
Adaptively Secure Fully Homomorphic Signatures
Based on Lattices

Xavier Boyen
Queensland University of Technology∗

Xiong Fan Elaine Shi
University of Maryland†

Abstract

In a homomorphic signature scheme, given the public key and a vector of signaturesσ := (σ1, . . . , σl)
over l messages µ := (µ1, . . . , µl), there exists an efficient algorithm to produce a signature σ′ for
µ = f(µ). Given the tuple (σ′, µ, f), anyone can then publicly verify the validity of the signature σ′.

Inspired by the recent (selectively secure) key-homomorphic functional encryption for circuits, re-
cent works propose fully homomorphic signature schemes in the selective security model. However, in
order to gain adaptive security, one must rely on generic complexity leveraging, which is not only very
inefficient but also leads to reductions that are “unfalsifiable”.

In this paper, we construct the first adaptively secure homomorphic signature scheme that can eval-
uate any circuit over signed data. For poly-logarithmic depth circuits, our scheme achieves adaptive
security under the standard Small Integer Solution (SIS) assumption. For polynomial depth circuits, the
security of our scheme relies on sub-exponential SIS — but unlike complexity leveraging, the security
loss in our reduction depends only on circuit depth and on neither message length nor dataset size.

1 Introduction

Motivated by the advances in cloud computing, there has been an increasing demand to outsource data and
computations to servers in the cloud. Recently, a number of cryptographic schemes have been proposed
to address the security and authenticity of computation outsourcing. The ground-breaking development of
fully homomorphic encryption by Gentry [Gen09] allows us to outsource computation on encrypted data.
Two recent works [GV14, Wic14] propose fully homomorphic signatures that allow us to ascertain the
authenticity of computation results on outsourced data. Under the hood, these homomorphic signatures are
rooted, not so much in Gentry’s homomorphic encryption, but from key-homomorphic functional encryption
for circuits proposed by Boneh et al. at the recent Eurocrypt [BGG+14]; specifically, they can be seen as the
signature algorithm naturally contained in the private key generation of the functional encryption.

However, both recently proposed fully homomorphic signature schemes [GV14, Wic14], such as the
key-homomorphic functional encryption scheme from which they borrow, are only secure in the selective
security model, where the adversary must announce ahead of time the message whose signature it intends
to forge. Although selective security can be converted into adaptive security using the generic complexity
leveraging technique [BB11], this approach is highly inefficient in this application: with complexity lever-
aging, the security reduction would incur a loss that is exponential in both the length of each message and
the number of messages allowable in each dataset. Although the loss can be compensated by an increase in
∗Email: xb@cs.stanford.edu. Research funded under ARC Discovery Project grant number DP-140103885 with the

generous support of the Australian Research Council.
†Email: {xfan,elaine}@cs.umd.edu. Research funded in part by an NSF grant CNS-1314857, a Sloan Research Fel-

lowship, and Google Faculty Research Awards. The views and conclusions contained herein are those of the authors and should
not be interpreted as representing funding agencies.

1

mailto:xb@cs.stanford.edu
mailto:xfan@cs.umd.edu,elaine@cs.umd.edu

the security parameters, the resulting security reduction becomes “unfalsifiable” in the sense that even with
a perfect probability-one attack against the scheme, the security reduction will fail to solve the underlying
hard problem in sub-exponential time (it will merely decrease its complexity from a large exponential down
to a smaller exponential function of the security parameter [BB11]).

In this work, we are interested in building an adaptively secure, fully homomorphic signature scheme.
Before presenting our results, we first briefly review the definition of homomorphic signatures. Informally,
the problem of homomorphic signatures is as follows. Alice has a number of datasets, where each dataset
has an identifying tag, and consists of l data entries µ1, . . . , µl. For example, a dataset stores the electricity
consumption of l appliances in a household, and the tag of the dataset identifies the household. For each
dataset, Alice computes l “root” signatures σ1, . . . , σl, and outsource both the dataset and the signatures to
a cloud provider. Later, Alice specifies a dataset with its tag, and asks the server to compute some function
f on the specified dataset. At this point, the server can not only compute the function f , but also produce
a derived signature σ′ for the computation result, such that Alice can verify that the result is correctly
computed by evaluating the function f on the specified dataset.

By contrast to group-homomorphic signatures, which only provide homomorphism over a group opera-
tion such as + or× but not both, in a fully homomorphic signature, the homomorphic operation(s)—such as
(+,×) in Fp, or NAND over {0, 1}∗—are complete for the evaluation of arbitrary boolean functions. Ho-
momorphic signatures can even be “multi-hop”—as is the case of our construction—, by allowing further
homomorphic evaluations on derived signatures.

1.1 Results and Contributions

We show the following main results:

• For circuits poly-logarithmic in depth, we show how to construct an adaptively secure fully homomor-
phic signature scheme from standard assumptions, specifically, the Shortest Integer Solutions (SIS)
assumption.

• For circuits that are polynomial in depth, we can also achieve adaptive security, but from sub-exponential
SIS. Even though sub-exponential assumption is necessary, we note that the security loss of our reduc-
tion is nO(dmax), i.e., depends only on the depth of the circuit dmax, but not on the size of the dataset.
In comparison, with standard complexity leveraging techniques, the security loss is exponential in the
size of each dataset.

Technical highlight. Our construction builds on the recent result by Boneh et al. [BGG+14] on key-
homomorphic function encryption for circuits. Two very recent papers [Wic14, GV14] concurrently showed
how to construct a (selectively secure) fully homomorphic based on the ideas in [BGG+14]. Our construc-
tion build upon the same ideas in order to achieve fully homomorphism.

In order to achieve full security against adaptively chosen-message queries, one idea is to rely on the
“lattice mixing” trick by Boyen [Boy10], who showed how to transform the selectively secure (H)IBE of
Agrawal et al. [ABB10] into a fully secure signature using a lattice-based partitioning technique. Indeed,
the arithmetic structure of the key-homomorphic encryption scheme of [BGG+14] is eerily reminiscent of
that of [ABB10], which suggests that Boyen’s trick could apply here as well.

To this end, we modify the fully homomorphic signature scheme by [GV14] to incorporate a mixing of
public-key lattices in a message-dependent manner, in order to divide the message space into “known” and
“unknown” parts in suitable proportion. In the “unknown” part, the simulator is unable to sign, but he can
exploit a forgery in order to solve a hard problem, such as SIS. The technical contribution in [Boy10] was to
embed trapdoors in message-dependent lattices in a certain way, so that the trapdoor cancels unpredictably
but with non-negligible probability.

2

However, simply using the lattice mixing trick is not sufficient, because the possibly large number of
messages allowed in a dataset makes the partitioning technique nearly impossible to succeed with sufficient
probability without additional help. We provide this help in the form of additional degrees of freedom that
come into play precisely when the “trapdoors vanish”. Those additional degrees of freedom can be used to
program the simulator so that it is still able to generate signatures on all possible messages even when the
partitioning trapdoor has vanished, but only one such signature for each possible message.

Since the signatures are exponentially many and the adversary does not know which one the simulator
knows in that case, any forgery will leave us with two distinct signatures, from which a solution to the SIS
problem is easily derived.

Technical results. Performance-wise, our construction is very efficient and features polynomial reduction
efficiency for circuits of polynomially many inputs and polylogarithmic depth, in the adaptive security
model.

Compared with previous workds, our construction inherits the same limitation as [BGG+14] and its suc-
cessors [Wic14, GV14] regarding the exponential loss of reduction efficiency with the depth of the circuits
being homomorphically evaluated. For circuits of polynomial depth, it thus relies on sub-exponential SIS
assumption [BGG+14]. Our construction however provides a direct and efficient (and falsifiable) adaptive
security reduction. In particular, it eschews the need to rely on complexity leveraging, which in the case of
the aforementioned papers would result in a reduction “looseness”—the degree by which an attack against
the scheme can be exploited as an attack against the assumption—that is exponential in both the individual
message length and the allowable dataset size.

Overhead of Fully Homomorphic Signatures. A suboptimal aspect of our construction is that signatures
are proportional in size to that of the data. Many plain signatures whose output is larger than the input have
this property (including RSA, ECDSA, BLS, NTRU), which is mitigated by the use of hashing for long
messages. Still, for plain signatures this could be a problem in specialised applications involving out-of-band
transmission of signatures. With FHS, we argue that small proportionalities between message and signature
sizes are benign, because by the very nature of FHS the data is bound to be very short, and more importantly
the signatures are in a very deep sense indissociable from the underlying data. For these reasons, raising the
combined message-signature size from ` to O(`) bits for FHS is often going to be inconsequential.

For completeness, we mention that it is possible to create context-hiding FHS with very large signature
sizes, generically, from regular signatures and NIZK proofs: essentially by proving knowledge of regular
signatures on the underlying data, and further combining those proofs in zero knowledge to achieve the
homomorphic computation. Unfortunately, this path leads down to highly inefficient constructions while
requiring stronger, quantum-vulnerable assumptions.

1.2 Related Work

Homomorphic authenticators such as signatures and message authentication codes have for several years
been a very active area of research. We briefly recapitulate some of the salient results in this search.

Restricted Homomorphic Signatures. Homomorphic signatures were studied by Johnson et al. [JMSW02]
who proposed redactable signatures and set-homomorphic signatures. Redactable signatures were also stud-
ied later in various works [BFF+09, ALP12]. These schemes have the property that given a signature on a
message, anyone can derive signatures on subsets of the message.

Several studied signatures schemes homomorphic with respect to linear functions [BF11b, AL11, CFW12,
Fre12]. Such signature schemes have interesting applications in network coding [ABBF10] and proofs of

3

retrievability. Boneh and Freeman [BF11a] were the first to propose a scheme that can compute constant-
degree polynomials on signed messages. Ahn et al. [ABC+12] propose a homomorphic signature scheme
for a class of predicates such as quoting, subsets, weighted sum, etc.

(Leveled) Homomorphic Signatures from Lattices. We already mentioned the two recent and concur-
rent works [Wic14, GV14] which address the problem of evaluating arbitrary circuits over signed data. Both
schemes are inspired from the key-homomorphic functional encryption scheme for circuits of [BGG+14]:
indeed key generation in functional encryption can generically be used as a signature that will inherit the se-
curity of the original scheme. Their constructions can be leverage to adaptive security using Chameleon hash
functions, but at the cost of low efficiency. In contrast, we propose a different approach to adaptively secure
FHS, i.e. making use of a new technique for boosting the efficiency and applicability of partitioning-type
proofs [Boy10]. Although our signature size is proportional to the message size, our homomorphic signature
construction is meaningful and non-trivial since we offer the context-hiding property in the following two
aspects. It is obviously that one can use normal signature scheme plus NIZK to achieve adaptively secure
homomorphic signature. However, since there is no intantiation of NIZK based on lattice assumptions, this
work provides a pure lattice-based solution to adaptively secure homomorphic signature. Secondly, our
evaluation algorithm has the same asymptotical efficiency as Gorbunov et al. [GVW14], however we are
more efficient in practice since their evaluation algorithm needs to run the evaluation process on the outcome
of HTDF function for each bit. The computation of HTDF function incurs a cost similar to the evaluation
algorithm. This process would lead to a (multiplicative) polynomial overhead in the security parameter,
whereas our evaluation algorithm saves this cost.

Catalano et al. [CFW14] use multilinear maps to achieve homomorphic signatures in standard model,
with large public parameters. However, their adaptive security model is slightly stronger than ours (for the
tag chosen). However, we leave a remark after Definition 2.2, stating that this is a benign limitation. They
also offer a generic transformation from selectively to adaptive security. Both their scheme and transforma-
tion work only for bounded degree polynomials, and do not generalize to leveled homomorphic signatures.
Our scheme is also more efficient due to our use of SIS instead of multilinear maps.

SNARKs. Another approach to address the homomorphic signature problem is to exploit CS-Proofs [Mic94],
or more generally, succinct non-interactive arguments of knowledge (SNARKs)[BCCT12, BCCT13, BCI+13,
GGPR13, PHGR13, BSCG+13]. SNARKs allow a prove to produce a succinct proof for an NP statement,
such that the verifier can verify the proof in succinct time. Unfortunately, due to a well-known lower bound
by Gentry and Wichs [GW11], SNARKs – even without a “knowledge” requirement – cannot be constructed
from standard assumptions. In this paper, we are interested in constructing fully homomorphic signature
schemes from standard assumptions.

Verifiable Computation. Verifiable computation schemes [GGP10, PHGR13] delegate the computation
of a function f over some input x to a server. Furthermore, the server can produce a succinct proof such that
the client can verify the correctness of the computation result without performing the computation itself. In
verifiable computation, the verifier knows the input x, but does not wish to perform the computation. By
contrast, in our setting, the verifier may not know x – in fact x may be a huge dataset and stored on the
server.

Symmetric-Key Homomorphic MACs. There has also been activity in constructing homomorphic mes-
sage authentication (MACs) for various classes of homomorphisms. Unlike signatures, MACs allow only
private verification, based on a symmetric key. The work initiated by Agrawal and Boneh [AB09] focuses
on network coding applications. The recent paper by Gennaro and Wichs [GW13] defines and achieves

4

fully homomorphic MACs without verification queries using fully homomorphic encryption. More recent
works [CF13, BFR13, CFGN14] show how to get homomorphic MACs that remain secure in the presence
of verification queries, but only for restrictively homomorphic functions.

2 Preliminaries

Notations. Let PPT denote probabilistic polynomial time. We use bold uppercase letters to denote ma-
trices, and bold lowercase letters to denote vectors. We let λ be the security parameter, [n] denote the set
{1, ..., n}, and |t| denote the number of bits in a string or vector t. We denote the i-th bit value of a string
s by s[i]. We use [·|·] to denote the concatenation of vectors or matrices, and || · || to denote the norm of
vectors or matrices respectively.

2.1 Homomorphic Signatures

We adapt the notions [BF11a, GV14] to describe the syntax and security definition of homomorphic signa-
tures. We denote the message space byM, and let C : Ml → M denote a circuit that takes l messages
and outputs a result message inM. A homomorphic signature scheme for the circuit family C is a tuple of
polynomial time algorithms (Setup, Sign,Eval,Verify) specified as follows:

Setup(1λ, 1l): On input the security parameter λ and the maximum size l of a dataset whose messages can
be signed, it outputs a public key pk and a secret key sk.

Sign(sk, τ , i, µ): On input a secret key sk, a tag τ ∈ {0, 1}λ, a message µ ∈ {0, 1} and its corresponding
index i ∈ [l], it outputs a signature σ.

Eval(pk, τ ,µ = (µ1, ..., µl),σ = (σ1, ..., σl), C): On input a public key pk, a tag τ ∈ {0, 1}λ, a sequence
of messages µ and a corresponding sequence of signatures σ, and a circuit C ∈ C, it outputs a derived
signature σ′ which corresponds to the evaluated message C(µ).

Verify(pk, τ , µ, σ, C): On input a public key pk, a tag τ ∈ {0, 1}λ, a message µ, its signature σ, and a
circuit C ∈ C, it outputs 0 (reject) or 1 (accept).

The tags serve to distinguish between different datasets, with the intent being that only signatures with
matching tags be combinable homomorphically. From the user’s viewpoint, the tag is a bit-string of length
λ selected uniformly at random.

Correctness. We say that the C-homomorphic signature HS is correct, if for any tag τ ∈ {0, 1}λ, any
circuit C ∈ C, any set of messages µ ∈Ml, and any index i ∈ [l], we have

Pr[Verify(pk, τ, µ′, σ′, C) = 1] = 1

where (pk, sk) ← Setup(1λ, 1l), σi ← Sign(sk, τ , i, µi), for i ∈ [l], σ′ ← Eval(pk, τ ,µ,σ, C) and µ′ =
C(µ). We remark the circuit C can also be a projection circuit Pi, i.e., Pi(µ1, ..., µl) = µi, which means
that the correctness also must hold for single-message signatures.

2.2 Security Definitions

Adaptive security for homomorphic signatures can be defined in different ways, depending on whether the
adversary is only allowed to make adaptive queries one full message dataset at a time, or can make adaptive
queries on individual messages within a given dataset, possibly even interleaving those queries across several
datasets. We propose the following three security models.

5

Fully adaptive queries at the message level. The strongest model allows the adversary to make signature
queries on messages specified adaptively in any order, regardless of the dataset to which they belong.

Let A denotes any PPT adversary. Let HS be a homomorphic signature scheme for circuit family C.
We define the notion of Existential Unforgeability of Homomorphic Signatures under Full Chosen-Message
Attacks using the following experiment ExptEUF-FH-CMA

A (1λ).

• The challenger runs (pk, sk)← Setup(1λ, 1l) and sends pk to the adversary A.

• Proceeding adaptively, the adversaryA specifies a sequence of signature queries. Each query consists
of:

– a dataset index i ∈ 2λ;

– a message index j ∈ [l], such that the pair (τ i, j) has not been queried before;

– A message µij ∈M.

• The challenger assigns a random tag τ i ∈ {0, 1}λ to the dataset i, if one had not previously been
assigned. (The challenger either maintains a private list of pairs (i, τ i) or statelessly maps i to τ i
using a private PRF under a random indistinguishability PRF assumption.

• The challenger sends back:

– the dataset tag τ i;

– the signature σij ← Sign(sk, τ i, j, µij);

• The adversary A outputs a tuple (τ∗, µ∗, σ∗, C∗).

The adversary wins if Verify(pk, τ∗, µ∗, σ∗, C∗) = 1, and either

1. (Type-A Forgery) τ∗ 6= τi for all i, or

2. (Type-B Forgery) τ∗ = τi for some i, but µ∗ 6= C∗(µi), where µi = (µi1, ..., µil) is the vector of
messages queried under a common tag τi but differing indices j ∈ [l].

Definition 2.1 (Existential unforgeability against fully adaptive chosen-message attacks). We say a ho-
momorphic signature scheme HS is fully unforgeable against adaptive message queries with respect to a
circuit family C if no PPT adversary A can win the experiment ExptEUF-FH-CMA

A (1λ) with non-negligible
probability.

Sequentially adaptive queries at the message level. We can relax the above model by requiring the
adversary to make all its message queries within a dataset before moving to the next dataset. Messages are
still chosen adaptively within a dataset, and so are the datasets themselves. We omit the formal definition
since we do not use this model in our construction.

Adaptive queries at the dataset level. The weaker form of adaptive security we consider requires the
adversary to query all the messages in a dataset at once. Queries now consist of (ordered) message vectors
µi = {µi1, ...µil} representing a dataset. The choice of datasets themselves remains adaptive from one
query to the next.

Formally, we define the notion of Existential Unforgeability of Homomorphic Signatures under Chosen-
Dataset Attacks using the following experiment ExptEUF-FH-CDA

A (1λ):

• The challenger runs (pk, sk)← Setup(1λ, 1l) and sends pk to the adversary A.

6

• Proceeding adaptively, the adversaryA specifies a sequence of signature queries. Each query consists
of:

– a dataset given as an l-message vector µi = {µi1, ...µil};

• The challenger sends back:

– a randomly chosen dataset tag τ i;

– a signature vector σi = {σij}j∈[l] where σij ← Sign(sk, τ i, j, µij).

Definition 2.2 (Existential unforgeability against adaptive chosen-dataset attack). We say a homomorphic
signature schemeHS is fully unforgeable against adaptive dataset queries with respect to a circuit family C
if no PPT adversary A can win the experiment ExptEUF-FH-CDA

A (1λ) with non-negligible probability.

For simplicity of presentation, we shall first focus on constructing and proving the relaxed EUF-FH-
CDA notion of adaptive security. In the Extensions section we show the modifications to apply in order to
construct and prove the strict EUF-FH-CMA notion of adaptive security.

Toward fully secure key-homomorphic functional encryption. One common limitation of the above
models is that they require random tags τ i, rather than tags chosen by the adversary, or tags that would be
otherwise predictable. For signature purposes, this is a benign limitation, as the signer can safely choose
the tag in an unpredictable way without impairing functionality. However, the random-tag restriction is the
critical technical limitation that prevents us from applying the techniques in this paper, to the (selectively
secure) key-homomorphic functional encryption of Boneh et al.[BGG+14], in order to make it adaptively
secure. The problem of constructing an adaptively secure key-homomorphic functional encryption scheme
for circuits remains open.

2.3 Privacy Definition

The property of context-hiding in this scenario means that, given signatures on a data set µ ∈ Ml, derived
signatures on messages C1(µ), ..., Cs(µ) do not leak any information about µ beyond what is revealed by
C1(µ), ..., Cs(µ). Note that we are not trying to hide the fact the derivation took place; we are merely hiding
the original data set µ. The definition of context hiding is as follows:

Definition 2.3 (Context-hiding). We say a homomorphic signature scheme for circuit C is context hiding, if
there exists additional PPT algorithms σ′ ← ReRand(pk, µ, σ, τ , C) and RVerify(pk, τ, µ, σ, C) such that:

• Correctness: For any (pk, sk) ← Setup(1λ, 1l), and any message/tag/signature tuple such that
Verify(pk, τ , µ, σ, C) = 1, we have

RVerify(pk, τ , µ,ReRand(pk, µ, σ, τ , C), C) = 1

• Unforgeability: The unforgeability of homomorphic signature scheme still holds when we replace
original verification algorithm with RVerify in the security game.

• Context-hiding: For any fixed (pk, sk) ← Setup(1λ, 1l), and any message/tag/signature tuple such
that Verify(pk, τ , µ, σ, C) = 1, there is a simulator Sim, it holds

ReRand(pk, µ, σ, C) ≈ Sim(sk, µ, τ)

7

2.4 Lattices

A full-rank m-dimensional integer lattice Λ ⊂ Zm is a discrete additive subgroup whose linear span is Rm.
The basis of Λ is a linearly independent set of vectors whose linear combinations are exactly Λ. Every integer
lattice is generated as the Z-linear combination of linearly independent vectors B = {b1, ..., bm} ⊂ Zm.
For a matrix A ∈ Zn×mq , we define the “q-ary” integer lattices:

Λ⊥q = {e ∈ Zm|Ae = 0 mod q}, Λu
q = {e ∈ Zm|Ae = u mod q}

It is obvious that Λuq is a coset of Λ⊥q .
Let Λ be a discrete subset of Zm. For any vector c ∈ Rm, and any positive parameter σ ∈ R, let

ρσ,c(x) = exp(−π||x − c||2/σ2) be the Gaussian function on Rm with center c and parameter σ. Next,
we set ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,x over Λ and DΛ,σ,c(y) :=

ρσ,c(y)
ρσ,c(Λ) . We

abbreviate σ in the ρσ,c and Dσ,c when σ = 0.
Let Sm denote the set of vectors in Rm+1 whose length is 1. Then the norm of a matrix R ∈ Rm×m

is defined to be supx∈Sm ||Rx||. Then we have the following lemma, which bounds the norm for some
specified distributions.

Lemma 2.1 ([ABB10]). Regarding the norm defined above, we have the following bounds:

• Let R ∈ {−1, 1}m×m be chosen at random, then we have Pr[||R|| > 12
√

2m] < e−2m.

• Let R be sampled from DZm×m,σ, then we have Pr[||R|| > σ
√
m] < e−2m.

Below, we recall some classical technique and result that can reduce the norm of matrix, but still pre-
serves the result of multiplications. For simplicity, we define the algorithms regarding vectors as input, but
they can also be applied to matrix by taking the column vectors of matrix as input.

• BitDecomp(r ∈ Zm, q) decomposes r into its bit representation, namely r =
∑blog qc

i=0 2i · ui, where
ui ∈ {0, 1}m, and outputs (u0, ...,ublog qc).

• Powersof2(r ∈ Zm, q) outputs the vector (r, 2 · r, ..., 2blog qc · r).

Lemma 2.2 ([BGV12]). For vectors c, s of equal length, we have

〈BitDecomp(c, q),Powersof2(s, q)〉 = 〈c, s〉 (mod q)

where 〈·, ·〉 is the inner product of vectors.

Randomness extraction. We will use the following lemma to argue the indistinghishability of two differ-
ent distributions, which is a generalization of the leftover hash lemma proposed by Dodis et al. [DRS04].

Lemma 2.3 ([ABB10]). Suppose that m > (n + 1) log q + w(log n). Let R ∈ {−1, 1}m×k be chosen
uniformly at random for some polynomial k = k(n). Let A,B be matrix chosen randomly from Zn×mq ,Zn×kq

respectively. Then, for all vectors w ∈ Zm, the two following distributions are statistically close:

(A,AR,RTw) ≈ (A,B,RTw)

8

Small Integer Solution. The SIS problem was first suggested to be hard on average by Ajtai [Ajt99] and
then formalized by Micciancio and Regev [MR04].

Definition 2.4 (SIS). For any n ∈ Z, and any functions m = m(n), q = q(n), β = β(n), the average-case
Small Integer Solution problem (SISq,n,m,β) is: Given an integer q, a matrix A ∈ Zn×mq chosen uniformly
at random and a real β ∈ R, find a non-zero integer vector z ∈ Zm \ {0}, such that Az = 0 mod q and
||z|| ≤ β.

Micciancio and Regev [MR04] showed that solving the average-case SISq,n,m,β problem for certain
parameters is as hard as approximating the Shortest Independent Vector Problem in the worst case to within
certain γ = β · Õ(

√
n) factors.

Trapdoors and sampling algorithms. We will use the following algorithms to sample short vectors from
specified lattices. First, there is a public gadget matrix G ∈ Zn×mq along with a “good” base TG, as
introduced in [MP12], with special structure for which everyone can efficiently compute a “short” matrix
G−1(V) (here we abuse the notation G−1(·) as an m×m matrix), such that G ·G−1(V) = V.

Lemma 2.4 ([GPV08]). Let q, n,m be positive integers with q ≥ 2 and m ≥ 6n log q. There exists a PPT

algorithm TrapGen(q, n,m) that with overwhelming probability outputs a pair (A ∈ Zn×mq ,TA ∈ Zm×m)

such that A is statistically close to uniform in Zn×mq and TA is a basis for Λ⊥q (A) satisfying ||TA|| ≤
O(n log q).

Lemma 2.5 ([CHKP10, ABB10]). Let q > 2,m > n and s > ||TA|| · w(
√

logm+m1). There are two
algorithms as follows:

1. e ← SampleLeft(A,B,TAu, s): It takes in A ∈ Zn×mq , a short basis TA for lattice Λ⊥q (A), a
matrix B ∈ Zn×m1

q , a vector u ∈ Znq and a Gaussian parameter s, then outputs a vector e ∈ Zm+m1
q

such that e ∈ Λuq (F), where F := (A|B), and is statistical close to DΛu
q (F),s.

2. e ← SampleRight(A,B,R,TB,u, s): It takes in A ∈ Zn×mq ,R ∈ Zm×nq , a matrix B ∈ Zn×nq , a
short basis TB for lattice Λ⊥q (B), a vector u ∈ Znq and a Gaussian parameter s, then outputs a vector
e ∈ Zm+n

q such that e ∈ Λu
q (F), where F := (A|AR + B), and is statistical close to DΛu

q (F),s

3. There is a deterministic polynomial-time algorithm ExtBasis(A,S,A′) that takes in an arbitrary
A ∈ Zn×mq , whose columns generate the entire group Znq , an arbitrary basis S ∈ Zm×m of Λ⊥(A),
then outputs a basis S′ of Λ⊥(A|A′), such that ||S|| = ||S′||. Moreover, the same holds even for any
given permutation of columns of A′.

3 Construction

Recall that to each dataset must be associated a unique random tag τ , used for signing and verification. In
our construction, the tag τ shall consist of two parts: t ∈ {0, 1}λ and b ∈ {0, 1}l, where for convenience
we fix the first bit t[0] = 0.

The first component t is used with the ”lattice mixing” technique of [Boy10] to provide adaptive security
over the choice of datasets. The second component b is needed to prove adaptive security. More specifically,
we leverage vector b to provide enough degrees of freedom such that the reduction can pre-sample signatures
for all possible adaptive chosen messages. (We refer to these latter forgeries as Type III forgeries in the proof
of security; they are a special case of Type I forgeries as defined above.)

Our C-homomorphic signature schemesHS can be described as follows:

9

• Setup(1λ, 1l, 1|τ |, 1dmax): The setup algorithm takes in the security parameter λ, the maximum num-
ber l of inputs for the circuit family C, the number of bits |τ | for the tag (where |τ | = |t|+|b| normally
= λ+ l), and the maximum depth dmax of the circuit family C.

1. Set the lattices parameters n = n(λ, dmax), q = q(n, dmax), m = m(n, dmax). Let the Gaus-
sian parameters be s1 = s1(n) and s2 = s2(n).

2. Sample 2l + 1 random matrices A and {Di,b}i∈[l],b∈{0,1} in Zn×mq , and |t| random matrices
{Ti}i∈[|t|] from Zn×mq .

3. Sample one matrices with their associated trapdoors:

(A∗,TA∗)← TrapGen(1n, 1m, 1q)

4. Output the public key pk = (A,A∗,G, {Di,b}i∈[l],b∈{0,1}, {Ti}i∈[|t|]) and the secret key sk =
TA∗ .

• Sign(sk, τ , µ, i): The signing algorithm takes in a secret key sk, a tag τ , a message m, and a message
index i (respective to the dataset specified by the tag τ).

1. Parse τ as τ = [t|b] ∈ {0, 1}λ × {0, 1}l. Ensure that the tag’s first bit τ [0] = 0.

2. Define the n×m matrix T :=
∑|t|

i=0(−1)t[i]Ti.

3. Let At := [A∗|A + T] denote the dataset matrix.

4. Sample a matrix [R2|R1] ∈ Z2m×m using,

[R2|R1]← SampleLeft(A∗,At,TA∗ ,Di,b[i] + µG, s2)

Therefore, it holds

[A∗|A + T]

[
R2

R1

]
= Di,b[i] + µG

5. Output the signature σi = [R2|R1].

Recall that matrices DC serve to “bind” any circuit C to a signature. Here, the matrix Di,b[i] binds
the signature to the (trivial) projection circuit that selects the i-th message µi from the dataset µ. Two
observations are in order: (1) Sign is only input the message mi and its index i, not the whole dataset
µ which need not be know at this stage; (2) the circuit-encoding matrix Di,b[i] is one of two possible
choices, selected by the tag bit b[i] which is supplied as input to Sign and shall likewise be available
for verification.

• Verify(pk, τ , µ, σ, C): The verification algorithm takes in a public key pk, a tag τ , a message/signature
pair (µ, σ), and a circuit C. It outputs 1 only if the following two requirements are satisfied:

1. Parse the tag τ = (t|b) ∈ {0, 1}λ+l and signature σ = [R1|R2] ∈ Z2m×m and verify that
t[0] = 0. Verify that ||R|| ≤ B.

2. Let At := [A∗|A+T], where T :=
∑|t|

i=0(−1)t[i]Ti, and DC denote the public matrix associ-
ated with the circuit C as computed by the evaluation algorithm defined below. Check that

AtR = DC + µG (mod q)

Here, generally µ will be the message resulting from the circuit evaluation µ = C(µ), and σ the
corresponding signature homomorphically evaluated from the dataset signature vector σ = {σi}i∈[l].

10

• Eval(pk, τ ,µ,σ, C): The evaluation algorithm takes in a public key pk, a tag τ = (t|b), a pair of
message/signature vectors (µ,σ), and a circuit C.

1. Suppose the gate is g = (u, v, w) is a NAND gate. For each wire in the gate, let Di be the public
matrix associated with that wire. Also construct the dataset matrix At := [A∗|A + T], where
T :=

∑|t|
i=0(−1)t[i]Ti.

2. By induction on the (b-tag-dependent) public matrix associated with each wire, we have (Ru,Rv)
such that:

AtRu = Du + xG, AtRv = Dv + yG

where (x, y) are the values carried by wires (u, v).

3. Define the public matrix associated with output wire w as Dw := DvD̃u − G, where D̃u =
G−1(Du) ∈ Zm×m, so that GD̃u = Du.

4. Output the homomorphic signature:

Rw := RvD̃u − yRu

3.1 Correctness

We show that (with lattice parameters as specified later on in Section 4.4) our construction satisfies the cor-
rectness condition defined above, which means that the verification algorithm accepts an honestly computed
homomorphic signature. We adapt the induction method presented in [GV14] to state our claim.

Lemma 3.1. Let At be the dataset matrix, DC be the public key derived with respect to the circuit C, and
σ = R ∈ Z2m×m denote the homomorphically computed signature. Then, as we require in the verification
algorithm:

At ·R = DC + C(µ)G

Proof. Without loss of generality, we consider NAND gates g = g(u, v, w) with input wires u, v carrying
input values x, y respectively, and with output wire w.

Base case. Let σ = [R2|R1] be the signature for message m under tag τ = (t|b), then we have, by
construction of the algorithm Sign:

[A∗|A + T]

[
R2

R1

]
= Di,b[i] + µG

where (A,A∗,G, {Di,b}, {Ti}) are generated in the Setup algorithm, and T :=
∑|t|

i=0(−1)t[i]Ti. By
definition the matrix Di,b[i] encodes the projection circuit for the i-th input parameterized by tag b.

Inductive step. Let matrix Ru,Rv be signatures for messages x, y respectively, under public keys Du,Dv,
such that

AtRu = Du + xG, AtRv = Dv + yG

Let
Rw = RvD̃u − yRu, Dw := DvD̃u −G

then we must show that
AtRw = Dw + (x NAND y)G

11

Indeed, we have

At ·Rw = At(RvD̃u − yRu)

= (Dv + yB)D̃u − y(Du + xG)

= DvD̃u − xyG
= Dw + (1− xy)G

= Dw + (x NAND y)G

This establishes the lemma, and thus correctness of the signature scheme.

4 Security Proof

In this section, we prove the unforgeability of our scheme against chosen dataset attacks. Later in Section 5,
we describe how to modify our construction to achieve the stronger notion of unforgeability against fully
adaptive chosen message attacks.

4.1 Intuition

We now explain the intuition behind our proof. Assume there exists a PPT adversary A who wins the
unforgeability security game defined above, we construct an reduction B which can leverage the adversary
A to break the SISq,n,m,β assumption for lattice defined by the basis A∗. The careful reader may have noted
that the key difference between our construction and that of counterpart in [GV14] is the following: 1) the
introduction of matrix Ti’s in the public key; and 2) the introduction of the vector b as part of the tag.
Both are essential in the adaptive security proof. First, the matrix Ti in the public key allow us to rely on a
lattice mixing and vanishing trick [Boy10, ABB10]. Second, the introduction of vector b tag creates enough
degrees of freedom such that the reduction can “pre-sample” signatures in the simulation without knowing
what message the adversary will query ahead of time.

As noted earlier in Definition 2.1, there are two types of forgeries, Type A and Type B forgeries. In the
security proof, we will further divide the forgeries into three different types:

• Type-I forgery: adversary A submits a forgery tuple (τ ∗ = (t∗|b∗), µ∗, σ∗, C∗), where the tag t∗ has
not appeared in an answer to a previous query.

• Type-II forgery: adversaryA submits a forgery (τ ∗, µ∗, σ∗, C∗), where τ ∗ = (t∗|b∗) comes from the
answer to a previous query, but µ∗ 6= C∗(µ∗) where µ∗ is the message corresponding to tag τ ∗.

• Type-III forgery: adversary A submits a forgery ((t∗|b∗),m∗, σ∗, C∗), where t∗ was queried before,
but b∗ was not ever used.

In particular, the union of Type I and Type III correspond to Type A in Definition 2.1. Type II corresponds
to the Type B in Definition 2.1.

Type I forgery is handled using the standard lattice mixing trick [Boy10] for proving adaptive security.
Basically, the reduction chooses the public parameters Ti’s as A∗Si + hiG For each signing query made
by the adversary, the reduction will randomly select a t tag such that if the following good event happens:
At = A∗U+ hG for a zero scalar h, then the reduction will be able to use the public trapdoor TG of G to
answer the signing queries. Finally, when the adversary forges a signature for an unseen t tag, if the good
event At = A∗U+hG for a non-zero scalar h happens – then the reduction can easily leverage the forgery
to break SIS. The reduction aborts if a bad event happens during the simulation. Using a standard argument

12

[Boy10] we show that the the probability that the reduction completes the simulation without aborting is
non-negligible.

For Type II forgery, the reduction will randomly guess the query c∗ whose tag t∗ the adversary will
inherit in the forgery. For the c∗-th query, the reduction will embed a tag t∗ such that At∗ = A∗U (or
abort). In this case, the reduction cannot compute signatures using the honest algorithm since it does not
have a trapdoor TA∗ for matrix A∗. Here, the reduction will crucially rely on the existence of the b tag to
pre-select signatures for any possible message submitted in the c∗-th query. Namely, for each coordinate
(i, b), i ∈ [l], b ∈ {0, 1}, the simulator pre-selects a random mapping πi : {0, 1} → {0, 1}, such that
Di,πi(b) will be used if mi = b in the c∗-th query. During the setup, the challenger randomly generates the
signatures first for the c∗-th query, and then computes the matrix Di,b, i ∈ [l], b ∈ {0, 1} values based on the
pre-selected signatures. In this case, if the adversary makes a forgery, we show that it can help the reduction
break SIS.

For Type III forgery, the reduction performs the simulated setup in the same way as Type II forgery, by
pre-selecting the signatures for the c∗-th query, where c∗ is guessed by the reduction at the beginning of
the simulation. In the end, the adversary will forge a signature for the tag t∗, but with a different b tag. In
this case, even though the reduction can answer queries for any message submitted in the c∗-th query, we
can still leverage the adversary to break SIS. This is due to the fact that the adversary (computationally) has
no information about the reduction’s pre-selected signatures that have not been revealed to the adversary.
Therefore, except with negligible probability the forgery made by adversary differs from the pre-selected,
unseen signatures or their derivatives.

4.2 Unforgeability Proof

Theorem 4.1 (Unforgeability). Assuming the hardness of SISq,n,m,β , the homomorphic signature scheme
described satisfies adaptive unforgeability against chosen dataset attacks as defined in Definition 2.2.

Proof. The description of reduction B is as follows:

• Invocation. ReductionB is invoked on a random instance of the SISq,n,m,β assumption, i.e., A∗ ∈ Zn×mq ,
and is asked to return an solution e ∈ Zm, such that A∗e = 0 mod q, and 0 6= ||e|| ≤ β.

• Setup. Reduction B runs the following algorithm Setup′(1λ, 1l, 1|τ |, 1dmax) using the matrix A∗ from
the SIS challenge:

1. Set the parameters q, n,m,B according to the SISq,n,m,β . Let s1 = s1(n), s2 = s2(n) denote the
Gaussian parameters.

2. Guess the type of forgery submitted by adversary A. Based on the guess, the reduction B continues
with one of the following three subroutines:

– Type I forgery: Randomly select |t| small matrix {Si} ∈ Zm×m, which can be done by sampling
column by column from DZn,s. Pick |t| uniformly random scalars h0, ..., h|t| ∈ Zq with the restric-
tion that h0 = 1, and randomly select 2l + 1 matrices Ui,b,U ∈ {−1, 1}m×m, and set A = A∗U.
Then set the public key:

pk = (A,A∗,G, {Di,b = A∗Ui,b}i∈[l],b∈{0,1}, {Ti = A∗Si + hiG}i∈[|t|])

– Type II and Type III forgery: Randomly select |t| small matrices {Si} ∈ Zm×m, a binary matrix
U ∈ {−1, 1}m×m, and |t| uniformly random scalars h0, ..., h|t| ∈ Zq with the restriction that h0 =

1. Set Ti = A∗Si+hiG, for i ∈ |t|. Then randomly select a tag t∗. Set A = A∗U−
∑

i(−1)t
∗[i]Ti.

13

Sample [Ri,2,b|Ri,1,b]
T ← (DZm,s2)2m for i ∈ [l], b ∈ {0, 1}. Pick a random binary permutation

πi : {0, 1} → {0, 1}, for i ∈ [l], and set:

Di,πi(b) = [A∗|A∗U]

[
Ri,2,b

Ri,1,b

]
− bG ∀i ∈ [l], ∀b ∈ {0, 1}

Finally, randomly select a counter value c∗, and initialize a counter c = 0. The public key is output
as:

pk = (A∗,A,G, {Di,b}i∈[l],b∈{0,1}, {Ti = A∗Si + hiG}i∈|[t]|)

• Queries. Reduction B answers adaptive message queries from A on any message m as follows. The
answers are constructed differently depending on the setup-time guess by reduction B as to the type of
forgery it will be given.

– Type I forgery: Reduction B answers queries µ as follows:

1. Choose a random tag τ = (t|b) ∈ {0, 1}λ+l with the restriction that t[0] = 0.
2. Compute the matrix Tt =

∑
i(−1)t[i]Ti. Also compute the scalar ht =

∑
i(−1)t[i]hi, and if

ht = 0 then abort this simulation.
3. Compute the dataset matrix

At = [A∗|A + Tt]

4. For all i ∈ [l], compute the signature σi = [R2|R1] as follows:

[RT
2 |RT

1]T ← SampleRight(A∗,G,U +
∑
i

(−1)t[i]Si,TG,Di,b[i] + µiG, s2)

5. Output the tag τ = (t|b) and the signature vector σ = {σi}i∈[l].
6. Increment the counter c.

– Type II and Type III forgery: Reduction B answers queries µ as follows:
If the counter c 6= c∗, pick a random tag t and check if ht :=

∑
i(−1)t[i]hi − (−1)t

∗[i]hi mod q is
equal to 0. If so, abort. Otherwise, continue to answer the queries using the trapdoor TG for G, in a
similar fashion as in answering Type 1 queries.
Otherwise, if c = c∗, proceed as follows:

1. Set b[i] = πi(µi) for i ∈ [l], and set the tag τ = (t∗|b) where t∗ is the special tag selected at setup
time for Type II forgeries. Output the resulting tag τ .

2. Output the signature vector σ = {σi = [RT
i,2,µi
|RT

i,1,µi
]T }i∈[l] taken from the signatures pre-

generated in the Type II setup phase.

Regardless of which case, increment the counter c.

• Forgery. Reduction B receives from A a forgery tuple (τ ∗ = (t∗|b∗), µ∗, σ∗, C∗).

1. If the type of forgery submitted by adversary A is different than the type that reduction B initially
guessed, then abort the simulation.

2. Otherwise, construct a solution to the SISq,n,m,β challenge as follows:

– Type I forgery: In this case, the adversary A never asked to sign any messages according to chal-
lenge tag t∗. Compute the tag matrix and scalar:

T∗ =
∑
i

(−1)t[i]Ti, h∗ =
∑
i

(−1)t[i]hi

14

If h∗ 6= 0 mod q, abort this simulation (we could have aborted during setup, when the tag t∗ was
selected). We show that the completion probability with respect to this is non-negligible in Lemma
4.3. Otherwise, we have

[A∗|A∗(U +
∑
i

(−1)t
∗[i]Si)]

[
R∗2
R∗1

]
= DC + µ∗G

Rearranging and applying Lemma 4.4, which shows DC = A∗UC + kG, we can obtain

A∗(R∗2 + (U +
∑
i

(−1)t
∗[i]Si)R

∗
1 −UC) = (k + µ∗)G

Since there are exponentially many choices of Sis that would result in the same view of the adversary
(including choice of Tis and answers to queries). Therefore, the probability that the term on the right
hand side, i.e R∗2 + (U +

∑
i(−1)t

∗[i]Si)R
∗
1 − UC) vanishes is negligible. If k + µ∗ = 0, then

output (R∗2 + (U +
∑

i(−1)t
∗[i]Si)])R

∗
1 − UC) as the solution for SIS-instance A∗, otherwise,

output (R∗2 + (U +
∑

i(−1)t
∗[i]Si))R

∗
1 −UC)TG as the solution.

– Type II forgery: In this case, the adversary A submits the forgery tuple (τ ∗, σ∗, µ∗, C∗), where the
tag τ ∗ = (t∗|b∗) has been used for generating signatures for messages µ∗ before, and C(µ∗) 6= µ∗.
If the challenge tag is not t∗ which is chosen at the Setup phase, then abort this simulation. Then,
reduction B uses the sequence of signature/message pairs presampled in the setup phase, which has
been queried under tag t∗ to honestly compute σ′ by

σ′ = [R′2|R′1]T ← Eval(pk, t∗,σ∗,µ∗, C∗)

Per correctness, we have

At

[
R′2
R′1

]
= DC∗ + C∗(µ∗)G

At

[
R∗2
R∗1

]
= DC∗ + µ∗G

Since σ∗ is a forged signature on a different message µ∗ 6= C∗(µ∗), it follows that σ′ − σ∗ is
necessarily non-zero. Thus, we have

At

[
R′2 −R∗2
R′1 −R∗1

]
= (C∗(µ∗)− µ∗)G

By definition of type II forgery, C(µ∗) 6= C(µ∗), hence, the right hand side of the above equation
cannot be 0. Therefore, by expanding the matrix At and rearranging, we can get

A∗((R′2 −R∗2) + U(R′1 −R∗1)) = (C∗(µ∗)− µ∗)G

Output ((R′2 −R∗2) + U(R′1 −R∗1))TG as the SIS solution for matrix A∗.
– Type III forgery: In this case, the adversary submits the forgery tuple (τ ∗ := (t∗|b∗), σ∗, µ∗, C∗),

where the tag t∗ has been used for generating signatures for messages µ∗ before, but b∗ is not equal
to the b used in the corresponding query. If the challenge tag is not t∗ which is chosen at the Setup
phase, then abort this simulation. Otherwise, we have

[A∗|A∗U]

[
R∗2
R∗1

]
= DC∗ + µ∗G

15

where DC∗ is computed by using {Di,b∗[i]}i∈[l] in the evaluation algorithms, and by Lemma 4.4 and
rearranging, we have

A∗(R∗2 + UR∗1 −UC) = (k + µ∗)G

The argument for
Pr[R∗2 + UR∗1 −UC = 0] = negl(λ)

is the same as in the Type I forgery, so we omit it here. However, our argument here also relies on
the requirement that b∗ 6= b. We show that

Pr[R∗2 + UR∗1 −UC 6= 0 | b 6= b∗] = negl(λ)

for two reasons. First, by Lemma 4.2 proved below, matrix {Di,b∗[i]}i∈[l] is indistinguishable from
their counterpart in the real scheme, thus it reveals negligible information about the pre-selected
signatures. Secondly, if adversary A selects a different b, then by computation in Lemma 4.4, UC

has negligible possibility to be R∗2 +UR∗1. Therefore, if k+µ∗ = 0, then output (R∗2 +UR∗1−UC)
as the solution for SIS-instance A∗, otherwise, output (R∗2 + UR∗1 −UC)TG as the solution.

Lemma 4.2. Let (pk, {σi}) be the output in the real execution, and (pk∗, {σ′
i}) be the output in the simu-

lated execution described above, We show that the two distributions are statistically indistinguishable.

Proof. Although we describe three different types of forgeries above, we may notice that the public key pk
and signing algorithm for Type II and Type III forgery are identical. Therefore, we only analyze the first two
types of forgery regarding (pk∗, {σ′

i}).

Type I forgery. The differences between real execution and simulation can be summarized as follows:

• In real Setup, matrix A∗ is sampled from algorithm TrapGen together with its trapdoor TA∗ . How-
ever, in the simulated Setup algorithm, matrix A∗ is chosen by the SIS generator without its trapdoor
TA∗ .

• In real Setup, matrix (A, {Di,b}i∈[l],b∈{0,1}, {Ti}i∈[|t|]) are chosen uniformly at random. However, in
the simulated Setup algorithm, matrix A = A∗U for a uniformly random matrix U ∈ {−1, 1}m×m.
For i ∈ [l], b ∈ {0, 1}, Di,b = A∗Ui,b for uniformly random matrix Ui,b ∈ {−1, 1}m×m. Also for
i ∈ [|t|], Ti = A∗Si + hiG for Si ∈ DZm×m,s and random scalars hi ∈ Zq with the restriction
h0 = 1.

• In the real Sign algorithm, every vector of signatures σi is obtained by using SampleLeft algorithm
and a trapdoor for matrix A∗. However, in the simulated Sign algorithm, the signatures σi is obtained
by using SampleRight algorithm and a trapdoor for G.

We now argue that the distribution (A,A∗,G, {Di,b}i∈[l],b∈{0,1}, {Ti}i∈[|t|]) is statistically indistinguish-
able in real and simulated execution. By the property shown algorithm TrapGen in Lemma 2.4, A∗ is
distributed statistically close to uniform. Let A′ = [A|T0| · · · |T|t||D1,0|D1,1| · · · |Dl,1]. Then, by Lemma
2.3, it holds that

(A∗,A′) ≈ (A∗, [A∗U|A∗S0 + G|A∗S1 + h1G| · · · |A∗U1,0| · · · |A∗Ul,1])

Matrix G is public and fixed for both cases. In conclusion, pk in real execution is statistically indistinguish-
able from pk′ in the simulated execution.

16

For the signing algorithm in both executions, consider a signing query on messages µ. Note that the
simulation aborts only if ht = 0, which happens with negligible probability. Let At = [A∗|A+Tt], where
Tt =

∑
i(−1)t[i]Ti for a randomly chosen t. Let C = Di,b[i] +µiG be the coset defined by message µi for

a randomly chosen b. By Lemma 2.5, for sufficiently large Gaussian parameter s2, the outputs of algorithms
SampleLeft and SampleRight are distributed statistically close toDΛAt+C,s2 . Therefore, we prove the claim
for Type I forgery.

Type II and Type III forgery. We start the analysis for Type II (and Type III) by summarizing the differ-
ences between real and simulated executions:

• In the real Setup, matrix A∗ is sampled from algorithm TrapGen together with its trapdoor TA∗ .
However, in the simulated Setup algorithm, matrix A∗ is chosen by the SIS generator without its
trapdoor TA∗ .

• In the real Setup, matrix (A, {Di,b}i∈[l],b∈{0,1}, {Ti}i∈[|t|]) are chosen uniformly at random. How-
ever, in the simulated Setup algorithm, for i ∈ [|t|], Ti = A∗Si+hiG for Si ∈ DZm×m,s and random
scalars hi ∈ Zq with the restriction h0 = 1, matrix A = A∗U−

∑
i(−1)t

∗[i]Ti for a uniformly ran-

dom matrix U ∈ {−1, 1}m×m. For i ∈ [l], b ∈ {0, 1}, matrix Di,πi(b) = [A∗|A∗U]

[
Ri,2,b

Ri,1,b

]
− bG

for a random binary permutation π : {0, 1} → {0, 1}, and [Ri,2,b|Ri,1,b]
T ← (DZm,s2)2m for

i ∈ [l], b ∈ {0, 1}.

• The simulated signing algorithm in Type II is the same as in Type I forgery for c 6= c∗, which means we
only need to show that the signatures distributions in both executions are statistically indistinguishable
for c∗.

We now argue that the distribution (A,A∗,G, {Di,b}i∈[l],b∈{0,1}, {Ti}i∈[|t|]) is statistically indistinguish-
able in real and simulated execution. By the property shown algorithm TrapGen in Lemma 2.4, A∗ is
distributed statistically close to uniform. Let A′ = [A|T0| · · · |T|t||D1,0|D1,1| · · · |Dl,1]. Then by Lemma
2.3, it holds that

(A∗,A′) ≈ (A∗, [A∗U|A∗S0 + G|A∗S1 + h1G|...|A∗(R1,2,0 + UR1,1,0)− bG| · · ·]

Matrix G is public and fixed for both cases. In conclusion, pk in real execution is statistically indistinguish-
able from pk′ in the simulated execution.

For the signing algorithms in both executions, as we analyzed above, we only need to consider the case
where c = c∗, which is the challenge messages. However, even with the public key, the signatures on
challenge messages are statistically close to real execution by Lemma 2.5. Together with these two cases,
we prove the claim for Type II (and Type III) forgery.

Lemma 4.3. For a prime modulus q = q(λ) and a number of queries Q > 0, the simulation completes both
the Queries and Forgery phases without aborting, with probability

1

q
(1− Q

q
) ≤ Pr[Completion] ≤ 1

q

where Q is the number of queries made by adversary. In particular, when Q ≤ q
2 , this probability is

Pr[Completion] ∈ [1
2q ,

1
q] regardless of the adversary’s strategy.

Proof. Although the way we apply the scalar is different from the scenario in [Boy10], but the proof stays
exactly the same. Therefore, we omit the proof here.

17

We adapt the similar lemma in [GV14], and state a more general case below:

Lemma 4.4. Let C be an arbitrary circuit with at most l bit input and one bit output. Let A∗,G ∈ Zn×mq .
For all three type forgeries above, fix the public key for all input wires asDi,b = A∗Ui,b+kB, for some low
norm matrix Ui,b, where i ∈ [l], b ∈ {0, 1}. For each gate g = (u, v, w), assume input public keys Du,Dv

are fixed and let
Dw = DvPBitDecomp(Du)−G

where P is of low norm, satisfying GP = Powersof2(In). Then, the public key associated with the output
wire of the circuit C is of the form A∗UC + kG, where UC is of low norm and k ∈ Z.

Proof. Instead of sampling one array of matrix Di in [GV14], in the security proof described above, we
sample two sequences of matrix Di,b, b ∈ [l] in all three types of forgeries. However, since the main proof
of this lemma stays almost the same as in [GV14], thus we only sketch the proof as follows:

Base case. We divide the base case into two sub-cases which corresponds to our unforgeability proof
described above:

• Type I forgery: The public key associated with each input wires is Di,b = A∗Ui,b, where Ui,b ∈
{−1, 1}m×m. Thus, it certainly satisfied the form A∗UC + kG with k = 0.

• Type II and III forgery: The public key associated with each input wires is

Di,πi(b) = [A∗|A∗U]

[
Ri,2,b

Ri,1,b

]
− bG ∀i ∈ [l], ∀b ∈ {0, 1}

where [Ri,2,b|Ri,1,b]
T ← (DZm,s2)2m, and U ∈ {−1, 1}m×m. Thus, by re-arranging, we can say that

it still satisfies the form A∗UC + kG with k = 0 or 1.

Induction step. Now consider a gate g = (u, v, w), where the public keys Du,Dv satisfies Du =
A∗Uu + iuB,Du = A∗Uu + iuB for some integers iu, iv. Then we have

Dw = DvPBitDecomp(Du)−G

= (A∗Uv + ivG)PBitDecomp(Du)−G

= A∗UvPBitDecomp(Du) + ivPowersof2(In)BitDecomp(Du)−G

= A∗(UvPBitDecomp(Du) + Uu) + iwG

By analyzing the norm of Uw = UvPBitDecomp(Du) + Uu, we have ||Uw|| = O(s1m
3). Therefore, by

induction, the norm of UC should be O(s1m
O(dmax)).

4.3 Context Hiding Proof

Our scheme also satisfies the Definition 2.3 of context hiding, which means a evaluated signature σ does
not reveal any additional information about the underlying data µ beyond the output C(µ). We show how
to achieve this property statistically by applying the re-randomization technique introduced in [GVW14] to
our construction below.

Theorem 4.5 (Context hiding). The homomorphic signature scheme described above is context hiding.

Proof. We first augment the public key with a random vector z ∈ Znq , and set the maximum norm for
valid signature to be B′ = B · poly(λ). The description of (ReRand,RVerify) and simulation Sim for
context-hiding is as follows:

18

• ReRand(pk, µ, σ, C, τ): The re-randomization algorithm takes in a public key pk, a tag τ , a mes-
sage/signature pair (µ, σ) and a circuit C.

1. Parse the tag τ = (t|b) and signature σ = R = [R1|R2]. Let dataset matrix be At = [A∗|A +
T]. Per correctness, we have

[A∗|A + T]

[
R2

R1

]
= DC + µG

2. Set a matrix
F = [At|DC + (3− µ)G] = [At|AtR + (3− 2µ)G]

where 3− 2µ 6= 0. Then sample vector r, using

r ← SampleRight(At,R,G,TG, z, s2)

so it holds F · r = z.

3. Output the re-randomized signature σ′ = r.

• RVerify(pk, σ′, µ, τ , C): The modified verification algorithm takes in a public key pk, a tag τ , a
re-randomized signature/message pair (σ′, µ) and a circuit C.

1. If |r| ≤ B′, then compute the matrix DC as described in the scheme for circuit C and dataset
matrix At = [A∗|A + T].

2. Let matrix F = [At|DC + (3− µ)G], and check F · r = z. If so accept, otherwise, reject.

• Sim(sk, µ, τ , C): The simulation algorithm takes in secret key sk, a message/tag pair (µ, τ) and a
circuit C.

1. Compute the matrix DC as described in the scheme for circuit C and dataset matrix At =
[A∗|A + T].

2. Sample vector r, using

r ← SampleLeft(At,DC + (3− µ)G,ExtBasis(A∗,TA∗ ,A + T), z, s2)

such that
[At|DC + (3− µ)G] · r = z

It is easy to check that correctness holds, and statistical context-hiding security follows directly Lemma 2.5.
The unforgeability proof of the modified scheme is analogous to our proof for Theorem 4.1, thus we omit it
here.

4.4 Parameter Selection

Let λ denote the security parameter. We have two instantiations for the same construction, one is for
polylog(λ)-depth circuit, the other is for poly(λ)-depth circuit. For the polylog(λ)-depth instantiation with
standard SIS assumption, we set the lattice parameter

q = nO(d), n = poly(λ), d = polylog(λ),m = O(n log q)

For the poly(λ)-depth instantiation with sub-exponential SIS assumption, we set the parameters as fol-
lows:

q = nΘ̃(d), n = 2λ
ε
(0 < ε < 1), d = poly(λ),m = O(n log q)

19

As proved in [MR04], as long as we set beta to be super-polynomial (β = 2poly(λ), q > β), SIS is still widely
believed to be hard. Therefore, the security of our scheme still holds under sub-exponential circumstance.

The Gaussian parameter in SampleD is set to be s1 = O(
√
n log q), and in order to achieve in-

distinguishability of algorithms SampleLeft and SampleRight, their common parameter should be set to
s2 = ω(m log q

√
logm). For the size of the signature, we set its bound to be B = ω(2dmax), where dmax is

the maximum depth of circuit. A signature after homomorphic evaluation is Rw := RvD̃u − yRu, where
D̃u is output by algorithm SampleD. Setting the parameters for s1, s2 as above, we find the size of the
evaluated signature to be O(s1s2m

3).

5 Achieving Unforgeability Against Fully Adaptive Chosen Message Attack

We propose several adaptive security models for homomorphic signatures. The strongest, EUF-FH-CMA,
differs from the weakest, EUF-FH-CDA, in that the strict model (EUF-FH-CMA) allows fully adaptive
queries at the message level, while the relaxed model (EUF-FH-CMA) only allows adaptive queries at the
dataset level. We have so far worked in the weaker model, which make the proofs simpler. In order to prove
the stronger notion, we must modify the scheme: specifically, how the dataset tag τ is assembled and used.

The Problem. Recall that in our scheme, τ = (t|b). Handling t in the security proof for the fully
adaptive chosen message model presents no difficulty: we do exactly the same as in the chosen dataset
model. Specifically, we pre-select a random t′ which we use when answering the adversary’s query on one
dataset at a random point in the simulation. We catch him if he makes a forgery (of Type II or Type III)
that uses the same t′. Since the random choice of t′ does not depend on the messages, it does not matter in
which order they are queried.

With the sub-tag b, the situation is more delicate. In a Type-II simulation, we need to fix the value of
b′ at the last minute, in order to answer an adaptive query on the dataset associated with t′ (the special tag
pre-selected as above). To do this, the simulator will have prepared 2l signatures, one for each of the two
possible values of each the l binary messages in the dataset. To answer a query on the j-th message, the
simulator needs to “fix” the j-th bit of b′ to make one of the two pre-sampled signatures for the j-th message,
verify correctly. This fix must occur on the fly.

This poses fewer problems in the relaxed model: since all the messages in a dataset are queried at once,
all the bits of b′ can be determined before b′ is revealed. In the strict model, however, seeing the j-th
message query (of the t′-dataset) allows the simulator to fix the j-th bit of b′, but no other. The simulator
would need to predict the full dataset in order to fix the full vector b′, which he cannot do in the strict model.

The Solution. Our solution is to detach the (full) vector b ∈ {0, 1}l from the dataset tag τ , and instead
attach a (partial) vector b ∈ {0, 1,⊥}l to every signature σ on any message computed from the dataset.

Essentially, while the handling of “t-tags” remains unchanged, we are now “b-tagging” the signatures
bit-by-bit in the following sense: to a signature σ on a message µ = C(µ) computed using circuit C, we
attach a partial b-tag, where some of the bits are set and some of the bits are left unset to ⊥. The bits that
are set to 0 or 1 correspond to the message indices in the dataset that are used by C. The bits that are left
unset to ⊥ correspond to the indices of messages in the dataset that are will not be used by C. In particular,
for the initial messages µj , the circuit C = Projj(.) is a projection circuit with the j-message as the only
input, so only the j-th bit of the b-tag attached to σ(µj) will be set. It will be set at random by Sign, as it
would have been in the prior version.

The rest of the scheme does not change. In particular, signatures can be verified combined homomor-
phically using partial b-tags as long as they are bit-wise compatible (where we say that two matching bits
are compatible if they are the same, or if at least one of them is ⊥). The operations Verify and Eval will

20

work as before, since by this rule they will only ever need to use the bits of a (valid) b-tags that have already
been set, and they can only (validly) be set in compatible ways since the Sign algorithm is not supposed to
be called on opposite messages in the same position in the same dataset per the security definition.

This corresponds exactly to the current Eval and Verify operations, where the t-tags are used as before
to enforce dataset dependence, and the bits of the b-tag are merely used to select the matrices Di,b: if an
input wire is not used in a given circuit, then the corresponding bit is already ignored in the current versions
of Eval and Verify. It is therefore irrelevant whether those ignored bits are set all at once as part of the tag
returned in a signature query on a whole dataset, or whether those bits are left unset per this mechanism.

We note that—in the real scheme—the selection and assignment of the bits in b does not depend on
either the messages or the dataset tag t. The position of the bits of b that are moved from “unset” (⊥) to
“set” (0 or 1) is solely determined by the connection structure within the circuit, while the actual value of
each bit being set (0 versus 1) results from a random choice made by the Sign algorithm as modified.

There exist some minor differences in the unforgeability proof of this new solution comparing to before.
We define a notion named compatible regarding the vector b for Type II and III forgeries. We require that
in Type II forgery, the challenge tag t∗ is equal to one queried tag t as before, but b∗ is compatible with all
signature queries. While in Type III forgery, b∗ is required not to be compatible with all signature queries.
We recall that b ∈ {0, 1,⊥}l, for all signature queries, we say the vector b∗ in the challenge signature is
compatible with queries if for i ∈ [l], b∗[i] = bj [i] for some j in queries or b∗[i] = ⊥. Although we add a
new notion ⊥ to vector b, but we can still leverage the same argument to say that the event related to Type
III forgery Pr[R∗2 + UR∗1 − UC 6= 0 | b 6= b∗] = negl(λ) still holds. The other parts of unforgeability
proof are the same as bofore, thus we omit the detail here.

6 Conclusion

We propose the first fully secure construction of fully homomorphic signatures, in the standard model. The
scheme is efficient, and is efficiently reducible to the standard SIS assumption in the case of circuits of
poly-logarithmic depth. In the case of polynomial-depth circuits, the reduction is to the sub-exponential
average-case SIS assumption.

This paper is subsequent to the recent works by Gorbunov et al. [GV14] and Wichs [Wic14], but
independent and concurrent to the more recent work by Gorbunov et al. [GVW14]. In particular, Gorbunov
et al. propose a technique reminiscent of the chameleon hash trick to achieve adaptive security. In contrast,
we propose a different approach to this same problem.

Our construction combines the key-homomorphic techniques of [BGG+14] with the lattice mixing ap-
proach of [Boy10]. Our construction further makes use of a new technique for “boosting” the efficiency and
applicability of partitioning-type proofs, thanks to which we are able to ensure that the simulator is always
able to issue signatures on every message query, but in some cases he can only issue one.

Although not yet sufficient to prove adaptive security of the key-homomorphic encryption scheme of
[BGG+14], which remains an open problem, our technique lets us resolve this question for the case of fully
homomorphic signatures. We expect this powerful technique to find further applications.

References

[AB09] Shweta Agrawal and Dan Boneh. Homomorphic MACs: MAC-based integrity for network
coding. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud,
editors, ACNS 09, volume 5536 of LNCS, pages 292–305, Paris-Rocquencourt, France, June 2–
5, 2009. Springer, Berlin, Germany.

21

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard
model. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 553–572,
French Riviera, May 30 – June 3, 2010. Springer, Berlin, Germany.

[ABBF10] Shweta Agrawal, Dan Boneh, Xavier Boyen, and David Mandell Freeman. Preventing pol-
lution attacks in multi-source network coding. In Phong Q. Nguyen and David Pointcheval,
editors, PKC 2010, volume 6056 of LNCS, pages 161–176, Paris, France, May 26–28, 2010.
Springer, Berlin, Germany.

[ABC+12] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, abhi shelat, and Brent Waters.
Computing on authenticated data. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS,
pages 1–20, Taormina, Sicily, Italy, March 19–21, 2012. Springer, Berlin, Germany.

[Ajt99] Miklós Ajtai. Determinism versus non-determinism for linear time RAMs (extended abstract).
In 31st ACM STOC, pages 632–641, Atlanta, Georgia, USA, May 1–4, 1999. ACM Press.

[AL11] Nuttapong Attrapadung and Benoı̂t Libert. Homomorphic network coding signatures in the
standard model. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi,
editors, PKC 2011, volume 6571 of LNCS, pages 17–34, Taormina, Italy, March 6–9, 2011.
Springer, Berlin, Germany.

[ALP12] Nuttapong Attrapadung, Benoı̂t Libert, and Thomas Peters. Computing on authenticated data:
New privacy definitions and constructions. In Xiaoyun Wang and Kazue Sako, editors, ASI-
ACRYPT 2012, volume 7658 of LNCS, pages 367–385, Beijing, China, December 2–6, 2012.
Springer, Berlin, Germany.

[BB11] Dan Boneh and Xavier Boyen. Efficient selective identity-based encryption without random
oracles. Journal of Cryptology, 24(4):659–693, October 2011.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In Shafi Gold-
wasser, editor, ITCS 2012, pages 326–349, Cambridge, Massachusetts, USA, January 8–10,
2012. ACM.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th ACM STOC, pages 111–120, Palo Alto, CA, USA, June 1–4,
2013. ACM Press.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. In Amit Sahai, editor, TCC 2013,
volume 7785 of LNCS, pages 315–333, Tokyo, Japan, March 3–6, 2013. Springer, Berlin,
Germany.

[BF11a] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial functions.
In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 149–168,
Tallinn, Estonia, May 15–19, 2011. Springer, Berlin, Germany.

[BF11b] Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In Dario Catalano, Nelly Fazio, Rosario Gennaro,
and Antonio Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 1–16, Taormina, Italy,
March 6–9, 2011. Springer, Berlin, Germany.

22

[BFF+09] Christina Brzuska, Marc Fischlin, Tobias Freudenreich, Anja Lehmann, Marcus Page, Jakob
Schelbert, Dominique Schröder, and Florian Volk. Security of sanitizable signatures revisited.
In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 317–
336, Irvine, CA, USA, March 18–20, 2009. Springer, Berlin, Germany.

[BFR13] Michael Backes, Dario Fiore, and Raphael M. Reischuk. Verifiable delegation of computation
on outsourced data. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
CCS 13, pages 863–874, Berlin, Germany, November 4–8, 2013. ACM Press.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,
Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption,
arithmetic circuit ABE and compact garbled circuits. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 533–556, Copenhagen,
Denmark, May 11–15, 2014. Springer, Berlin, Germany.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic en-
cryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012, pages 309–325, Cam-
bridge, Massachusetts, USA, January 8–10, 2012. ACM.

[Boy10] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short
signatures and more. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010, volume
6056 of LNCS, pages 499–517, Paris, France, May 26–28, 2010. Springer, Berlin, Germany.

[BSCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs
for C: Verifying program executions succinctly and in zero knowledge. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108, Santa
Barbara, CA, USA, August 18–22, 2013. Springer, Berlin, Germany.

[CF13] Dario Catalano and Dario Fiore. Practical homomorphic MACs for arithmetic circuits. In
Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS,
pages 336–352, Athens, Greece, May 26–30, 2013. Springer, Berlin, Germany.

[CFGN14] Dario Catalano, Dario Fiore, Rosario Gennaro, and Luca Nizzardo. Generalizing homomor-
phic MACs for arithmetic circuits. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of
LNCS, pages 538–555, Buenos Aires, Argentina, March 26–28, 2014. Springer, Berlin, Ger-
many.

[CFW12] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Efficient network coding signatures
in the standard model. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors,
PKC 2012, volume 7293 of LNCS, pages 680–696, Darmstadt, Germany, May 21–23, 2012.
Springer, Berlin, Germany.

[CFW14] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic signatures with effi-
cient verification for polynomial functions. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 371–389, Santa Barbara, CA, USA, Au-
gust 17–21, 2014. Springer, Berlin, Germany.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate
a lattice basis. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
523–552, French Riviera, May 30 – June 3, 2010. Springer, Berlin, Germany.

23

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 523–540, Interlaken, Switzerland, May 2–6,
2004. Springer, Berlin, Germany.

[Fre12] David Mandell Freeman. Improved security for linearly homomorphic signatures: A generic
framework. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012,
volume 7293 of LNCS, pages 697–714, Darmstadt, Germany, May 21–23, 2012. Springer,
Berlin, Germany.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st ACM STOC, pages 169–178, Bethesda, Maryland, USA, May 31 – June 2, 2009.
ACM Press.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In Tal Rabin, editor, CRYPTO 2010, volume 6223
of LNCS, pages 465–482, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Berlin,
Germany.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645, Athens, Greece, May 26–30,
2013. Springer, Berlin, Germany.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM
STOC, pages 197–206, Victoria, British Columbia, Canada, May 17–20, 2008. ACM Press.

[GV14] Sergey Gorbunov and Vinod Vaikuntanathan. (leveled) fully homomorphic signatures from
lattices. Cryptology ePrint Archive, Report 2014/463, 2014. http://eprint.iacr.
org/2014/463.

[GVW14] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic
signatures from standard lattices. Cryptology ePrint Archive, Report 2014/897, 2014. http:
//eprint.iacr.org/2014/897.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages
99–108, San Jose, California, USA, June 6–8, 2011. ACM Press.

[GW13] Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators. In Kazue
Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages
301–320, Bengalore, India, December 1–5, 2013. Springer, Berlin, Germany.

[JMSW02] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homomorphic
signature schemes. In Bart Preneel, editor, CT-RSA 2002, volume 2271 of LNCS, pages 244–
262, San Jose, CA, USA, February 18–22, 2002. Springer, Berlin, Germany.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453, Santa Fe, New
Mexico, November 20–22, 1994. IEEE Computer Society Press.

24

http://eprint.iacr.org/2014/463
http://eprint.iacr.org/2014/463
http://eprint.iacr.org/2014/897
http://eprint.iacr.org/2014/897

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 700–718, Cambridge, UK, April 15–19, 2012. Springer, Berlin, Germany.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaus-
sian measures. In 45th FOCS, pages 372–381, Rome, Italy, October 17–19, 2004. IEEE Com-
puter Society Press.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages 238–252,
Berkeley, California, USA, May 19–22, 2013. IEEE Computer Society Press.

[Wic14] Daniel Wichs. Leveled fully homomorphic signatures from standard lattices. Cryptology
ePrint Archive, Report 2014/451, 2014. http://eprint.iacr.org/2014/451.

25

http://eprint.iacr.org/2014/451

	Introduction
	Results and Contributions
	Related Work

	Preliminaries
	Homomorphic Signatures
	Security Definitions
	Privacy Definition
	Lattices

	Construction
	Correctness

	Security Proof
	Intuition
	Unforgeability Proof
	Context Hiding Proof
	Parameter Selection

	Achieving Unforgeability Against Fully Adaptive Chosen Message Attack
	Conclusion

