Remarks on Quantum Modular Exponentiation and

Some Experimental Demonstrations of Shor’s Algorithm
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Abstract. An efficient quantum modular exponentiation method is indispensible
for Shor’s factoring algorithm. But we find that all descriptions presented by Shor,
Nielsen and Chuang, Markov and Saeedi, et al., are flawed. We also remark that some
experimental demonstrations of Shor’s algorithm are misleading, because they violate
the necessary condition that the selected number ¢ = 2%, where s is the number of
qubits used in the first register, must satisfy n? < ¢ < 2n?, where n is the large number
to be factored.
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1 Introduction

The problem of factoring integers is widely believed to be hard. The famous public key cryptosys-
tem, RSA, is directly based on the difficulty of factorization. Notice that factoring an integer n can
be reduced to finding the order of an integer x with respect to the module n (G. Miller [1]). The
order is usually denoted by the notation ord,(z). So far, there is not a polynomial time algorithm
run on classical computers which can be used to compute ord,, ().

In 1994, P. Shor [2] proposed the first quantum algorithm which can compute ord, (z) in poly-
nomial time. The factoring algorithm requires two quantum registers. At the beginning of the
algorithm, one has to find ¢ = 2° for some integer s such that n? < ¢ < 2n?, where n is to be

factored. The followed steps are:

Initialization. Put register-1 in the following uniform superposition

1 =
Vi ;) |a}[0).
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Computation. Keep a in register-1 and compute z% in register-2 for some randomly chosen

integer . We then have the following state

14
— D la)|z®).
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Fourier transformation. Performing Fourier transform on register-1, we obtain the state

qg—1g-1

611 DY exp(2miac/q)|c)|z*).

a=0 c¢=0
Observation. It suffices to observe the first register. The probability p that the machine

reaches the state |c, 2*) is
2
1
- Z exp(2miac/q)
q

a: xo=xk
where 0 < k < r = ord,(z), the sum is over all a (0 < a < ¢) such that 2 = 2*.
Continued fraction expansion. If there is a d such that = < dg—rc < 5, then the probability

of seeing |c, 2*) is greater than 1/3r2. Hence, we have

Since ¢ > n2, we can round ¢/q¢ to obtain d/r. Thus r can be obtained.

P. Shor has specified the operations for the process |0)|0) — % Zg;é |a)|0), but not specified
the operations for the process ﬁ S a)|0) — ﬁ S04 a)|z%(mod n)). His original description
specifies only the process (a,1) — (a,2%modn). Nielsen and Chuang in their book Ref.[3] specify
that

la)|y) — ‘@Uat*ﬂt_l "'U“OQO]y> = ]a)|:va’f*12t_1 X +ee X :ca020y(m0d n)) = |a)|x*y(mod n))

where a’s binary representation is a;—ja¢—o---ag, U is the unitary operation such that Uly) =
lzy(mod n)), y € {0,1}, £ is the bit length of n.
We find the Nielsen-Chuang quantum modular exponentiation method requires a unitary oper-

ations. Apparently, it is inappropriate for the process

where n? < ¢ < 2n? and n is the large number to be factored, because the total amount of unitary
operations required for this process is O(q?), not O(logn). So far, there are few literatures to
investigate the above mysterious process. In view of that O(¢?) unitary operations can not be
implemented in polynomial time, we do not think that Shor’s factoring algorithm is completely

understandable and universally acceptable.



Since 2001, some teams have reported that they had successfully factored 15 into 3 x 5 using
Shor’s algorithm. We shall have a close look at these experimental demonstrations and remark
that these demonstrations are misleading, because they violate the necessary condition that the

selected number ¢ must satisfy n? < g < 2n?.

2 Preliminaries

A quantum analogue of a classical computer operates with quantum bits involving quantum states.
The state of a quantum computer is described as a basis vector in a Hilbert space. A qubit is a
quantum state |¥) of the form

W) = al0) + bJ1),

where the amplitudes a,b € C such that |a|? + |b|> = 1, |0) and |1) are basis vectors of the Hilbert
space. Here, the ket notation |x) means that z is a quantum state. The state of a quantum system

having n qubits is a point in a 2"-dimensional vector space. Given a state

m—1

> ailxa),

i=0
where the amplitudes are complex numbers such that Zfia Ya;]? = 1 and each |x;) is a basis
vector of the Hilbert space, if the machine is measured with respect to this basis, the probability
of seeing basis state |y;) is |a;|?.

Two quantum mechanical systems are combined using the tensor product. For example, a system

of two qubits |¥) = a1|0) + az|1) and |®) = b1|0) + b2|1) can be written as

a1by

a b1 a1bs
wie) = (1) (}') -

a2 2 asby

agbg

We shall also use the shorthand notations |¥, ®). We call a quantum state having two or more
components entangled state, if it is not a product state. According to the Copenhagen interpre-
tation of quantum mechanics, measurement causes an instantaneous collapse of the wave function
describing the quantum system into an eigenstate of the observable state that was measured. If
entangled, one object cannot be fully described without considering the other(s).

Operations on a qubit are described by 2 x 2 unitary matrices. Of these, some of the most
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important are
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where H denotes the Hadamard gate. Clearly, H|0) = %(]0) + [1)).

Operations on two qubits are described by 4 x 4 unitary matrices. Of these, the most important
operation is the controlled-NOT, denoted by CNOT. The action of CNOT is given by |c)[t) —
lc)|e @ t), where @ denotes addition modulo 2. The matrix representation of CNOT is

(100 0]
100
00 1
010
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Likewise, operations on n_qubits are described by 2" x 2" unitary matrices.
There is another method to describe linear operators performed on multiple qubits. Suppose that

V and W are vector spaces of dimension 2# and 2” (they describe quantum systems corresponding
to pu and v qubits, respectively). Suppose |v) and |w) are vectors in V and W, and A and B are
linear operators on V and W, respectively. Then we can define a linear operator AQ Bon V@ W
by the equation

(A® B)(jv) @ [w) = Ajv) ® Bluw).

3 Remarks on quantum modular exponentiation method

3.1 The Shor’s original description

P. Shor has specified the operations for the process

q—1

1
10)|0) — NG % |a}10),
where ¢ = 2° for some positive integer s such that n? < ¢ < 2n?, n is to be factored. Notice that
the first register consists of s qubits. He wrote: “this step is relatively easy, since all it entails
is putting each qubit in the first register into the superposition %(|0> + [1)).” (This can be done
using the Hadamard gate s times.)

Shor has not specified the operations for the process

1 1
— S 1a)[0) = — > |a)|a(mod n)).
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By the way, he has not specified how many qubits are required in the second register. His original

description specifies only the process (a,1) — (a,z*modn). For convenience, we now relate it as



follows.

The technique for computing x® (mod ) is essentially the same as the classical method.

First, by repeated squaring we compute 2% (mod) for all ¢ < I. Then, to obtain z% (mod )
we multiply the powers % (mod ) where 2¢ appears in the binary expansion of a. In our
algorithm for factoring n, we only need to compute z® (mod ) where a is in a superposition

of states, but x is some fixed integer. This makes things much easier, because we can use a
reversible gate array where a is treated as input, but where x and n are built into the
structure of the gate array. Thus, we can use the algorithm described by the following
pseudocode; here, a; represents the ¢th bit of a in binary, where the bits are indexed from

right to left and the rightmost bit of a is ag.
power:=1
fori=0tol—1
if (a; ==1) then
power:=power * x> (modn)

endif
endfor

The variable a is left unchanged by the code and 2 (mod ) is output as the variable power.
Thus, this code takes the pair of values (a, 1) to (a,z* (mod)).

Remarks on the Shor’s description:
e The description indicates only the conventional process
(a,1) = (a,z% modn),
rather than the quantum process
|a)|0) — |a)|z® modn),

let alone the more complicated quantum process

1 1
— |a)|0) — — la)|z®(mod n)).
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e Since q; is required to compute z%(mod n) which represents the ith bit of a in binary, one has
to measure the superposition % Zg;é |a)|0) to obtain a. But it is impossible to practically
compose pure states

|a>|xa(m0dn)>7 a=0,1,---,qg—1,
into the superposition ﬁ Zg;é la)|z%(mod n)), because ¢ > n? and n is the large number to

be factored.

e Although it specifies the Hadamard gate on each qubit in the first register, it does not specif

how many and what quantum gates or unitary operations are used on each qubit or a grou
of qubits in the second quantum register.



3.2 The Nielsen-Chuang description

Nielsen and Chuang in their book Ref.[3] specify that
a)ly) = ) U127 TP y) = Ja) a1 x - x 2% y(mod n)) = |a)]a"y(mod n))
where a’s binary representation is a;—jas—s - - - ag, U is the unitary operation such that
Uly) = |zy(modn)),

y € {0,1}¢, £ is the bit length of n. They wrote:

Using the techniques of Section 3.2.5, it is now straightforward to construct a
reversible circuit with a ¢ bit register and an ¢ bit register which, when started

in the state (a,y) outputs (a,z%y(modn)), using O(¢3) gates, which can be
translated into a quantum circuit using O(¢3) gates computing the transformation
|a)ly) = |a)|zy(mod n)).

Although they indicate that the classical circuit for the conventional process

O(¢?) classical gates
(a’7 y) _______ — (a7 :an(mOd ’I’l))

can be translated into a quantum circuit for the quantum process

o(¢?) quantum gates u
a)ly) ——————— — |a)|z"y(mod n)),

we now want to remark that the quantum circuit has to invoke U, the unitary operation, a times.

Thus, the wanted process

1 1
i |a)[0) — \@;} |a)|z*(mod n))

has to invoke the unitary operation 14+ 2+ --- + (¢ — 1) ~ O(q?) times, if all terms |a)|0), a =

0,---,q— 1, are processed one by one. Even worse, the transformation for the process
= Dly) = la)]z? y(mod n))
has to invoke the unitary operation g—1 times according to the Nielsen-Chuang description. Clearly,
it can not be accomplished in polynomial time because ¢ is a large number.
3.3 The Markov-Saeedi quantum circuit

In recent, Markov and Saeedi [4 [5] have proposed a quantum circuit for modular exponentiation.

We refer to the following Figure 1 for the outline of their circuit.
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Figure 1: An outline of the quantum part of Shor’s algorithm.
The Markov-Saeedi quantum circuit for modular exponentiation is flawed, too. The unitary

matrix corresponding to (bQi)%M for some integer ¢, which is performed on all qubits in the sec-

ond quantum registers, has a tremendous dimension (not less than the modular M). To implement

the operator practically, one must decompose it into the tensor product of some linear operators

with low dimension. Regretfully, they had not specified these low dimension linear operators at all.

Moreover, they had not specified the output of the operator (bQO)%M . We now want to ask:

(1) what are the inputting states of the unitary operator | (b2°" " )%M [?

(2) how to decompose the operator (b22n_1)%M into the tensor product of some low di-

mension linear operators?

(3) how many executable unitary operators are required in the quantum modular exponenti-
ation process?

In our opinion, their proposed quantum circuit for modular exponentiation is incorrect and mis-
leading.
3.4 On Scott Aaronson’s explanation

We have reported the flaw to some researchers including P. Shor himself, but only received a
comment made by MIT professor Scott Aaronson. He explained that (personal communication,
2014/09/02):

The repeated squaring algorithm works (and works in polynomial time)

for any single |a)|0), mapping it to |a)|z® (modn)). But, because of the

linearity of quantum mechanics, this immediately implies that the algorithm

must also work for any superposition of |a)’s, mapping ) |a) to Y_, |a)|z* (modn)).

We do not think that his answer is convincing, because it is too vague to specify how many and
what quantum gates or unitary operations are used on each qubit or a group of qubits in the second

quantum register. Besides, according to the Nielsen-Chuang description, the process

a)ly) = ) U270 TP y) = |a)a T x - x 2% y(mod n)) = |a)]x®y(mod n))



depends on the binary representation of the exponent a. Which integer should be extracted in the
superposition ﬁ Zg;é |a)|0) for computing the wanted state % Zg;é |a)|x®(modn))? He did not
pay more attentions to the difference between two linear operators performed on a pure state and a

superposition.

4 It is difficult to modulate the wanted state in the second register

We know the wanted superposition in the first register is modulated by the following procedure.
1

1 -1
states of %(|O> +]1)). Second, combine all these states using the tensor product.

First, a Hadamard gate H = % [ ] is performed on each qubit to obtain the s intermediate

(!0> +0))® —=(0) + 1)) = %(I(JO) +[01) + [10) +[11))

Sl
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Note that the procedure works well because all those involved pure states are in binary form.

We would like to stress that if two pure states are in decimal representations |z), |z2), then we

can not directly combine them to obtain |23). Suppose that the binary strings for integers x, 22

are by, - - - by, bl - - - b. We have
) @ [22) = |by, - - bob} - - By) = |20 2 + 22).

Thus,

V2 V2 V2

where ¢ = 2°, although there is a corresponding conventional equation

(1) +12) © s (1) + [22(modm)) @ - @ = (1) + 2 (modn)) ) # \ja g 2 (mod n)),

-1
Q+2)(1+2)1+2T) - 1+22 =Y a2

=)

S
I
o

It seems that some people are confused by the above equation and simply take for granted that
uantum modular exponentiation is in polynomial time.



5 On some experimental demonstrations of Shor’s algorithm

In 2001, it is reported that Shor’s algorithm was demonstrated by a group at IBM, who factored
15 into 3 x 5, using a quantum computer with 7 qubits, 3 qubits for the first register and 4 qubits
for the second register (see Figure-2) [6].

In 2007, a group at University of Queensland reported an experimental demonstration of a
compiled version of Shor’s algorithm. They factored 15 into 3 x 5, using 7 qubits either, & qubits
for the first register and 4 qubits for the second register (see Figure-3) [7].

In 2007, a group at University of Science and Technology of China reported another experimental
demonstration of a complied version of Shor’s algorithm. They factored 15 into 3 x 5 using 6 qubits
only, 2 qubits for the first register and 4 qubits for the second register (see Figure-4) [§].

In 2012, a group at University of California, Santa Barbara, reported a new experimental
demonstration of a compiled version of Shor’s algorithm. They factored 15 into 3 X 5 using 3 qubits

either, 1 qubits for the first register and 2 qubits for the second register (see Figure-5) [9].

Demonstrations | qubits used in the first register | qubits used in the second register
Figure 2, Ref.[6] 3 4
Figure 3, Retf.[7] 4
Figure 4, Ref.[§] 2 4
Figure 5, Ref.[9] 1 2
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Figure 2: Detailed quantum circuit for the case N =15 and a = 7.
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Figure 3: Conceptual circuit for Shor’s algorithm for number N = 15 and co-prime C' = 4.
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Figure 5: A three-qubit compiled version of Shor’s algorithm to factor N = 15.
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We now want to remark that:

e All these demonstrations are flawed because they violate the necessary condition that 152 <
2% < 2 x 15%, which means 8 qubits should be used in the first register. Obviously, the last
step of continued fraction expansion in Shor’s algorithm can not be accomplished if less qubits
are used in the first register. It seems that these groups have misunderstood the necessary

condition that n? < ¢ < 2n? in Shor’s algorithm.

e In Figure 3, it directly denotes the output of the second register by C* mod N. Clearly,
the authors confused the number C* mod N with the state |[C* mod N). By the way, the
wanted state in the second register is the superposition % ZZ::O |C* mod N) instead of the
pure state |C* mod N).

e In Figure 5, only 3 qubits are used. Clearly, the modular 15 can not be represented by the 3
qubits. In such case, how to ensure that the modular is really involved in the computation?

In our opinion, the demonstration is unbelievable.

6 Conclusion

Shor’s factoring algorithm is interesting. But its subroutine for quantum modular exponentiation
is not specified. We remark that both the Shor’s original description and the Nielsen-Chuang de-
scription for quantum modular exponentiation are flawed. They can be used only for the pure state
|a)|0), not for the superposition % ZZ;B |a)|0). We also remark that some experimental demon-
strations of Shor’s algorithm are meaningless and misleading because they violate a necessary
condition for Shor’s algorithm.
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