ideal world) in which
the computations are carried out by a trusted third party (the ideal functionality) which receives inputs
from and hands in outputs to the players. The goal is to show that these two worlds are indistinguish-
able. In order to formalize this goal, we introduce a party called the environment Z , whose task is to
distinguish between both worlds. Furthermore, in the ideal world, we introduce a simulator Sim, its task
being to simulate any action of the adversary in the real protocol and thereby to make the two views
indistinguishable for any environment. More precisely, in the real world execution of protocol π, with
the adversary Adv and environment Z , the environment provides input and receives output from both
Adv and π. Call RealAdv,π,Z the view of Z in this execution. In the ideal world Z provides input and
receives output from Sim and the ideal functionality F . Call IdealSim,F ,Z the view of Z in the ideal
execution. We can proceed to define what it means for a protocol to be secure.

DEFINITION 4.1 A protocol π UC-implements a functionality F against a certain class of adversaries
C if for every adversary Adv ∈ C there exists a simulator Sim such that for every environment Z ,
RealAdv,π,Z ≈ IdealSim,F ,Z .

The cornerstone of the universal composability framework is the composition theorem, which works
as follows. Denote by π ◦G a protocol π that during its execution makes calls to an ideal functionality
G. The composition proof shows that if πf ◦G securely implements F and if πg securely implements G
then πf ◦πg securely implementsF . This provides modularity in construction of protocols and simplifies
proofs dramatically. It is also shown that proving security against a dummy adversary, one who acts as
a communication channel, is sufficient for proving general security.

Universal Composability as we have described it so far considers a single real-world adversary which
corrupts parties and chooses their behaviour to attack the protocol and a single ideal-world simulator
which generates a view consistent for the given real world adversary. However, this notion does not
capture the case where there are more than one “local” adversaries which do not work together or more
precisely do not share a view of the system. This means that Universal Composability does not allow us
to deal with certain notions of security such as collusion freeness, anonymity, deniability or security in
game-theoretic scenarios.

To capture such a notion, Canetti and Vald [CV12] defined the notion of Local Universal Compos-
ability. Roughly speaking, instead of having a single adversary which corrupts participants, there are
multiple adversaries, each of whom can only corrupt a single participant. In the ideal world, each ad-
versary will be replaced by a simulator. The simulators can only communicate with each other either
through the environment or through the ideal functionality. Local universal composability also considers
hybrid models.

Canetti and Vald describe the power of their notion as follows: “If π is a LUC-secure protocol that
implements a trusted party F then each individual entity participating in π affects each other entity
in the system no more than it does so in the ideal execution with F .” A general composition theorem
is provided which allows the replacement of an ideal functionality with a protocol which implements
it. Moreover, it is also proven that security with respect to dummy adversaries implies security against
a general adversary. We denote the parties as {Pi : i ∈ I}. As mentioned above, to each party Pi
corresponds an adversary Advi and a simulator Simi. Let C be a class of tuples of adversaries (Advi)i∈I .

5

DEFINITION 4.2 π LUC-implements F against the class C if for every (Advi)i∈I ∈ C and every
Ī ⊆ I , there exists a simulator Sim = ∪i∈Ī Simi such that for every environment Z , we have that
IdealSim,F ,Z ≈ RealAdv,π,Z , where Adv = ∪i∈Ī Advi.

In our case, since we consider the possibility where both players are semi-honest, it must be the case
that the simulators are able to get shares to each other. Since the simulators can only communicate to
each other via the ideal functionality or the environment and the environment is untrustworthy, it must
be the case that these values can be extracted from the ideal functionality.

5 A protocol for semi-honest adversaries

As a warm-up, we sketch a simple protocol that allows secure computation for semi-honest adversaries,
simultaneously corrupting adversary structuresA and B, as long as (A,B) isR2. First, we do not claim
any novelty with regard to feasibility in this case, since one could obtain a protocol in a straightforward
way from the general results on MPC secure against semi-honest adversaries in [HM00] (which is secure
as long as the adversary corrupts a Q2 structure) applied to the n + 2 players consisting of Alice, Bob
and the servers. While in that protocol servers would communicate to each other, we can emulate such
communications in our setting by having the sending server split additively its message in two halves
and communicating one share to the receiving server via Alice and the other via Bob (so that neither
Alice nor Bob learn anything new about the message).

However, this requires the communication complexity to be at least square in n, the number of
servers (the actual complexity depending on the complexity of the secret sharing scheme). In contrast,
we show a protocol whose communication complexity (in n) is essentially given by the complexity of
the secret sharing scheme for A and, hence, it can be as low as linear in n.

We introduce the following notation: for two vectors a,b of the same length, their coordinatewise
product is denoted a ∗ b and their outer (or Kronecker) product is denoted a ⊗ b. Let SA be a perfect
LSSS for adversary structure A and with secrets in a finite field F, according to Theorem 3.1. It follows
from a construction in [CDM00] that from SA we can build an LSSS S̄A for Ā, and that furthermore,
for any secrets s, s′, the product ss′ can be reconstructed as the sum of the coordinates of the vector
[s,u]SA ∗ [s′,v]S̄A . Note that in [CDM00], it is assumed that the adversary structure is Q2, but this
assumption is only used there to guarantee that Ā is contained in A, which we do not need and the
above product reconstruction property holds even if A is not Q2. The idea of the protocol is now as
follows: Bob believes that Alice may corrupt a set of servers that is in A (but nothing more), so he is
happy to share a secret among the servers using SA. Alice, on the other hand, believes that Bob may
corrupt a set in B, but by theR2 condition and Lemma 2.3, we have that B ⊆ Ā, so Alice will be happy
to share a secret among the servers using S̄A. This and the product reconstruction property will imply
that we can implement multiplication of a value from Alice and one from Bob.

We will represent a secret value x ∈ F in the computation in additively shared form: we will write
< x > to denote a pair (xA, xB) with x = xA + xB where Alice holds xA and Bob holds xB . Usually
the pair will be randomly chosen such that the sum is x, but we suppress the randomness from the
notation for simplicity. We define the sum < x > + < y > via component wise addition to be the
pair (xA + yA, xB + yB) and multiplication by a public constant similarly. Then we trivially have
< x > +α < y >=< x+ αy >.

We then define a protocol (see Figure 1) for computing securely an arithmetic circuit over F; the
parties define representations of their inputs and then work their way through the circuit using the sub-
protocols for addition and multiplication, as appropriate. In the end the outputs are revealed.

It is trivial to see that this protocol computes correct results since both parties follow the protocol. In-
formally, privacy holds because one party always uses a secret sharing scheme for which the other party
can only corrupt an unqualified set. Furthermore, the set of n values received by Bob in the Multiplica-
tion subprotocol is easily seen to be a set of uniformly random values that reveal no side information.

6

Semi-honest Secure Protocol.

Input If Alice holds input x, we define < x >= (x, 0), if Bob holds y, we define < y >= (0, y).

Addition Given < a >,< b >, Alice and Bob compute < a > + < b >=< a+ b > by local computation.

Multiplication by constant Given α and < a >, Alice and Bob compute α < a >=< αa > by local
computation.

Multiplication Subprotocol Assuming Alice holds a and Bob holds b, we want to compute a random repre-
sentation< ab > without revealing any information on a or b. Alice creates a set of shares [a,u]S̄A for
random u and sends the i-th share to Si. Similarly Bob creates and distributes [b,v]SA . Finally Alice
chooses a random r ∈ F and random r1, ..., rn ∈ F subject to r = r1 + ...+ rn, and sends ri to Si.
Let ai, bi be the shares of a, b received by Si. He now computes wi = ai · bi − ri (where ai ·
bi ∈ F denotes the inner product of ai and bi) and sends it to Bob, who computes

∑
i wi. The final

representation is defined to be < ab >= (r,
∑

i wi).

Multiplication Given < x >= (xA, xB), < y >= (yA, yB), we want to compute a representation < xy >.
Execute the above Multiplication subprotocol twice. First, with (a, b) = (xA, yB) to get < xAyB >=
(a1, b1) and second, with (a, b) = (yA, xB) to get < yAxB >= (a2, b2). Then we define the output to
be

< xy >= (xAyA + a1 + a2, xByB + b1 + b2)

Figure 1: Semi-honest Secure Protocol

One might imagine that the semi-honest secure protocol could be made secure against malicious
adversaries in the standard way, i.e., by using verifiable secret sharing to commit parties to the values
they hold and in this way allow them to prove that the protocol was followed. However, verifiable secret
sharing requires (at least) that the adversary structure used is Q2 and as we have seen this may not
be satisfied for any of the two adversary structures.3 In addition, the use of verifiable secret sharing
would also introduce the necessity of communication between servers, so we would not attain our goal
of minimal connectivity either. Therefore, we follow a different approach in the following section.

6 The protocol

In this section we present our main oblivious transfer protocol. We assume again that the adversary
structures A and B satisfy that (A,B) isR2.

To simplify the exposition, we first assume that A is the adversary structure of a perfect ideal linear
secret sharing scheme S over the field of two elements F2 = {0, 1}, and in the Appendix we give a more
general version of our protocol that does not impose this “ideality” requirement on A.

Let M be the space of messages. Without loss of generality assume M = Fm2 for some positive
integer m. We fix a default message 0 ∈ M (for example if we see the elements ofM as bit strings of
certain length, we can take 0 to be the all-zero string).

Given S, we construct two other perfect LSSS that we call S0 and S1. The space of secrets is in
both casesM and they are both defined on a set of 2n players indexed by the set Pn,2 := {(i, j) : i ∈
{1, . . . , n}, j ∈ {0, 1}}. Each scheme Si will realize an access structure Γi defined from the scheme S
as follows.

Let V0 = {[0,u]S : u ∈ Fe2} ⊆ Fn2 be the set of all possible sharings of 0 with the scheme S. That
is, v = (v1, . . . , vn) belongs to V0 if and only if there exists a sharing of 0 with S where each player
i receives vi. Now, the minimally qualified sets of Γ0 (the access structure to be realized by S0) are
exactly the sets {(1, v1), . . . , (n, vn)} ⊆ Pn,2 with (v1, . . . , vn) ∈ V0. Obviously this means that every
set {(1, w1), . . . , (n,wn)} with (w1, . . . , wn) /∈ V0 is unqualified. Similarly, let V1 = {[1,u]S : u ∈

3Note that in the protocol above, secret sharing is always performed with one of the clients as the dealer and the servers as
the players who receive shares, the other client not taking part.

7

Fe2} ⊆ Fn2 be the set of all possible sharings of 1 with S. The minimally qualified sets in Γ1 are the sets
{(1, v1), . . . , (n, vn)} ⊆ Pn,2 with (v1, . . . , vn) ∈ V1.

The existence of S0 and S1 is guaranteed by Theorem 3.1. However, we can in fact show a much
stronger (in terms of efficiency) result, which we prove in Appendix B:

PROPOSITION 6.1 For any ideal linear secret sharing scheme S over F2, there exist two ideal secret
sharing schemes S0 and S1 respectively realizing Γ0 and Γ1 defined from S as above.

We now construct the protocol πOT as described in Figure 2.

Oblivious transfer protocol πOT

1. Alice independently creates sharings [m0]S0 = (m
(i,j)
0)i∈{1,...,n},j∈{0,1} and [m1]S1 =

(m
(i,j)
1)i∈{1,...,n},j∈{0,1} for her inputs.

Bob creates a sharing [b]S = (b1, . . . , bn) of his input. Note that each bi ∈ {0, 1} because S is ideal.
During the protocol, the servers Si ignore any message that is not of the form specified by the protocol.

2. Bob sends (Bob-share, i, bi) to server Si.

3. Si sends (ready, i) to Alice.

4. After Alice has received (ready, i) from every server Si, she sends the messages
(Alice-share, i, u0

i , u
1
i) to each server Si where u0

i := m
(i,0)
0 ||m(i,0)

1 and u1
i = m

(i,1)
0 ||m(i,1)

1 .

5. Server Si sends (output, i, ubii) to Bob.

6. If for any i, ubii /∈M2, then Bob outputs 0. Otherwise, Bob parses each ubii as m(i,bi)
0 ||m(i,bi)

1 .
If b = 0, Bob constructs m0 by applying ReconstructS0({((i, bi),m(i,bi)

0) : i ∈ Pn}).
If b = 1, Bob constructs m1 by applying ReconstructS1({((i, bi),m(i,bi)

1) : i ∈ Pn}).
In any of the cases, if the reconstruction fails, output 0. Otherwise output the reconstructed mb.

Figure 2: Protocol πOT
Note that in the protocol πOT , if we ignore the headers of the messages (i.e., the command names

and number of the server involved) the communication complexity of πOT is as follows: Alice sends
4m bits to each server, in total 4nm bits. Bob sends one bit to each server, in total n bits. Finally each
server sends 2m bits to Bob. The total amounts of bits communicated is hence (6m+ 1)n bits.

PROPOSITION 6.2 If Alice and Bob follow the protocol honestly, then πOT implements OT correctly.

PROOF. If Alice and Bob follow the protocol honestly, at the end of the protocol Bob will have
received all values m(i,bi)

b , i = 1, . . . , n, for some sharing [b]S = (b1, . . . , bn). By definition the set
{(1, b1), . . . , (n, bn)} is qualified for Sb (because (b1, . . . , bn) ∈ Vb) and hence Bob has enough infor-
mation to reconstruct mb. Hence, the protocol is correct if both Alice and Bob are (semi-) honest. 4

7 Security

We now prove security of this protocol, in two steps: first, we show security against one adversary in the
UC model, and then we will consider security against simultaneous adversaries in the LUC model.

7.1 Security in the UC model

We will first show that this protocol implements securely the functionality FOT described in Figure 3
in the Universal Composability framework. This will serve both as a warm up and a reference when we
prove security in the Local Universal Composability framework later on.

8

Functionality FOT

1. On input (transfer, b) from Bob, send (ready) to Alice.

2. On input (send,m0,m1) from Alice, if (transfer, b) has been received previously from Bob, send
(sent,mb) to Bob.

Figure 3: Functionality FOT

THEOREM 7.1 Let (A,B) be anR2 pair of structures, and assume thatA admits an ideal linear secret
sharing scheme. Consider the class of all adversaries that either corrupt Alice together with a setA ∈ A
or Bob together with a set B ∈ B. Then the protocol πOT UC-implements the functionality FOT against
that class of adversaries.

PROOF.
Alice honest, Bob malicious: The idea is to have the simulator extract the environment’s input by

applying the reconstruction procedure of S to the shares bi received from the environment. By the R2

property, these shares can be consistent with at most one b. If in fact Bob is bound to a bit b, this is sent
to the functionality and mb is received; the simulator then sets m1−b at random and generates shares for
both messages. Otherwise, the simulator generates shares for random m0,m1.

We need two lemmas. The first uses theR2 property to argue that the set of servers not corrupted by
Bob is qualified in the scheme S and therefore no matter what he sends to the uncorrupted servers, this
can be consistent with at most one possible input.

LEMMA 7.2 If (A,B) is an R2 pair of structures, and S is a perfect secret sharing scheme with A as
its adversary structure, then for every B ∈ B, its complement B is qualified in S.

This is because by definition ofR2, B /∈ A. Our next lemma will guarantee the privacy of Alice’s input.

LEMMA 7.3 Let m0, m1 be shared independently with S0, S1 respectively. Fix B ⊆ {1, . . . , n} and
(b′1, . . . , b

′
n) ∈ Fn2 , and define I ′ = {(i, b′i) : i ∈ B} ∪ {(i, j) : i ∈ B, j ∈ {0, 1}}.

Fix b ∈ {0, 1}. If the set {b′i : i ∈ B} is not part of any sharing [b]S then the values m(i,j)
0 , m(i,j)

1 ,
(i, j) ∈ I ′ give no information about mb.

PROOF. Since the sharings of m0 and m1 are independent, clearly the shares of m1−b cannot add
information about mb. Hence, we need to prove that the shares m(i,j)

b , (i, j) ∈ I ′ give no information
about mb, i.e., that the set I ′ is unqualified for Sb. But if I ′ were qualified for Sb, it would contain a set
{(1, b1), . . . , (n, bn)} ⊆ Pn,2 with (b1, . . . , bn) ∈ Vb. However then necessarily bi = b′i for all i ∈ B
and that would mean {b′i : i ∈ B} belongs to a sharing [b]S which contradicts the assumption. 4

We now describe the simulator Sim. We will suppose without loss of generality that corrupted
servers act as a dummy adversary. Let B denote the set of corrupted servers.

First, Sim awaits (ready, i) for i ∈ B and that the environment has sent bi for each i ∈ B. Then
Sim executes ReconstructS({(i, bi) : i ∈ B}). If the reconstruction fails then Sim chooses random
messages m̃0, m̃1. If the reconstruction succeeds, let b be its output; then Sim sends the command
(transfer, b) to FOT , receives message (sent,mb) and sets m̃b := mb; it selects a random message
m̃1−b ∈M.

In any case, Sim generates shares for m̃0 using S0 and shares for m̃1 using S1. It creates the values
u0
i := m̃

(i,0)
0 ||m̃(i,0)

1 and u1
i = m̃

(i,1)
0 ||m̃(i,1)

1 . Finally, in parallel Sim sends the following to the environ-
ment: for each i ∈ B, he sends (output, i, ubii) and for each i ∈ B, he sends (Alice-share, i, ui0, u

i
1).

In order to prove indistinguishability, we should first note that, by Lemma 7.2, the set B is qualified
for S and hence, the values {bi : i ∈ B} cannot be part of both a sharing [0]S and a sharing [1]S . It
is now easy to see, by Lemma 7.3, that the distribution of shares received by Z in the simulation is

9

indistinguishable from the distribution of shares received in the real world.

Alice malicious, Bob honest: The simulation in this case is slightly tricky, since a potential problem of
the protocol is that Alice can generate inconsistent shares which make Bob’s output dependent on his
selections (that is, on the random sharing of his input). We show, perhaps surprisingly, that this does not
affect the security of the protocol. Essentially, the simulator will generate one sharing for b = 0 and one
for b = 1 such that the shares corresponding to the corrupted servers coincide. The simulator will then
construct the value that a receiver would construct for each of these two sharings and will send these
values to the functionality. This results in a view in the ideal world which is perfectly indistinguishable
from the real world, due to the privacy for the set of corrupted servers.

We will suppose without loss of generality that corrupted servers act as a dummy adversary. Let
A ∈ A be the set of corrupted servers. The simulator works as follows:

Upon receiving (ready) from the ideal functionality FOT , Sim generates uniformly random shar-
ings of b = 0 and b′ = 1 in S subject to the only condition that if i ∈ A, then bi = b′i. Note that this
is possible since A is unqualified for S. Then, in parallel Sim sends to the environment the message
(ready, i) for each i and the message (Bob-share, i, bi) for each i ∈ A. Sim now awaits that for
each i ∈ A, the environment sends u0

i and u1
i and that for each i ∈ A the environment sends ubii . If any

uji is not an element of M2, then, Sim does the following: if bi = j, set m0 = 0, and if b′i = j, set
m1 = 0. For the rest of the uji , Sim does the following: Sim parses, for i ∈ A, u0

i as m(i,0)
0 ||m(i,0)

1 and

u1
i as m(i,1)

0 ||m(i,1)
1 . Sim also parses, for i ∈ A, ubii as m(i,bi)

0 ||m(i,b′i)
1 (again, note bi = b′i for i ∈ A).

For k = 0, 1, if mk is not already set to 0 then Sim computes

mk = ReconstructSk({((i, bi),m(i,bi)
k) : i ∈ Pn})

If the reconstruction of mk fails, Sim sets mk = 0. Finally, it sends (send,m0,m1) to FOT .
By construction, the shares bi corresponding to the set A of corrupt servers that the environment re-

ceives are indistinguishable from theA-shares in a uniformly random sharing of b, regardless of whether
b = 0 or b = 1. Hence these bi do not allow the receiver to distinguish the real and ideal world. Now,
since after that step there is no further interaction, it suffices to show that the messages sent to Bob are
indistinguishable from the ones sent in the real world.

This is the case since the shares have been chosen with the distribution Bob would use and since the
simulator reconstructs the messages m0 and m1 in exactly the same way as Bob would reconstruct mb

in the real protocol, if b is his input. Therefore the real and ideal world are indistinguishable. 4
We note that the simulators in the proof above run in polynomial time, because S0 and S1 are ideal.
Finally, we remark that the Oblivious Transfer protocol we have presented can easily be extended to

the case where there does not exist an ideal secret sharing scheme for Alice’s adversary structure. We
give a complete description of the protocol in Appendix C.

7.2 Local Universal Composability

In this section, we discuss the security of our protocol in the Local Universal Composability model.
We first define the functionality that we want to implement securely. We denote the possible degrees of
corruption byC = {Malicious,Semi-honest,Honest}. The functionalityFLOT will be the composition of
three ideal functionalities: one center box, denoted by FCIOT (Figure 6), and two outer-boxes, denoted
by IHHA (Figure 4) and IHHB (Figure 5) respectively. The local simulator SimA for A (respectively
SimB for B) will communicate with IHHA (respectively IHHB) only.

Each of the outer boxes will know the level of corruption of both players. IHHA will learn the level
of corruption of Alice directly from the local simulator SimA, while it will learn the level of corruption
of Bob via the functionality FCIOT . The same (but with the roles swapped) will hold for IHHB.

10

The goal of the outer boxes is to hide from the local simulators whether the other party is honest,
semi-honest or malicious (we use the acronym HH to denote honesty-hiding). This is done because
having a functionality which would reveal the corruption level of the simulator would be useless for
constructing protocols. This means that the outer boxes must simulate the case of a semi-honest party
when the party in question is honest. A case-by-case (according to the corruption levels cA and cB)
description of FLOT can be found in Appendix D.

Functionality IHHA

• It awaits (corrupt, cA, A) from SimA, where cA ∈ C, and forwards it to FCIOT .
It then awaits (corrupt, cB) from FCIOT .

• If cB 6= Honest or cA = cB = Honest, act as a communication channel between SimA and FCIOT .

• Otherwise (if cA 6= Honest and cB = Honest), on input (ready) from FCIOT :

– It selects b′ ∈ {0, 1} uniformly at random and generates a sharing [b′]S = (b′i)i∈Pn
.

– For each i ∈ A it sends (Bob-share, i, b′i) to SimA. For each i /∈ A, it sends (ready, i) to
SimA.

– On receipt of (send,m0,m1) from SimA, it forwards it to FCIOT .

Figure 4: Functionality IHHA

Functionality IHHB

• On input (corrupt, cB , B) from SimB where cB ∈ C, and forwards it to FCIOT . It then awaits
(corrupt, cA).

• If cA 6= Honest or cA = cB = Honest, act as a communication channel between FCIOT and SimB .

• Otherwise (if cA = Honest and cB 6= Honest):

– It awaits (Bob-share, i, bi) for all i from SimB .

– On receipt of (transfer, b) from SimB , it forwards it to FCIOT .

– On receipt of (sent,mb) from FCIOT , it selects a random m′1−b ∈ M and generates random

sharings [mb]Sb = (m
(i,j)
b)(i,j)∈Pn,2

and [m′1−b]S1−b
= (m′

(i,j)
1−b)(i,j)∈Pn,2

.
It creates the concatenations uji , (i, j) ∈ Pn,2 as it would happen in the protocol, i.e., uji =

m
(i,j)
b ||m′(i,j)

1−b if b = 0 and uji = m′
(i,j)
1−b ||m

(i,j)
b if b = 1).

For each i ∈ B, it sends (Alice-share, i, u0
i , u

1
i) to SimB and for each i 6∈ B, it sends

(output, i, ubii) to SimB .

Figure 5: Functionality IHHB

We will now argue that this ideal functionality is indeed one that we want to implement securely.
Consider first the usual scenario where one of the players is honest. If both are honest then the function-
ality just implements OT as usual. If one of the players is honest and the other is not, the non-honest
side obtains certains shares belonging to a sharing of some random element (and therefore not related
to the inputs) plus, in the case where Alice is honest and Bob is semi-honest, part of a sharing of the
output, but the output is already known by Bob.

Now we consider the case where none of the players are honest. In this case, our model forces us
to communicate to the local simulators part of a “real” sharing of the actual inputs of the other player.
This is because the information that the environment will receive from both SimA and SimB has to be
consistent (as it happens to be in the real world). Note that, however, the sets of received shares give
information about at most one of the inputs of Alice, and are information theoretically independent of
the rest of inputs. Also note that, in the malicious case, more shares are leaked to the non-malicious
side, but this is ok because we cannot guarantee privacy for the malicious player.

11

Functionality FCIOT

• On input (corrupt, cA, A) from IHHA, where cA ∈ C:
The ideal functionality checks that A ∈ A. If cA = Honest, it also checks that A = ∅. If some of these
checks fails, then it ignores further commands.
Otherwise, it stores (cA, A).

• On input (corrupt, cB , B) from IHHB, where cB ∈ C:
The ideal functionality checks that B ∈ B. If cB = Honest, it also checks that B = ∅. If some of these
checks fails, then it ignores further commands.
Otherwise, it stores (cB , B).

• The ideal functionality sends (corrupt, cA) to IHHB and (corrupt, cB) to IHHA.

• On input (transfer, b) from IHHB, send (ready) to IHHA.
On input (send,m0,m1) from IHHA, if (transfer, b) has been received previously from IHHB,
send (sent,mb) to IHHB.

• If cA = Semi-honest:
On command (Bob-share, i, bi) from IHHB: if i ∈ A it sends (Bob-share, i, bi) to IHHA; other-
wise, it sends (ready, i) to IHHA.

• If cB = Semi-honest:
On command (Alice-share, i, u0

i , u
1
i) from IHHA: if i ∈ B, it sends (Alice-share, i, u0

i , u
1
i)

to IHHB; otherwise, it sends (output, i, ubii) to IHHB.

• If cA = Malicious:
Any command from IHHA is directly forwarded to IHHB.

• If cB = Malicious:
Any command from IHHB is directly forwarded to IHHA.

Figure 6: Functionality FCIOT

THEOREM 7.4 Let (A,B) be aR2 pair of structures and assumeA admits an ideal LSSS over F2. Then
πOT LUC-implements FLOT against the class of pairs (A,B) of adversaries where A corrupts Alice and
A ∈ A and B corrupts Bob and B ∈ B.

We prove this Theorem in Appendix E. Here we give an intuition. The case where one of the
players, say Alice, is honest reduces to the universal composability proof with a few differences. The
inner functionality FCIOT acts as the functionality FOT in the UC case, except it sends some additional
messages which are ignored by IHHA if Alice is honest. Furthermore we will define Bob’s simulator
so that its composition with IHHB acts as the simulator for the UC case. If both Alice and Bob are
corrupted, then we have the added complication that in the real world the environment will receive
certain information from A that is consistent with the information received from B. The simulation needs
to guarantee this also happens in the ideal world, and for this we use the fact that the ideal functionality
has the ability to transfer the appropriate parts of the information from one simulator to the other.

8 Acknowledgement

We are grateful to an anonymous reviewer of a previous version of this paper for insisting that we clarify
the relation between our results and the single-adversary impossibility result in [FHM99], which helped
us improved the presentation.

References

[Bei11] Amos Beimel. Secret-Sharing Schemes: A Survey. In IWCC, pages 11–46, 2011.

12

[Bla79] George Blakley. Safeguarding cryptographic keys. In Proceedings of the 1979 AFIPS
National Computer Conference, volume 48, pages 313–317, June 1979.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic proto-
cols. In Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on,
pages 136–145. IEEE, 2001.

[CDM00] Ronald Cramer, Ivan Damgård, and Ueli M. Maurer. General Secure Multi-party Com-
putation from any Linear Secret-Sharing Scheme. In Bart Preneel, editor, EUROCRYPT,
volume 1807 of Lecture Notes in Computer Science, pages 316–334. Springer, 2000.

[CV12] Ran Canetti and Margarita Vald. Universally Composable Security with Local Adversaries.
In SCN, pages 281–301, 2012.

[DI05] Ivan Damgård and Yuval Ishai. Constant-Round Multiparty Computation Using a Black-
Box Pseudorandom Generator. In Victor Shoup, editor, Advances in Cryptology - CRYPTO
2005: 25th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 14-18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer Science,
pages 378–394. Springer, 2005.

[EGL82] Shimon Even, Oded Goldreich, and Abraham Lempel. A Randomized Protocol for Sign-
ing Contracts. In Advances in Cryptology: Proceedings of CRYPTO ’82, Santa Barbara,
California, USA, August 23-25, 1982., pages 205–210, 1982.

[FHM99] Matthias Fitzi, Martin Hirt, and Ueli Maurer. General adversaries in unconditional multi-
party computation. In Advances in Cryptology-ASIACRYPT99, pages 232–246. Springer,
1999.

[HIKN08] Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus Nielsen. OT-combiners via
secure computation. In Theory of Cryptography, pages 393–411. Springer, 2008.

[HKN+05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust com-
biners for oblivious transfer and other primitives. In Advances in Cryptology–EUROCRYPT
2005, pages 96–113. Springer, 2005.

[HM00] Martin Hirt and Ueli M. Maurer. Player Simulation and General Adversary Structures in
Perfect Multiparty Computation. J. Cryptology, 13(1):31–60, 2000.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, Amit Sahai, and Jürg
Wullschleger. Constant-Rate Oblivious Transfer from Noisy Channels. In Phillip Rog-
away, editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture
Notes in Computer Science, pages 667–684. Springer, 2011.

[ISN87] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing schemes realizing general
access structures. In Proc. IEEE GlobeCom ’87 Tokyo, pages 99–102, 1987.

[Kil88] Joe Kilian. Founding Cryptography on Oblivious Transfer. In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA,
pages 20–31, 1988.

[KMR11] Semy Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing Multi-Party Com-
putation, https://eprint.iacr.org/2011/272.pdf. 2011.

13

[Rab81] Michael Rabin. How to Exchange Secrets with Oblivious Transfer. Technical report, Aiken
Computation Lab, Harvard University, 1981.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.

A Security Against Corruptions of Only Servers

As explained in the introduction, our model does not consider corruption of only servers, and our security
proofs therefore do not directly guarantee any security in case the adversaries corrupt only a set of
servers. Nevertheless, we can argue that some security properties are satisfied even in case of server-
only corruption.

Let us first consider the case where Alice is honest and has input xA, while B is semi-honest and
corrupts only a set S ∈ B of servers. So Bob is also honest and has input xB . If a protocol π is secure
in our model, it is easy to see that it will compute the correct result f(xA, xB) also in this case and
that B will learn nothing more than f(xA, xB), xB . This follows, since if B had also corrupted Bob
semi-honestly, he would have learned at least as much and we can use security of π to conclude that in
that case the correct result is computed and B learns nothing more than f(xA, xB), xB . In particular,
the view of S can be simulated perfectly based on f(xA, xB), xB . A symmetric conclusion holds if we
switch the roles of Alice and Bob.

Now, consider the case where S ∈ A and S ∈ B. We can then conclude that the view of S
can be simulated perfectly based on f(xA, xB), xB and also based on f(xA, xB), xA. But this must
mean that the distribution of this view depends only on f(xA, xB): assume for contradiction that there
existed xA, xB 6= x′B such that f(xA, xB) = f(xA, x

′
B) but the distribution of the view of S given

f(xA, xB), xB is different from the one given f(xA, xB), x′B . Now compare the two cases where we
run the protocol on inputs (xA, xB) respectively (xA, x

′
B). Then the simulation based on f(xA, xB), xA

would output the same distribution in both cases, so it cannot be consistent with both the distribution
resulting from f(xA, xB), xB and from f(xA, xB), x′B . So we have

PROPOSITION A.1 If protocol π is perfectly secure in our model, it is also secure in the standard single
adversary sense against semi-honest corruption of a set of servers that is in both A and B, except that
the simulation may not in general be efficient.

Let us now consider malicious corruption: Alice is honest and B is malicious and corrupts only a
set S ∈ B of servers. (so Bob is also honest). Note that from Alice’s point of view, the situation is
indistinguishable from a case where B also corrupts Bob but lets him play honestly. Security of π now
implies that B learns nothing more than f(xA, x

′
B) for some well defined input x′B that is determined by

the behaviour of the malicious servers. Note that we are not guaranteed that x′B is equal to the honest
input xB , even though Bob plays honestly. By symmetry we get that for S ∈ A, A will learn nothing
than f(x′A, xB).

We observe that if S is in both A and B, then both the honest Alice and honest Bob are guaranteed
privacy: By running π, I will give away only the function evaluated in my own input and some input
from the other party. But Alice and Bob are not guaranteed to agree on the result, so we do not get
security in the standard single adversary sense against malicious corruption of S.

We can in fact argue that this cannot in general be achieved in our model, even if S is in both A
and B: Consider a case with 3 servers S1, S2, S3 and let A = {{S1}, {S2}} and B = {{S2}, {S3}}.
This is clearlyR2, so our model applies. Now, it is easy to see that a secure protocol π in our sense will
in this case also be semi-honestly secure against single-adversary corruption of {Alice, S1}, as well as
{Bob, S3}. So if π was also single adversary maliciously secure against corruption of {S2}, then we
would have a situation where the whole player set is covered by 2 sets that are semi-honestly corruptible
and 1 set that is maliciously corruptible, while π remains secure. And where furthermore the malicious

14

S2 has no inputs or outputs. This is precisely the case where the proof of Theorem 1 in [FHM99] says
we cannot have general secure MPC.

B Proof of Proposition 6.1

In this section, we show that we can indeed take the linear secret sharing schemes S0 and S1 that we
have used in our constructions to be ideal, i.e., the size of every share will be the size of the secret. In
our constructions, the secret is a bit-string of some fixed lengthm. However, clearly it is enough to show
the result for the case m = 1 since, given ideal linear secret sharing schemes for this case, we can use
them to share each bit of the secret independently.

We in fact prove the following result. Let W ⊆ {0, 1}` be an affine space, i.e., W = b + V , where
b = (b1, . . . , b`) ∈ F`2 and V is a vector subspace of F`2. Consider the set P`,2 of 2` players indexed by

P`,2 = {(i, j) : i = 1, . . . , `, j = 0, 1}.

Write ΓW the access structure on these 2` players whose minimally qualified sets are

{(1, w1), (2, w2) . . . , (`, w`)} ⊆ P`,2,

with (w1, w2, . . . , w`) ∈W .
We will show in Theorem B.1 below that there is an ideal LSSS over F2 with ΓW as its access

structure. Note first that this indeed yields our ideal LSSS S0 and S1. The access structures Γ0 and Γ1

to be realized by these schemes are precisely ΓV0 and ΓV1 , where Vb is the set of sharings of b in another
LSSS S . By linearity of S, V0 is a vector space. On the other hand V1 is an affine space that can be
described as V0 + v1, where v1 is some sharing of 1 according to S .

THEOREM B.1 The access structure ΓW admits a linear ideal secret sharing scheme over F2.

PROOF. Let V ⊥ be the orthogonal space to V , i.e.,

V ⊥ = {h ∈ F`2 : 〈v,h〉 = 0 for all v ∈ V }.

We define the following scheme. In order to share s ∈ F2, the dealer picks uniformly at random
r1, . . . , r`−1 ∈ F2 and let r` = s−

∑`−1
i=1 ri. He also chooses h = (h1, h2, . . . , h`) uniformly at random

in V ⊥.
The share of participant (i, j) is then

si,j = ri + (bi − j)hi.

(Note that if V ⊥ = {0}, then we are just defining si,j = ri).
The scheme is perfect because it is linear and ideal. Now we prove that this scheme realizes ΓW ,

that is, we show that its access structure Γ coincides with ΓW .
First we show that ΓW ⊆ Γ. Let A = {(1, w1), . . . , (`, w`)} for some w ∈ W , which is therefore

of the form w = v + b with v ∈ V . The sum of all shares of participants in A is:

∑
(i,j)∈A

si,j =
∑̀
i=1

(ri + (bi − wi)hi) =
∑̀
i=1

ri − 〈v,h〉 =
∑̀
i=1

ri = s,

which shows the claim.
We now show that Γ ⊆ ΓW . For this we prove that: 1) every minimally qualified set in Γ has to con-

tain exactly one player (i, yi) for every i, and 2) if (y1, . . . , y`) /∈ W , then {(1, y1), (2, y2), . . . , (`, y`)}
is not in Γ. This will show that all minimally qualified sets are in ΓW and hence Γ ⊆ ΓW .

15

Part 1 is shown as follows. Obviously, every qualified set has to contain at least one player (i, yi) for
each i, since all ri’s are needed to reconstruct s. On the other hand, since the scheme is linear, a set of
players A is qualified if there exists a linear function ρA such that s can be recovered by applying ρA to
the shares in A, for every possible secret and choice of the randomness. But since we are working over
the field F2 this just means that A ∈ Γ if and only if there exists A′ ⊆ A, such that s =

∑
(i,j)∈A′ si,j .

This means A is minimally qualified if and only if it coincides with this A′, i.e., the secret can be
recovered as the sum of the shares in A. Now if both (i, 0) and (i, 1) are in A, ri appears twice in the
sum and will cancel out. Hence it can only be the case that A contains exactly one element of the form
(i, yi) for each i.

Now for the second part, we show that if A = {(1, y1), (2, y2), . . . , (`, y`)} and (y1, . . . , y`) /∈ W
then there is a valid sharing of s = 1 where every player in A has 0 as share. Since this is also the case
for s = 0, this will show A /∈ Γ. If y = (y1, . . . , y`) /∈W , that means y−b /∈ V and there exists some
h′ ∈ V ⊥ such that 〈y − b,h′〉 = 1. Now consider the following choice of the randomness: h = h′ and
ri = (yi − bi)hi for i = 1, . . . , ` − 1. Then if s = 1 is shared using this randomness, it is immediate
that si,yi = 0 for every i = 1, . . . , `− 1, and we easily verify that

s`,y` = (s−
`−1∑
i=1

ri) + (b` − y`)h` = 1− 〈y − b,h〉 = 1− 1 = 0

which finalizes the proof. 4

C Protocol for general A

We show the general version of the protocol πOT from Section 6, when the adversary structure A cor-
rupted by A is not necessarily the adversary structure of an ideal LSSS over F2. Note that many inter-
esting access structures, for example most threshold structures, do not admit an ideal LSSS over F2.

Let S be a possibly non-ideal perfect secret sharing scheme with adversary structure A. For i =
1, . . . , n the i-th share of S belongs to some vector space Ui = F`i2 for some integer `i ≥ 1. Let
` =

∑n
i=1 `i be the complexity of S.

The idea of the generalization is simple. Basically Si is splitted in `i subservers, each of which
receives one bit from Bob and two shares of each m0 and m1 from Alice and performs an OT as servers
did in the protocol from Section 6 (we remark however that the adversaries corrupt full servers and not
individual subservers).

More precisely, let V0, V1 ⊆ U1 × · · · × Un the sets of all possible sharings of 0 and 1 respectively.
We can think of the elements of V0 and V1 as k-bit strings, and we index their coordinates by pairs (i, k)
where the (i, k)-th coordinate of a sharing is the k-th bit of the i-th share.

As before we construct two perfect secret sharing schemes that we call S0 and S1. These are now
secret sharing schemes with 2` shares each and the set of shares will be indexed by

P`,2 := {(i, k, j) : i = 1, . . . , n, k = 1, . . . , `i, j = 0, 1}.

We define the access structure Γ0 of S0 as follows. The minimally qualified sets are exactly the sets

{(1, 1, v(1,1)), (1, 2, v(1,2)) . . . , (n, kn, v(n,kn))} ⊆ P`,2,

with (v(1,1), v(1,2), . . . , v(n,kn)) ∈ V0. Similarly, the access structure Γ1 of S1 has as its family of
minimally qualified sets

{(1, 1, v(1,1)), (1, 2, v(1,2)) . . . , (n, kn, v(n,kn))} ⊆ P`,2,

with (v(1,1), v(1,2), . . . , v(n,kn)) ∈ V1.

16

Again, we can construct ideal schemes S0,S1 with the properties above from Theorem B.1.
The general protocol is given in Figure 7. The security proofs work essentially as in the particular

case presented in Sections 6 and 7.2.

Oblivious transfer protocol πOT (non-ideal S case)

1. Alice independently creates sharings

[m0]S0 = (m
(i,ki,j)
0)i∈{1,...,n},ki∈{1,...,`i},j∈{0,1}

and
[m1]S1 = (m

(i,ki,j)
1)i∈{1,...,n},ki∈{1,...,`i},j∈{0,1}

for her inputs.
Bob creates a sharing [b]S = (b(i,ki))i∈{1,...,n},ki∈{1,...,`i} of his input, where each b(i,ki) ∈ {0, 1}.

2. Bob sends (Bob-share, i, bi) to server Si, where bi = (b(i,1), . . . , b(i,`i)).

3. Si sends (ready, i) to Alice.

4. After Alice has received (ready, i) from every server Si, she sends the messages
(Alice-share, i, (uki,j

i)ki∈{1,...,`i},j∈{0,1}) to each server Si where uki,j
i := m

(i,ki,j)
0 ||m(i,ki,j)

1 .

5. Server Si sends (output, i, (u
ki,b(i,ki)

i)ki∈{1,...,`i}) to Bob.

6. If for any i, u
ki,b(i,ki)

i /∈ M2, then Bob outputs 0. Otherwise, Bob parses each u
ki,b(i,ki)

i as

m
(i,ki,b(i,ki)

)

0 ||m(i,ki,b(i,ki)
)

1 .
If b = 0, Bob constructs m0 by applying

ReconstructS0({((i, ki, b(i,ki)),m
(i,ki,b(i,ki)

)

0) : i ∈ Pn, ki ∈ {1, . . . , `i}).

If b = 1, Bob constructs m1 by applying

ReconstructS1({((i, ki, b(i,ki)),m
(i,ki,b(i,ki)

)

1) : i ∈ Pn, ki ∈ {1, . . . , `i}).

In any of the cases, if the reconstruction fails, output 0. Otherwise output the reconstructed mb.

Figure 7: Protocol πOT

D Description of FL
OT by cases

We describe the functionality FLOT (the composition of IHHA, FCIOT and IHHB) case-by-case, accord-
ing to the level of corruption of Alice and Bob.

In every case, the functionality receives (corrupt, cA, A) and (corrupt, cB, B) from the local
simulators.

1. Case HH (cA = cB = Honest).
It works exactly as FOT .

2. Case HS (cA = Honest, cB = Semi-honest).
It awaits (Bob-share, i, bi) for all i ∈ Pn.
On input (transfer, b) from SimB , it sends (ready) to SimA.
On input (send,m0,m1) from SimA the functionality generates a random message m′1−b ∈ M
and random sharings [mb]Sb and [m′1−b]S1−b

. It creates values uji = m
(i,j)
0 ||m′(i,j)1 (if b = 0) or

uji = m′
(i,j)
0 ||m(i,j)

1 (if b = 1).

17

It sends, to SimB , the messages (Alice-share, i, u0
i , u

1
i) for i ∈ B and (output, i, ubii) for

i /∈ B.

3. Case SH (cA = Semi-honest, cB = Honest).
On input (transfer, b) from SimB , it generates shares b′i for a random bit b′ and sends to SimA

the messages (Bob-share, i, b′i) for all i ∈ A and (ready, i) for all i /∈ A.

On input (send,m0,m1) from SimA, it sends (sent,mb) to SimB .

4. Case SS (cA = Semi-honest, cB = Semi-honest).
The functionality awaits, for all i ∈ Pn, the messages (Bob-share, i, bi) from SimB .

It sends to SimA the messages (Bob-share, i, bi) for all i ∈ A and (ready, i) for all i /∈ A.

The functionality awaits, for all i ∈ Pn, the messages (Alice-share, i, u0
i , u

1
i).

It sends, to SimB , the messages (Alice-share, i, u0
i , u

1
i) for i ∈ B and (output, i, ubii) for

i /∈ B.

5. Case HM (cA = Honest, cB = Malicious).
The functionality acts exactly the same as in the HS case.

6. Case MH (cA = Malicious, cB = Honest).
The functionality acts exactly the same as in the SH case.

7. Case SM (cA = Semi-honest, cB = Malicious).
The functionality acts the same as in the SS case except that all messages received from SimB are
sent to SimA.

8. Case MS (cA = Malicious, cB = Semi-honest).
The functionality acts the same as in the SS case except that all messages received from SimA are
sent to SimB .

E Proof of Theorem 7.4

We first describe how each of the local simulators works. Later on, we will show the indistinguishability
between the real world and the ideal world with these simulators.

E.1 Simulators

E.1.1 Description of SimA

• First, the simulator awaits (corrupt, cA, A) and forwards it to IHHA. It also takes note of this
tuple.

• If cA = Honest, it awaits (ready) from the functionality and forwards it to the environment. It
then awaits (send,m0,m1) from the environment and sends it to IHHA and ignores any other
message.

• If cA = Semi-honest, on receiving a share bi or a message (ready, i) from IHHA, it forwards
them to the environment. It also forwards any other message from IHHA that contains an index
i with i ∈ A to the environment4. It then awaits the message (send,m0,m1) from the environ-
ment. It sends the message (send,m0,m1) to IHHA. It then generates the values {(u0

i , u
1
i)} from

4Note this captures the situation where a malicious B sends arbitrary messages to servers with i ∈ A ∩B, since A will see
those messages in the real protocol.

18

(m0,m1) as in the protocol. It sends these values to the environment and it sends the messages
(Alice-share, i, u0

i , u
1
i) to IHHA for all i.

• If cA = Malicious, during its whole interaction with the environment, on reception of mes-
sages from the environment it checks that they contain a unique index i corresponding to a
server. For each message, if this does not happen or if i /∈ A (unless for messages of the form
(Alice-share, i, u0

i , u
1
i)), the message is ignored. Otherwise, it is forwarded to IHHA

5. On
reception of messages from IHHA, it forwards them to the environment.
On reception of the shares of bi for i ∈ A from IHHA, it also constructs sharings [0]S :=
(c1, . . . , cn), [1]S := (d1, . . . , dn) consistent with the received bi’s (i.e., ci = di = bi for i ∈ A).
On reception of the values {uji : (i, j) ∈ Pn,2} from the environment, it also constructs

m0 = ReconstructS0({((i, ci),m(i,ci)
0) : i ∈ Pn})

and
m1 = ReconstructS1({((i, di),m(i,di)

1) : i ∈ Pn}).

If the reconstruction of m0 (respectively m1) fails, Sim sets m0 = 0 (resp. m1 = 0). Now it
sends the command (send, m0, m1) to IHHA.

Note that in the case that Bob is honest, the local simulator SimB for Bob will output the value that
was generated by SimA, otherwise SimB will reconstruct a message based on the shares received
via FLOT .

E.1.2 Description of SimB

• First, the simulator awaits (corrupt, cB , B), notes that value and forwards it to IHHB.

• If cB = Honest, it sends (transfer, b) to IHHB and forwards the response (sent,mb) to the
environment.

• If cB = Semi-honest, it awaits input (transfer, b). It forwards it to IHHB. It then se-
lects a random sharing [b]S = (bi)i∈Pn . It sends the bi to the environment. It sends messages
(Bob-share, i, bi) to IHHB for every i. On receiving (Alice-share, i, u0

i , u
1
i) for i ∈ B and

(output, i, ubii) for i /∈ B from IHHB it forwards these to the environment. It reconstructs a
message mb from the received shares as in the protocol. Finally it forwards this message to the
environment.

• If cB = Malicious, during the whole interaction with the environment, on reception of mes-
sages from the environment it checks that they contain a unique index i corresponding to a
server. For each message, if this does not happen or if i /∈ B (unless for messages of the form
(Bob-share, i, bi)), the message is ignored. Otherwise, it is forwarded to IHHB. On reception
of messages from IHHA, it forwards them to the environment. The simulator awaits that the en-
vironment has sent (Bob-share, i, bi) to each i ∈ B. On receiving (Alice-share, i, u0

i , u
1
i)

for i ∈ B and (output, i, ubii) for i /∈ B from IHHB it forwards these to the environment. It
reconstructs a message mb from the received shares as in the protocol. Finally it forwards this
message to the environment.

5This captures the fact that in the real protocol, a malicious A can only deviate from the protocol by interacting with a
server Si either arbitrarily, in the case i ∈ A, or by sending messages to them, in the case i /∈ A; however, in the latter case all
messages which are not of the form (Alice-share, i, u0

i , u
1
i) will be ignored.

19

E.2 Indistinguishability

First we argue that the case where one of the players is honest reduces to the universal composability
proof. Say Alice is honest. Then, the idea is that the functionality FCIOT (the “inner” part of FLOT) is
basically the same as the functionality FOT in Section 6, except that it sends some additional messages
to the honest side. However, these messages are ignored by IHHA. Moreover, the composition of SimB

and IHHB acts as the simulator for the UC proof in the case of an honest Alice. If Bob is honest, the
same holds by swapping A and B.

As for the cases where both Alice and Bob are corrupted (respectively by A and B), as we have said,
we are assuming that A and B are not both malicious, and thus one of them is semi-honest. Say for the
moment that A is semi-honest. If we compare this with the situation where Alice is honest, and Bob has
the same level of corruption, here we need to take into account that, in the real world, Z will additionally
receive from A the information of the servers Si with i ∈ A, and all information held by Alice, and all
this information is consistent with what it receives from B. We need to show that this needs to be the
case also in the simulation. However, note that by design, the ideal functionality transfers the appropiate
parts of the sharings created by SimB to SimA. Moreover, if B is malicious it also sends any other
potential information that goes through the servers corrupted by A.

The environment then receives from each of the simulators the sharings created by themselves as well
as the shares received from the other simulator via the functionality. This implies that the information
received by Z in both sides is also consistent in the ideal world. Moreover, it is indistinguishable from
the view in the real world. This follows by the same arguments as above. Again, the case of a semi-
honest Bob (and corrupted Alice) is analogous.

20

