
Side Channel Power Analysis of an AES-256 Bootloader

Colin O’Flynn and Zhizhang (David) Chen

Abstract— Side Channel Attacks (SCA) using power mea-
surements are a known method of breaking cryptographic
algorithms such as AES. Published research into attacks on
AES frequently target only AES-128, and often target only the
core Electronic Code-Book (ECB) algorithm, without discussing
surrounding issues such as triggering, along with breaking the
initialization vector.

This paper demonstrates a complete attack on a secure
bootloader, where the firmware files have been encrypted with
AES-256-CBC. A classic Correlation Power Analysis (CPA)
attack is performed on AES-256 to recover the complete 32-
byte key, and a CPA attack is also used to attempt recovery of
the initialization vector (IV).

I. INTRODUCTION

Side channel power analysis measures the power con-
sumed by a digital device on each clock cycle. Using this it
is possible to infer something about the data being processed
by the device, which was first demonstrated as a method of
breaking cryptographic algorithms by Kocher et al[1]. This
work uses the subsequently published Correlation Power
Analysis (CPA) attack by Brier et al[2].

Briefly, we can summarize the attack as follows. It takes a
physical charge to change the state of a bus line in a digital
device (i.e. setting from low to high). If we knew a priori that
all bus lines in a chip where in the low state, and measured
the current flow on the VCC (positive) rail, we would expect
the magnitude of that current to depend on the number of bus
lines being set high. In reality, most microcontrollers set the
bus lines to a ‘precharge’ state which is half-way between
a high and a low state before setting the bus lines to the
final state. Thus on every clock cycle we can measure the
current flow in the VCC line, and the value of this current
would be expected to be linearly related to the number of
lines going from the precharge state to the high state: the
higher the current peak, the more lines switched high.

This assumption will allow us to determine the Hamming
Weight (HW) of some sensitive data. This will allow us to
break a cryptographically sound implementation of AES-
256, and directly determine the keying material hidden
inside a microcontroller. The validation of the HW leakage
assumption on this platform is shown in Fig. 1.

The paper will first describe the bootloader in Section II.
A review of AES-256 will be given in Section III, along
with a discussion of side channel power attacks. There we
will review the modifications required for attacking the full
32-bytes of the AES-256 key. Section IV will briefly outline
the hardware used in this work, and in Section V we will

C. O’Flynn and Z. Chen are with Faculty of Electrical and
Computer Engineering, Dalhousie University, Halifax, Canada.
{coflynn,z.chen}@dal.ca

0 1 2 3 4 5 6 7 8 9
−0.049

−0.048

−0.047

−0.046

−0.045

−0.044

−0.043

−0.042
Current Measurement vs. Hamming Weight of Leakge

Hamming Weight of Leakage

C
u

rr
e

n
t

M
e

a
su

re
m

e
n

t
(u

n
it

le
ss

)

Fig. 1. Power consumption of device under attack performing an operation
on data with different Hamming Weights (HW), showing the average current
consumption of the AtMega328P microcontroller for each possible hamming
weight of an 8-bit number. Error bars show 95% confidence on average.

describe the format of our results. Finally in Section VI
and Section VII the results of a side-channel attack on the
encryption key and initialization vector are described. Briefly
the recovery of the signature is discussed in Section VIII,
before concluding in Section IX.

Interested readers are referred to the open-source Chip-
Whisperer Project1, where additional details including a step-
by-step tutorial2 of the attack are available, including copies
of power traces used to generate figures in this work.

II. DESCRIPTION OF BOOTLOADER

Rather than use a specific bootloader, a generic bootloader
that can run on small microcontrollers will be presented. It
can be appreciated that this bootloader is similar to other se-
cure bootloaders available as application notes from vendors
for embedded 8-bit, 16-bit, and 32-bit microcontrollers.

A very simple encryption and communication protocol is
used. The input data for the entire memory is split into 12-
byte chunks, where the final block is padded with random
characters. Each chunk has a 4-byte fixed signature sequence
prepended which results in a 16-byte block.

The simple 4-byte signature is used to verify that any given
16-byte block was encrypted with the expected encryption
key. As the bootloader is highly size-constrained, this simple
signature verification is used over something such as a hash
of the data.

Fig. 2 shows the generation of an encrypted block, along
with the communications protocol. The communications pro-
tocol runs over a serial port, and contains a CRC-16 to verify
that no communications errors occurred. The signature would

1http://www.chipwhisperer.com
2See ChipWhisperer HTML Documentation, available at http://www.

newae.com/sidechannel/cwdocs/tutorialaes256boot.
html

© 2015 IEEE. Authors copy of paper published in proceedings of CCECE 2015 in Halifax, NS, Canada.

also detect communications errors; but a signature failure is
not communicated back to the sender to reduce the attack
surface. Instead the CRC-16 is used so the sender can verify
the correct data was sent, but the sender is supposed to be
unaware if the bootloader is accepting the data (i.e. if the
correct key was used).

Fig. 2. Data format for AES-256 bootloader showing both encrypted format
and communications protocol.

The implementation here does not actually write data to
FLASH memory (i.e. it doesn’t fully work as a bootloader),
as this functionality is not required for this paper. Details of
the AES-256 decryption will be discussed next.

III. AES-256 DECRYPTION

A. Background

The input cipher-text to the AES-256 decryption algorithm
is C. The input key is 256 bits (32 bytes), which is expanded
to 240 bytes, used 16 bytes at a time (each of the round keys).
Each of the round keys is denoted as Kr, where the round
r = {0, 1, 2, · · · , 14}.

As AES decryption is performed with the same structure
as AES encryption but ‘in reverse’, the first round of AES
decryption in this work will be denoted as r = 14, the next
round of AES decryption as r = 13, etc.

The input ciphertext C consists of 16 bytes:

C = [c0, c1, · · · , c15]

The AES algorithm stores an intermediate state X , which
is updated after each round of the algorithm. The intermedi-
ate state for round r is denoted by a 16-byte array:

Xr = [xr
0, x

r
1, · · · , xr

15]

The complete AES algorithm will use three special func-
tions:
• Sub(): Performs bytewise substitution operation on Xr.
• Shift(): Shift Rows, reorders bytes in Xr.
• Mix(): Mix Columns, mixes bytes in Xr together.
All three functions have inverses, such for example that

Sub−1(Sub(x)) = Sub(Sub−1(x)) = x.
With the Sub() and Shift() functions a single byte change

in the input affects only a single byte of the output. With the
Mix() function a single byte change in the input affects four
of the output bytes.

The complete AES decryption algorithm can be described
as in equations (1) to (5), where (3) is performed multiple
times.

X14 = Sub−1
(
Shift−1(C ⊕K14)

)
(1)

X13 = Sub−1
(
Mix−1

(
Shift−1(X14 ⊕K13)

))
(2)

· · ·
Xi = Sub−1

(
Mix−1

(
Shift−1(Xi+1 ⊕Ki)

))
(3)

· · ·
X1 = Sub−1

(
Mix−1

(
Shift−1(X2 ⊕K1)

))
(4)

X0 = X1 ⊕K0 (5)

B. Side Channel Power Analysis

When performing a side-channel power analysis attack,
we will be attacking the value of X14. We know the value
of C (the input we sent the decryption algorithm), and
perform a guess and check on each byte of K14, where we
use a Correlation Power Analysis (CPA)[2] attack with the
Hamming Weight (HW) assumption on the leaked value of
X14.

The CPA attack requires us to attack each encryption
subkey j (i.e. byte) of K14 independently. Using (1), we can
calculate a hypothetical value of X ′14j based on the known
ciphertext Cj , and some guess of the subkey value K ′14j .
If we see a large correlation between the hamming weight
of our hypothetical value X ′14j and the power measurement
trace related to the decryption of C, this suggests the guess
of the subkey may be the correct value.

To determine the complete 32-byte encryption key, we will
require both K14 and K13. The classic CPA attack would
only recover K14 as above, and a small change to the attack
is required to find K13.

Once K14 is known, the attack is re-run with the leakage
function targeting X13, where we wish to guess each byte of
K13. Due to the presence of Mix−1(), it would appear that
four bytes of the key must be guessed to achieve a single byte
of X13. This would entail guessing 232 possibilities instead
of 28, a considerably more challenging task.

We can however take advantage of the linearity of the
Mix−1(a) operation to rearrange (2), as described in [3], and
also demonstrated [4]. Using the property that Mix−1(a ⊕
b) = Mix−1(a)⊕Mix−1(b), (2) becomes (6), where we are
no longer guessing the key K13, but a version of the key
processed by Mix−1(Shift−1(x)):

X13 = Sub−1
(
Mix−1

(
Shift−1(X14 ⊕K13)

))
(2)

X13 = Sub−1
(
Mix−1

(
Shift−1(X14)

)
⊕ Y 13

)
(6)

Y 13 = Mix−1
(
Shift−1(K13)

)
(7)

Once we fully determine Y 13, we can use (8) to determine
the desired encryption key for round 13, K13:

K13 = Mix(Shift(Y 13)) (8)

© 2015 IEEE. Authors copy of paper published in proceedings of CCECE 2015 in Halifax, NS, Canada.

AES-256 Decryption AES-256 Decryption

I.V.

Ciphertext – Block 0 Ciphertext – Block 1

Plaintext – Block 1Plaintext – Block 0

CT Block 0 CT Block 1

Fig. 3. AES-256 Cipher Block Chaining (CBC) Mode Decryption

C. Cipher Block Chaining Mode

The bootloader uses AES-256 in Cipher Block Chaining
(CBC) mode, where before being encrypted each block
was XOR’d with the previous ciphertext. Since for the first
block there is no previous ciphertext, a random Initialization
Vector (IV) is used. The decryption flow is shown in Fig. 3,
where the IV used for encryption must also be given to the
bootloader. In this case the IV is programmed (along with
encryption key) into the device’s memory before deployment.

Note that if the decryption key is known, but the IV is
not, this allows us to decrypt everything except the first
block. If an attacker is simply looking to decrypt a file
for reverse engineering purposes, they can probably derive
enough useful detail without the first 16 bytes to accomplish
this task.

IV. HARDWARE

A bootloader as described in Section II is implemented in
an Atmel AtMega328P-PU 8-bit microcontroller running at
7.37 MHz. Power measurements are taken using a resistive
shunt inserted into the VCC line, where measurements are
taken synchronously at 29.5 MS/s using a ChipWhisperer
Capture Rev2 platform [5].

In Fig. 4 a photograph of the capture setup is shown.
Details of the practicality of the attack will be discussed
next.

Fig. 4. Traces are captured from an ATMega328P microcontroller using
the ChipWhisperer system.

A. Triggering

Typical work demonstrating side-channel attacks uses an
IO line of the microcontroller that indicates when the en-
cryption (or decryption) routine is running. This provides an
attacker with a perfectly synchronized trigger event, but in
real implementations this will not be available.

For this work the Sum of Absolute Differences (SAD)
trigger built into the ChipWhisperer is used. This allows
triggering on a pattern in the analog waveform. The correct
pattern can be determined through trial-and-error: it is known
for example when the encrypted block was sent to the
microcontroller, and we can infer that sometime after this
event the decryption occurs. The SAD trigger can be used to
‘walk through’ the possible trigger events, until the analysis
attack succeeds.

In this implementation of the SAD trigger 128 input sam-
ples, ~T , are continuously compared to a 128 point reference
waveform, ~R, using (9). If the input was exactly the same
as the reference waveform, the output of (9) would be 0.
Normally the trigger condition is simply when the output of
(9) falls below some numerical value.

SAD =
127∑
p=0

|Tp −Rp| (9)

B. Synchronizing Traces

Traces may also need to be synchronized in time. In
particular the AES-256 implementation used here has non-
constant execution time, which does introduce another attack
vector[6][7], but also means that the later rounds will not be
perfectly synchronized even if the initial round is. This can
be seen in the upper part of Fig. 5, where traces appear to
become unsynchronized after a point in time.

To compensate for this a SAD resynchronization element
is used during analysis for the 13th round. In the lower part
of Fig. 5 we can see traces appear synchronized toward the
last half, but are now unsynchronized for the first half.

V. RESULT FORMAT

The results will be presented in two formats: the Global
Success Rate (GSR), and the average Partial Guessing En-
tropy (PGE). The use of these result formats will be briefly
discussed next.

A. Meaning of GSR

If the attack algorithm has access to N traces, we can
consider the attack successful if the algorithm successfully
determines the correct encryption key with N traces. We
can present a number of different sets of N traces, and
average the number of times the entire encryption key was
successfully recovered with a set of size N .

This gives us the ‘global success rate’, where a rate of 1.0
means the attack always succeeds. Typically we will consider
an attack successful for a gsr about 0.8, i.e. given a specific
number of traces, the attack succeeds 80% of the time.

The GSR only indicates when the attack is completely
successful – in reality it is sufficient to reduce the guessing

© 2015 IEEE. Authors copy of paper published in proceedings of CCECE 2015 in Halifax, NS, Canada.

6000 7000 8000 9000 100005400 5600 5800 6200 6400 6600 6800 7200 7400 7600 7800 8200 8400 8600 8800 9200 9400 9600 9800

Sample Number

-0.2

0

0.2

-0.3

-0.1

0.1

P
o
w

e
r

T
ra

c
e

-0.2

0

0.2

-0.3

-0.1

0.1

P
o
w

e
r

T
ra

c
e

6000 7000 8000 9000 100005400 5600 5800 6200 6400 6600 6800 7200 7400 7600 7800 8200 8400 8600 8800 9200 9400 9600 9800

Sample Number

Synchronization of Power Traces

Fig. 5. Power traces may not remain synchronized during the execution of the entire algorithm. The execution of the first round becomes unsynchronized
around sample number 7300 in the top traces. They have been resynchronized in the lower example, allowing the attack to continue for the next round.

entropy to a manageable level, instead of requiring the attack
to directly give us the complete encryption key. Another
metric which provides a measure of the reduction of guessing
space is discussed next.

B. Meaning of PGE

The ‘guessing entropy’ is defined as the “average number
of successive guesses required with an optimum strategy to
determine the true value of a random variable X”[8]. The
‘optimum strategy’ here is to rank the possible values of the
subkey from most to least likely based on the value of the
correlation attack (higher correlation output is more likely).

The ‘partial’ refers to the fact that we are finding the
guessing entropy on each subkey. This gives us a PGE for
each of the 16 subkeys3. A PGE of 0 indicates the subkey
is perfectly known, a PGE of 10 indicates that 10 guesses
were [incorrectly] ranked higher than the correct guess.

The attack algorithm is given access to 1, 2, · · · , N traces,
and the PGE for each subkey is calculated. To improve
consistency the PGE for each subkey is averaged over several
attacks (trials). Finally, we can average the PGE over all 16
subkeys to generate a single ‘average PGE’ for the attack.

VI. DETERMINING KEY

Details of the side channel analysis attack used are dis-
cussed in Section III-B. The resulting GSR for the CPA
attack on the 14th and 13th round encryption key is shown
in Fig. 6.

The 14th round key indicates the first 16 bytes recovered
by the CPA attack. The 13th round key is the next 16 bytes
recovered, where we assume the first 16 bytes had already
been recovered. The ‘total’ success is given by the recovery

3AES-256 has a 32-byte key, but we attack 16 bytes at a time, since each
round only uses 16 bytes of the key.

0 20 40 60 80 100 120
Number of Traces

0.0

0.2

0.4

0.6

0.8

1.0

G
lo

b
a
l
S
u
cc

e
ss

 R
a
te

AES-256 Attack Success

Round 14 Key
Round 13 Key

Fig. 6. Two CPA attacks are performed to determine both the 14th and
13th round keys. Note the CPA attack on the 13th round key requires the
14th round key. The Global Success Rate(GSR) is displayed for the attack,
where the attack has a very good chance of succeeding with 100 traces.

of both the 14th and 13th round keys. With very good
probability the entire encryption key can be recovered after
100 power trace measurements.

The PGE of the attack is given in Fig. 7. Again around 100
traces the PGE falls to zero indicating the key is perfectly
known. Even with a smaller number of traces the guessing
entropy is significantly reduced. The original PGE would be
128 for all subkeys, since each subkey is 8 bits, and we
expect the correct key to be found half-way through, but
with 60 traces this is reduced to an average PGE of only
2. This greatly reduced entropy could be attacked by brute-
force guessing the most likely ranked keys.

© 2015 IEEE. Authors copy of paper published in proceedings of CCECE 2015 in Halifax, NS, Canada.

0 20 40 60 80 100 120
Number of Traces in Attack

0.125

0.25

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0
Pa

rt
ia
l
G
u
e
ss
in
g
 E
n
tr
o
p
y
,
Lo
g
 S
ca

le
AES-256 Key Determination

Rnd 14 Key Mean PGE
Rnd 14 Key Max PGE
Rnd 13 Key Mean PGE
Rnd 13 Key Max PGE

Fig. 7. The Partial Guessing Entropy (PGE) data for the same attack in
Fig. 6. The maximum PGE is the highest (worst) PGE of any of the 16
subkeys, and mean is the average of all subkeys for a given number of
traces.

0 50 100 150 200
Number of Traces in Attack

0.25

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

Pa
rt

ia
l

G
u

e
ss

in
g

 E
n

tr
o

p
y

,
Lo

g
 S

ca
le

AES-256 CBC Mode IV Leakage

Mean PGE
Max PGE
Min PGE

Fig. 8. A CPA attack on the Initialization Vector (IV) being XORd with the
plaintext shows that some guessing is still required, as the PGE never reaches
0 for all bytes. Instead an asymptotic behaviour is noted, which occurs due
to several key hypothesis having the same correlation, as described in the
text.

VII. DETERMINING IV

If the plaintext was known, the Initialization Vector (IV)
can be trivially determined once the encryption key is known.
With the encryption key, the attacker can decrypt everything
except the first 16 bytes; at this point they might be able to
determine that the first 16 bytes of the plaintext were part of
a fixed file header or similar material. In this case an attacker
can determine the IV by XORing the expected plaintext with
the output of the AES-256-ECB decryption function.

Without such knowledge, we could use a side-channel
attack on the IV itself. We perform a CPA attack on the
output of the decryption result XOR’d with the unknown IV,
where we will guess each byte of the IV.

Fig. 8 shows the PGE for the IV. The CPA attack never
fully recovers the IV even with 5000 traces, thus a GSR is

TABLE I
TOP THREE POSITIVE AND NEGATIVE CORRELATION OUTPUTS FOR

BYTE 7 OF THE I.V. CORRECT VALUE OF GUESS IS DA.

Guess(Hex) Guess(Bin) Correlation
4A 01001010 0.8250
5A 01011010 0.8150
DA 11011010 0.7912
25 00100101 -0.7912
A5 10100101 -0.8150
B5 10110101 -0.8250

not shown. We can consider the reason for this difficulty in
obtaining a completely successful attack by reviewing again
our leakage model and attack point. The application of the
IV is as follows in (10).

P = X0 ⊕ IV (10)

A single bit change in the IV will always result in a single
bit change in the output. Thus it would be expected that
guesses with small bit differences will be ranked similarly.
When attacking the S-Box output in (1), a single-bit change
in the input guess will result in multiple bits changing in
the hypothetical output. Attacking the S-Box output means
that wrong guesses have a considerably different hamming
weight from incorrect guesses, and attack performance is
considerably improved.

An example of the top-ranked guesses for byte seven of
the IV is shown in Table I. In this case the PGE is two, as
there are two wrong guesses for the IV byte ranked higher
than the correct guess. Note the wrong guesses have a very
close bit pattern to the correct value.

In addition, the absolute value of the correlation cannot
be used. Due to the linear nature of (10), the correlation of
the bitwise inverse of the correct guess would have the same
absolute value as the correlation as the correct guess, but
with the opposite sign. This is demonstrated in the lower
three rows of Table I. When attacking the S-Box we can
use the absolute value of the correlation, since the S-Box is
non-linear, and thus properties such as the bitwise inverse do
not carry through the S-Box operation.

VIII. DETERMINING SIGNATURE

It was also described in Section II that a secret 4-byte sig-
nature is added before each encrypted block. If the attacker
wishes to have the bootloader accept a new data file, this
signature must also be determined.

Provided the attacker has access to an encrypted firmware
file, they can simply decrypt this file using the key deter-
mined with a CPA attack. The signature will be readily
apparent due to the presence of a repeated fixed four-byte
sequence in the decrypted file.

If attacking an 8-bit microcontroller, timing attacks are
also possible on the signature check. If each byte of the
signature is checked in sequence, it should be possible to
determine from the power trace which byte failed on the
signature check. This would require a partial brute-force

© 2015 IEEE. Authors copy of paper published in proceedings of CCECE 2015 in Halifax, NS, Canada.

attack, and is only relevant when the signature is checked
byte-by-byte.

IX. CONCLUSIONS

This paper has explored a complete attack on a software
implementation of AES-256-CBC used in a bootloader. This
demonstrates the relevance of side-channel power analysis
attacks to real systems, and not just academic implementa-
tions of the cryptographic algorithms.

Extending a standard CPA attack to work on AES-256
requires some modifications to the attack for the second
decryption round, as detailed previously in [3] and [4]. In
addition this paper has demonstrated the use of a standard
CPA attack to determine the Initialization Vector (IV), which
in general demonstrates the effectiveness of a CPA attack on
a single XOR operation. As many cryptographic algorithms
use XOR, the results of the CPA attack on an XOR are of
particular interest beyond just the attack on AES. The CPA
attack on the XOR operation was part of the original CPA
paper experiments[2], and this paper provides some updated
data for a recent 8-bit microcontroller.

Simply using a strong encryption such as AES-256 is
insufficient to guarantee an embedded device will remain se-
cure. A side-channel power analysis attack can be performed
with a reasonable number of traces on a standard AES
implementation, revealing the encryption key. If protection
against these attacks is required, countermeasures will need
to be inserted into the AES implementation. The system
designer must trade off the desired resistance to attacks
against implementation complexity, and not simply assume
that using a large key alone is sufficient to guarantee security.

REFERENCES

[1] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances
in Cryptology - CRYPTO’ 99, Springer-Verlag (1999) 388–397

[2] Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a
leakage model. Cryptographic Hardware and Embedded Systems –
CHES 2004 (2004) 135–152

[3] Neve, M., Tiri, K.: On the complexity of side-channel attacks on aes-
256 – methodology and quantitative results on cache attacks. Cryptol-
ogy ePrint Archive, Report 2007/318 (2007) http://eprint.iacr.org/.

[4] Moradi, A., Kasper, M., Paar, C.: Black-box side-channel attacks
highlight the importance of countermeasures. In Dunkelman, O., ed.:
Topics in Cryptology – CT-RSA 2012. Volume 7178 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2012) 1–18

[5] O’Flynn, C., Chen, Z.D.: ChipWhisperer: An Open-Source Platform for
Hardware Embedded Security Research. In Prouff, E., ed.: Constructive
Side-Channel Analysis and Secure Design. Lecture Notes in Computer
Science. Springer International Publishing (2014) 243–260

[6] Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In: Proceedings of the 16th An-
nual International Cryptology Conference on Advances in Cryptology.
CRYPTO ’96, London, UK, UK, Springer-Verlag (1996) 104–113

[7] Koeune, F., Koeune, F., Quisquater, J.J., jacques Quisquater, J.: A timing
attack against Rijndael. Technical report (1999)

[8] Massey, J.: Guessing and entropy. In: Information Theory, 1994.
Proceedings., 1994 IEEE International Symposium on. (1994) 204–

© 2015 IEEE. Authors copy of paper published in proceedings of CCECE 2015 in Halifax, NS, Canada.

