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Abstract. In August 2012, the Streebog hash function was selected as
the new Russian cryptographic hash standard (GOST R 34.11-2012). In
this paper, we investigate the new standard in the context of malicious
hashing and present a practical collision for a malicious version of the full
hash function. In particular, we apply the rebound attack to find three
solutions for three different differential paths for four rounds, and using
the freedom of the round constants we connect them to obtain a collision
for the twelve rounds of the compression function. Additionally, and due
to the simple processing of the counter, we bypass the barrier of the
checksum finalization step and transfer the compression function collision
to the hash function output with no additional cost. The presented attack
has a practical complexity and is verified by an example. While the
results of this paper may not have a direct impact on the security of the
current Streebog hash function, it presents an urge for the designers to
publish the origin of the used parameters and the rational behind their
choices in order for this function to gain enough confidence and wide
spread adoption by the security community.
Keywords: Cryptanalysis, Hash functions, Malicious hashing, Rebound
attacks, GOST R 34.11-2012, Streebog.

1 Introduction

Research on malicious cryptographic primitives has always been thought of as
the work of intelligence agencies. The belief that governmental spy agencies
work hard to incorporate backdoors in their primitives, which enables the effi-
cient manipulation of certain security properties, has always been lurking in the
cryptographic community. This belief was further strengthened last year after
Edward Snowden exposed the existence of the NSA’s Bullrun decryption project
[32]. Leaked documents have shown that the NSA has deliberately inserted a
backdoor in the standardized pseudorandom number generator Dual EC DRBG
[33]. This backdoor provides the knowledge of the internal state of the generator
and accordingly its subsequent outputs. Additionally, it is also speculated that
NSA paid RSA Security $10 million in a secret deal to use Dual EC DRBG as
the default pseudorandom number generator in the RSA BSAFE cryptography
library [33]. With Dual EC DRBG being recommended by NIST at that time,
these revelations have raised suspicions with respect to the NIST standards being
manipulated by the NSA, particularly, after voices from the cryptographic com-
munity began suggesting the possibility of the NSA compromising the NIST’s
recommended elliptic curve constants [29].



Only few papers have been peer reviewed in public venues in the area of ma-
licious cryptography. Young and Young were among the firsts to address the
topic of malicious cryptography through their cryptovirology project [34]. Later
Rijmen and Preneel proposed malicious versions of CAST and LOKI by hiding
linear relations in the used Sboxes [27]. Work related to malicious ciphers, imple-
mentations and pseudorandom generators includes [7, 25, 8, 26]. Although most
of the previous work focused on ciphers, just recently the concept of malicious
hashing have been introduced in [6, 2]. Specifically, Albertini et al. proposed a
malicious version of SHA-1 by which collisions can be produced in an efficient
way. They have used the freedom of the round constants to satisfy a given dif-
ferential path and generate one block message collisions.

Streebog was proposed in 2010 [18]. It has an output length of 512/256-bit.
The compression function employs a 12-round AES-like cipher with 8 × 8-byte
internal state. The compression function operates in Miyaguchi-Preneel (MP)
mode and is plugged in a modified Merkle-Damg̊ard domain extender with a
modular checksum finalization step [1]. Streebog officially replaces the previous
standard GOST R 34.11-94 which has been theoretically broken in [21, 20]. The
new GOST is standardized by IETF as RFC 6896 [11] as well. Unlike the specifi-
cations of other hash functions, the reference of the new GOST standard [1] gives
no information about how or why the parameters of the function (e.g., round
constants, matrix constants, and the number of rounds) have been chosen. This
fact opens the door to our analysis, which makes use of exactly two parameters:
the heavily random looking independent constants and the number of rounds,
to present practical collisions for a malicious version of Streebog. Early works
related to the cryptanalysis of Streebog have been introduced in [3–5, 16] and in
[13, 10, 30], where practical semi free-start collision and near collision examples
for reduced round versions have been presented in only [3, 30].

In this work, we investigate a malicious version of Streebog. We exploit the
randomness of the independent round constants and the number of rounds of
the compression function to efficiently generate collisions for the compression
function. More precisely, we first employ the rebound attack technique proposed
in [30] to find three pairs of messages and keys that satisfy a specific three 4-round
differential paths independently. In the sequel, we use the freedom of five out of
the twelve round constants to connect the three obtained solutions and obtain
collisions for the twelve round compression function. Finally, we tune the last
constant of the compression function to adjust its output after the feedforward to
cancel the effect of the counter N addition of the following compression function
call, and append another identical colliding message pair. Hence, we generate a
two block messages 22 multicollision structure where two of them have the same
modular sum and thus a collision at the output of the hash function. While
previous work [6] stated that compression function collisions are not sufficient
to generate hash function collision in constructions that incorporate checksum,
our results prove that this is not the case with Streebog. Table 1 provides the six
new constant used in our malicious version of Streebog. An example of the two



block message collision along with its corresponding digest is provided in Table
3.

The rest of the paper is organized as follows. In the next section, the description
of the Streebog hash function along with the notation used throughout the paper
are provided. A brief overview of the rebound attack is given in Section 3. Af-
terwards, in Sections 4, we provide a detailed description of the used approach,
the malicious compression function attack and its corresponding complexity. In
Section 5, we show how collisions of the malicious hash function are generated
using the attack presented in Sections 4. Finally, the paper is concluded and a
short discussion is provided in Section 6.

2 Description of Steebog

Streebog outputs a 512 or 256-bit hash value, where half the last state is trun-
cated when adopting the 256-bit output. The standard specifies two different
IVs to be used with the two output lengths. The function can process messages
of length up to 2512− 1. The compression function iterates over 12 rounds of an
AES-like cipher with an 8×8 byte internal state and a final round of key mixing.
The compression function operates in Miyaguchi-Preneel mode and is plugged in
Merkle-Damg̊ard domain extender with a finalization step. The input message
M is padded into a multiple of 512 bits by appending one followed by zeros. The
message length for MD-strengthening is further included as an extra separate
block, followed by a block of a checksum evaluated by the modulo 2512 addi-

tion of all message blocks as a finalization step. More precisely, let n = ⌊ |M |
512
⌋

and the input message M = x∥mn∥..∥m1∥m0, where |M | is length of M , and
x is an un-complete or an empty block. The message is padded as follows: let
mn+1 = 0511−|x|∥1∥x, then the padded message M = mn+1∥mn∥..∥m1∥m0. Let∑

= mn+1+ ..+m1+m0. The compression function gN is fed with three inputs:

Fig. 1. Streebog’s compression function gN

the chaining value hi−1, a message block mi−1, and the counter of bits hashed



so far Ni−1 = 512× i. (see Figure 1). Let hi be a 512-bit chaining variable. The
first state is loaded with the initial value IV and assigned to h0. The hash value
of M is computed as follows:

hi ← gN (hi−1,mi−1, Ni−1) for i = 1, 2, .., n+ 2

hn+3 ← g0(hn+2, |M |, 0)

h(M)← g0(hn+3,
∑

, 0),

where h(M) is the hash value of M , and g0 is gN with N = 0. As depicted in
Figure 1, the compression function gN consists of:

– KN : a nonlinear whitening round of the chaining value. It takes a 512-bit
chaining variable hi−1 and a counter of the bits hashed so far Ni−1 and
outputs a 512-bit key K.

– E: an AES-based cipher that iterates over the message for 12 rounds in
addition to a finalization key mixing round. The cipher E takes a 512-bit
key K and a 512-bit message block m as a plaintext. As shown in Figure
2, it consists of two similar parallel flows for the state update and the key
scheduling.

Fig. 2. The internal block cipher (E)

Both KN and E operate on an 8× 8 byte key state K. E updates an additional
8 × 8 byte message state M . In one round, a given state is updated by the
following sequence of transformations:

– AddKey(X): XOR with either a round key, a constant, or the counter of bits
hashed so far (N).

– SubBytes (S): A nonlinear byte bijective mapping.
– Transposition (P): Byte permutation.
– Linear Transformation (L): Row multiplication by an MDS matrix in GF(2).

Initially, state K is loaded with the chaining value hi−1 and updated by KN as
follows:

k0 = L ◦ P ◦ S ◦X[Ni−1](K).



Now K contains the key k0 to be used by the cipher E. The message state M is
initially loaded with the message block m and E(k0,m) runs the key scheduling
function on state K to generate 12 round keys, k1, k2, .., k12, as follows:

ki = L ◦ P ◦ S ◦X[Ci−1](ki−1), for i = 1, 2, .., 12,

where Ci−1 is the ith round constant. The state M is updated as follows:

Mi = L ◦ P ◦ S ◦X[ki−1](Mi−1), for i = 1, 2, ..., 12.

The final round output is given by E(k0,m) = M12 ⊕ k12. The output of gN
in the Miyaguchi-Preneel mode is E(KN (hi−1, Ni−1),mi−1) ⊕ mi−1 ⊕ hi−1 as
shown in Figure 1. For further details, the reader is referred to [1].

2.1 Notation

Let M and K be (8×8)-byte states denoting the message and key state, respec-
tively. The following notation is used throughout the paper:

– Mi: The message state at the beginning of round i.
– MU

i : The message state after the U transformation at round i, where U ∈
X,S, P, L.

– Mi[r, c]: A byte at row r and column c of state Mi.
– Mi[row r]: Eight bytes located at row r of Mi state.
– Mi[col c]: Eight bytes located at column c of Mi state.

Same notation applies to K.

3 The rebound attack

The rebound attack [22] was proposed by Mendel et al. for the cryptanalysis of
AES-based hash functions. It is a differential attack that follows the inside-out
or start from the middle approach which is used in the boomerang attack [31].
The attack is composed of three phases, one inbound and two outbounds. The
compression function, internal block cipher or permutation of the hash function
is divided into three parts. If C is a block cipher, then C is expressed as C = Cfw◦
Cin ◦Cbw. The middle part is the inbound phase and the forward and backward
parts are the two outbound phases. In the inbound phase, a low probability XOR
differential path is used and all possible degrees of freedom are used to satisfy
the inbound path. In the two outbound phases, high probability truncated paths
[14] are used. In other words, one starts from the middle satisfying Cin, then
hash forward and backward to satisfy Cfw and Cbw probabilistically. For an
8× 8 byte state, the basic rebound attack finds two states satisfying an inbound

phase over two rounds 8
ri−→ 64

ri+1−→ 8. The main idea of the attack is to pick
random differences at each of the two eight active bytes sates. Then propagate
both backward and forward until the output and input of the Sbox, respectively.



Using the Sbox differential distribution table (DDT), we find values that satisfy
input and output differentials. This process is further illustrated in Figure 3.
The last step of the attack is called the Sbox matching phase and its complexity
depends on the Sbox DDT. If the probability of differentials that have solutions
is p, then the matching probability is given by p8.

Fig. 3. The rebound attack.

Literature related to the rebound attack includes Mendel et al. first proposal
on the ISO standard Whirlpool and the SHA-3 finalist Grøstl [22, 23]. In par-
ticular, Mendel et al. presented a 4.5-round collision, 5.5-round semi free-start
collision and 7.5-round near collision attacks on the Whirlpool compression func-
tion. As for Grøstl-256, a 6-round semi free-start collision is given. Subsequently,
rebound attacks have been applied to other AES-based hash functions such as
LANE [17], JH [28], Echo [12], Streebog [3], and Grøstl [24]. Various tweaks have
been applied to the basic rebound attack in order to construct differential paths
that cover more rounds such as merging multiple in-bounds [15], super Sbox
cryptanalysis [9], extended 5-round inbound [15], and linearized match-in-the-
middle and start-from-the-middle techniques [19]. Lastly, Kölbl and Rechberger
presented a practical method to find semi free-start collision for a 4-round AES-
based compression function [30]. More precisely, they have proposed a way to

first find a specific differential path for 1
ri−→ 8

ri+1−→ 64
ri+2−→ 8

ri+3−→ 1 transition,
then use the freedom in the key to find two messages that follow the given path.
They have implemented their approach on Streebog and presented a semi free-
start collision for the 4-round reduced compression function. In what follows, we
show how we used this approach to generate collisions for a malicious version of
Streebog compression function.

4 Malicious compression function collision

In this section, we give the details of our malicious adaptation of the stree-
bog compression function that allows us to efficiently construct collisions for
the twelve round compression function. Our approach makes use of the heav-
ily random looking independent round constants and the twelve rounds of the
compression function. In fact, the specific number of rounds (12) used in Stree-
bog enables us to find three independent solutions for the commonly known
1 −→ 8 −→ 64 −→ 8 −→ 1 four round differential path and by changing five
constants we can successfully connect them and generate a collision.



Fig. 4. The first truncated differential path.

Our attack starts by finding the first solution which is a pair of messages and
a key that follow the given differential path shown in Figure 4. In doing so, we
employ the approach proposed in [30] which is composed of two procedures and
is briefly described as follows:

4.1 Building the differential characteristic

In this procedure, one determines the exact differential transitions of the trun-
cated differential trail given above.

1. Choose a random difference at ML
4 [3, 3] and propagate it backward until the

full active state MS
3 .

2. For each byte difference in MS
3 , save a set of all possible input differences

3. Create a table TL of all possible 255 byte difference values d3 (candidates
for MP

2 [∗, 3]) and their corresponding 8 byte difference values L(d3) (can-
didates for MX

3 [row 3]). These values are the result of applying the linear
transformation L to a difference at column 3.

4. For each row of MX
3 , check if there is a possible match with the rows in TL.

5. To achieve the transition from 1 active byte in MP
1 [∗, 3] to 8 active bytes in

MX
2 [row 3], steps 2 and 4 must be repeated for only one row between states

MS
2 and MP

1 .

According to the Streebog Sbox differential distribution properties, [30] states
that finding the differential characteristic has a complexity of ≈ 220 and conse-
quently, the above procedure is repeated 220 times.

4.2 Finding a solution for the differential path

Once we have found a characteristic, we now need to find a message pair that
follows it. This can be done by performing the following steps:



1. Set the message state at MX
3 with a solution that satisfies the full active

state differentials from the above procedure.
2. Use K3[col 3] to satisfy the solutions of the Sbox differentials at MP

2 [col 3].
Also useK3[row 3] to satisfy the solutions of the Sbox differentials atMX

4 [col 3]

Since there is one byte, K3[3, 3], shared between the two solutions, one needs
to repeat the above procedure 28 times. For more details on the specifics of the
used technique, the reader is referred to [30].

To this end, we have found a solution to the first differential path with a key
input different from that is produced by the standard IV. This solution gives us
a specific input and output differences ∆1

in and ∆1
out at M1[3, 3] and ML

4 [3, 3],
respectively. In the sequel, we restart the above two procedures to search for the
second differential characteristic and its solution such that this second search
covers rounds five to eight and have an input difference ∆2

in at M5[3, 3] equals to
the output difference ∆1

out of the first path. Since we restrict the input difference
of the second path to a specific value, the complexity of the second procedure of
our search is increased by a factor of 28. However, the overall search complexity
is still dominated by the first procedure which is about 220. Finally, we search
for the third and last differential path and its solution which covers rounds nine
to twelve. For this path, we have to restrict its input difference ∆3

in at M9[3, 3]
to be equal ∆2

out at ML
8 [3, 3] and its output difference ∆3

out at M12[3, 3] to be
equal ∆1

in at M1[3, 3], so that the latter cancels out after the feedforward.

Connecting the three solutions: Now that we have the three solutions, we
can start tuning specific round constants to connect them. We first work on
the first solution’s key output K1, which is different than that generated by the
standard IV. To solve this problem, we fix the new C1 = LPS(IV )⊕ (KX

1 ). By
doing this, we guarantee that the resulting new key satisfies the first differential
path. Thus, the new colliding messages are m1 = (MX

1 ⊕ LPS(IV ) and m2 =
m1 ⊕∆1

in.

To connect the first and second solutions, we have to change K5. However,
altering K5 affects both K4 and K6, which are restricted by the solutions of
the first and second paths, respectively. In order to cancel the propagation of
alteration to the latter two round keys, we compute the new two constants C5

and C4 as follows:

K5 = ML
4 ⊕MX

5

C5 = K5 ⊕KX
5

C4 = S−1PL−1(K5)⊕K4,

whereML
4 andK4 are solutions of the first path, whileM

X
5 andKX

5 are solutions
of the second path. To connect the second and third paths, we perform the same
procedure to compute the new C8 and C9. Having all the new five constants in
place, Table 3, gives an example of a colliding message pair which have the same
compression function output using IV=0 and N=0.



5 Collision attack on the full malicious Streebog

While previous work [6] speculated that collisions of the compression function
cannot be reflected at the output of the hash function when employing a check-
sum finalization step, in this section, we show how to turn the previous com-
pression function collision to a hash function collision. On top of the modular
checksum finalization step, Streebog incorporates a counter N with each com-
pression function call. However, N is mixed with the chaining value with a simple
XOR operation. It should be noted that once the constants of the compression
function are fixed to some values, they remain the same for all successive execu-
tions of the compression function. Accordingly, one cannot search for a different
collision with the same constants.

Fig. 5. Malicious Streebog collision.

Our approach is to replicate the first collision two times, thus creating a 2-block
multicollision structure with the same H2 input to the padding call gN (H2,mp)
as depicted in Figure 5. By doing this, it is guaranteed that four messages collide
at H2, and only two of them collide at the output of the hash function. Namely,
those two that have the same modular checksum which are M = m1||m2 and
M ′ = m2||m1. However, using the same collision twice implies that the second
collision should have a chaining input H1 equal to that of the first collision which
is IV = 0. For this, we compute a new C12 to enforce the output of the first
collision H1 to be 512, which is equal to the value of N used in the following
compression function call. To this end, at the input of the second compression
function call H1 cancels the effect of N and the second colliding message pair
has a chaining input equal to the IV which is used at the first call.

6 Conclusion and Discussion

In this paper, we have investigated a malicious version of Streebog. We took
advantage of the heavily random looking constants and the number of rounds
of the compression function to present a 2-block message pair with the same



digest. Our approach first searches for three solutions for three different 4-round
differential paths and use the freedom of five constants to connect them to pro-
duce a compression function collision. Finally, we employed the freedom in the
last constant used in the round key generation to cancel the effect of the counter
used in the second compression function call. Hence, we were able to append a
second similar message pair, thus creating a 22 multicollision structure where
only two of them have the same modular checksum and accordingly the same
digest.

It should be noted that these results has no impact on the security of the original
standard. Additionally, this new set of constants does not provide collision for
GOST-256 as it uses a different IV. However, they are interesting in the light of
the absence of the source of the used parameters of the standard. Our results also
show one of the first examples of compression function collisions being sufficient
to generate hash function collisions. It is interesting to mention that, due to the
versatility of the used differential path where the one byte difference can virtually
be anywhere in the state, we get the freedom to satisfy the magic number as
well as other constraints that are needed to produce meaningful collisions for
some specific file formats (cf. section 4 in [2]). As a future direction, one may
investigate the applicability of the attack if the number of rounds is not a multiple
of four. Also, one might try searching for a malicious adaptation that holds for
the two versions of the hash function simultaneously. Finally, we see that this
paper provides an incentive for the designers of Streebog to publish the origin
of the used parameters and the rational behind their choices.

C1 C4 C5

3b 7b 5d ca f1 e4 23 2f 7b 51 2e eb f5 f6 ab f4 9b b1 e8 b9 00 2f 6d 75
de dd 27 78 d6 9b fe 93 42 52 38 55 1b 14 c2 9d 96 d7 e3 12 a2 5c 66 9c
f7 9f 94 dd 27 02 f3 a2 6e 5b 20 23 c9 b9 8f 3d 7e aa 0e bf dd 0e 04 88
4b 8e ad 06 8d 6f 3a fd a5 cc 0b e3 78 9b 9d 52 f7 30 67 e2 8c b5 37 1e
fa da e2 5c b1 2a 0f 3a bc 30 cc de 99 39 07 69 6b 1c 1b 28 09 6d 0d 78
0f 7d 0d 18 ba f6 0c e9 cb 69 60 cf 89 c9 20 cd 4c fa 57 06 9e da f6 4f
27 b7 42 a3 7d 68 cd 64 e7 e6 7c 81 ef d7 97 6e 1d 20 22 e9 ce 7e 54 3f
5b 41 e8 61 e2 cb 9d a6 71 ac 16 c5 bf cc b9 c1 35 0c 56 b4 d8 a5 01 b7

C8 C9 C12

02 e5 04 18 6c 11 2d 01 f9 53 2e c1 78 84 d2 6e a3 23 32 b5 81 5e 1b 85
02 f1 f2 49 5d d0 aa 7b 17 ae c9 5a a4 44 4c 8d f4 67 4d bc c3 77 fd 7f
98 4c e1 b8 08 fd 0f 60 21 8b 63 a4 c1 2a 32 b8 f8 a1 db b5 e3 69 99 41
46 79 75 f7 37 5d a1 8c 41 2c 9a d0 71 20 55 30 eb 15 09 84 de 8d 22 ea
3c b5 83 ac 90 27 38 30 fb 71 99 26 59 a8 6f 4f 9d e6 44 d5 fd 40 7b 5d
25 af e8 05 d1 bd e3 34 8e 37 7a c5 06 ad 7f 93 d1 32 45 08 e9 3d 3f 51
ea eb 50 bf be 39 32 9a 50 0b be 70 04 4b 9d 5c 2a 36 ae cc 53 97 0f fc
61 1a 1a 22 e1 0d ff 58 d7 aa 2c 27 6e cd 41 01 41 a7 84 f3 44 91 24 3e

Table 1. The six new constants.



C2 C3 C6

6f a3 b5 8a a9 9d 2f 1a f5 74 dc ac 2b ce 2f c7 ae 4f ae ae 1d 3a d3 d9
4f e3 9d 46 0f 70 b5 d7 0a 39 fc 28 6a 3d 84 35 6f a4 c3 3b 7a 30 39 c0
f3 fe ea 72 0a 23 2b 98 06 f1 5e 5f 52 9c 1f 8b 2d 66 c4 f9 51 42 a4 6c
61 d5 5e 0f 16 b5 01 31 f2 ea 75 14 b1 29 7b 7b 18 7f 9a b4 9a f0 8e c6
9a b5 17 6b 12 d6 99 58 d3 e2 0f e4 90 35 9e b1 cf fa a6 b7 1c 9a b7 b4
5c b5 61 c2 db 0a a7 ca c1 c9 3a 37 60 62 db 09 0a f2 1f 66 c2 be c6 b6
55 dd a2 1b d7 cb cd 56 c2 b6 f4 43 86 7a db 31 bf 71 c5 72 36 90 4f 35
e6 79 04 70 21 b1 9b b7 99 1e 96 f5 0a ba 0a b2 fa 68 40 7a 46 64 7d 6e

C7 C10 C11

f4 c7 0e 16 ee aa c5 ec ab be de a6 80 05 6f 52 7b cd 9e d0 ef c8 89 fb
51 ac 86 fe bf 24 09 54 38 2a e5 48 b2 e4 f3 f3 30 02 c6 cd 63 5a fe 94
39 9e c6 c7 e6 bf 87 c9 89 41 e7 1c ff 8a 78 db d8 fa 6b bb eb ab 07 61
d3 47 3e 33 19 7a 93 c9 1f ff e1 8a 1b 33 61 03 20 01 80 21 14 84 66 79
09 92 ab c5 2d 82 2c 37 9f e7 67 02 af 69 33 4b 8a 1d 71 ef ea 48 b9 ca
06 47 69 83 28 4a 05 04 7a 1e 6c 30 3b 76 52 f4 ef ba cd 1d 7d 47 6e 98
35 17 45 4c a2 3c 4a f3 36 98 fa d1 15 3b b6 c3 de a2 59 4a c0 6f d8 5d
88 86 56 4d 3a 14 d4 93 74 b4 c7 fb 98 45 9c ed 6b ca a4 cd 81 f3 2d 1b

Table 2. The six unchanged (original) constants.

m1 m2 ∆m
d2 d7 5d 81 b1 63 d8 cc d2 d7 5d 81 b1 63 d8 cc 00 00 00 00 00 00 00 00
63 16 bb de 0e 61 85 d6 63 16 bb de 0e 61 85 d6 00 00 00 00 00 00 00 00
97 89 a3 e6 55 cf 46 e7 97 89 a3 e6 55 cf 46 e7 00 00 00 00 00 00 00 00
37 de 22 19 54 d6 01 95 37 de 22 bb 54 d6 01 95 00 00 00 a2 00 00 00 00
13 44 b8 4d a3 4d 36 4c 13 44 b8 4d a3 4d 36 4c 00 00 00 00 00 00 00 00
a3 50 36 27 f3 51 7f ee a3 50 36 27 f3 51 7f ee 00 00 00 00 00 00 00 00
58 23 1d 88 80 1b 09 62 58 23 1d 88 80 1b 09 62 00 00 00 00 00 00 00 00
08 9d bc 4d aa a1 73 2a 08 9d bc 4d aa a1 73 2a 00 00 00 00 00 00 00 00

H(m1||m2) = H(m2||m1)

94e19a2ad9252ca78d14600c20488ad66de12c72ab3aac19f7bb9e277abe973a
ea22f1c3fa3be180c6dd212f4b19eefed80fb114c44dfb39ffdb2cfad24c6275

Table 3. Example of a 2-block message collision for the malicious Streebog hash func-
tion.
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Schläffer, M. Rebound attack on the full lane compression function. In ASI-
ACRYPT (2009), M. Matsui, Ed., vol. 5912 of Lecture Notes in Computer Science,
Springer, pp. 106–125.

18. Matyukhin, D., Rudskoy, V., and Shishkin, V. A perspective hashing algo-
rithm. In RusCrypto (2010). (In Russian).

19. Mendel, F., Peyrin, T., Rechberger, C., and Schläffer, M. Improved
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