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Abstract The concept of multivariate bijective map of an affine space Kn over
commutative Ring K was already used in Cryptography. We consider the idea of
nonbijective multivariate polynomial map Fn of Kn into Kn represented as ”par-

tially invertible decomposition” F
(1)
n F

(2)
n . . . F

(k)
n , k = k(n), such that knowledge

on the decomposition and given value u = F (v) allow to restore a special part v′ of
reimage v. We combine an idea of ”oil and vinegar signatures cryptosystem” with
the idea of linguistic graph based map with partially invertible decomposition to
introduce a new cryptosystem. The decomposition will be induced by pseudoran-
dom walk on the linguistic graph and its special quotient (homomorphic image).
We estimate the complexity of such general algorithm in case of special family
of graphs with quotients, where both graphs form known families of Extremal
Graph Theory. The map created by key holder (Alice) corresponds to pseudoran-
dom sequence of ring elements. The postquantum version of the algorithm can be
obtained simply by the usage of random strings instead of pseudorandom.
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1 On multivariate cryptography and special multivariate
transformations

Multivariate cryptography (see [2]) is one of the directions of Postquantum Cryp-
tography, which concerns with algorithms resistant to hypothetic attacks con-
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ducted by Quantum Computer. The encryption tools of Multivariate Cryptogra-
phy are nonlinear multivariate transformations of affine space Kn, where K is a
finite commutative ring. Nowadays this modern direction of research requires new
examples of algorithms with theoretical arguments on their resistance to attacks
conducted by ordinary computer (Turing machine) and new tasks for cryptanalists.

Recall, that Cremona group C(Kn) is a totality of invertible maps f of affine
space Kn over a Commutative ring K into itself, such that the inverse map f−1

is also a polynomial one.
Let us refer to the sequence of general polynomial maps Fn on Kn, n = 1, 2, . . .

as a family of polynomial degree, if the degree of each transformation is a parameter
s of the size O(nt).

We say that a family Fn, n = 1, 2, . . . is a family of linear degree in the case
t = 1. We refer to a family Fn as a family of bounded degree if t = 0. Assume
that a transformation F = Fn is written in the form: xi → fni (x1, x2, . . . , xn),
i = 1, 2, . . . , n, where each fni ∈ K[x1, x2, . . . , xn] is determined by the list of their
monomial terms with respect to some chosen order.

We refer to the sequence Fn ∈ C(Kn) as a family of polynomial density d if
total quantity of all monomial expressions within all fni is given as O(nd) for some
independent constant d.

Proposition 1 Let Fn, n = 1, 2, . . . be a family of polynomial degree s and of
polynomial density d. Then the value of Fn in the point x ∈ Kn can be computed
by O(ns+d) elementary steps.

A family of elements Fn ∈ C(Kn), n > 1 is called stable if each multiple
iteration of Fn with itself has degree ≤ degFn.

We say that a family Fn ∈ C(Kn) has an invertible decomposition of speed d

if Fn can be written as a composition of elements F
(1)
n , F

(2)
n , . . . , F

(k)
n , k = k(n)

and this decomposition will allow us to compute the value of y = Fn(x) and the
re-image of given y in time k(n)O(nd) (see [42] which partially reflects authors
talk at the Central European Conference on Cryptology 2014).

The idea of usage of nonbijective polynomial transformations of Kn onto Kn

is already known. For instance, well known multivariate construction of ” oil and
vinegar variables” were presented by J. Patarin [38]. This scheme and its modi-
fications (unbalanced oil and vinegar system, in particular) were investigated in
[39], [40], [41].

Below we introduce the simplest method of convertion of a computable bi-
jective map with invertible decomposition into nonbijective family with partially
computable decomposition.

Let us assume that Kn is presented as direct sum of affine subspaces W1 and
W2. We say that the family of multivariate map Fn : Kn → Kn has partialy

invertible decomposition Fn = F
(1)
n F

(2)
n . . . F

(k)
n , k = k(n) if the knowledge on

this presentation allows to find the projection π of reimage v of Fn(v) = u onto
subspace W1 in polynomial time.

Let us assume that nonlinear transformations Fn form a family of polynomial
degree and density. Assume that it has partially invertible decomposition. Alice
keeps this decomposition secret. She makes the map Fn, given in standard form,
and the partition onto W1 and W2 (in chosen special basis) public. Public user
Bob writes his message p = (p1, p2, . . . , pm), where m = m(n) = dim(W1). He
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writes a pseudorandom string (r1, r2, . . . , rt), t = t(n) = dim(W2), He forms vector
v = (p1, p2, . . . , pm, r1, r2, . . . , rt), t+m = n. Bob computes c = Fn(v) and sends
it to Alice.

Alice uses the knowledge on decomposition (private key) to compute the plain-
text (p1, p2, . . . , pm).

First, we consider an affine deformation of a multivariate family Fn : Kn → Kn

of polynomial density and polynomial degree: Let T1 and T2 be affine transforma-
tion of an Kn, i. e. polynomial maps of Kn into Kn of degree one. We refer to
Gn = T1FnT2 as affine deformation of the family Fn. We say, that affine transfor-
mation is a regular one if the family of Gn is also a family of polynomial degree
and polynomial density. In the simplest case, when degree of Fn is bounded by
independent constant, an arbitrary deformation is a regular one. If T1 is monomial
map, i.e. it is a composition of diagonal and permutational linear transformation,
then arbitrary affine deformation of such kind will be regular one.

Let Fn be a multivariate map of polynomial degree, polynomial density with

invertible decomposition F
(1)
n F

(2)
n . . . F

(k)
n , k = k(n). Let W1 be invariant subspace

for Fn and nonbijective linear transformation T1.

Assume, that T1|W2
is nonbijective linear transformation, τ2 is a bijective affine

transformation ofKn. Let e1, e2, . . . , em be the basis ofW1 and em+1, em+2, . . . , en
be the basis of W2 is its completion to the basis of Kn. Then T1FnT2 has partially
invertible decomposition T1f1f2 . . . fkT2. Really, if Gn(v) = u is given, then the
knowledge on the decomposition allows us to make the following steps.

1) Compute T−1
2 (u) = u′.

2) Compute the reimage z of u′ for Fn for which Fn(z) = u′.

3)Let T−1 be the inverse of T = T1|W1
.

4) Take z′ = z|W1
and compute p = T−1(z′), which coincides with the projec-

tion v|W .

We use the linguistic graphs and their special quotients to generate families of
multivariate maps with partially invertible decomposition by the described above
general scheme.

2 On linguistic graphs as tools of multivariate cryptography

The motivation of linguistic graph came from the observation that the restrictions
of the incidence relation of geometry of simple group of Lie type on disjoint union
of two maximal Schubert cell can be given via triangular system of algebraic
equations (see [16], [17], [19]). Walks in linguistic graphs have been used for the
creation of stream ciphers since 1998. The first examples of such ciphers are given in
[18],[20],[21]. For the estimation of the security level and feasibility studies for key
exchange protocols the symbolic computations are very useful. After presentation
of graph based bijective enciphering transformation as standard map H of kind

z1 → h1(z1, z2, . . . , zn),

z2 → h2(z1, z2, . . . , zn),

. . . , (1)

zn → hn(z1, z2, . . . , zn)
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one can evaluate its degree (see [34], [35]). Other parameters such as order, number
of fixed points, cycle structures can be investigated via numerical (non symbolic)
computations.

The recent results on stream ciphers and key exchange protocols the reader
can find in surveys [23], [25], [27], [32], [33] (see also [4], [6], [7], [8], [12], [13], [14],
[15], [24], [26], [29], [30], [31]).

We will use walks in incidence structures corresponding linguistic graphs and
their flags as tools for generation of noninvertible transformation of flag variety.
For this purpose we take a special homomorphic image Γ1 (symplectic quotient)
of linguistic graph Γ defined over commutative ring K. Flag space of Γ2 can be
identified with affine space Kn. Element π of symmetric group Sn acting natu-
rally on Kn shifts symplectic quotient Γ1 of Γ2 to the symplectic quotient Γ1

π of
”deformated” linguistic graph Γπ2 . Pair Γ1, Γ2 defines the partition of flag space
Kn into direct sum of W1 = Kñ and W2 = Kn−ñ.

The key owner Alice will create a public rule as a composition of the most
preferable singular linear map T1 with invariant space W1 such that T1|W1

is in-
vertible, some permutation π ∈ Sn, nonlinear map N corresponding to the chosen
walk on the flags of incidence structure Γπ2 , and the ”shutter” T2, which is in-
vertible affine transformation of Kn. Alice will use tools of Computer Algebra to
generate the composition in the standard form (1).

A public user Bob will use ”window” W1 to write his plaintext m and W2 to
put pseudorandom string v of elements from K. He gets a randomised plaintext
m̃ as concatenation of m and v. He computes ciphertext c = H(m̃) and sends it
to Alice.

The private key of Alice consists of symplectic pair I, I ′ of linguistic graphs,
linear maps T1 and π, chosen pseudorandom walk in Γπ2 and ”the shutter” T2. It
allows her to restore the plaintext m, but not a random string v.

Notice, that transformation H is a composition of linear map T
′

1 = T1π, non-
linear map N and affine shutter T2. So it has similarity with Imai Matsumoto
encryption map (see [5]). If K = Ql Alice can ”hide” ring K and write public rule
transformation Qnl with the modified trick of Imai-Matsumoto algorithm.

Section 2 is devoted to the concept of the pair consisting of a linguistic graph
and its symplectic quotient. In section 3 we consider a general scheme of genera-
tion of pseudo public multivariate map on variety of vertices (or flags) of general
linguistic graph. We use term pseudo public because the complexity and level of
security depends on the choice of the graph. The idea of this method of symbolic
walks on algebraic graph encryption (shortly SWAGE) is presented in [22] together
with an example for the case of known linguistic graphs of large girth D(k, q) and
their generalisation for the case of general commutative ring (see also [21] for the
D(k, q) graphs case). The final form of SWAGE on numerical level is presented in
[31] together with the generalised method for special incidence structures of ar-
bitrary rank. In section 3 the reader can find SWAGE descryption given both on
symbolic and numerical methods. So, the method of generation of nonlinear map
as mentioned above map N and computation of N−1 is given. Detailed descryption
of general algorithm for the case of K = Ql is given. The section 3 is devoted to the
examples of cryptosystems. We use the known graphs of large girth D(k, q) ([9],
[10], [11]) and extremal graphs A(k, q)( see [29], [13], [32], [33]) and there general-
isations D(k,K) and A(k,K), where K is commutative ring. Incidence structure
Γ2 will correspond to representative of graphs from family D(k,K), n = 2, 3, . . .
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and linguistic quotient Γ1 corresponds to some graph from the family A(k′,K).
The degrees of obtained public keys will be evaluated by some constants. The last
section contains some remarks on the main results of the previous sections.

3 Linguistic graphs and their symplectic quotients

The missing definitions of graph-theoretical concepts which appear in this paper
can be found in [1]. All graphs we consider are simple , i.e. undirected without loops
and multiple edges. Let V (G) and E(G) denote the set of vertices and the set of
edges of G, respectively. Then |V (G)| is called the order of G, and |E(G)| is called
the size of G. When it is convenient we shall identify G with the corresponding
anti-reflexive binary relation on V (G), i.e. E(G) is a subset of V (G)× V (G) and
write vGu for the adjacent vertices u and v (or neighbors). We assume that V (G)
is a finite or an infinite set. The majority of examples will be locally finite graphs
G, i.e. each vertex v has finite number of neighbours (x ∈ V (G), such that xG v).
We refer to |{x ∈ V (G)|x G v}| as degree of the vertex v.

The sequence of distinct vertices v0, v1, . . . , vt, such that vi G vi+1 for i =
1, . . . , t−1 is the path in the graph. A path in G is called simple if all its vertices are
distinct. The graph is connected if each two of its vertices are joined by some path.
The length of a path is a number of its edges. The distance between two vertices u
and v of the graph, denoted by dist(u, v), is the length of the shortest path between
them. The diameter of the graph, denoted by diam(G), is the maximal distance
between two vertices u and v of the graph. Let Cm denote the cycle of length m,
i.e. the sequence of distinct vertices v0, . . . , vm such that viGvi+1, i = 1, . . . ,m−1
and vm G v1. The girth of a graph G, denoted by g = g(G), is the length of the
shortest cycle in G.

The incidence structure is the set V with partition sets P (points) and L (lines)
and symmetric binary relation I such that the incidence of two elements implies
that one of them is a point and another one is a line. We shall identify I with the
simple graph of this incidence relation (bipartite graph).

We refer to a triple consisting of set V , its partition V = P ∪L and symmetric
and antireflexive binary relation I (incidence) on the set V , such that xIy implies
x ∈ P , y ∈ L or x ∈ L and y ∈ P as incidence structure. The pair {x, y}, x ∈ P ,
y ∈ L such that xIy is called a flag of incidence structure I.

Let K be a finite commutative ring. We refer to an incidence structure with
a point set P = Ps,m = Ks+m and a line set L = Lr,m = Kr+m as linguistic
incidence structure Im if point

(x) = (x1, x2, . . . , xs, , xs+1, xs+2, . . . , xs+m)

is incident to line

[y] = [y1, y2, . . . , yr, yr+1, yr+2 . . . , yr+m]

if and only if the following relations hold

ξ1xs+1 + ζ1yr+1 = f1(x1, x2, . . . , xs, y1, y2, . . . , yr)

ξ2xs+2 + ζ2yr+2 = f2(x1, x2, . . . , xs, xs+1, y1, y2, . . . , yr, yr+1)

. . .

ξmxs+m + ζmyr+m = fm(x1, x2, . . . , xs+m−1, y1, y2, . . . , yr+m−1)
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where ξj and ζj , j = 1, 2, . . . ,m are not zero divisors, and fj are multivariate poly-
nomials with coefficients from K. Brackets and parenthesis allow us to distinguish
poins from lines (see [3]).

The colour ρ(x) = ρ((x)) (ρ(y) = ρ([y])) of point (x) (line [y]) is defined as
projection of an element (x) ([y]) from a free module on its initial s (relatively r)
coordinates. As it follows from the definition of linguistic incidence structure for
each vertex of incidence graph there exists unique neighbour of a chosen colour.
We also consider a linguistic incidence structures defined by infinite number of
equations.

Let M = {m1,m2, . . . ,md} be a subset of {1, 2, . . .m} (set of indexes for
equations), d ≤ m with the standard order. Assume that equations indexed by
elements from M of following kind

ξm1xm1 + ζm1ym1 = fm1(x1, x2, . . . , xs, y1, y2, . . . , yr)

ξm2xm2 + ζm2ym2 = fm2(x1, x2, . . . , xs, xm1y1, y2, . . . , yr, ym1)

. . .

ξmdxmd + ζmdymd = fmd(x1, . . . , xs, xm1 , . . . , xmd−1 , y1, . . . , yr, ym1 , . . . , ymd−1)

define another linguistic incidence structure IM . Then the natural projections

π1 : (x)→ (x1, x2, . . . , xs, xm1 , xm2 , . . . , xmd),

π2 : [y]→ [y1, y2, . . . , yr, ym1 , ym2 , . . . , ymd ]

of free modules define the natural homomorphism φ of incidence structure Im
onto IM . We will use the same symbol ρ for the colouring of linguistic graph IM .
It is clear, that ρ(x) = ρ(φ(x)) and ρ(y) = ρ(φ(y)). So, φ is a colour preserving
homomorphism of incidence structure(bipartite graph) onto the other one. We refer
to φ as symplectic homomorphism and graph IM = φ(Im) as symplectic quotient
of linguistic graph Im. In the case of linguistic graphs defined by infinite number
of equations we may consider cases of symplectic quotients defined by the infinite
subset M .

The triangular structure of the system of equations insures existence of many
symplectic quotients. Let us consider an example of symplectic quotient which is
not connected with a general triangular structure of a linguistic incidence system.

Let I be a graph of a linguistic incidence structure with a set of a vertex set
V = P ∪L over a commutative ring K. We introduce the adjacency relation FI on
the set of flags F(V ) of incidence structure I as a flag relation (or flag linguistic
graph): the intersection of two distinct flags is a non empty set (singleton). All
vertices forming two flags F1 = {(x1), [y1]} and F2 = {(x2), [y2]} could be located
at the same connected component of I, or all of them are from distinct connected
components of I. Assume that system of equations

G1(x) = g1,

G2(x) = g2,

. . . ,

Gt(x) = gt,
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where gi ∈ K are some constants, defines the connectivity invariants specified for
points (x) ∈ P in linguistic incidence structure I. For elements (x1), (x2) ∈ P from
the same connectivity component in grpah I the following relations hold

Gi(x1) = Gi(x2), i = 1, 2, . . . , t.

The existence of i such that Gi(x1) 6= Gi(x2) implies that (x1) and (x2) are
points from different connected components of graph I.

4 Symbolic keys and pseudorandom walks on flag space

Let Vs,r,m = Ps,m ∪ Lr,m, Im = Im(K), m = 2, 3, . . . be a family of linguistic
incidence structures with the point set Ps,m = Ks+m and the line set Ls,m =
Kr+m, where parameters s and r are constants and K is a fixed commutative
ring. The sets of colours for points and lines are Ks and Kr, respectively. We
assume that subset M = {i1, i2, . . . , id}, d = d(m) ≤ m defines the symplectic
quotient IM for each linguistic structure Im = Im(K). Let G1, G2, . . . , Gt be
connectivity invariants of incidence structures Im.

Let FIm be the flag relation and F(Vs,r,m) = F(Vm(K)) be the variety of flags
for incidence structure Im. The information on the flag {(x), [y]} can be given by
the pair (x) ∈ Ks+m, ρ(y) ∈ Kr or, alternatively, by the pair [y] ∈ Kr+m and
ρ(x) ∈ Ks. So, F(Vs,r,m) is isomorphic to Km+r+s.

Let NP,a, a ∈ Ks be the operator of a change of the point of the flag F =
{(x), [y]} defined by the rule

NP,a({(x), [y]}) = {(x′), [y]},

where (x′)Im[y] and ρ(x′) = a. Similarly, NL,a, a ∈ Ks is the operator of a change
of the line of the flag F = {(x), [y]} specified by the rule

NL,b({(x), [y]}) = {(x), [y′]},

where [y′]Im(x) and ρ(y′) = b. It is clear that application of the composition of
NP,a1

, NL,b1 , NP,a2
, NL,b2 , . . . , NP,ak

, NL,bk to the flag F corresponds to the
walk in our linguistic graph with the starting point (p) or the walk in the graph
FIm with starting vertex {(x), [y]}.

Let F = {(x), [y]} be a general flag of our linguistic structure Im, i.e.

(x) = (x1, x2, . . . , xs, xs+1, xs+2, . . . , xs+m),

[y] = [y1, y2, . . . , yr, yr+1, yr+2 . . . , yr+m]

are incident. It is convenient for us to shift indeces and write points and lines as

(x) = (x1, x2, . . . , xs, xs+r+1, xs+r+2, . . . , xs+r+m),

[y] = [ys+1, ys+2, . . . , yr+s, yr+s+1, . . . , ys+r+m].

We assume that our incidence structure has the symplectic quotient IM corre-
sponding to subset M = {js+r+i1 , js+r+i2 , . . . , js+r+id}. Let π be a permutation
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on {1, 2, . . . , s, s+ 1, s+ 2, . . . , s+ r, s+ r + 1, s+ r + 2, . . . , s+ r +m}. Then we
can consider deformated incidence structures Iπm with points

π(x) = (xπ(1), xπ(2), . . . , xπ(s), xπ(s+r+1), xπ(s+r+2), . . . , xπ(s+r+m))

and lines of kind

π(y) = [yπ(s+1), yπ(s+2), . . . , yπ(s+r), yπ(s+r+1), yπ(s+r+2), . . . , yπ(s+r+m)]

with the incidence conditions

ξ1xπ(s+r+1) + ζ1yπ(s+r+1) = f1(xπ(1), xπ(2), . . . , xπ(s), yπ(s+1), . . . , yπ(s+r))

ξ2xπ(s+r+2) + ζ2yπ(s+r+2) = f2(xπ(1), . . . , xπ(s), xπ(s+r+1), yπ(s+1), . . . ,

yπ(s+r), yπ(s+r+1))

. . .

ξmxπ(s+r+m) + ζmyπ(s+r+m) = fm(xπ(1), . . . , xπ(s), xπ(s+r+1), . . . xπ(s+r+m−1),

yπ(s+1), . . . , yπ(s+r), yπ(s+r+1), . . . , yπ(s+r+m−1))

Obviously linguistic incidence structure Im is isomorphic to Iπm and symplectic
quotient IM of graph Im corresponding to subset

M = {r + s+ i1, r + s+ i2, . . . , r + s+ id}

is isomorphic to symplectic quotient IπM of graph Iπm related to the subset

π(M) = {π(r + s+ i1), π(r + s+ i2), . . . , π(r + s+ id)}.

The above mentioned action of symmetric group on linguistic structure allows
us without a loss of generality assume that symplectic quotient IM of Im corre-
sponds to subset M = {r + s + 1, r + s + 2, . . . , r + s + d} with natural order of
elements. So, the canonical homomorphism of Im onto IM is given by

(x1, . . . , xs, xr+s, xr+s+1, . . . , xr+s+m)→(x1, . . . , xs, xr+s, xr+s+1, . . . , xr+s+d)

(ys+1, . . . , yr+s, yr+s+1, . . . , yr+s+m)→(ys+1, . . . , yr+s, yr+s+1, . . . , yr+s+d)

We assume that x1, x2, . . . , xs, ys+1, ys+2, . . . , ys+r, xs+r+1, xs+r+2, . . . , xs+r+m
is the list of independent variables which gives us the entire information on the
flag F of incidence structure Im. We assume that connectivity invariants G1, G2,
. . . , Gt are written in terms of coordinates of the point (x). We refer to a tuple

Tr(F ) = 〈x1, x2, . . . , xs, ys+1, ys+2, . . . , ys+r, G1(x), G2(x), . . . , Gt(x)〉

as a trace of a flag F = {(x), [y]} i.e.

Tr(F ) = 〈ρ(x), ρ(y), G1(x), G2(x), . . . , Gt(x)〉 .

Let Q be a subring of K, such that K is isomorphic to free module Ql. We in-
troduce parameter n by equality n = (r+s+t)l (the dimension of flag variety over
commutative ring Q). Assume that Q[z1, z2, . . . , zn]l is a totality of all polynomials
over Q maps from Qn into K. We choose the fixed basis in K = Ql and identify
a map P from Q[z1, z2, . . . , zn]l with the set of polynomials p1(z1, z2, . . . , zn),
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p2(z1, z2, . . . , zn), . . . , pl(z1, z2, . . . , zn), where pi are multivariate polynomials
from Q[z1, z2, . . . , zn].

Let D1, D2, . . . , Dh, Dh+1 and E1, E2, . . . , Eh be two lists of elements where
Di, Ej ∈ Q[z1, z2, . . . , zn]l, i = 1, 2, . . . , h+ 1, j = 1, 2, . . . , h. We refer to concate-
nation of both lists (writing second list after the first one) as a symbolic key.

We take the flag F = {(x), [y]} specified by parameters of kind x1, x2, . . . , xs,
ys+1, ys+2, . . . , ys+r, xs+r+1, xs+r+2, . . . , xs+r+m with spectrum

Tr(F ) = 〈x1, x2, . . . , xs, ys+1, ys+2, . . . , ys+r, G1(x), G2(x), . . . , Gt(x)〉 .

Each coordinate of the flag F is a tuple of kind (α1, α2, . . . αl) ∈ Ql. We concate-
nate all these tuples with the preservation of order and form a string of parameters
β1, β2, . . . , βn from Q. After that we compute specializations of coordinates

di = Di(β1, β2, . . . , βn),

where i = 1, 2, . . . , h, h+ 1 and

ej = Ej(β1, β2, . . . , βn),

where j = 1, 2, . . . , h of our symbolic key. Chosen base of Ql = K allows us to treat
coordinates of the string d1, d2, . . . , dh, dh+1 as elements of Ks and coordinates of
e1, e2, . . . , eh as string from Kr. String (d1, d2, . . . , dh, dh+1, e1, e2, . . . , eh) is our
numerical key.

Finally, we compute decomposition N of operators NP,d1 , FL,e1 , NP,d2 , NL,e2 ,
. . . , NP,dh , NL,eh , NP,ed+1

.

The application of N to the flag F corresponds to the walk in graph FIm with
the starting point F and the final point N(F ).

Notice, that the colours of the point and the line forming F ′ = N(F ) ={
(x′), [y′]

}
are dh+1 ∈ Ks and eh ∈ Kr, respectively. Under certain conditions we

may restore the trace of the flag F from given F ′. We have

Gi(x) = Gi(x
′)

because both flags are from the same connected component. Additionally,

(x′1, x
′
2, . . . , x

′
s) = Dh+1(x1, . . . , xs, ys+1, . . . , ys+r, G1(x′), . . . , Gt(x

′)),

(y′s+1, y
′
s+2, . . . , y

′
s+r) = Eh(x1, . . . , xs, ys+1, . . . , ys+r, G1(x′), . . . , Gt(x

′)).

We may choose function Dh+1 and Eh such that the above written system of
equations has a unique solution independently from values Gi(x

′), i = 1, 2, . . . , t.

Obviously the first choice here is a linear in variables x1, x2, . . . , xs, ys+1,
ys+2, . . . , ys+r system of equations. Then we can reconstruct our walk in reverse
order corresponding to the composition of NP,eh−1

, NL,dh−1
, NP,eh−2

, . . . , NL,e1 ,
NP,d1 .
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4.1 Multivariate transformations based on symbolic keys

The above mentioned map defined by symbolic key has multivariate nature. The
plainspace is the totality of tuples

(x1, x2, . . . , xs, y1, y2, . . . , yr, xs+r+1, xs+r+2, . . . , xs+r+m).

For each functionDi(z1, z2, . . . , zs, zs+1, zs+2, . . . , zs+r, zs+r+1, zs+r+2 . . . , zs+r+t)
we consider the specialization of variables z1 = x1, z2 = x2, . . . , zs = xs,
zs+1 = y1, zs+2 = y2, . . . , zs+r = yr, zs+r+1 = G1(x), zs+r+2 = G2(x), . . . ,
zs+r+t = Gt(x). In such way we construct function D′i depending on the general
tuple (x1, x2, . . . , xs, y1, y2, . . . , yr, xr+s+1, xs+r+2, . . . , xs+r+m) of the plainspace.
Similarly we apply the same specialisation to each Ei and get transformation E′i.
Transformations NP,D′i and NL,E′j are multivariate bijections on Kr+s+m. The
formal composition of NP,D′1 , NL,E′1 , NP,D′2 , NL,E′2 , . . . , NP,D′h , NL,E′h , NP,D′h+1

is a symbolic presentation of the map N .

5 The general algorithms of the two windows multivariate
cryptosystem depending on random variables

Suppose that two users Alice and Bob want to communicate securely over an
open channel in which all messages are potentially overheard. Suppose that Alice
and Bob for secure communication the two windows multivariate cryprosystem
depending of random parameters; so, Alice generates a couple of keys (public and
private ones). We show that lack of knowledge of the private key prevents Bob or
possible intruders to decrypt intercepted messages.

5.1 The key generation algorithm

Let us assume that Alice has a flag linguistic graph FIm and flag symplectic
quotient FIM corresponding to M = {s + r + 1, s + r + 2, . . . , s + r + d} with
natural order of elements.. So, the windows space W = W1 ⊕W2 of flags can be
identified with tuples

F =(x1, x2, . . . , xs, ys+1, ys+2, . . . , ys+r, xs+r+1, xs+r+2, . . . , xs+r+d,

xs+r+d+1xs+r+d+2, . . . , xs+r+m).

It is convenient for Alice to partite Kr+s+m into direct sum W1 = Ks+r+d and
W2 = Km−d. She fixes the basis and identifies ”two windows spaces” W1 (window
for plaintext) and W2 (window for random extention of plaintext) with totalities
of tuples of kind

(x1, x2, . . . , xs, ys+1, ys+2, . . . , ys+r, xs+r+1, xs+r+2, . . . , xs+r+d) ∈W1,

(xs+r+d+1, xs+r+d+2, . . . , xs+r+m) ∈W2.

She will choose the permutation π to deformate the flag linguistic graph FIm
and its flag symplectic quotient FIM . Alice will use the fact that K = Ql. So,
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she can work with fixed base of K = Ql and identify W , W1 and W2 with free
modules over Q of dimensions (s+ r+m)l, (s+ r+ d)l and (m− d)l, respectively.

We can now discribe an algorithm of key generation for our two windows
multivariate cryptosystem depending on random variables.

Key generation. Alice should do the following steps:

1. Choose the comutative ring Q and their extention K = Ql.
2. Define space W = Qk, where k = (s+r+m)l and fixe the base and consider the

decomposition W = W1 ⊗W2, where W1 = Qk1 , W2 = Qk2 , k1 = (s+ r + d)l
and k2 = (m− d)l.

3. Choose the most preferable singular linear transformation T1 : W → W such
that T1|W1

= T is not singular.
4. Take the tuple z = (z1, z2, . . . , zk) ∈W an compute w = T1(z).
5. Treat tuple w ∈W as a flag F1 in linguistic graph FIm of kind

F1 = (x1, . . . , xs, ys+1, . . . , ys+r, xs+r+1, xs+r+2, . . . , xs+r+m)

6. Take permutation π defined on set of indexes {1, 2, . . . , s+r+m} to deformate
linguistic graph FIm.

7. Compute flag F2 ∈F Iπm with the trace x′1, x′2, . . . , x′s, y
′
s+1, . . . , y′s+r, G1(F2),

G2(F2), . . . , Gt(F2) i.e.

F2 = π(F1) = (x′1, x
′
2 . . . , x

′
s, y
′
s+1, . . . , y

′
s+r, x

′
s+r+1, x

′
s+r+2, . . . , x

′
s+r+m)

8. Choose the symbolic key corresponding to the symbolic way in linguistic graph
FIπm i.e. list of polynomial functions Di(v1, v2, . . . , vr+s+t), i = 1, 2, . . . , h+ 1,
Ej(v1, v2, . . . , vr+s+t), j = 1, 2, . . . , h .

9. Compute specializations
D′i(F2) = Di(x

′
1, . . . , x

′
s, y
′
s+1, . . . , y

′
s+r, G1(F2), . . . , Gt(F2)), i = 1, 2, . . . , h +

1,
E′j(F2) = Ej(x

′
1, . . . , x

′
s, y
′
s+1, . . . , y

′
s+r, G1(F2), . . . , Gt(F2)), j = 1, 2, . . . , h

corresponding to the substitution vi = x′i, i + 1, 2, . . . , s, vs+j = y′s+j , j =
1, 2, . . . , r, vs+r+e = Gi(F2), e = 1, 2, . . . , t.

10. Determine multivariate transformation N corresponding to chosen symbolic
key, i.e.

N = NP,D′1NL,E′1 . . . NP,D′hNL,E′hNP,D′h+1
.

11. Compute flag F3 = N(F2) of the graph FIπm.
12. Treat the flag F3 as a tuple u ∈ Qk.
13. Choose a invartible affine transformation T2 : Qk → Qk and compute c =

T2(u).
14. Using symbolic computation determine a multivariate transformations H :

W → W as a composition of T , N and T2. It is clear that the transformation
H : W →W is polynomial over Q of kind

z1 → h1(z1, z2, . . . , zk),

z2 → h2(z1, z2, . . . , zk),

. . . ,

zk → hk(z1, z2, . . . , zk), where hi ∈ Q[z1, z2, . . . , zk].

It implies that the public key of presented cryptosystem includes the following:
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(1) The commutative ring Q including its additive and multiplicative structure.
(2) The subdivision of the text space W = Qk into the direct sum of W1 = Qk1

as window plaintext and W2 = Qk2 as window random extention of plaintext.
(3) The transformation H : W →W defined by the list of multivariate polynomials

h1,h2,. . . , hk ∈ Q[z1, z2, . . . , zk].

The private key includes:

(1) Information about the structures of ring K isomorphic to free module Ql and
the fact that k = (s+ r +m)l, k1 = (s+ r + d)l, k2 = (m− d)l.

(2) Singular linear transformation T1 : W → W such that T1|W1
= T is not

singular.
(3) Flag linguistic graph FIm and its symplectic quotient FIM corresponding to

subset M = {js+r+i1 , js+r+i2 , . . . , js+r+id}.
(4) Permutation π defined on {1, 2, . . . , s+ r +m}
(5) Deformed linguistic incidence structure FIπm of FIm and deformed symplectic

quotient FIπM of graph FIM , where

M = {r + s+ i1, r + s+ i2, . . . , r + s+ id}

and
π(M) = {π(r + s+ i1), π(r + s+ i2), . . . , π(r + s+ id)}.

(6) Symbolic key as list of transformations D1, D2, Dh+1, E1, E2, . . . , Eh and
its specializations D′1, D′2, D′h+1, E′1, E′2, . . . , E′h determines multivariate

transformation N corresponding to way in graph FIπm i.e.

N = NP,D′1NL,E′1 . . . NP,D′hNL,E′hNP,D′h+1
.

(7) An invariable affine transformation T2 : W →W .

5.2 Encryption and decryption algorithm

Suppose that Bob encrypts a message (plaintext) m for Alice, which Alice decrypt.

Encryption: Bob should do the following steps:

1. Obtain Alice’s authentical public key (Q, k, k1, k2, H).
2. Represent the message m as a tuple from the window plaintext W1 = Qk1 .
3. Choose a random extention v of plaintext m form W2 = Qk2 and make con-

catenation m and v i.e. m̃ = m||v.
4. Compute H(m̃) = c.
5. Send the ciphertext c to Alice.

Decryption: To restore the plaintext m from the ciphertext c, Alice should do
the following steps:

1. Use the invertible affine transformation T2 to compute T−1
2 (c) = u.

2. Write u as a flag F3 from graph FIπm.
3. Use symbolic key and trace of flag F3 to determine a numerical key as list of

elements d1, d2, . . . , dh,dh+1, e1, e2, . . . , eh from K.
4. Compute N−1(F3) = F2 via computation of reverse walk in FIπm determined

by numerical key.
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5. Compute F1 = π−1(F2) as flag from FIm.
6. Get projections of flag F1 onto flag F from symplectic quotient FIM of flag

linguistic graph FIm.
7. Write flag F as a tuple z from W1 = Qk1 .
8. Compute plaintext m = T−1(z).

We will show the existence of families of linguistic graphs, for which we can
estimate polynomial complexity of the algorithms for both correspondents and
present certain arguments on security.

6 On the family of graphs of large girth with special symplectic
quotients

Let PD and LD be two copies of Cartesian power KN, where K is the commutative
ring and N is the set of positive integer numbers. Elements of PD will be called
points and those of LD lines.

To distinguish points from lines we use parentheses and brackets. If x ∈ V , then
(x) ∈ PD and [x] ∈ LD. It will be also advantageous to adopt the notation for co-
ordinates of points and lines introduced in [30] for the case of general commutative
ring K:

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, . . . , li,i, l

′
i,i, li,i+1, li+1,i, . . .].

The elements of P and L can be thought as infinite ordered tuples of elements
from K, such that only finite number of components are different from zero.

Now we define a linguistic incidence structure (PD, LD, ID) defined by infinite
system of equations as follows. We say that the point (p) is incident with the line
[l], and we write (p)I[l], if the following relations between their co-ordinates hold:

li,i − pi,i = l1,0pi−1,i

l′i,i − p′i,i = li,i−1p0,1 (6)

li,i+1 − pi,i+1 = li,ip0,1

li+1,i − pi+1,i = l1,0p
′
i,i

(These four relations are defined for i ≥ 1, p′1,1 = p1,1, l′1,1 = l1,1). The incidence

structure (PD, LD, ID) we denote as D(K). Now we speak of the incidence graph
of (PD, LD, ID), which has the vertex set PD ∪ LD and edge set consisting of all
pairs {(p), [l]} for which (p)I[l].

For each positive integer k ≥ 2 we obtain a symplectic quotient (PD,k, LD,k, ID,k)
as follows. First, PD,k and LD,k are obtained from PD and LD, respectively, by
simply projecting each vector into its k initial coordinates. The incidence ID,k is
then defined by imposing the first k−1 incidence relations and ignoring all others.
The incidence graph corresponding to the structure (PD,k, LD,k, ID,k) is denoted
by D(k,K).

To facilitate notation in the future results on ”connectivity invariants”, it will
be convenient for us to define p−1,0 = l0,−1 = p1,0 = l0,1 = 0, p0,0 = l0,0 = −1,
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p′0,0 = l′0,0 = −1, p′1,1 = p1,1, l
′
1,1 = l1,1) and to assume that our equations are

defined for i ≥ 0.

Notice, that for i = 0, the written above four conditions are satisfied by every
point and line, and for i = 1 the first two equations coincide and give l1,1− p1,1 =
l1,0p0,1.

Let k ≥ 6, t = [(k + 2)/4], and let u = (uα, u11, · · · , utt, u′tt, ut,t+1, ut+1,t, · · · )
be a vertex of D(k,K) (α ∈ {(1, 0), (0, 1)}, it does not matter whether u is a point
or a line). For every r, 2 ≤ r ≤ t, let

ar = ar(u) =
∑
i=0,r

(uiiu
′
r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, · · · , at). Similarly, we assume a = a(u) = (a2, a3, · · · , at, . . . )
for the vertex u of infinite graph D(K).

Let ηk (η) be the equivalence relation:

uηkv ⇔ a(u) = a(v) (uηv ⇔ a(u) = a(v))

on the vertex set of graph D(k,K) (D(K)), respectively .

Proposition 2 [28] Let K be the commutative ring.

(i) For any t′ − 1 ring elements xi ∈ K, 2 ≤ t′ ≤ [(k + 2)/4], there exists a vertex
v of D(k,K) for which a(v) = (x2, . . . , xt′) = (x).

(ii) The equivalence class Ck for the equivalence relation ηk on the set Kk ∪Kk is
isomorphic to the affine variety Kt ∪Kt , t = [4/3k] + 1 for k = 0, 2, 3 mod 4,
k = [4/3n] + 2 for k = 1 mod 4.

(iii) the vertex set Ck is the union of several connected components of D(k,K).

Let C be the equivalence class on η on the vertex set D(K), then the induced
subgraph with the vertex set C is the union of several connected components of
D(K).

We shall use notation C(t,K) (C(K)) for the induced subgraph of D(k,K)
(D(K)) with the vertex set Ck (vertex set C, respectively).

The graph C(t,K) in the case of K = Fq, q is odd, coincides with CD(k, q)
which was introduced in [11].

The following statement was proven in [30].

Theorem 1 Let K be commutative ring with unity of characteristic d, d 6= 2.
Then graphs C(t,K), t ≥ 2 and C(K) are connected.

If K = Fq, q is odd, then the graph C(Fq) is a q-regular tree. In cases char(K) =
2 the questions of the description of connected components of C(t,K) and C(K)
are open.

Below we consider the family of infinite linguistic graphs A(K) formed by
quotients of D(K) where K is a commutative ring.

Let PA and LA be two copies of Cartesian power KN, where K is the commu-
tative ring and N is the set of positive integer numbers. Elements of PA will be
called points and those of LA lines.

To distinguish points from lines we use parentheses and brackets. If x ∈ V ,
then (x) ∈ PA and [x] ∈ LA. It will be also advantageous to adopt the notation
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for co-ordinates of points and lines introduced in [16] for the case of a general
commutative ring K:

(p) = (p0,1, p1,1, p1,2, p2,2, p2,3, . . . , pi,i, pi,i+1, . . .),

[l] = [l1,0, l1,1, l1,2, l2,2, l2,3, . . . , li,i, li,i+1, . . .].

The elements of PA and LA can be thought of as infinite ordered tuples of
elements from K, such that only a finite number of components are different from
zero.

Now we define an incidence structure (PA, LA, IA) as follows. We say that the
point (p) is incident with the line [l], and we write (p)IA[l], if the following relations
between their co-ordinates hold:

li,i − pi,i = l1,0pi−1,i

li,i+1 − pi,i+1 = li,ip0,1

The incidence structure (PA, LA, IA) we denote as A(K). It is clear that the set
od indices {(1, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3), . . . , (i−1, i), (i, i), . . .} is a subset
in {(1, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 2)′, . . . , (i − 1, i), (i, i − 1), (i, i), (i, i)′, . . .)}.
So graph A(K) is a symplectic quotient of linguistic incidence structure D(K)

For each positive integer k ≥ 2 we obtain a symplectic quotient (PA,k, LA,k, IA,k)
as follows. First, PA,k and LA,k are obtained from PA and LA respectively by
simply projecting each vector into its k initial coordinates with the respect to the
above order. The incidence IA,k is then defined by imposing the first k−1 inci-
dence equations and ignoring all others. The incidence graph corresponding to the
structure (PA,k, LA,k, IA,k) is denoted by A(k,K).

For each positive integer k ≥ 2 we consider the standard symplectic projection
φA,k of (PA,k, LA,k, IA,k) onto (PA,k−1, LA,k−1, IA,k−1) defined as simple projec-
tion of each vector from PA,k and LA,k onto its k − 1 initial coordinates with
respect to the above order. It is clear that A(2,K) and A(3,K) coincides with the
D(2,K) and D(3,K), respectively.

Proposition 3 Graph A(2n+2,K) is a symplectic quotient of the linguistic graph
D(4n+ 1,K), n ≥ 2, and A(2n+ 3,K) is a symplectic quotient of D(4n+ 3).

Proof We can arrange indices for points and lines of D(4n+3,K), as {(1, 0), (0, 1),
(1, 1), (1, 2), (2, 2), (2, 3), . . . , (n+ 1, n+ 1), (n+ 1, n+ 2), (2, 1), (2, 2)′, (3, 2), (3, 3)′,
. . . (n+ 1, n), (n+ 1, n+ 1)′

}
. So the projection of a point and a line onto the first

2m+3 coordinates is the symplectic homomorphism. In the case of k = 4n+1 one
can partite the set of indices into disjoint union of {(1, 0), (0, 1), (1, 1), (1, 2), (2, 2), . . . ,
(n, n+ 1), (n+ 1, n+ 1)} and

{
(2, 1), (2, 2)′, (3, 2), . . . , (n, n)′, (n+ 1, n)

}
. So, the

projection of the point and the line onto first set contains 2n+ 2 coordinates is a
symplectic homomorphism.

Notice, that graphs of kind D(4n+3,K) have n connectivity invariants a2, a3,
. . . , an, an+1 and graphs D(4n+ 1,K) have n− 1 connectivity invariants a2, a3,
. . . , an.

The free module K4n+2 (totality of flags for D(4n + 1,K)) can be identified
with the totality of functions {f : ΩD,4n+1 → K}. The natural base is formed by
functions eh, h ∈ ΩD,4n+1 such that eh(x) = 1 for x = h and eh(x) = 0 otherwise.



16 Urszula Romańczuk-Polubiec, Vasyl Ustimenko

Tuple (z0,1, z1,0, . . . , zn+1,n+1) is a linear combination of eh, h ∈ ΩD,4n+1, where
ΩD,4n+1 is set of indexes with an order given in the following way

((1, 0), (0, 1), (1, 1), (1, 2), (2, 1), (2, 2), (2, 2)′, (2, 3), (3, 2), (3, 3), . . . ,

(n, n)′, (n, n+ 1), (n+ 1, n), (n+ 1, n+ 1))

7 The examples of cryptosystems with complexity estimates

We give examples of linguistic graphs and related symbolic keys, which can be
used in above described cryptosystem. More specifically, in our examples we will
use a pair of graphs D(4n+1,K) and A(2n+2,K) corresponding to the incidence
structures (PD,4n+1, LD,4n+1, ID,4n+1) and (PA,2n+1, LA,2n+2, IA,2n+2) defined
over a commutative ring K (case of pair D(4n + 3), A(2n + 3) is very similar).
Recall, that graph D(4n+ 1,K) have a connectivity invariants G1 = a2, G2 = a3,
. . . , Gt = an, where t = n − 1. The deformated graph has same connectivity
invariants.

We assume, that we deal with the deformated linguistic graphs of kind I =
IψD,4n+1, where permutation ψ change the standard order on the set ΩD,4n+1 in the
definition of graph D(4n+1,K) determines new set Ω of elements of ΩD,4n+1 with
the order of elements (0, 1), (1, 0), (1, 1), (1, 2), (2, 2), . . . , (n, n+1), (n+1, n+1),
(2, 1), (2, 2)′, (3, 2), . . . , (n, n)′, (n+ 1, n). The homomorphism of deformated flag
systems for D(4n+ 1,K) and A(2n+ 2,K) is just projections of tuples of length
4n+ 2 onto their initial 2n+ 3 coordinates.

More specifically, at the beginning we work with flag linguistic graphs FIψD,4n+1

and FIψA,2n+2 and next we deal with FID,4n+1 and FIψA,2n+2 .

First, Alice works with flag F1 ∈F IψD,4n+1, which corresponds to concatenation
of tuples

m′ = (y1,0, x0,1, x1,1, x1,2, x2,2, . . . , xn,n+1, xn+1,n+1) ∈F IψA,M

(it corresponds to plaintext m) and

v′ = (x2,1, x
′
2,2, x2,3, . . . , x

′
n,n, x

′
n+1,n+1)

(it corresponds to random extention of plaintext v).

Next, she works with flag F2 = {(x), [y]} ∈F ID,4n+1, where ρ(x) = x0,1,
ρ(y) = y1,0 and

(x) = (x0,1, x1,1, x1,2, x2,1, x2,2, . . . , x
′
n,n, xn,n+1, xn+1,n, xn+1,n+1).

i.e. F2 corresponds to the tuple

(x0,1, y1,0, x1,1, x1,2, x2,1, x2,2, . . . , x
′
n,n, xn,n+1, xn+1,n, xn+1,n+1).

Moreover, in this case we have W = K4n+1, W1 = K2n+2 W2 = K2n−1 and the
permutation π = ψ−1 on the set of indices Ω defines π(Ω) = ΩD,4n+1.
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Example 1 For the simplicity, we assume that K = Ql and l = 1. Alice chooses two
pseudorandom sequences of ring elements α1, α2, . . . , αh+1 and β1, β2, . . . , βh.
She forms the symbolic key as Di(z1, z2, . . . , zt+1) = z1 + αi, i = 1, 2, . . . , h + 1,
and Ei(z1, z2, . . . , zt+1) = z2 + βi, i = 1, 2, . . . , h + 1. Next, she computes its
specializations D′i(x0,1) = x0,1 + αi, i = 1, 2, . . . , h + 1, E′j(y1,0) = y1,0 + βj , j =
1, 2, . . . , h, corresponding to the substitution z1 = x0,1, z2 = y1,0 and determines
the transformation

N = NP,D′1NL,E′1NP,D′2NL,E′2 . . . NP,D′hNL,E′hNP,D′h+1

for the flag incidence system FID,4n+2. She executes by the tools of Computer
Algebra the following transformation on K4n+2. She computes H as a composition
of maps T , ψ−1, N and T2, where W1 is invariant subspace of T . Recall that W1

is a totality of w such that w2,1 = 0, w′2,2 = 0, w3,2 = 0, . . . , w′n,n = 0, wn+1,n = 0.
It means that T1 is a linear transformation of kind

z0,1 → t0,1(z0,1, z1,0, z1,1, z1,2, z2,2 . . . , zn,n+1, zn+1,n+1)

z1,0 → t0,1(z0,1, z1,0, z1,1, z1,2, z2,2 . . . , zn,n+1, zn+1,n+1)

z1,1 → t1,1(z0,1, z1,0, z1,1, z1,2, z2,2 . . . , zn,n+1, zn+1,n+1)

z1,2 → t1,2(z0,1, z1,0, z1,1, z1,2, z2,2 . . . , zn,n+1, zn+1,n+1)

z2,2 → t2,2(z0,1, z1,0, z1,1, z1,2, z2,2 . . . , zn,n+1, zn+1,n+1)

. . .

zn,n+1 → tn,n+1(z0,1, z1,0, z1,1, z1,2, z2,2 . . . , zn,n+1zn+1,n+1)

zn+1,n+1 → tn+1,n+1(z0,1, z1,0, z1,1, z1,2, z2,2 . . . , zn,n+1zn+1,n+1)

z2,1 → t2,1(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′
2,2, . . . , z

′
n,n, zn+1,n)

z′2,2 → t′2,2(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′
2,2, . . . , z

′
n,n, zn+1,n)

z3,2 → t3,2(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′
2,2, . . . , z

′
n,n, zn+1,n)

. . .

z′n,n → tn,n(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′
2,2, . . . , z

′
n,n, zn+1,n)

zn+1,n → tn+1,n(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′
2,2, . . . , z

′
n,n, zn+1,n)

where tβ , β ∈ Ω are linear forms.

After the multiplication of vector z from the right on permutational matrix
corresponding to ψ−1 = π Alice gets the string of expressions tψ(β), written in
accordance with the initial order on Ω (see the definition of graph D(4n+ 1,K)).
So, new tuple can be treated in natural way as a flag of D(4n + 1,K). After the
application of N acting on flags of D(4n + 1,K) tuple tβ will be transformed in
fβ(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z

′
2,2, . . . , z

′
n,n, zn+1,n). So, Alice will get

the transformation in the form

zα → fπ(α)(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′
2,2, . . . , z

′
n,n, zn+1,n),

where α ∈
{

(1, 0), (0, 1), (1, 1), (1, 2), (2, 1), (2, 2), (2, 2)′, (2, 3), (3, 2), (3, 3), . . . ,
(n, n)′, (n, n+ 1), (n+ 1, n), (n+ 1, n+ 1)

}
. The final transformation will change
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zα on certain linear combination of zβ , β ∈ Ω and we get the list of public rules

z0,1 → h0,1(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′
2,2, . . . , z

′
n,n, zn+1,n)

z1,0 → h0,1(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′
2,2, . . . , z

′
n,n, zn+1,n)

z1,1 → h1,1(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′
2,2, . . . , z

′
n,n, zn+1,n)

. . .

zn,n+1 → hn,n+1(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′
2,2, . . . , z

′
n,n, zn+1,n)

zn+1,n+1 → hn+1,n+1(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′
2,2, . . . , z

′
n,n, zn+1,n)

z2,1 → h2,1(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′
2,2, . . . , z

′
n,n, zn+1,n)

. . .

z′n,n → hn,n(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′
2,2, . . . , z

′
n,n, zn+1,n)

zn+1,n → hn+1,n(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′
2,2, . . . , z

′
n,n, zn+1,n)

We can prove that the transformation is a cubical map.

Notice that complexity of the use of this multivariate encryption H for Bob
can be estimated via complexity of computation of the value of general cubical
map in 4n+2 variables in given point of affine space K4n+2. So, it equals (4n+2)4

(or O(n4)).

The complexity of decryption for Alice is different. We assume that Alice has
already computed invertible matrices. She needs to compute the value of two linear
maps in given vector. It takes O(n2) elementary steps. The computation of N−1

takes O(nh), where 2h + 1 is the length of the walk on the graph. In practical
case when h = O(m) the complexity of decryption procedure is O(n2). Notice,
that if matrices are sparse ( number of nonzero parameters for each row or column
as well as parameter h are bounded by independent constant) the complexity of
decryption is O(n).

Example 2 We generalise the previous example in the following way. Let a2(x),
a3(x), . . . , an−1(x) be the list of invariants of the graph D(4n + 1,K). Alice
chooses function f(z1, z2, z3, . . . , zn) ∈ K[z1, z2, z3, . . . , zn] with the property: for
all tuples (b2, . . . , bn+1) ∈ Kn+1 the equation

f(z1, b2, b3, . . . , bn+1) = a

has a unique solution z1 = α ∈ K (the free module K4n+2 can be substituted for
submanifold M isomorphic to Reg(K))K4n+1 consisting of tuples such that y1,0
belongs to the totality Reg(K) of all invertible elements of finite commutative ring
K).

Alice computes f(x0,1, y1,0, a2(x), a3(x), . . . , an−1(x)) = g(x, y1,0),

She chooses pseudorandom parameters α1, α2, . . . , αh+1 and β1, β2, . . . ,
βh (or two random tuples generated by Quantum Computer) and generates the
specialised symbolic key as D′i(x0,1, y1,0, a2(x), a3(x), . . . , an−1(x)) = g(x, y1,0) +
αi, i = 1, 2, . . . , h + 1, E′j(y1,0) = y1,0 + βj , j = 1, 2, . . . , h, and determines multi-
variate transformation N .

We can evaluate degree of N as 3deg (g(x, y1,0)).

Examples of some functions g of small degree:
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(a) g(x, y1,0) = x0,1y1,0 + λ2a2(x) + λ3a3(x) + · · ·+ λn−1an−1(x). Recall, that we
may use manifold M of all tuples, where y1,0 is a regular element of ring K.
Alice can use the pseudorandom (or even random) sequence λi for construction
of the map.

(b) g(x, y1,0) = x30,1+y1,0(λ2a2(x)+λ3a3(x)+. . . λn−1an−1(x))+αy21,0+βy1,0+γ.
We assume that the ring K is chosen such that the equation z3 = a has a unique
solution in variable z.

Let us assume that deg(g(x, y1,0)) = d. Then Bob can encrypt for polynomial
time O(m3d+1). The complexity of decryption for Alice now is maximum of com-
plexities of computation of g(x, y1,0) and O(n2). Let us take a ”sparse” polynomial
expression g(x, y1,0), i.e. the multivariate polynomial, which can be computed for
O(n2) elementary steps. Then the complexity of decryption for Alice will be still
O(n2).

It is easy to generalise above written examples for the case K = Ql with l ≥ 1.

Example 3 Let us consider the case K = Ql, where Q is some subring K. We
fix the base and write ring element as (x1, x2, . . . , xl). Assume that the product
of two (x1, x2, . . . , xl) and (y1, y2, . . . , yl) is given by quadratic polynomial map
h : Kl ×Kl → Kl like in case K = Q[x]/m(x), where m(x) is a polynomial map
from Q[x] of degree l.

So, we choose polynomial g(z11 , z
2
1 , . . . z

l
1, z

1
2 , z

2
2 , . . . z

l
2, . . . , z

1
t+1, z

2
t+1, . . . z

l
t+1)

in l(t+ 2) variables over Q instead of function f as in the previous algorithm.
A nice example can be obtained as

g(x, ρ(y)) = (ρ(x)A− ρ(x))× ρ(y) + a2(x)A2 + a3(x)A3 + . . . an−1(x)An−1 + d,

where A is a matrix without eigenvalue 1, ρ(x) = (x10,1, x
2
0,1, . . . x

l
0,1) ∈ Ql, ρ(y) =

(y11,0, y
2
1,0, . . . , y

l
1,0) ∈ Ql, ai(x) ∈ Ql, matrices Ai,i ≥ 2 correspond to arbitrary

maps of Ql into itself, d ∈ Ql.
In that case Bob can also encrypt for polynomial time from parameter n and

Alice can decrypt essentially faster.

8 Remarks and Conclusion

The idea of the usage of symbolic keys in the case of D(n, q) based encryption
was considered in [21]. General multivariate maps based on symbolic key for a
linguistic graph as cryptographical tools was proposed in [22]. Degree estimates of
multivariate maps on the flag space of D(n,K) corresponding to symbolic key of
kind x0,1 +αi, y1,0 +βi, i = 1, 2, . . . k, where αi and βi are constants from K were
obtained in [35] (see also [34]). Discussions of computer simulations of D(n,K)
or A(n,K) based algorithms for different cases of rings on the symbolic level or
private keys algorithms the reader can find in [3], [4], [6], [7], [8]. Time evaluation of
public rule generation, time execution of private key decryption, mixing properties
of encryption, results of order evaluation for bijection encryption maps can be
found there. The descryption of connectivity invariants ai, i = 2, 3 . . . of D(n, q),
the reader can find in [11], their generalisation for arbitrary commutative ring are
given in [18], [26]. In the case of odd characteristics connectivity invariants give
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a full descryption of actual connected components. This fact is proven in [28]. If
charK = 2 then ai does not give us complete list of invariants (counterexample for
K = F2 is discussed in [20]).

The generalisation of private key algorithm on Schubert incidence structures
of arbitrary rank is presented in [31].

The main topic of current paper is a presentation of graph based multivari-
ate cryptosystems which use nonbijective maps. So straight forward linearisation
attacks are not formally applicable there.

Authors were the participants of the International Algebraic Conference dedi-
cated to 100-th anniversary of L. A. Kaluzhnin (July 7-12, 2014, Kyiv, Ukraine).
Our paper is dedicated to the memory of Lev Arkad’evich Kaluzhnin and his
achievements in Mathematics.
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14. Romańczuk U., Ustimenko V.: On the key exchange with new cubical maps based on
graphs, Annales UMCS Informatica, vol. 4, N 11, 11-19 (2011).
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