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Abstract. Most side channel countermeasures for software implementa-
tions of cryptography either rely on masking or randomize the execution
order of the cryptographic implementation. This work proposes a coun-
termeasure that has constant leakage in common linear leakage models.
Constant leakage is achieved not only for internal state values, but also for
their transitions. The proposed countermeasure provides perfect protec-
tion in the theoretical leakage model. To study the practical relevance of
the proposed countermeasure, it is applied to a software implementation
of the block cipher Prince. This case study allows us to give realistic values
for resulting implementation overheads as well as for the resulting side
channel protection levels that can be achieved in realistic implementation
scenarios.

1 Introduction

Embedded implementations of cryptography are a popular target for side channel
attacks. With the advent of the Internet of Things, an ever-increasing number of
embedded devices enters our lives and homes. These devices handle and exchange
possibly sensitive information, raising the need for data security and privacy.
High-end security solutions such as the processors found in passports and security
smart cards come with an abundance of hardware protection to mitigate all
kinds of physical and side channel attacks. However, most embedded devices
are consumer-grade products that usually have to rely on unprotected off-the-
shelf microprocessors. Only a limited number of methods are available to protect
cryptographic software against side channel attacks on such a platform. A popular
countermeasure is masking, such as random precharge for registers or full masking
schemes [10]. One of the biggest problems for getting a high level of protection of
microprocessors is that masking is only effective if the processor has a low signal-
to-noise ratio [3, 13]. On modern embedded processors, this is usually not the case,
requiring the combination of masking with other countermeasures that decrease
the signal-to-noise ratio. Due to the fixed architecture of processors, real hiding
countermeasures that achieve leakage reduction are hard to achieve. Proposed
countermeasures for embedded software cryptosystems are mostly randomization
countermeasures, i.e. leakage is not reduced, but rather randomized in time.
Examples include shuffling [17, 19] or random delays [6].

This work explores a true hiding countermeasure in software. The idea is
to ensure a constant leakage for all intermediate states. There is some limited



prior work proposing constant Hamming weight (HW) encodings of intermediate
states. In [9], a secure assembly coding style based on the concept of Dual-Rail
Precharge Logic (DPL) was proposed. The authors claim that a constant activity
can be achieved using their specific data representation and programming rules.
Their work is purely theoretic, no experimental results to support their idea were
presented. Furthermore, the computation protocol did not completely prevent
Hamming distance (HD) leakage. In [14], the authors present the methods and
tools to generate DPL style code automatically. In [8], a similar data represen-
tation called Bitwise Balanced enCoding scheme was proposed. This scheme
appears to be flawed: the XOR operation will leak information of one of the
two inputs, as we explain later. They also just present simulation results that
assume an idealized leakage. Hence, that work also lacks any analysis of real-world
applicability.

In this work, we present new constant-leakage encodings. As prior works,
we require intermediate states to be represented by constant Hamming weight
encodings. We go beyond prior studies by showing that requiring constant
Hamming distance transitions between states is also feasible. Unlike prior work,
we actually implement the counteremeasure, allowing us to realistically judge
resulting implementation overheads. More importantly, we evaluate the achieved
leakage reduction on a modern 8-bit microcontroller. We show how the constant
leakage can be implemented not only for state representations, but also for
state transitions, This allows us to apply the encodings to create a protected
implementation of the Prince block cipher.

As most countermeasures, this countermeasure cannot provide perfect pro-
tection by itself. The leakage of real-world microprocessors deviates from linear
and balanced models like the Hamming weight or Hamming distance model.
However, forcing the side channel adversary to exploit the non-linear and im-
balanced components of the leakage requires more sophisticated attacks and an
increasing number of leakage observations. In other words, the countermeasure
can effectively decrease the signal-to-noise ratio. The proposed countermeasure
is orthogonal to masking or randomization countermeasures. Hence it can easily
be combined with those to achieve an even higher overall resistance.

The remainder of the contribution is structured as follows: Related work
is discussed in Section 2. The new encoding scheme is introduced in Section 3
and applied to Prince in Section 4. Section 5 explains our leakage evaluation
and Section 6 presents implementation results and the outcome of the leakage
evaluation.

2 Background

This section introduces the related work on balanced encodings to counteract SCA
in both hardware and software implementations, as well as a short introduction
to the Prince block cipher to which the countermeasure will be applied.
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2.1 Balanced Logic for Hardware Implementation

Dual-Rail Precharge Logic (DPL) aims to achieve constant activity at the gate
level. In a DPL style circuit, any gate that generates logic bit A is accompanied
with a complementary gate that generates logic bit Ā. That is, the logic bit
pair (A, Ā) is used to represent A. Note that the Hamming weight of the pair is
always constant as 1. Besides, in order to obtain constant Hamming distance,
the bit pair is precharged to (0, 0) before evaluation. Hence, the gate transitions
from (0, 0) to either (0, 1) or (1, 0) leaks data independent power consumption or
EM emissions. Based on this idea, many DPL style have been proposed such as
WDDL [18], MDPL [12] and DRSL [5]. All these DPL variants aim to protect
the hardware crypto systems against SCA.

2.2 Balanced Logic for Software Implementation

Solutions to reproduce DPL in software have been proposed in the past few years.
The basic idea of these solutions is the same in that the data in the register or
RAM is represented using balanced encoding. Each bit of an intermediate state
is converted to two complementary bits. For example, logical bit 1 is encoded as
01 and logical bit 0 is encoded as 10. 11 and 00 are taken as invalid values.

In [9], Hoogvorst et al. showed a generic assembly coding methodology using
DPL style. They redefined the instructions of the standard microprocessor using
DPL macros which combines a series of normal instructions to achieve precharge
(by moving 0s to the data register) and evaluation (by concatenating operands
and indexing in a lookup table). The activity of precharge phase is constant
since overwriting the balanced data register with all ′0′ causes constant bit flips.
During the evaluation phase, the activity of each normal instruction is either
constant or irrelevant with the sensitive data. Given the new instructions, the
normal assembly code can be transformed to the DPL style code. In [4], Chen
et al. also proposed a software programming style to generate a Virtual Secure
Circuit (VSC). The basic idea of VSC is to use complementary instructions in a
balanced processor to emulate the DPL circuits’ behavior.

Han et al. proposed in [8] a balanced encoding scheme for block ciphers.
Instead of proposing protection for individual instructions, they propose specific
protections for the operations of the cipher, such as KeyAddition and S-box
lookups. For example in their KeyAddition layer one balanced encoded key bit (01
or 10) is XORed with one plaintext bit. The plaintext bit is encoded by repetition
code (00 for 0 or 11 for 1) so that the result is 01 or 10, i.e. an internal state bit
correctly encoded with a balanced encoding. Obviously, the operation may leak
information of the plaintext input, even in the Hamming weight leakage model,
but this information is not useful for differential side channel attacks. However,
this method can only be applied to the initial KeyAddition where the plaintext
is known. For the following rounds, the intermediate data may still leak useful
information. Since no alternative XOR is introduced, we do not think this scheme
can be applied in an appropriate way to protect cryptographic implementations.
Furthermore, the S-box operation also cannot prevent Hamming distance leakage.
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2.3 The Prince Block Cipher

The Prince block cipher is a lightweight cipher, featuring a 64-bit block size and
a 128-bit key size [1]. Prince has been optimized for low latency and a small
hardware footprint. Its round function has several similarities to the AES: it
features KeyAddition, S-box, ShiftRows and MixColumns operations. However,
these operations are performed on a 4-by-4 array of 4-bit nibbles. This 4-bit
oriented design makes Prince—unlike AES—a suitable candidate for a constant
Hamming weight encoding on 8-bit microcontrollers. Prince has 12 rounds, and
the last six apply the inverse operations of the first six. The 64-bit round key
remains constant in all rounds, but is augmented with a 64-bit round constant
to ensure variation between rounds. The remaining 64 key bits are used for
pre- and post-whitening of the state. A feature of Prince is that encryption and
decryption only differ in the round key. A detailed description of an unprotected
microcontroller implementation of the Prince can be found in [15].

3 General Balanced Encoding Countermeasure

The non-balanced encoding of the algorithmic inputs and internal states usually
causes side channel leakage during the execution of crypto primitives. The leakage
can be exploited from classical side channel attacks such as DPA, CPA or MIA.
The proposed countermeasure aims at encoding the internal states with longer bit
length but resulting in constant Hamming weight of state and constant Hamming
distance between two consecutive states. This trade-off sacrifices some memory
and efficiency but achieves a balanced representation internal data and therefore
mitigates the impact of side channel threats.

Formally, the balanced encoding requires the uniform distribution of Hamming
weight for all codewords. Namely, every codeword should have the same Hamming
weight, like the idea of constant-weight code or (m of n code). Clearly, the natural
binary encoding is not such a candidate (e.g. HW (0) 6= HW (1)) since the
resulting distribution of Hamming weight is binomial rather than uniform. The
idea of balancing encoding can be realized only if using more than necessary bit
length. A balanced encoding uses an embedding mapping τ from the natural
binary encoded space C = Fm

2 for all c ∈ C into an extension ext(C) = Fn
2 with

n > m. In order to satisfy the constant Hamming weight of the new codeword, a

necessary condition is that C
n/2
n ≥ 2m, where the image τ(C) sits entirely in the

subset Sn/2 = {u ∈ Fn
2 | HW (u) = n/2}.

Secondly, the newer encoding should preserve the basic bivariate operations
f(·, ·) like xor and more complicated univariate operation g(·) such as the non-
linear S-box mapping. More precisely, for any v1, v2 ∈ C, it should hold that
τ(f(v1, v2)) = f̃(τ(v1), τ(v2)), where f̃ is the n-bit adjustment of the m-bit
operation f . Similarly, for any v ∈ C, it should hold that τ(g(v)) = g̃(τ(v)).
Preserving such operations ensures the validity of the algorithmic evolution.

Thirdly, we also want such balanced encoding that achieves constant Hamming
distance between any two consecutive states. This may not be easily realized
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with the choice of the codeword by requiring HW (τ(v)⊕ g̃(τ(v))) being constant
for any v ∈ C. But it can be easily achieved with implementation tricks such
as flushing registers before overwriting them with new values. That is, in order
to mitigate the leakage generated from overwriting values, say for example, the
state representation τ(v) which is stored in register R1 needs to be replaced
by the univariate functional output g̃(τ(v)), the procedure is first to store the
output g̃(τ(v)) at a different pre-cleared register R2, then clear register R1 and
finally copy the register value from R2 back to R1 and free the temporary register
R2. This approach sacrifices the efficiency of the code, but prevents Hamming
distance leakage from overwriting the state. Another solution is to apply different
balanced encodings to the two consecutive states to achieve not only constant
Hamming weight but constant Hamming distance as well. More details of this
solution will be given in the following section.

4 A Case Study Based on the Prince Cipher

In this section, we use Prince as an example to present the balanced encoding
scheme. Prince is a nibble-based block cipher, as detailed in Section 2.3. Since
our target platform is an 8-bit processor, a simple balanced encoding can be
achieved by simply adding complementary bits, as done for dual-rail logic styles.
That way, each state nibble is encoded as a 8-bit balanced encoding by inserting
the complementary bits. For any nibble b3b2b1b0 where bi is one bit data, the
complementary nibble is b̄3b̄2b̄1b̄0, where b̄i is the inverse of bi. Concatenating
these two nibbles forms a balanced encoding b̄3b̄2b̄1b̄0b3b2b1b0. An alternative is
the encoding b̄3b3b̄2b2b̄1b1b̄0b0. Theoretically, under the Hamming weight leakage
assumption, any sequence of those bits can be used as a balanced encoding because
the Hamming weight is always 4. In the following we will use two different such
encodings, i.e. encI = b̄3b3b̄2b2b̄1b1b̄0b0, which we refer to as encoding I, and
encII = b0b̄2b1b3b̄1b2b̄0b̄3, which we refer to as encoding II. Both of the encodings
ensure the constant Hamming weight of states. The encoding II is used to
guarantee the constant Hamming distance between state transitions and the way
this specific encoding is determined will be explained in the following section.

KeyAddition with Constant HW/HD In the unprotected Prince implemen-
tation, the KeyAddition operation is denoted as r3r2r1r0 = b3b2b1b0 ⊕ k3k2k1k0
where k is the subkey, b is a state nibble before the KeyAddition and r is the
result of KeyAddition. For the protected Prince, we want an XOR-addition where
secret inputs and outputs have a balanced encoding. However, for the initial
key whitening at the input of the cipher, the plaintext input can be assumed
not critical. Hence, only the output r and the key k are mapped to encoding I,
i.e. r̄3r3r̄2r2r̄1r1r̄0r0 and k̄3k3k̄2k2k̄1k1k̄0k0. As in [8], we can simply XOR-add k
in encoding I to b encoded as b3b3b2b2b1b1b0b0 to realize the partially-protected
XOR. This way, the Hamming weight of r is constant as well as the Hamming
distance between r and b. The encoding for b does not satisfy the balanced en-
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coding requirement, but has instead double Hamming weight leakage. Therefore,
this only works for the initial KeyAddition where the plaintext is known.

After the first KeyAddition, the state becomes sensitive and need the balanced
encoding. Hence, for the KeyAddition inside each round, b uses encoding I. Instead,
we map k to the encoding k3k3k2k2k1k1k0k0, resulting in a remaining constant
leakage for the round keys. Since the leakage is constant, it is not exploitable
by CPA or DPA. Note that this leakage can also be avoided by using the XOR
addition described in the following MixColumns section. It is more costly than
the above described XOR variant, but all inputs and outputs have a balanced
encoding and all transitions a constant Hamming distance.

Table Lookup with Constant HW/HD The S-box operation can be de-
scribed as s3s2s1s0 = S(r3r2r1r0) where S(·) denotes the S-box, r denotes an
input nibble, and s denotes the output. To protect it, a new lookup table based
on the balanced encoding is designed in order to minimize the leakage. The S-box
operation is denoted as s̄3s3s̄2s2s̄1s1s̄0s0 = S′(r̄3r3r̄2r2r̄1r1r̄0r0) where the S′(·)
represents the new S-box. Therefore the Hamming weight of S-box output bits is
constant. Note that, unlike the regular S-box of size of 1 × 16, the new S-box
is a 16 × 16 table where the only 16 positions contain the output value and
all other positions are unused. The new S-box prevents the Hamming weight
leakage but cannot prevent the Hamming distance leakage. One solution is to
precharge the target register with zero before writing s into it. An alternative is
applying encoding II to s, which is found by exhaustive search in all the possible
encodings. For the Prince cipher, the S-box output in encoding II can be denoted
as s0s̄2s1s3s̄1s2s̄0s̄3. In this way, the Hamming weight of S-box output is still
constant as 4 and the Hamming distance between input in encoding I and output
in encoding II becomes constant as HD(encI(r), encII(s)) = 4.

The cost of using two different encodings is an additional reordering layer
which coverts encoding II back to encoding I. This is because the following
operations such as MixColumns and ShiftRows are based on encoding I. A
straightforward idea for reordering is the bit rotation which can be implemented
using AND, LSL, LSR and OR instructions. AND instruction is used to pick out
each single bit in encoding II by zeroing the other bits. Then we shift it to its
position in encoding I. Finally, we combine all bits together to form encoding
I. The disadvantage is that it is time consuming and it still causes side channel
leakage. Instead, we can implement the reordering layer as a 16x16 lookup table
R. The reordering table take the encoding II as input and output encoding
s̄3s3s̄2s2s̄1s1s0s̄0 = R(encII(s)). Note that, the output of R is a variant of
encoding I by swapping the two LSBs. This is because HD(encI(s), encII(s))
is either 2 or 4 but HD(s̄3s3s̄2s2s̄1s1s0s̄0, encII(s)) is constant as 4. Then, the
output of R is XORed with 0x03 which swaps the two LSBs back to encoding I.

MixColumns with Constant HW/HD The MixColumns operation can be
implemented as XOR operations between the intermediate data. Unlike the XOR
operation in KeyAddition, all the data involved in the MixColumns operation are
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sensitive and must hence be encoded in balanced encoding scheme to avoid the
information leakage. Thus we need to design a new constant XOR operation
instead of reusing the XOR from the KeyAddition. After the S-box substitution,
the data in MixColumns operation are represented in encoding I. Denote the
two operands of the constant XOR are as follows: x : x̄3x3x̄2x2x̄1x1x̄0x0 and
y : ȳ3y3ȳ2y2ȳ1y1ȳ0y0. The XOR result is z : z̄3z3z̄2z2z̄1z1z̄0z0. The constant XOR
can be implemented using the following steps:

Step 1: Divide the operand x into two parts and construct two new bytes as
xL : x̄3x3x̄2x2x̄3x3x̄2x2 and xR : x̄1x1x̄0x0x̄1x1x̄0x0. In AVR microcontroller,
this step can be easily done by AND, SWAP and OR instructions. For operand
y, we construct yL and yR in the same way. The following code to the generate
xL can also be applied to the generation of xR, yL and yR.

Input: r1 = x
Output: xL

1 ldi r16, 0xF0
2 ldi r17, 0xF0
3 and r16, r1 ; Cut off the right nibble of x
4 and r17, r1 ; Cut off the right nibble of x
5 swap r17 ; Swap the left nibble to the right
6 or r16, r17 ; Generate x L

Step 2: Do the regular XOR operation between xL and 0xA5 to generate x′L :
x3x3x2x2x̄3x̄3x̄2x̄2 = xL⊕(10100101)b. Then zL = x′L⊕yL = z̄3z3z̄2z2z3z̄3z2z̄2.
We also can generate zR with the similar operations.

Input: r16 = xL, r18 = yL
Output: zL

1 ldi r17, 0xA5
2 eor r16, r17 ; Convert x L to x L’
3 eor r16, r18 ; Generate z L

Step 3: Combine the most significant nibble of zL and the least significant
nibble of zR to construct z : z̄3z3z̄2z2z̄1z1z̄0z0.

Input: r1 = zL, r2 = zR
Output: z

1 ldi r16, 0xF0
2 ldi r17, 0x0F
3 and r16, r1 ; Cut off the least significant nibble of z L
4 and r17, r2 ; Cut off the most significant nibble of z R
5 or r16, r17 ; Generate z

Note that all above instructions operate on constant Hamming weight repre-
sentations. Furthermore, there are no transitions that feature a non-constant
Hamming distance in any operands. Hence, while costly, this XOR operation is
free of Hamming weight or Hamming distance leakages in the operands.
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5 Evaluation Methodology

The analyzed countermeasure is secure if each bit of the secret state s leaks in
the same way, i.e. linearly and with the same weight. However, practical devices
never have such a perfect leakage. To evaluate the leakage properties on the
constant weight encoding on a real device, we analyze the leakage behavior of
different evaluation approaches. Besides correlation-based DPA, we also perform
a mutual information-based evaluation.

5.1 Correlation-Based DPA

Correlation-based DPA was originally proposed by Brier et al. [2]. The typical
leakage model is the Hamming weight of the S-box output. The studied coun-
termeasure is designed to not feature such a leakage at all. However, since real
devices will never feature a perfect Hamming-weight leakage, it is still interesting
to analyze whether the remaining leakage of a protected implementation is still
exploitable by a CPA. The predicted secret state for our CPA is the Hamming
weight of a single S-box output. Another popular analysis is single-bit DPA. As
before we apply correlation, but this time using a single bit of the S-box output
as leakage model. As the Hamming-weight based CPA, this attack does not work
in an idealized environment where each bit leaks in the same way: One of the
two bits used to represent the value of a certain bit will always be one, the other
zero. However, in practice no two lines leak alike. Hence, bit leakages should be
recoverable, but be impeded by the countermeasure.
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Fig. 1. CPA results on output bit 2 of the unprotected Prince S-box and on the
Hamming weight of the unprotected Prince S-box for the correct key (or correctly
predicted S-box input, index 0) and incorrect keys (or incorrectly predicted inputs, all
other indices). The vertical axis shows the resulting correlation while the horizontal
axis indicates the offset from the correct key (or S-box input value). Basically all indices
besides 0 that exhibit a significant correlation are considered Ghost peaks, showing that
Hamming weight based CPA might not be the wisest choice to attack Prince.

Note that both CPA and bit-wise DPA do not behave very well for the
Prince block cipher: even in a perfect (Hamming weight) leakage environment,
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an unprotected implementation features strong “ghost peaks”, as depicted in
Figure 1. These ghost peaks make the distinction of the correct key more difficult.
However, since the behavior is predictable, they can also be used to improve the
attack, as discussed e.g. in [11].

5.2 Mutual Information based Evaluation

A popular method for evaluating the side channel resistance of an implementation
is mutual information. It was proposed as a side channel leakage metric for eval-
uation in [16] and refined for practical experiments in [7]. The goal is to evaluate
the leakage L of a critical intermediate state s. The evaluated intermediate state
for the Prince cipher is one nibble. The initial state is a nibble of the plaintext p,
which is known. KeyAddition and round constant addition are mere permutations
of the state, as are S-box and ShiftRows operations. Since mutual information
is computed over all states, the changing labeling does not change the mutual
information, i.e. it can be precisely computed through the aforementioned opera-
tions even without knowing the key. The MixColumns operation, however, mixes
information from different state nibbles, i.e. output nibbles no longer depend on a
single input nibble. This means that, during and after the MixColumns operation
the meaning of the mutual information that is computed on one nibble finally
drops off. However, since the typical target—the S-box output—is fully covered,
the leakage typically exploited by any univariate attacks targeting only the first
round will be identified by mutual information computed on individual state
nibbles. The mutual information I(S;L) between the leakage L and the states
S is computed as I(S;L) = H(S) − H(S|L) where H(S|L) is the conditional
entropy of S, knowing the leakage L. It is given as

H(S|L) = −
∑
l∈L

(
Pr(l)

∑
s∈S

Pr(s|l) log Pr(s|l)

)
, (1)

where l and s are specific observations of the leakage and state, respectively.
Given univariate templates N (µs, σs) for each state value s and each point of the
leakage, we have the probability density for observing a leakage l at that point

given as p(l|s) = N (µs, σs). Following Bayes’ Theorem, we get p(s|l) = p(l|s)Pr(s)
Pr(l)

and, since all observations and states are equiprobable, we can derive

Pr(s|l) =
p(l|s)∑

s∗∈S p(l|s∗)
,

as typically done for templates. Plugging this back into Equation (1), we can
solve Equation (1) by computing and summing over all Pr(s|l∗) for each l∗ ∈ LT ,
where LT is the test (or evaluation) set.

6 Evaluation Results

To verify the balanced encoding scheme, we performed side channel evaluation
on three implementations and compared the results between them.
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2Prince The first implementation is the unprotected nibble-parallel Prince
implementation from [15], in which the 16-nibble states are stored in 8
registers. All round operations process two nibbles in parallel in order to
achieve better performance. This implementation feature should result in
slightly increased noise if the adversary only predicts a single nibble.

Balanced Prince The second implementation is the protected Prince using
encoding I only. In this case, the precharge phase is added to the S-box
lookup to achieve not only constant HW but constant HD as well.

Double-Balanced Prince The third one is also the protected Prince but using
both encoding I and encoding II. This implementation differs from the second
one in that the constant HD is obtained by using encoding II at the S-box
output followed by a reordering layer.

We used an 8-bit AVR microcontroller to run the implementations. The
performance and memory usage of the implementations are presented below. An
automatic power measurement platform was established using a PC, a differential
probe and an Tektronix DPO5000 series oscilloscope. A total of 100,000 power
traces with random plaintext inputs were obtained for each implementation. Each
implementation was analyzed using Hamming weight based CPA as a reference
attack. Next, Mutual Information is used as a metric to quantify the leakage
and compare the implementations. To make our numbers more reliable, we use
10-fold cross-validation on the computation of the mutual information.

6.1 Implementation Results

First we compare the performance of the three analyzed implementations. Table 1
compares the computation time per encrypted block and resource consumption
in terms of code size and RAM usage. The code size increases significantly
for the protected implementations, i.e. by a factor of 3. At the same time the
performance decreases by a factor of 7. This is because each round operation
costs more resources in order to obtain constant activity.

Table 2 shows the contribution of specific operations to the overall resource
consumption. In particular, the code size and performance are broken down into
the KeyAddition (KA), byte substitution (SB), and the mixing (M) operations
of the Prince cipher. For example, the S-box of the protected implementations
and the unprotected one are of the same size (256 byte, not included in the table
code size calculation), but the unprotected one performs two S-box lookups in
parallel. Similarly, either a precharge phase (for the Balanced implementation)
or a reordering layer (for the Double-Balanced implementation) had to be added
in order to gain constant Hamming distance transitions, also resulting in a
significant increase in memory and clock cycles. Additionally, the conversion
between normal data and balanced encoded data for the plaintext and ciphertext
also adds overhead. The worst overhead is due to the M-Layer, or more precisely
the constant leakage XOR, which uses 58 more clock cycles than regular XOR
instruction.
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Table 1. Performance comparison of the three analyzed implementations.

Implementation Encryption Time Code Size RAM Usage
in clock cycles in Bytes in Bytes

2Prince [15] 3253 1574 24
Balanced 28214 3700 472
Double-Balanced 29498 4100 472

Table 2. Performance and cost comparison for the KeyAddition (KA), byte substitution
(SB), and the mixing (M) layers for the three analyzed implementations.

Implementation Operation Performance Code Size
in clock cycles in Bytes

2Prince [15]
KA 72 80
SB 41 36
M 162 286

Balanced
K 57 68
SB 90 62
M 2156 1193

Double-Balanced
KA 57 68

SB & RO 180 129
M 2156 1193

6.2 CPA Results

We first performed CPA on all of the three implementations. Each CPA predicts
the Hamming weight of the output of a single S-box. To compare the leakage
of the implementations—rather than distinguishing the correct key—we use
the Hamming weight of the all 16 S-box outputs under a known key as the
power model. The results are presented in Figure 2. The correlation between the
measurements and power model is greatly reduced in the protected scenarios.
For the unprotected implementation, the correlation coefficients range from 0.6
to 0.8 which is only about 0.1 to 0.3 in the protected implementations. Note that
a few of the 16 nibbles feature a much stronger leakage than the others in the
protected cases (cf. Fig. 2(b) and Fig. 2(c)). This might be an implementation
artifact and not due to the countermeasure itself. Similarly, the double-balanced
implementation features its strongest leakage in the reordering layer. The results
show that the balanced encoding scheme is effective in reducing the Hamming
weight leakage. However, due to differences in the leakage of individual bits, the
leakage does not completely disappear.

Figure 3 compares the trend of the correlation coefficients of the implementa-
tions (vertical axis) over the number of power traces (horizontal axis). We can
observe that the correct subkey hypothesis can be easily distinguished from the
wrong key guesses with as little as one hundred traces for the unprotected Prince
in Figure 3(a). However, for both Balanced Prince and Double-Balanced Prince
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Fig. 2. Result of CPA of three Prince implementations on the S-box output. The
unprotected implementation (a) leaks significantly stronger than the two protected
implementations (b) and (c). (KA: KeyAddition; SB: S-box Lookup; RO: reordering M:
Mixing Layer)

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Trace Number

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

(a) 2Prince

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Trace Number

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

(b) Balanced

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Trace Number

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

(c) Double-Balanced

Fig. 3. CPA results for the Hamming weight of the S-box output for the unprotected
implementation (a) and the two protected implementations (b) and (c). The vertical axis
indicates the absolute value of the correlation coefficient; The horizontal axis indicates
the number of traces used. The comparison of the three plots shows the significant
improvement resulting from the balanced encodings, if applied correctly. Plot (a) clearly
shows the effect of the ghost peaks mentioned in Section 5.

in Figures 3(b) and 3(c), the correlation coefficient is significantly smaller and
it is hard to distinguish the correct key hypothesis, even for as many as 50,000
observations. Note that this problem is not obvious in Figure 2, since that figure
only contains correlations for the correct subkey hypotheses.

6.3 Mutual Information Based Leakage Analysis

To compare the implementations in a leakage-model independent setting, we apply
the mutual information based methodology introduced in Section 5.2 during the
first round of the Prince implementation. We apply it in two different ways: First,
by using classical univariate templates with an individual mean and variance for
each possible nibble state; Next, by using reduced univariate templates with an
individual mean for each nibble state, but a common variance for all templates.
The latter approach allows to only evaluate first-order leakages.

Figure 4 shows the mutual information for all 16 state nibbles for the first
round, as derived from full univariate templates. Figure 5 shows the mutual
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Fig. 4. Mutual information between the state and the leakage for the unprotected (a),
Balanced (b), and Double-Balanced (c) implementations during the first round.
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Fig. 5. First order mutual information between the state and the leakage for the
unprotected (a), Balanced (b), and Double-Balanced (c) implementations during the
first round.

information for all 16 state nibbles only for the first order leakage, as derived
from the reduced univariate templates. Both plot families behave very similar,
with the first-order MI being slightly lower in all cases. This indicated that
the implementations on the AVR feature significant non-linear components in
the leakage function. The first-order MI is more appropriate to predict the
resistance against first-order attacks such as DPA and CPA. More interestingly,
the leakage drops significantly for the protected implementations. In fact, the
mutual information goes down by as much as 50%. Especially the leakage of
the S-box operation drops even more strongly, from .5 for the unprotected
implementation to as low as .1 for the protected ones. That is, there is a single
nibble that exhibits a huge leakage for the protected implementations. This is
always the first nibble. To remove the leakage, we reordered the nibbles for the
computation of the S-box. Surprisingly, whichever nibble is computed first, it
exhibits this strong leakage. We claim this to be an implementation artifact.
Similarly, there is a leakage right before the KeyAddition starts. Again, we do not
have a good explanation for this leakage. However, unlike the S-box leakage, this
one is not problematic, as information before the KeyAddition is plaintext, i.e.
known to the attacker. As hinted at by the CPA results, both Figures 4(c) and 5(c)
show that the Reordering layer still leaks a significant amount of information.
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As a result, the Balanced implementation has a weaker leakage than the one
of the Double-Balanced implementation. The stronger leakage for the second
implementation occurs in the reordering layer. This was not expected, since it is
implemented to have a constant Hamming weight and Hamming distance.

In summary, the balanced implementation is a better choice for devices that
have a strong Hamming weight leakage and is a valuable new addition to the
family of countermeasures in software. The Double-Balanced implementation is
slightly less efficient, but suffers from the strong leakage of the reordering layer. A
more careful implementation of the reordering layer could reduce the maximum
leakage of the Double-Balanced implementation. One should be able to avoid the
reordering layer completely by customizing operations in the MixColumns layer,
but we did not further explore this route.

7 Conclusion

This work performs the first practical evaluation of the balanced encoding
countermeasure in software. While promising in theory, its standalone effectiveness
on the modern microcontroller platform used for this study is significant, especially
for CPA, but far from perfect. The countermeasure is of high relevance, as it is
orthogonal to other software countermeasures such as shuffling and masking, i.e.
it can be applied in addition to those. This is of high relevance for platforms that
feature high signal-to-noise ratios, such as modern microcontrollers. It is also
noteworthy that implementation costs are higher than conjectured, e.g. in [9].
Overall, we believe that this countermeasure technique is useful for lightweight
ciphers in cases where additional hiding countermeasure are desirable.
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