
Universally Verifiable Multiparty Computation
from Threshold Homomorphic Cryptosystems

Berry Schoenmakers and Meilof Veeningen

Dept of Mathematics & Computer Science
TU Eindhoven, The Netherlands

berry@win.tue.nl, m.veeningen@tue.nl

Abstract. Multiparty computation can be used for privacy-friendly out-
sourcing of computations on private inputs of multiple parties. A com-
putation is outsourced to several computation parties; if not too many
are corrupted (e.g., no more than half), then they cannot determine the
inputs or produce an incorrect output. However, in many cases, these
guarantees are not enough: we need correctness even if all computation
parties may be corrupted; and we need that correctness can be verified
even by parties that did not participate in the computation. Protocols
satisfying these additional properties are called “universally verifiable”.
In this paper, we propose a new security model for universally verifi-
able multiparty computation, and we present a practical construction,
based on a threshold homomorphic cryptosystem. We also develop a
multiparty protocol for jointly producing non-interactive zero-knowledge
proofs, which may be of independent interest.

1 Introduction

Multiparty computation (MPC) provides techniques for privacy-friendly out-
sourcing of computations. Intuitively, MPC aims to provide a cryptographic
“black box” which receives private inputs from multiple “input parties”; performs
a computation on these inputs; and provides the result to a “result party” (an
input party, any third party, or the public). This black box is implemented by dis-
tributing the computation between multiple “computation parties”, with privacy
and correctness being guaranteed in case of passive corruptions (e.g., [BCD+09]),
active corruption of a minority of computation parties (e.g., [CDN01]), or active
corruption of all-but-one computation parties (e.g., [DPSZ12]).

However, multiparty computation typically does not provide any guarantees
in case all computation parties are corrupted. That is, the result party has to
trust that at least some of the computation parties did their job, and has no
way of independently verifying the result. In particular, the result party has
no way of proving to an external party that his computation result is indeed
correct. Universally verifiable multiparty computation addresses these issues by
requiring that the correctness of the result can be verified by any party, even if
all computation parties are corrupt [dH12]. It was originally introduced in the
context of e-voting [CF85,SK95], but it is relevant whenever MPC is applied in
a setting where not all of the parties that provide inputs or obtain outputs are

participants in the computation. In particular, apart from contexts like e-voting
where “the public” or an external watchdog wants to be sure of correctness,
it is also useful in scenarios where (many) different input parties outsource a
computation to the cloud and require a correctness guarantee.

Unfortunately, the state-of-the-art on universally verifiable MPC is unsatis-
factory. The concept of universally verifiable MPC was first proposed in [dH12],
where it was also suggested that it can be achieved for MPC based on thresh-
old homomorphic cryptosystems. However, [dH12] does not provide a rigorous
security model for universal verifiability or analysis of the proposed construc-
tion; and the construction has some technical disadvantages (e.g., a proof size
depending on the number of computation parties). The scheme recently pro-
posed in [BDO14] solves part of the problem. Their protocols provide “public
auditability”, meaning that anybody can verify the result of a computation, but
only if that result is public. In particular, it is not possible for a result party to
prove just that an encryption of the result is correct, which is important if this
result is to be used in a later protocol without being revealed.

In this paper, we propose a new security model for universally verifiable
multiparty computation, and a practical construction achieving it. As in [dH12],
we adapt the well-known actively secure MPC protocols based on threshold
homomorphic cryptosystems from [CDN01,DN03]. Essentially, these protocols
perform computations on encrypted values; security against active adversaries
is achieved by letting parties prove correctness of their actions using interactive
zero-knowledge proofs. Such interactive proofs only convince parties present at
the computation; but making them non-interactive makes them convincing also
to external parties. Concretely, the result of a computation is a set of encryptions
of the inputs, intermediate values, and outputs of the computation, along with
non-interactive zero-knowledge proofs of their correctness. Correctness of the
result depends just on the correct set-up of the cryptosystem. Privacy holds
under the original conditions of [CDN01], i.e., if under half of the computation
parties are corrupted; but as we discuss, this threshold can be raised to n −
1 at the expense of sacrificing robustness. (Note that when computing with
encryptions, we cannot hope to achieve privacy if all computation parties are
corrupted: this would essentially require fully homomorphic encryption.)

We improve on [dH12] in two main ways. First, we provide a security model
for universal verifiability (in the random oracle model), and security proofs for
our protocols in that model. Second, we propose a new “multiparty” variant of the
Fiat-Shamir heuristic to make the zero-knowledge proofs non-interactive, which
may be of independent interest. Compared to [dH12], it eliminates the need for
trapdoor commitments. Moreover, it makes the proof size independent of the
number of parties performing the computation. We achieve this latter advantage
by homomorphically combining contributions from the different parties.

As such, universally verifiable MPC provides a practical alternative to recent
(single-party) techniques for verifiable outsourcing. Specifically, many papers
on verifiable computation focus on efficient verification, but do not cover pri-
vacy [PHGR13,WB13]. Those works that do provide privacy, achieve this by
combining costly primitives, e.g., fully homomorphic encryption with verifiable

a ∈R S sample a uniformly at random from S
send(v;P), recv(P) send v to/receive from P over secure channel
bcast(v) exchange v over broadcast channel
party P do S let party P perform S; other parties do nothing
parties i ∈ Q do S let parties i ∈ Q perform S in parallel
H : {0, 1}∗ → {0, 1}2l cryptographic hash function (l security parameter)
F ⊂ I ∪ P ∪ {R,V} global variable: set of parties found to misbehave
paillierdecode(x) threshold Paillier decoding (p. 6):

((x− 1)÷N)(4∆2)−1 mod N
fsprove(Σ; v;w; aux) Fiat-Shamir proof (p. 8): (a, s) := Σ.ann(v, w);

c := H(v||a||aux); r := Σ.res(v, w, a, s, c);π := (a, c, r)
fsver(Σ; v; a, c, r; aux) verification of Fiat-Shamir Σ-proof (p. 8):

H(v||a||aux) = c ∧Σ.ver(v; a; c; r)

Fig. 1. Notation in algorithms, protocols, and processes

computation [FGP14]; or functional encryption with garbled circuits [GKP+13].
A recent work [ACG+14] also considers the possibility of achieving verifiable
computation with privacy by distributing the computation; but it does not guar-
antee correctness if all computation parties are corrupted, nor does it allow third
parties to be convinced of this fact. In contrast, our methods guarantee correct-
ness even if all computation parties are corrupted, and even convince other par-
ties than the input party. In particular, any third party can be convinced, and
the computation may involve the inputs of multiple mutually distrusting input
parties. Moreover, in contrast to the above works, our methods rely on basic
cryptographic primitives such as Σ-protocols and the threshold homomorphic
Paillier cryptosystem, readily available nowadays in cryptographic libraries like
SCAPI [EFLL12].

Outline First, we briefly recap the CDN scheme for secure computation in the
presence of active adversaries from [CDN01,DN03], instantiated using Paillier
encryption (Section 2). Then, we show how the proofs in this protocol can be
made non-interactive using the Fiat-Shamir heuristic and our new multiparty
variant (Section 3). Finally, we propose a security model for universally verifiable
MPC, and show that CDN with non-interactive proofs is universally verifiable
(Section 4). We conclude in Section 5. We list potentially non-obvious notation
in our pseudocode in Figure 1.

2 Secure Computation from Threshold Cryptography

We review the “CDN protocol” [CDN01] for secure computation in the presence
of active adversaries based on a threshold homomorphic cryptosystem. The pro-
tocol involves m input parties i ∈ I, n computation parties i ∈ P, and a result
party R. The aim of the protocol is to compute a function f(x1, . . . , xm) (seen
as an arithmetic circuit) on private inputs xi of the input parties, such that the
result party obtains the result.

2.1 Computation using a Threshold Homomorphic Cryptosystem

The protocol uses a (t, n)-threshold homomorphic cryptosystem, with t = dn/2e.
In such a cryptosystem, anybody can encrypt a plaintext using the public key;
add two ciphertexts to obtain a (uniquely determined) encryption of the sum
of the corresponding plaintexts; and multiply a ciphertext by a constant to ob-
tain a (uniquely determined) encryption of the product of the plaintext with
the constant. Decryption is only possible if at least t out of the n decryption
keys are known. A well-known homomorphic cryptosystem is the Paillier cryp-
tosystem [Pai99]: here, the public key is an RSA modulus N = pq; a ∈ ZN is
encrypted with randomness r ∈ Z∗N as (1 + N)arN ∈ Z∗N2 ; and the product of
two ciphertexts is an encryption of the sum of the two corresponding plaintexts.
(From now on, we suppress moduli for readability.) A threshold variant of this
cryptosystem was presented in [DJ01]. The (threshold) decryption procedure is
a bit involved; we postpone its discussion until Section 2.2. The CDN protocol
can also be instantiated with other cryptosystems; but in this paper, we will
focus on the Paillier instantiation.

Computation of f(x1, . . . , xm) is performed in three phases: the input phase,
the computation phase, and the output phase. In the input phase, each input
party encrypts its input xi, and broadcasts the encryption Xi. In the computa-
tion phase, the function f is evaluated gate-by-gate. Addition and subtraction are
performed using the homomorphic property of the encryption scheme. For mul-
tiplication1 of X and Y , each computation party i ∈ P chooses a random value
di, and broadcasts encryptions Di of di and Ei of di ·y. The computation parties
then compute X ·D1 · · ·Dn, and threshold decrypt it to learn x+ d1 + . . .+ dn.
Observe that this allows them to compute an encryption of (x+d1+ . . .+dn) ·y,
and hence, using the Ei, also an encryption of x ·y. Finally, in the output phase,
when the result of the computation has been computed as encryption X of x, the
result party obtains x by broadcasting random encryption D of d and obtaining
a threshold decryption x− d of X ·D−1.

Active security is achieved by letting the parties prove correctness of all in-
formation they exchange. Namely, the input parties prove knowledge of their
inputs Xi (this prevents parties from choosing inputs depending on other in-
puts). The computation parties prove knowledge of Di, and prove that Ei is
indeed a correct multiplication of Di and Y ; and they prove the correctness of
their contributions to the threshold decryption of X · D1 · · ·Dn and X · D−1.
Finally, the result party proves knowledge of D. We now discuss these proofs of
correctness and their influence on the security of the overall protocol.

2.2 Proving Correctness of Results

The techniques in the CDN protocol for proving correctness are based on Σ-
protocols. Recall that a Σ-protocol for a binary relation R is a three-move pro-
tocol in which a potentially malicious prover convinces a honest verifier that he
1 Here, we use the improved multiplication protocol from [DN03]: the multiplication
protocol from [CDN01] has a subtle problem, in which the subroutine for additively
sharing an encrypted value requires unknown encryption randomness to be returned.

Σ-Protocol 1 ΣPK: Proof of plaintext knowledge
[Relation] R = {(X;x, r) | X = (1 +N)xrN}
[Announcement] Σ.ann(X;x, r) :=

a ∈R ZN ;u ∈R Z∗N ;A := (1 +N)auN ; return (A; a, u)

[Response] Σ.res(X;x, r;A; a, u; c) :=

t := b(a+ cx)/Nc ; d := a+ cx; e := urc(1 +N)t; return (d, e)

[Verification] Σ.ver(X;A; c; d, e) := (1 +N)deN
?
= AXc

[Extractor] Σ.ext(X;A; c; c′; d, e; d′, e′) :=

α, β := “values such that α(c− c′) + βN = 1” ; return ((d− d′)α, (e/e′)αXβ)

[Simulator] Σ.sim(X; c) :=

d ∈R ZN ; e ∈R Z∗N ;A := (1 +N)deNX−c; return (A; c; d, e)

knows a witness w for statement v such that (v;w) ∈ R. First, the prover sends
an announcement (computed using algorithm Σ.ann) to the verifier; the verifier
responds with a uniformly random challenge; and the prover sends his response
(computed using algorithm Σ.res), which the verifier verifies (using predicate
Σ.ver). Σ-protocols satisfy the following properties:

Definition 1. Let R ⊂ V ×W be a binary relation and LR = {v ∈ V | ∃w ∈
W : (v;w) ∈ R} its language. Let Σ be a collection of p.p.t. algorithms Σ.ann,
Σ.res, Σ.sim, Σ.ext, and polynomial time predicate Σ.ver. Let C be a finite set
called the challenge space. Then Σ is a Σ-protocol for relation R if:

Completeness If (a; s) ← Σ.ann(v;w), c ∈ C, and r ← Σ.res(v;w; a; s; c),
then Σ.ver(v; a; c; r).

Special soundness If v ∈ V , c 6= c′, Σ.ver(v; a; c; r), and Σ.ver(v; a; c′; r′),
then w ← Σ.ext(v; a; c; c′; r; r′) satisfies (v;w) ∈ R.

Special honest-verifier zero-knowledgeness If v ∈ LR, c ∈ C, then (a; r)←
Σ.sim(v; c) has the same probability distribution as (a; r) obtained by (a; s)←
Σ.ann(v;w), r ← Σ.res(v;w; a; s; c). If v /∈ LR, then (a; r)← Σ.sim(v; c) sat-
isfies Σ.ver(v; a; c; r).

Completeness states that a protocol between a honest prover and verifier
succeeds; special soundness states that there exists an extractor Σ.ext that can
extract a witness from two conversations with the same announcement; and spe-
cial honest-verifier zero-knowledgeness states that there exists a simulator Σ.sim
that can generate conversations with the same distribution as full protocol runs
without knowing the witness. While special honest-verifier zero-knowledgeness
demands an identical distribution for the simulation, statistical indistinguisha-
bility is sufficient for our purposes; in this case, we speak of a “statistical Σ-
protocol”. In the remainder, we will need that our Σ-protocols have “non-trivial
announcements”, in the sense that when (a; r) and (a′; r′) are both obtained
from Σ.sim(v; c), then with overwhelming probability, a 6= a′. (Indeed, this will
be the case for all Σ-protocols in this paper.) This property, which is required
by the Fiat-Shamir heuristic [AABN08], essentially follows from the hardness of
the relation; see Appendix B for details.

Σ-Protocol 2 ΣCM: Proof of correct multiplication
[Relation] R = {(X,Y, Z; y, r, s) | Y = (1 +N)yrN ∧ Z = XysN}
[Announcement] Σ.ann(X,Y, Z; y, r, s) :=

a ∈R ZN ;u, v ∈R Z∗N ;A := (1 +N)auN ;B := XavN ; return (A,B; a, u, v)

[Response] Σ.res(X,Y, Z; y, r, s;A,B; a, u, v; c) :=

t := b(a+ cy)/Nc ; d := a+ cy; e := urc(1 +N)t; f := vXtsc; return (d, e, f)

[Verification] Σ.ver(X,Y, Z;A,B; c; d, e, f) := (1 +N)deN
?
= AY c ∧XdfN

?
= BZc

[Extractor] Σ.ext(X,Y, Z;A,B; c; c′; d, e, f ; d′, e′, f ′) :=
α, β := “values such that α(c− c′) + βN = 1”
return ((d− d′)α, (e/e′)αY β , (f/f ′)αZβ)

[Simulator] Σ.sim(X,Y, Z; c) :=

d ∈R ZN ; e, f ∈R Z∗N ;A := (1 +N)deNY −c;B := XdfNZ−c

return (A,B; c; d, e, f)

The CDN protocol uses a sub-protocol in which multiple parties simulta-
neously provide proofs based on the same challenge, called the “multiparty Σ-
protocol”. Namely, suppose each party from a set P wants to prove knowledge of
a witness for a statement vi ∈ LR with some Σ-protocol. To achieve this, each
party in P broadcasts a commitment to its announcement; then, the computa-
tion parties jointly generate a challenge; and finally, all parties in P broadcast
their response to this challenge, along with an opening of their commitment.
The multiparty Σ-protocol is used as a building block in the CDN protocol by
constructing a simulator that provides proofs on behalf of honest parties with-
out knowing their witnesses (“zero-knowledgeness”), and extracts witnesses from
corrupted parties that give correct proofs (“soundness”).

The CDN protocol uses three Σ-protocols: ΣPK proving plaintext knowledge,
ΣCM proving correct multiplication, and ΣCD proving correct decryption. The
first two are due to [CDN01] (which also proves that they are Σ-protocols). ΣPK
(Σ-Protocol 1) proves knowledge of x, r such that X = (1+N)xrN is an encryp-
tion of x with randomness r. ΣCM (Σ-Protocol 2) proves knowledge of (y, r, s)
for (X,Y, Z) such that Y = (1+N)yrN is an encryption of y with randomness
r and Z = XysN is an encryption of the product of the plaintexts of X and Y
randomised with s.

Proof ΣCD of correct decryption (Σ-protocol 3) is due to [Jur03]. In the
threshold variant of Paillier encryption due to Damgård and Jurik [DJ01,Jur03],
safe primes p = 2p′ + 1, q = 2q′ + 1 are used for the RSA modulus N = pq.
Key generation involves generating a secret value d such that, given c′ = c4∆

2d,
anybody can compute the plaintext of c by “decoding” c′ as paillierdecode(c′) :=
((c′ − 1)÷N)(4∆2)−1 mod N . Here, ∆ = n! and ÷ denotes division as integers
(using N |c′−1). The value d is then (t, n) Shamir-shared modulo Np′q′ between
the computation parties as shares si. Threshold decryption is done by letting t
parties each compute ci = c2∆si ; the value c4∆

2d is obtained by applying Shamir
reconstruction “in the exponent”. Correct decryption is proven with respect to
a public set of verification values. Namely, the public key includes values v,

Σ-Protocol 3 ΣCD: Proof of correct decryption (statistical)
[Relation] R = {(d, di, v, vi;∆si) | d2i = d4∆si ∧ vi = v∆si}
[Announcement] Σ.ann(d, di, v, vi;∆si) := // k = log2N ; k2 stat. sec. param

u ∈R [0, 22k+2k2]; a := d4u; b := vu; return (a, b;u)

[Response] Σ.res(d, di, v, vi;∆si; a, b;u, c) :=
r := u+ c∆si; return r

[Verification] Σ.ver(d, di, v, vi; a, b; c; r) := d4r
?
= a(di)

2c ∧ vr ?
= b(vi)

c

[Extractor] Σ.ext(d, di, v, vi; a, b; c; c′; r; r′) := return (r − r′)/(c− c′)
[Simulator] Σ.sim(d, di, v, vi; c) :=

r ∈R [0, 22k+2k2]; return(d4r(di)−2c, vr(vi)
−e; c; r)

v0 = v∆
2d, and vi = v∆si for all computation parties i ∈ P. Hence, in ΣCD,

parties prove correctness of their decryption shares ci of c by proving knowledge
of ∆si = logc4(c

2
i) = logv(vi) for (c, ci, v, vi). (In the same way, v0 can be used

to prove correctness of c′ with respect to c using a single instance of ΣCD.) Note
that this is a statistical Σ-protocol: this is because witness ∆si is a value modulo
the secret value Np′q′, so modulo reduction is not possible.

2.3 Security of the CDN Protocol

In [CDN01], it is shown that the CDN protocol implements secure function
evaluation in Canetti’s non-concurrent model [Can98] if only a minority of com-
putation parties are corrupted. Essentially, this means that in this case, the
computation succeeds; the result is correct; and the honest parties’ inputs re-
main private. This conclusion is true assuming honest set-up and security of the
Paillier encryption scheme and the trapdoor commitment scheme used. If a ma-
jority of computation parties is corrupted, then because threshold dn/2e is used
for the threshold cryptosystem, privacy is broken. As noted [ST06,IPS09], this
can be remedied by raising the threshold, but in that case, the corrupted parties
can make the computation break down at any point by refusing to cooperate. In
Section 4.1, we present a variant of this model in which we prove the security of
our protocols (using random oracles but no trapdoor commitments).

3 Multiparty Non-Interactive Proofs

In this section, we show how to produce non-interactive zero-knowledge proofs in
a multiparty way. At several points in the above CDN protocol, all parties from
a set P prove knowledge of witnesses for certain statements; the computation
parties are convinced that those parties that succeed, do indeed know a witness.
In CDN, these proofs are interactive; but for universal verifiability, we need non-
interactive proofs that convince any third party. The traditional method to make
proofs non-interactive is the Fiat-Shamir heuristic; in Section 3.1, we outline it,
and show that it is problematic in a multiparty setting. In Section 3.2, we present

a new, “multiparty” Fiat-Shamir heuristic that works in our setting, and has
the advantage of achieving smaller proofs by “homomorphically combining” the
proofs of individual parties. In the remainder, C ⊂ I ∪ P ∪ {R,V} denotes the
set of corrupted parties; and F denotes the set of parties who failed to provide
a correct proof when needed; this only happens for corrupted parties, so F ⊂ C.

Our results are in the random oracle model [BR93,Wee09], an idealised model
of hash functions. In this model, evaluations of the hash function H are modelled
as queries to a “random oracle” O that evaluates a perfectly random function.
When simulating an adversary, a simulator can intercept these oracle queries
and answer them at will, as long as the answers look random to the adversary.
Security in the random oracle model does not generally imply security in the
standard model [GK03], but it is often used because it typically gives simple,
efficient protocols, and its use does not seem to lead to security problems in
practice [Wee09]. See Appendix A for a detailed description of our use of ran-
dom oracles; and Section 5 for a discussion of the real-world implications of the
particular flavour of random oracles we use.

3.1 The Fiat-Shamir Heuristic and Witness-Extended Emulation

The obvious way of making the proofs in the CDN protocol non-interactive, is
to apply the Fiat-Shamir heuristic to all individual Σ-protocols. That is, party
i ∈ P produces proof of knowledge π of a witness for statement v as follows2:

(a; s) := Σ.ann(v;w); c := H(v||a||aux); r := Σ.res(v;w; a; s; c);π := (a; c; r).

Let us denote this procedure fsprove(Σ; v;w; aux). A verifier accepts those proofs
π = (a; c; r) for which fsver(Σ; v;π; aux) holds, where fsver(Σ; v; a, c, r; aux) is
defined as H(v||a||aux) = c ∧Σ.ver(v; a; c; r).

Recall that security proofs require a simulator that simulates proofs of honest
parties (zero-knowledgeness) and extracts witnesses of corrupted parties (sound-
ness). In the random oracle model, Fiat-Shamir proofs for honest parties can be
simulated by simulating a Σ-protocol conversation (a, c, r) and programming the
random oracle so that H(v||a||aux) = c. Witnesses of corrupted parties can be
extracted by rewinding the adversary to the point where it made an oracle query
for v||a||aux and supplying a different value; but, as we discuss in Appendix A,
this extraction can make the simulator very inefficient. In fact, if Fiat-Shamir
proofs take place in R different rounds, then extracting witnesses may increase
the running time of the simulator by a factor O(R!). The reason is that the
oracle query for a proof in one round may have in fact already been made in a
previous round, in which case rewinding the adversary to extract one witness re-
quires recursively extracting witnesses for all intermediate rounds. Hence, we can
essentially only use the Fiat-Shamir heuristic in a constant number of rounds.

2 Here, aux should contain at least the prover’s identity. Otherwise, corrupted parties
could replay proofs by honest parties, which breaks the soundness property below
because witnesses for these proofs cannot be extracted by rewinding the adversary
to the point of the oracle query and reprogramming the random oracle.

Moreover, in the CDN protocol, applying the Fiat-Shamir heuristic to each
individual proof has the disadvantage that the verifier needs to check a num-
ber of proofs that depends linearly on the number of computation parties. In
particular, for each multiplication gate, the verifier needs to check n proofs of
correct multiplication and t proofs of correct decryption. Next, we show that we
can avoid both the technical problems with witness extended emulation and the
dependence on the number of computation parties by letting the computation
parties collaboratively produce “combined proofs”. (As discussed in Appendix A,
there are other ways of just solving the technical problems with witness extended
emulation, but they are not easier than the method we propose.)

3.2 Combined Proofs with the Multiparty Fiat-Shamir Heuristic

The crucial observation (e.g., [Des93,KMR12]) allowing parties to produce non-
interactive zero-knowledge proofs collaboratively is that, for many Σ-protocols,
conversations of proofs with the same challenge can be “homomorphically com-
bined”. For instance, consider the classical Σ-protocol for proving knowledge
of a discrete logarithm due to Schnorr [Sch89]. Suppose we have two Schnorr
conversations proving knowledge of x1 = logg h1, x2 = logg h2, i.e., two tu-
ples (a1; c; r1) and (a2; c; r2) such that gr1 = a1(h1)

c and gr2 = a2(h2)
c. Then

gr1+r2 = (a1a2)(h1h2)
c, so (a1a2; c; r1 + r2) is a Schnorr conversation proving

knowledge of discrete logarithm x1 + x2 = logg(h1h2). For our purposes, we
demand that such homomorphisms satisfy two properties. First, when conver-
sations of at least dn/2e parties are combined, the result is a valid conversation
(the requirement of having at least dn/2e conversations is needed for decryption
proofs to ensure that there are enough decryption shares). Second, when fewer
than dn/2e parties are corrupted, the combination of different honest announce-
ments with the same corrupted announcements is likely to lead to a different
combined announcement. This helps to eliminate the rewinding problems for
Fiat-Shamir discussed above.

Definition 2. Let Σ be a Σ-protocol for relation R ⊂ V ×W . Let Φ be a collec-
tion of partial functions Φ.stmt, Φ.ann, and Φ.resp. We call Φ a homomorphism
of Σ if:

Combination Let c be a challenge; I a set of parties such that |I| ≥ dn/2e; and
{(vi; ai; ri)}i∈I a collection of statements, announcements, and responses. If
Φ.stmt({vi}i∈I) is defined and for all i, Σ.ver(vi; ai; c; ri) holds, then also
Σ.ver(Φ.stmt({vi}i∈I);Φ.ann({ai}i∈I); c;Φ.resp({ri}i∈I)).

Randomness Let c be a challenge; C ⊂ I sets of parties such that |C| <
dn/2e ≤ |I|; {vi}i∈I statements s.t. Φ.stmt({vi}i∈I) is defined; and {ai}i∈I∩C
announcements. If (ai; ·), (a′i; ·) ← Σ.sim(vi; c) ∀i ∈ I \ C, then with over-
whelming probability, Φ.ann({ai}i∈I) 6= Φ.ann({ai}i∈I∩C ∪ {a′i}i∈I\C).

Given a Σ-protocol with homomorphism Φ, parties holding witnesses {wi} for
statements {vi} can together generate a Fiat-Shamir proof (a;H(v||a||aux); r) of
knowledge of a witness for the “combined statement” v = Φ.stmt({vi}). Namely,
the parties each provide announcement ai for their own witness; compute a =

Protocol 4 MΣ: The Multi-Party Fiat-Shamir Heuristic
1. // pre: Σ is a Σ-protocol with homomorphism Φ, P is a set of non-failed
2. // parties (P ∩ F = ∅), vP = {vi}i∈P statements w/ witnesses wP = {wi}i∈P
3. // post: if |P \ F | ≥ dn/2e, then vP\F is the combined statement
4. // Φ.stmt({vi}i∈P\F), and πP\F is a corresponding Fiat-Shamir proof
5. // invariant: F ⊂ C: set of failed parties only includes corrupted parties
6. (vP\F , πP\F)← MΣ(Σ,Φ, P, vP , wP , aux) :=
7. repeat
8. parties i ∈ P \ F do
9. (ai; si) := Σ.ann(vi;wi);hi := H(ai||i); bcast(hi)

10. parties i ∈ P \ F do bcast(ai)
11. F ′ := F ;F := F ∪ {i ∈ P \ F | hi 6= H(ai||i)}
12. if F = F ′ then // all parties left provided correct hashes
13. c := H(Φ.stmt({vi}i∈P\F)||Φ.ann({ai}i∈P\F)||aux)
14. parties i ∈ P \ F do ri := Σ.res(vi;wi; ai; si; c); bcast(ri)
15. F := F ∪ {i ∈ P \ F | ¬Σ.ver(vi; ai; c; ri)}
16. if F = F ′ then // all parties left provided correct responses
17. return (Φ.stmt({vi}i∈P\F),
18. (Φ.ann({ai}i∈P\F); c;Φ.resp({ri}i∈P\F)))
19. until |P \ F | < dn/2e // until not enough parties left
20. return (⊥,⊥)

Φ.ann({ai}) andH(v||a||aux); and provide responses ri. Taking r = Φ.resp({ri}),
the combination property from the above definition guarantees that we indeed
get a validating proof. However, we cannot simply let the parties broadcast their
announcements in turn, because to prove security in that case, the simulator
needs to provide the announcements for the honest parties without knowing the
announcements of the corrupted parties, hence without being able to program
the random oracle on the combined announcement. We solve this by starting
with a round in which each party commits to its announcement (the same trick
was used in a different setting in [NKDM03])3.

The multiparty Fiat-Shamir heuristic (Protocol 4) let parties collaboratively
produce Fiat-Shamir proofs based on the above ideas. Apart from the above
procedure (lines 8, 9, 10, 13, and 14), the protocol also contains error handling.
Namely, we throw out parties that provide incorrect hashes to their announce-
ments (line 11) or incorrect responses (line 15). If we have correct responses
for all correctly hashed announcements, then we apply the homomorphism (line
17–18); otherwise, we try again with the remaining parties. If the number of
parties drops below dn/2e, the homomorphism can no longer be applied, so we
return with an error (line 20). Note that, as in the normal Fiat-Shamir heuristic,
the announcements do not need to be stored if they can be computed from the
challenge and response (as will be the case for the Σ-protocols we consider).

Concerning security, recall that we need a simulator that simulates proofs
of honest parties without their witnesses (zero-knowledgeness) and extracts the

3 As in [NKDM03], it may be possible to remove the additional round under the
non-standard known-target discrete log problem.

witnesses of corrupted parties (soundness). In Appendix B, we present such a
simulator. Essentially, it “guesses” the announcements of the corrupted parties
based on the provided hashes; then simulates the Σ-protocol for the honest par-
ties; and programs the random oracle on the combined announcement. It obtains
witnesses for the corrupted parties by rewinding to just before the honest parties
provide their announcements: this way, the corrupted parties are forced to use the
announcements that they provided the hashes of (hence special soundness can
be invoked), whereas the honest parties can provide new simulated announce-
ments by reprogramming the random oracle. The simulator requires that fewer
than dn/2e provers are corrupted so that we can use the randomness property of
the Σ-protocol homomorphism (Definition 2). (When more than dn/2e provers
are corrupted, we use an alternative proof strategy that uses witness-extended
emulation instead of this simulator.)

3.3 Homomorphisms for the CDN Protocol

In the CDN protocol, the multiparty Fiat-Shamir heuristic allows us to obtain a
proof that multiplication was done correctly that is independent of the number
of computation parties. Recall that, for multiplication of encryptions X of x and
Y of y, each computation party provides encryptions Di of di and Ei of di · y,
and proves that Ei encrypts the product of the plaintexts of Y and Di; and each
computation party provides decryption share Si of encryption XD1 · · ·Dn, and
proves it correct. As we will show now, the multiplication proofs can be combined
with homomorphism ΦCM into one proof that

∏
Ei encrypts the product of the

plaintexts of Y and
∏
Di; and the decryption proofs can be combined with

homomorphism ΦCD into one proof that a combination S0 of the decryption
shares is correct. In the CDN protocol, the individual Di, Ei, and Si are not
relevant, so also the combined values convince a verifier of correct multiplication.

In more detail, the homomorphism ΦCM for ΣCM is defined on statements
{(X,Yi, Zi)}i∈I which share encryption X, and it proves that the multiplication
on plaintexts of X with

∏
Yi is equal to

∏
Zi. We let Φ.stmt({(X,Yi, Zi)}i∈I) =(

X,
∏
i∈I Yi,

∏
i∈I Zi

)
and Φ.ann({Ai, Bi}i∈I) =

(∏
i∈I Ai,

∏
i∈I Bi

)
. For the re-

sponse, we would like to define d =
∑
i∈I di, e =

∏
i∈I ei, and f =

∏
i∈I fi; but

because
∑
i∈I di is computed modulo N , we need to add correction factors to e

and f : e =
(∏

i∈I ei
)
(1+N)k and f =

(∏
i∈I fi

)
Y k (where k =

⌊
(
∑
i∈I di)/N

⌋
).

The homomorphism ΦCD for ΣCD combines correctness proofs of decryption
shares into a proof of correct decryption with respect to an overall verification
value. Let I ≥ dn/2e be sufficiently many parties to decrypt a ciphertext, let
{λi}i∈I be Lagrange interpolation coefficients for these parties. (Note that λi are
not always integral; but we will always use ∆λi, which are integral.) Let si be
their shares of the decryption key d =

∑
i∈I ∆λisi. Recall that decryption works

by letting each party i ∈ I provide decryption share ci = c2∆si ; computing c′ =∏
i∈I c

2∆λi
i ; and from this determining the plaintext as paillierdecode(c′). Parties

prove correctness of their decryption shares ci by proving that logc4 c2i = logv vi,
where v, vi are publicly known verification values such that vi = v∆si . Now, if

logc4 c
2
i = logv vi for all i, then

logc4 c
′ = logc4

∏
i∈I

c2∆λii = logv
∏
i∈I

v∆λii = logv
∏
i∈I

(v∆si)∆λi = logv v
∆2d.

Hence, decryption proofs for shares ci with respect to verification values vi can
be combined into a decryption proof for c′ with respect to verification value
v0 := v∆

2d. Formally, Φ.stmt({(d, di, v, vi)}i∈I =
(
d,
∏
i∈I c

∆λi
i , v,

∏
i∈I v

∆λi
i

)
;

Φ.ann({(ai, bi)}i∈I) =
(∏

i∈I a
∆λi
i ,

∏
i∈I b

∆λi
i

)
; and Φ.resp({ri}i∈I) =

∑
∆λiri.

For the combination property of Definition 2, note that we really need I ≥ dn/2e
in order to apply Lagrange interpolation. For the randomness property, note that
if |C| < dn/2e, then at least one party in I /∈ C has a non-zero interpolation
coefficient, hence the contribution of this party to the announcement ensures
that the two combined announcements are different.

4 Universally Verifiable MPC

In the previous section, we have shown how to produce non-interactive zero-
knowledge proofs in a multiparty way. We now use this observation to obtain uni-
versally verifiable MPC. We first define security for universally verifiable MPC;
and then obtain universally verifiable MPC by adapting the CDN protocol.

4.1 Security Model for Verifiable MPC

Our security model is an adaptation of the model of [Can98,CDN01] to the
setting of universal verifiability in the random oracle model. We first explain
the general execution model, which is as in [Can98,CDN01] but with a random
oracle added; we then explain how to model verifiability in this execution model
as the behaviour of the ideal-world trusted party. The general execution model
compares protocol executions in the real and ideal world.

In the real world, a protocol π between m input parties i ∈ I, n computation
parties i ∈ P, a result party R and a verifier V is executed on an open broadcast
network with rushing in the presence of an active static adversary A corrupting
parties C ⊂ I ∪ P ∪ {R,V}. The protocol execution starts by incorruptibly
setting up the Paillier threshold cryptosystem, i.e., generating public key pk =
(N, v, v0, {vi}i∈P) with RSA modulus N and verification values v, v0, vi, and
secret key shares {si}i∈P (see Section 2.2). Each input party i ∈ I gets input
(pk, xi); each computation party i ∈ P gets input (pk, si); and the result party
R gets input pk. The adversary gets the inputs (pk, {xi}i∈I∩C , {si}i∈P∩C) of
the corrupted parties, and has an auxiliary input a. During the protocol, parties
can query the random oracle; the oracle answers new queries randomly, and
repeated queries consistently. At the end of the protocol, each honest party
outputs a value according to the protocol; the corrupted parties output ⊥; and
the adversary outputs a value at will. Define EXECπ,A(k, (x1, . . . , xm), C, a) to
be the random variable, given security parameter k, consisting of the outputs

Process 5 TVSFE: trusted party for verifiable secure function evaluation
1. // compute f on {xi}i∈I for R with corrupted parties C; V learns encryption
2. TVSFE(C, (N, v, v0, {vi}i∈P)) :=
3. // input phase
4. foreach i ∈ I \ C do xi := recv(Ii) // honest inputs
5. {xi}i∈I∩C := recv(S) // corrupted inputs
6. if |P ∩ C| ≥ dn/2e then send({xi}i∈I\C ,S) // send to corrupted majority
7. // computation phase
8. r := f(x1, . . . , xm)
9. // output phase

10. if R /∈ C then // honest R: adversary learns encryption, may block result
11. s ∈R Z∗N ; R := (1 +N)rsN ; res := (r, s); send(R,S)
12. if |P ∩ C| ≥ dn/2e and recv(S) = ⊥ then res := ⊥; R := ⊥
13. send(res,R)
14. else // corrupted R: adversary learns output, may block result to V
15. send(r,S); s := recv(S)
16. if s = ⊥ then R := ⊥ else R := (1 +N)rsN

17. // proof phase
18. if V /∈ C then send(R,V)

of all parties (including the adversary) and the set O of oracle queries and
responses.

The ideal-world execution similarly involves m input parties i ∈ I, n compu-
tation parties i ∈ P, result party R, verifier V, and an adversary S corrupting
parties C ⊂ I ∪P ∪{R,V}; but now, there is also an incorruptible trusted party
T . As before, the execution starts by setting up the keys (pk, {si}i∈P) of the
Paillier cryptosystem. The input parties receive xi as input; the trusted party
receives a list C of corrupted parties and the public key pk. Then, it runs the code
TVSFE shown in Process 5, which we explain later. The adversary gets inputs
(pk, C, {xi}i∈I∩C , {si}i∈P∩C), and outputs a value at will. In this model, there
is no random oracle; instead, the adversary chooses the set O of oracle queries
and responses (typically, those used to simulate a real-world adversary). As in
the real-world case, IDEALTSFE,S(k, (x1, . . . , xm), C, a) is the random variable,
given security parameter k, consisting of all parties’ outputs and O.

Definition 3. Protocol π implements verifiable secure function evaluation in the
random oracle model if, for every probabilistic polynomial time real-world adver-
sary A, there exists a probabilistic polynomial time ideal-world adversary SA such
that, for all inputs x1, . . . , xm; all sets of corrupted parties C; and all auxiliary
input a: EXECπ,A(k;x1, . . . , xm;C; a) and IDEALTVSFE,SA(k;x1, . . . , xm;C; a)
are computationally indistinguishable in security parameter k.

We remark that, while security in non-random-oracle secure function evalua-
tion [Can98,CDN01] is preserved under (subroutine) composition, this is not the
case for our random oracle variant. The reason is that our model and protocols
assume that the random oracle is not used outside of the protocol. Using the
random oracle model with dependent auxiliary input [Unr07,Wee09] might be

enough to obtain a composition property; but adaptations are needed to make
our protocol provably secure in that model. See Section 5 for a discussion.

We now discuss the trusted party TVSFE for verifiable secure function eval-
uation. Whenever the computation succeeds, TVSFE guarantees that the results
are correct. Namely, TVSFE sends the result r of the computation and random-
ness s to R (line 13), and it sends encryption (1 + N)rsN of the result with
randomness s to V (line 18); if the computation failed, R gets (⊥,⊥) and V
gets ⊥.4 Whether TVSFE guarantees privacy (i.e., only R can learn the result)
and robustness (i.e., the computation does not fail) depends on which parties
are corrupted. Privacy and robustness with respect to R are guaranteed as long
as only a minority of computation parties are corrupted. If not, then in line 6,
TVSFE sends the honest parties’ inputs to the adversary; and in line 12, it gives
the adversary the option to block the computation by sending ⊥. Note that the
adversary receives the inputs of the honest parties after it provides the inputs of
the corrupted parties, so even if privacy is broken, the adversary cannot choose
the corrupted parties’ inputs based on the honest parties’ inputs. For robustness
with respect to V, the result party needs to be honest. If not, then in line 15,
TVSFE gives the adversary the option to block V’s result by sending ⊥; in any
case, it can choose the randomness. (Note that these thresholds are specific to
CDN’s “honest majority” setting; e.g., other protocols may satisfy privacy if all
computation parties except one are corrupted.)

Note that this model does not cover the “universality” aspect of universally
verifiable MPC. This is because the security model for secure function evalu-
ation only covers the input/output behaviour of protocols, not the fact that
“the verifier can be anybody”. Hence, we design universally verifiable protocols
by proving that they are verifiable, and then arguing based on the characteris-
tics of the protocol (e.g., the verifier does not have any secret values) that this
verifiability is “universal”.

4.2 Universally Verifiable CDN

We now present the UVCDN protocol (Protocol 6) for universally verifiable
secure function evaluation. At a high level, this protocol consists of the input,
computation, and multiplication phases of the CDN protocol, with all proofs
made non-interactive, followed by a new proof phase. As discussed, we can use
the normal Fiat-Shamir (FS) heuristic in only a constant number of rounds; and
we can use the multiparty FS heuristic only when it gives a “combined statement”
that makes sense. Hence, we choose to use the FS heuristic for the proofs by the

4 Although we only guarantee computational indistinguishability and the verifier does
not know what value is encrypted, this definition does guarantee that V receives
the correct result. This is because the ideal-world output of the protocol execution
contains R’s r and s and V’s (1 +N)rsN , so a distinguisher between the ideal and
real world can check correctness of V’s result. (If s were not in R’s result, this would
not be the case, and correctness of V’s result would not be guaranteed.) Also, note
that although privacy depends on the security of the encryption scheme, correctness
does not rely on any knowledge assumption.

Protocol 6 UVCDN: universally verifiable CDN
1. // pre: pk/{si}i∈P threshold Paillier public/secret keys, {xi}i∈I function input
2. // post: output R according to ideal functionality ITM 5
3. R← UVCDN(pk = (N, v, v0, {vi}i∈P), {si}i∈P , {xi}i∈I) :=
4. parties i ∈ I do // input phase
5. ri ∈R Z∗N ;Xi := (1 +N)xirNi ;πPK,i := fsprove(ΣPK;Xi;xi, ri; i)
6. hi := H(Xi||πPK,i||i); bcast(hi); bcast(Xi, πPK,i)
7. F := {i ∈ I | hi 6= H(Xi||πPK,i||i) ∨ ¬fsver(ΣPK;Xi;πPK,i; i)}
8. foreach i ∈ F do Xi := 1
9. foreach gate do // computation phase

10. if 〈constant gate c with value v〉 then Xc := (1 +N)v

11. if 〈addition gate c with inputs a, b〉 then Xc := XaXb

12. if 〈subtraction gate c with inputs a, b〉 then Xc := XaX
−1
b

13. if 〈multiplication gate c with inputs a, b〉 then // [DN03] multiplication
14. parties i ∈ P \ F do
15. di ∈R ZN ; ri, ti ∈R Z∗N ;Di := (1 +N)dirNi ;Ei := (Xb)

ditNi
16. bcast(Di, Ei)
17. (·, Dc, Ec;πCMc) :=
18. MΣ(ΣCM, ΦCM,P \ F, {(Xb, Di, Ei)}i∈P\F , {(di, ri, ti)}i∈P\F)
19. if |P \ F | < dn/2e then break
20. Sc := Xa ·Dc
21. parties i ∈ P \ F do Si := (Sc)

2∆si ; bcast(Si)
22. (·, S0,c, ·, ·;πCDc) :=
23. MΣ(ΣCD, ΦCD,P \ F, {(Sc, Si, v, vi)}i∈P\F , {∆si}i∈P\F)
24. if |P \ F | < dn/2e then break
25. s := paillierdecode(S0,c);Xc := (Xb)

s · E−1
c

26. if |P \ F | < dn/2e then parties i ∈ I ∪ P ∪ {R} do return ⊥
27. party R do d ∈R ZN ; s ∈R Z∗N ;D := (1 +N)dsN // output phase
28. party R do πPKd := fsprove(ΣPK;D; d, s;R); bcast(D,πPKd)
29. if ¬fsver(ΣPK;D;πPKd;R) then parties i ∈ I ∪ P ∪ {R} do return ⊥
30. Y := Xoutgate ·D−1;parties i ∈ P \ F do Yi := Y 2∆si ; bcast(Yi)
31. (·, Y0, ·, ·;πCD; y) := MΣ(ΣCD, ΦCD,P \ F, {(Y, Yi, v, vi)}i∈P\F , {∆si}i∈P\F , D)
32. if |P \ F | < dn/2e then parties i ∈ I ∪ P ∪ {R} do return ⊥
33. party R do
34. y := paillierdecode(Y0); r := y + d
35. send({(Dc, Ec, ΠCMc, S0,c, ΠCDc)}c∈gates, (D,πPKd, Y0, πCDy);V) // proof
36. return (r, s) // phase
37. parties i ∈ I ∪ P do return ⊥
38. party V do π := recv(R); return vercomp(pk, {Xi}i∈I , π)

input and result parties, and the multiparty FS heuristic for the proofs by the
computation parties.

In more detail, during the input phase of the protocol, the input parties
provide their inputs (lines 4–8). As in the CDN protocol, each party encrypts
its input and compiles a FS proof of knowledge (line 5). In the original CDN
protocol, these encryptions and proofs would be broadcast directly; however, if a
majority of computation parties are corrupted, then this allows corrupted parties

Algorithm 7 vercomp: verifier’s gate-by-gate verification of the computation
1. // pre: pk public key, {Xi}i∈I encryptions, ({Πmuli}, Πresult) tuple
2. // post: if ({Πmuli}, Πresult) proves correctness of Y , Xo = Y ; otherwise, Xo = ⊥
3. Xo ← vercomp(pk = (N, v, v0, {vi}i∈P), {Xi}i∈I , ({Πmuli}, Πresult)) :=
4. // verification of input phase: see lines 6–8 of UVCDN
5. // verification of computation phase
6. foreach gate do
7. if 〈constant gate c with value v〉 then Xc := (1 +N)v

8. if 〈addition gate c with inputs a, b〉 then Xc := XaXb

9. if 〈subtraction gate c with inputs a, b〉 then Xc := XaX
−1
b

10. if 〈multiplication gate c with inputs a, b〉 then
11. (D;E; a, c, r;S0; a

′, c′, r′) := Πmulc; S := Xa ·D−1

12. if ¬fsver(ΣCM;Xb, D,E; a; c; r) then return ⊥
13. if ¬fsver(ΣCD;S, S0, v, v0; a

′; c′; r′) then return ⊥
14. s := paillierdecode(S0);Xc := (Xb)

sE−1

15. // verification of output phase
16. (D; aout, cout, rout;Y0; adec, cdec, rdec) := Πresult

17. if ¬fsver(ΣPK;D; aout, cout, rout;R) then return ⊥
18. Y := Xoutgate ·D−1

19. if ¬fsver(ΣCD;Y, Y0, v, v0; adec, cdec, rdec;D) then return ⊥
20. y := paillierdecode(Y0)
21. return (1 +N)yD // encryption of y + d = r

to adapt their inputs based on the inputs of the honest parties. To prevent this,
we let each party first broadcast a hash of its input and proof; only after all
parties have committed to their inputs using this hash are the actual encrypted
inputs and proofs revealed (line 6). All parties that provide an incorrect hash or
proof have their inputs set to zero (line 7–8).

The remainder of the computation follows the CDN protocol. During the
computation phase, the function is evaluated gate-by-gate; for multiplication
gates, the multiplication protocol from [DN03] is used, with proofs of correct
multiplication and decryption using the multiparty FS heuristic (lines 14–25).
During the output phase, the result party obtains the result by broadcasting an
encryption of a random d and proving knowledge using the normal FS heuristic
(lines 27–28); the computation parties decrypt the result plus d, proving cor-
rectness using the multiparty FS heuristic (line 31). From this, the result party
learns result r (line 34); and it knows the intermediate values from the protocol
and the proofs showing they are correct.

Finally, we include a proof phase in the UVCDN protocol in which the result
party sends these intermediate values and proofs to the verifier (line 35). The
verifier runs procedure vercomp (Algorithm 7) to verify the correctness of the
computation (line 38). The inputs to this verification procedure are the public
key of the Paillier cryptosystem; the encrypted inputs {Xi}i∈I by the input
parties; and the proof π by the result party (which consists of proofs for each
multiplication gate, and the two proofs from the output phase of the protocol).
The verifier checks the proofs for each multiplication gate from the computation

phase (lines 6–14); and the proofs from the output phase (lines 16–20), finally
obtaining an encryption of the result (line 21). While not specified in vercomp,
the verifier does also verify the proofs from the input phase: namely, in lines
7–8 of UVCDN, the verifier receives encrypted inputs and verifies their proofs
to determine the encrypted inputs {Xi}i∈I of the computation.

Apart from checking the inputs during the input phase, the verifier does not
need to be present for the remainder of the computation until receiving π from
R. This is what makes verification “universal”: in practice, we envision that a
trusted party publicly announces the Paillier public keys, and the input parties
publicly announce their encrypted inputs with associated proofs: then, anybody
can use the verification procedure to verify if a given proof π is correct with
respect to these inputs. In Appendix C, we prove that:

Theorem 1. Protocol UVCDN implements verifiable secure function evaluation
in the random oracle model.

The proof uses two simulators: one for a honest majority of computation
parties; one for a corrupted majority. The former simulator extends the one
from [CDN01], obtaining privacy with a reduction to semantic security of the
threshold Paillier cryptosystem. The latter does not guarantee privacy, and so
can simulate the adversary by running the real protocol, ensuring correctness by
witness-extended emulation.

5 Concluding Remarks

Our security model is specific to the CDN setting in two respects. First, we
explicitly model that the verifier receives a Paillier encryption of the result (as
opposed to another kind of encryption or commitment). We chose this formula-
tion for concreteness; but our model generalises easily to other representations
of the result. Second, it is specific to the setting where a minority of parties may
be actively corrupted; but it is possible to change the model to other corruption
models. For instance, it is possible to model the setting from [BDO14] where
privacy is guaranteed when there is at least one honest computation party (and
our protocols can be adapted to that setting). The combination of passively se-
cure multiparty computation with universal verifiability is another interesting
possible adaptation.

Our protocols are secure in the random oracle model “without dependent
auxiliary input” [Wee09]. This means our security proofs assume that the ran-
dom oracle has not been used before the protocol starts. Moreover, our simulator
can only simulate logarithmically many sequential runs of our protocol due to
technical limits of witness-extended emulation. These technical issues reflect the
real-life problem that a verifier cannot see if a set of computation parties have
just performed a computation, or they have simply replayed an earlier computa-
tion transcript. As discussed in [Unr07], both problems can be solved in practice
by instantiating the random oracle with a keyed hash function, with every com-
putation using a fresh random key. Note that all existing constructions require

the random oracle model; achieving universally verifiable (or publicly auditable)
multiparty computation in the standard model is open.

Several interesting variants of our protocol are possible. First, it is easy to
achieve publicly auditable multiparty computation [BDO14] by performing a
public decryption of the result rather than a private decryption for the result
party. Another variant is basic outsourcing of computation, in which the result
party does not need to be present at the time of the computation, but afterwards
gets a transcript from which it can derive the computation result. Finally, it is
possible to achieve universal verifiability using other threshold cryptosystems
than Paillier. In particular, while the threshold ElGamal cryptosystem is much
more efficient than threshold Paillier, it cannot be used directly with our pro-
tocols because it does not have a general decryption operation; but universally
verifiable multiparty using ElGamal should still be possible by instead adapting
the “conditional gate” variant of the CDN protocol from [ST04].

Finally, to close the loop, we note that our techniques can also be applied to
reduce the cost of verification in universally verifiable voting schemes. Namely,
for voting schemes relying on homomorphic tallying, we note that the Σ-proofs
for correct decryption of the election result by the respective talliers can be
combined into a single Σ-proof of constant size (independent of the number
of talliers). Similarly, for voting schemes relying on mix-based tallying, the Σ-
proofs for correct decryption of each vote by the respective talliers is reduced to
a constant size per vote.

Acknowledgements The authors thank Sebastiaan de Hoogh, Thijs Laarhoven,
and Niels de Vreede for useful discussions. This work was supported in part by
the European Commission through the ICT program under contract INFSO-
ICT-284833 (PUFFIN). The research leading to these results has received fund-
ing from the European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement no 609611 (PRACTICE).

References

AABN08. M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From Identifica-
tion to Signatures Via the Fiat-Shamir Transform: Necessary and Sufficient
Conditions for Security and Forward-Security. IEEE Transactions on In-
formation Theory, 54(8):3631–3646, 2008.

ACG+14. P. Ananth, N. Chandran, V. Goyal, B. Kanukurthi, and R. Ostrovsky.
Achieving Privacy in Verifiable Computation with Multiple Servers - With-
out FHE and without Pre-processing. In Proceedings of PKC ’14, volume
8383 of Lecture Notes in Computer Science, pages 149–166. Springer, 2014.

BCD+09. P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. P. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft. Secure Multiparty Computation Goes Live. In
Proceedings of FC ’09, volume 5628 of Lecture Notes in Computer Science,
pages 325–343. Springer, 2009.

BDO14. C. Baum, I. Damgård, and C. Orlandi. Publicly Auditable Secure Multi-
Party Computation. In Proceedings of SCN ’14, volume 8642 of Lecture
Notes in Computer Science, pages 175–196. Springer, 2014.

BR93. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. In Proceedings of CCS ’93, pages 62–73.
ACM, 1993.

Can98. R. Canetti. Security and Composition of Multi-party Cryptographic Pro-
tocols. Journal of Cryptology, 13:2000, 1998.

CDN01. R. Cramer, I. Damgård, and J. Nielsen. Multiparty Computation from
Threshold Homomorphic Encryption. In Proceedings of EUROCRYPT
’01, volume 2045 of Lecture Notes in Computer Science, pages 280–300.
Springer, 2001.

CF85. J. Cohen and M. Fischer. A Robust and Verifiable Cryptographically Secure
Election Scheme. In Proceedings of FOCS ’85, pages 372–382. IEEE, 1985.

Des93. Y. Desmedt. Threshold cryptosystems. In Proceedings of AUSCRYPT ’92,
volume 718 of Lecture Notes in Computer Science, pages 1–14. Springer,
1993.

dH12. S. de Hoogh. Design of large scale applications of secure multiparty com-
putation: secure linear programming. PhD thesis, Eindhoven University of
Technology, 2012.

DJ01. I. Damgård and M. Jurik. A Generalisation, a Simplification and Some
Applications of Paillier’s Probabilistic Public-Key System. In Proceedings
of PKC ’01, volume 1992 of Lecture Notes in Computer Science, pages
119–136. Springer, 2001.

DN03. I. Damgård and J. B. Nielsen. Universally Composable Efficient Multiparty
Computation from Threshold Homomorphic Encryption. In Proceedings of
CRYPTO ’03, volume 2729 of Lecture Notes in Computer Science, pages
247–264. Springer, 2003.

DPSZ12. I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Multiparty Computation
from Somewhat Homomorphic Encryption. In Proceedings of CRYPTO
’12, volume 7417 of Lecture Notes in Computer Science, pages 643–662.
Springer, 2012.

EFLL12. Y. Ejgenberg, M. Farbstein, M. Levy, and Y. Lindell. SCAPI: The Secure
Computation Application Programming Interface. IACR Cryptology ePrint
Archive, 2012:629, 2012.

FGP14. D. Fiore, R. Gennaro, and V. Pastro. Efficiently Verifiable Computation on
Encrypted Data. In Proceedings of CCS ’14, pages 844–855. ACM, 2014.

GK03. S. Goldwasser and Y. T. Kalai. On the (In)security of the Fiat-Shamir
Paradigm. In Proceedings of FOCS ’03, pages 102–113. IEEE Computer
Society, 2003.

GKP+13. S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zel-
dovich. Reusable garbled circuits and succinct functional encryption. In
Proceedings of STOC ’13, pages 555–564. ACM, 2013.

Gro04. J. Groth. Evaluating Security of Voting Schemes in the Universal Compos-
ability Framework. In Proceedings of ACNS ’04, volume 3089 of Lecture
Notes in Computer Science, pages 46–60. Springer, 2004.

IPS09. Y. Ishai, M. Prabhakaran, and A. Sahai. Secure Arithmetic Computation
with No Honest Majority. In Proceedings of TCC ’09, volume 5444 of
Lecture Notes in Computer Science, pages 294–314. Springer, 2009.

Jur03. M. J. Jurik. Extensions to the Paillier Cryptosystem with Applications to
Cryptological Protocols. PhD thesis, University of Aarhus, 2003.

KMR12. M. Keller, G. L. Mikkelsen, and A. Rupp. Efficient Threshold Zero-
Knowledge with Applications to User-Centric Protocols. In Proceedings
of ICITS 2012, volume 7412 of Lecture Notes in Computer Science, pages
147–166. Springer, 2012.

NKDM03. A. Nicolosi, M. N. Krohn, Y. Dodis, and D. Mazières. Proactive Two-
Party Signatures for User Authentication. In Proceedings of NDSS 2003.
The Internet Society, 2003.

Pai99. P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residu-
osity Classes. In Proceedings of EUROCRYPT ’99, volume 1592 of Lecture
Notes in Computer Science, pages 223–238. Springer, 1999.

PHGR13. B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly Prac-
tical Verifiable Computation. In Proceedings of S&P 2013, pages 238–252.
IEEE, 2013.

Sch89. C. Schnorr. Efficient Identification and Signatures for Smart Cards. In
Proceedings of CRYPTO ’89, volume 435 of Lecture Notes in Computer
Science, pages 239–252. Springer, 1989.

SK95. K. Sako and J. Kilian. Receipt-Free Mix-Type Voting Scheme—A Practical
Solution to the Implementation of a Voting Booth. In Proceedings of EU-
ROCRYPT ’95, volume 921 of Lecture Notes in Computer Science, pages
393–403. Springer, 1995.

ST04. B. Schoenmakers and P. Tuyls. Practical Two-Party Computation Based
on the Conditional Gate. In Proceedings of ASIACRYPT ’04, volume 3329
of Lecture Notes in Computer Science, pages 119–136. Springer, 2004.

ST06. B. Schoenmakers and P. Tuyls. Efficient Binary Conversion for Paillier
Encrypted Values. In Proceedings of EUROCRYPT ’06, volume 4004 of
Lecture Notes in Computer Science, pages 522–537. Springer, 2006.

Unr07. D. Unruh. Random Oracles and Auxiliary Input. In Proceedings of
CRYPTO ’07, volume 4622 of Lecture Notes in Computer Science, pages
205–223. Springer, 2007.

WB13. M. Walfish and A. J. Blumberg. Verifying computations without reexe-
cuting them: from theoretical possibility to near-practicality. Electronic
Colloquium on Computational Complexity, 20:165, 2013.

Wee09. H. Wee. Zero Knowledge in the Random Oracle Model, Revisited. In
Proceedings of ASIACRYPT ’09, volume 5912 of Lecture Notes in Computer
Science, pages 417–434. Springer, 2009.

A Simulation-Based Security in the Random Oracle
Model

We prove our protocols secure using the simulation paradigm in the random
oracle model [BR93,Wee09]. In the random oracle model, evaluations of hash
function H : {0, 1}∗ → {0, 1}2l are modelled as queries to a “random oracle” O
that evaluates a perfectly random function. When simulating an adversary that
operates in the random oracle model, the simulator also simulates the random
oracle with respect to the adversary. In particular, it can choose how to respond
to the adversary’s queries (but, to achieve security, it should provide random
values so that the adversary cannot distinguish between the real world and the
simulation based on the output of the random oracle).

More precisely, we work in the explicitly programmable random oracle model
without dependent auxiliary input [Wee09]. The random oracle is seen as a par-
tial function that initially has an empty codomain (i.e., it is “without dependent
auxiliary input”). In a real-world execution in this model, both the honest parties
and the adversary use the random oracle for hash function evaluations. Namely,

dom(O), codom(O), rng(O) Domain/codomain/range of random oracle O,
seen as partial function

fail Terminate simulation, returning special error value
A,O Global variable: simulated attacker/random oracle
v := AO(w) Exchange values v, w with A having oracle access to O

Fig. 2. Notation and conventions for simulation-based security in the Random Oracle
Model

when a party calls the oracle on a value v ∈ dom(O), it receives O(v); otherwise,
a fresh random value is generated andO is updated accordingly. At the end of the
execution, O contains all pairs of oracle queries made during the execution and
their responses. In an ideal-world execution, the simulator can directly modify
the pre-image/image pairs in O; the simulated adversary only has oracle access
to O as in the real-world execution. Again, at the end of the simulation, O con-
tains all values on which the oracle has been set. Computational (or statistical)
indistinguishability between real and simulated executions is defined [Wee09] by
stating that no p.p.t. (or unbounded) algorithm can distinguish them, where
the distinguisher has oracle access to O. We prove slightly stronger versions of
indistinguishability; namely, instead of giving the distinguisher oracle access to
O, we simply supply it with the full list O. We can then simply use the normal,
non-oracle, definitions for indistinguishability; this is clearly at least as strong.

Our proofs rely on the absence of dependent auxiliary input. When a party
presents a non-interactive proof of knowledge, we perform rewinding to find the
witness to that proof; but if oracle queries before the protocol execution are
allowed, then a party may replay a proof that was performed before the protocol
execution, making rewinding impossible. As noted in [Unr07], this suggests that
the random oracle in our protocols should be instantiated with a keyed hash
function, where every protocol instance uses a different key. See Section 5 for a
discussion.

Figure 2 lists the notation we use when presenting simulators in the random
oracle model. We use global variables A and O to denote the current state of
the adversary and the random oracle. An invocation of A with oracle access to
O is denoted v := AO(w); afterwards, both O and A are updated to reflect the
respective new states.

A.1 The Fiat-Shamir Heuristic and Witness-Extended Emulation

When the Fiat-Shamir heuristic (Section 3.1) is used, in some situations a simu-
lator can extract witnesses from proofs by corrupted parties. Namely, in [Gro04],
Groth showed that, by simulating an adversary using witness-extended emula-
tion, a simulator can obtain witnesses for all proofs that the adversary produces.
Specifically, Groth proved the following:

Theorem 2 ([Gro04]). Let (A′,O′,x,p) ← AO(z) be an adversary A inter-
acting with random oracle O that, on some polynomial-length input z, outputs a
list x of statements, and a list p of corresponding validating Fiat-Shamir proofs.

Then there exists a p.p.t. emulator (A′,O′,x,p,w)← EOA (z) such that the part
(A′,O′,x,p) of the output of EOA is perfectly indistinguishable from the output
of A, and w are witnesses corresponding to the statements x.

Essentially, the witness-extended emulator EOA simulates the adversary A,
keeping track of all oracle queries it makes. For each valid proof that A produces,
it rewinds A to the point of the oracle query used to obtain the challenge, and
keeps on reprogramming the random oracle until A again produces a correct
proof with a new challenge. It finally extracts the witness using the special
soundness property of the Σ-protocol.

However, a major limitation of the technique of [Gro04] is that it only con-
siders a single invocation of the adversary. On the other hand, the CDN protocol
consists of different rounds in which the adversary is invoked with inputs from
the honest parties. Now, if the adversary provides a proof in its rth invocation, it
may have already queried the random oracle for the announcement of that proof
in an earlier invocation s < r. Then, to extract the witness for the proof from
invocation r, we need to simulate the adversary from invocation s. This means
that we also need to re-compute the messages from the honest party to the ad-
versary for all rounds between s and r. However, computing these messages in
general requires witnesses for the proofs of the adversary between rounds s and
r. Hence, to extract the witnesses for the rth invocation, we need to recursively
extract witnesses for all rounds between s and r, which in turn may also require
recursive rewinding. Hence, if Fiat-Shamir proofs take place in R invocations of
the adversary, then witness-extended emulation may increase the running time
of a simulator by a factor O(R!). Because we need simulators to be polynomial
time , R! should be polynomial in the security parameter, so we can use the
Fiat-Shamir heuristic, but only in essentially a constant number of rounds (as
in our UVCDN protocol, where we only use the normal Fiat-Shamir heuristic at
the beginning and the end of the protocol).

Our multiparty Fiat-Shamir heuristic (Section 3.2) addresses the above limi-
tations while also combining proofs of individual parties into one single proof for
a combined statement. If this combination is not desired, then each party can
simply hash the concatenation of all parties’ announcements instead of taking
combinations Φ.stmt({vi}i∈P\F), Φ.ann({ai}i∈P\F . Note that also in this case,
the extra round in which parties commit to their announcements is still needed.
Without this round, the adversary could choose its announcement after the hon-
est parties chose theirs, and hence, the simulator would not know on which
pre-image to program the random oracle when simulating the honest parties’
proofs. In the non-combination case, the parties could alternatively broadcast
their announcements; and then use a hash of the concatenation of the announce-
ments and some fresh randomness. This way, the simulator can simulate the
honest parties’ proofs because the adversary cannot predict the pre-image be-
fore seeing the proof; while the adversary cannot make oracle queries for its own
proofs too early because it needs to wait for the honest parties’ announcements.
Another way of addressing the limitations in the non-combination case would
be to add the full previous communication transcript to the hash (or, in any

case, some recent messages that contain sufficient entropy by honest parties):
this way, rewinding is guaranteed to be to a recent moment in the protocol.

B Simulator of the Multiparty Fiat-Shamir Heuristic

Our simulator SMΣ of the multiparty Fiat-Shamir heuristic is shown in Algo-
rithm 8. We now explain the general idea, deferring the discussion of exceptional
cases to the security proof.

As long as flag stage2 is not set, the simulator behaves like the protocol. First,
the parties exchange hashed commitments (line 10–12). Namely, the simulator
generates random hash values for the honest parties (line 10), and receives hash
values for the corrupted parties (line 11). Note that the adversary can later open
these values only if they come from the random oracle, hence the simulator knows
the adversary’s pre-images ai (line 12). Next, the parties open their commitments
(lines 16–26). The simulator generates a random challenge c (line 16); simulates
the Σ-protocol for the honest parties (line 18); and programs the random oracle
so that the announcements of the honest parties hash to the values hi supplied
earlier (lines 19–20). If possible, the simulator combines the announcements ai
of the honest and corrupted parties, and programs the random oracle to return
c on the result (lines 21–24). The simulator then the receives announcements a′i
for the corrupted parties (line 25); and checks if they are correct (line 26); if so,
it exchanges responses to the challenge (line 29). If all parties provided correct
responses, then the protocol terminates: in this case, the simulator stores the
state at this point for returning it when the simulation ends, and sets flag stage2
(line 33). Otherwise, the simulator continues repeats the above process with the
parties that have not misbehaved so far (line 40).

When flag stage2 is set, the simulator has simulated one successful run of the
multiparty Fiat-Shamir heuristic for which it will now extract witnesses. Note
that variables Astart, Ostart, and F ′ contain the state of the protocol at the point
when the adversary has supplied hash values hi for which the simulator knows
the pre-images ai, and a challenge c′ with correct responses {r′i}i∈(P\F ′)∩C . To
extract witnesses for the parties in (P \ F ′)∩C, the simulator keeps re-winding
to state (Astart,Ostart, F

′) (line 15), and repeats the above simulation procedure
(lines 16–30), until the adversary has again produced correct responses for the
same parties (line 31). In this case, it has responses from the adversary for the
same announcement with different challenges, from which it can extract wit-
nesses using the special soundness property of the Σ-protocol (line 37). Finally,
the simulator returns the adversary state after the first successful protocol run,
along with the proof and the witnesses for the contributing corrupted parties
(line 39).

We now prove that simulator SMΣ satisfies soundness and zero-knowledgeness.
The statement of our lemma is analogous to the statement from [CDN01], with
two technical differences. First, we do not use trapdoor commitments, in effect
replacing them by the random oracle. Second, we do not guarantee perfect indis-
tinguishability because our simulator may occasionally fail. We get the following:

Algorithm 8 SMΣ : simulator for Multiparty Fiat-Shamir Heuristic
1. // pre: Σ: Σ-protocol with homomorphism. Φ; P : non-failed parties (P ∩ F = ∅);
2. // vP = {vi}i∈P : statements
3. // post: if |P \ F | ≥ dn/2e, then vP\F is the statement Φ.stmt({vi}i∈P\F), πP\F
4. // is corresponding FS proof, and ∀i ∈ (P \ F) ∩ C, wi is a witness for vi
5. // invariant: F ⊂ C: set of failed parties only includes corrupted parties
6. (vP\F , πP\F , w(P\F)∩C)← SMΣ(Σ,Φ, P, vP , aux = ”) :=
7. stage2 := ⊥
8. repeat // line 7 of MΣ
9. if stage2 = ⊥ then // stage 1 of simulation: simulate protocol w.r.t. A

10. foreach i ∈ P \ C do hi ∈R codom(O)
11. (A,O, {hi}i∈(P\F)∩C) := AO({hi}i∈P\C) // line 8 of MΣ
12. foreach i ∈ (P \ F) ∩ C do ai := (x if ∃!x : (x||i, hi) ∈ O else ⊥)
13. Astart := A;Ostart := O
14. else // stage 2: extract witnesses from Astart

15. A := Astart;O := Ostart;F := F ′

16. c ∈R codom(O)
17. foreach i ∈ P \ C do
18. (ai, ri) := Σ.sim(vi, c)
19. if ai||i ∈ dom(O) then fail
20. O := O ∪ {(ai||i, hi)}
21. if ∀i ∈ (P \ F) ∩ C : ai 6= ⊥ then // know combined ann.: program oracle
22. a := Φ.stmt({vi}i∈P\F)||Φ.ann({ai}i∈P\F)||aux // line 12 of MΣ
23. if a ∈ dom(O) then fail
24. O := O ∪ {(a, c)}
25. {a′i}i∈(P\F)∩C) := AO({ai}i∈P\C) // line 9 of MΣ
26. F ′ := F ;F := F ∪ {i ∈ (P \ F) ∩ C | (a′i||i, hi) /∈ O} // line 10 of MΣ
27. if F = F ′ then // line 11 of MΣ
28. if ∃i ∈ (P \ F) ∩ C : ai = ⊥ ∨ ai 6= a′i then fail

29. {ri}i∈(P\F)∩C := AO({ri}i∈P\C) // line 13 of MΣ
30. F := F ∪ {i ∈ P \ F | ¬Σ.ver(vi, ai, c, ri)} // line 14 of MΣ
31. if F = F ′ then // line 15 of MΣ
32. if stage2 = ⊥ then // end of stage 1: save adversary state
33. Aret := A;Oret := O; c′ := c; {r′i}i∈(P\F)∩C := {ri}i∈(P\F)∩C
34. πret := (Φ.ann({ai}i∈P\F); c;Φ.resp({ri}i∈P\F)); stage2 := >
35. else
36. if c = c′ then fail
37. foreach i ∈ (P \ F) ∩ C do wi := Σ.ext(vi; ai; c; c

′; ri; r
′
i)

38. A := Aret;O := Oret

39. return (Φ.stmt({vi}i∈P\F), πret, {wi}i∈(P\F)∩C) // line 16 of MΣ
40. until stage2 = ⊥ ∧ |P \ F | < dn/2e // line 17 of MΣ
41. return (⊥,⊥, ∅) // line 18 of MΣ

Lemma 1. Assume that fewer than dn/2e parties are corrupted. Define real-
world executions of MΣ and ideal-world executions of SMΣ as follows:

– Let (A′,O′, F ′, vP\F ′ , πP\F ′) ← execMΣ(A,O, F,Σ, Φ, P, vP , wP , aux) de-
note a run of the MΣ protocol (Protocol 4) with initial adversary state A,

random oracle O, set F of failed parties, parameters (Σ,Φ, P, vP , wP , aux),
final states A′,O′, F , and return values vP\F , πP\F .

– Let (A′,O′, F ′, vP\F ′ , πP\F ′ , w(P\F)∩C)← simSMΣ (A,O, F,Σ, Φ, P, vP , aux)
denote a run of the SMΣ simulator with initial adversary state A, random
oracle state O, and set F of failed parties, and parameters (Σ,Φ, P, vP , aux);
and final states A′,O′, F ′ and return values vP\F ′ , πP\F ′ , w(P\F ′)∩C .

Then SMΣ is a p.p.t. algorithm satisfying the following two properties:

Soundness Except with negligible probability, w(P\F ′)∩C = {wi}i∈(P\F ′)∩C are
valid witnesses for the statements vi of the corrupted parties in P that pro-
duced verifying proofs.

Zero-Knowledgeness The part (A′,O′, F ′, vP\F ′ , πP\F ′) of the output of simSMΣ
is statistically indistinguishable from the output of execMΣ.

Proof. We need to show that SMΣ runs in polynomial time, and that it satisfies
soundness and zero-knowledgeness.

First, we show that the simulator only fails with negligible probability: It fails
in line 19 if the random oracle has already been programmed on a simulated
announcement. This happens with negligible probability because of the non-
triviality property of the Σ-protocol. It fails in line 23 if the random oracle has
already been programmed on a homomorphically combined announcement. This
happens with negligible probability because of the randomness property of the
homomorphism Φ. It fails in line 28 if the adversary manages to supply a pre-
image a′i different from the one calculated in line 12. Then the adversary has
found a collision or it has found a pre-image of hi without getting hi from the
oracle, which happens with negligible probability. Finally, it fails in line 36 if the
simulator has twice generated the same challenge randomly in the codomain of
the random oracle. But this codomain is {0, 1}2l with l a security parameter, so
also this happens with negligible probability.

For soundness: the adversary returns values wi = Σ.ext(vi, ai, c, c
′, ri, r

′
i) for

which we know that Σ.ver(vi, ai, c, ri) and Σ.ver(vi, ai, c′, r′i) hold (by line 30),
and c 6= c′ (by line 36). Hence, the wi are valid witnesses by the special soundness
property of the Σ-protocol.

For zero-knowledgeness, note that the part (A′,O′, F ′, vP\F ′ , πP\F ′) returned
by the simulated execution is determined while stage2 = ⊥. Namely, one checks
that A′ and O′ are Aret and Oret as set in line 33; F ′ is the value F when line
33 was executed; vP\F ′ depends only on that value F ′; and πP\F ′ is set in line
34. But observe that, while stage2 = ⊥, the simulator behaves like the original
protocol with respect to the adversary, except in three ways. The first is that the
protocol may fail, but as shown, this happens only with negligible probability
so it does not affect statistical indistinguishability. The second is that, in line
26 of the simulator, we check if (a′i||i, hi) ∈ O instead of querying the random
oracle. In the protocol, it might be that a′i||i was not queried before, but when
queried, the random oracle happens to return hi. Again, this happens with only
negligible probability. Finally, all proofs of the honest parties are simulated.
The special honest-verifier zero-knowledgeness property of the Σ-protocol now

implies that (A′,O′, F ′, vP\F ′ , πP\F ′) is identically distributed in the real and
simulated protocol run.

Finally, we need to show that the simulator runs in polynomial time. For this,
let us analyse how often the main repeat . . .until loop (lines 8–40) is executed.
If stage2 = ⊥ at the beginning of the loop, then either |P \ F | becomes strictly
smaller, or stage2 is set to >. Hence, the time spent while stage2 = ⊥ is certainly
polynomial. Now, consider the loop execution in which stage2 is set to >, i.e., in
which all provers provide correct announcements and responses for the first time.
Let ε be the a priori probability, from line 16 of SMΣ , that all provers indeed
provide correct announcements and responses. Then with probability ε, line 32 is
reached; and afterwards, the loop is executed from the same state (line 15) until
we again get correct announcements and proofs, which takes an expected 1/ε
number of tries. Hence, the loop is executed with stage2 = > with probability
ε for an expected 1/ε number of times, hence it contributes polynomially to the
running time. This completes the proof. ut

Note that the above proof relies on the fact that communication happens
on a broadcast channel. Namely, in this case, all honest parties simulate their
Σ-protocol based on the same challenge. However, we remark that the simulator
could also be made to work in a non-broadcast setting. In this case, in line 12, it
determines announcements of the corrupted parties with respect to each honest
party; and based on that, decides for how many different challenges to simulate
the honest parties’ Σ-protocols.

C Security of the UVCDN Protocol: Proof of Theorem 1

To prove security of the UVCDN protocol, we need to build a simulator for ev-
ery adversary A. Because the honest majority and corrupted majority cases are
very different, we define two simulators: simulator Shonest

UVCDN (Process 9) for ad-
versaries that corrupt a minority of computation parties; and simulator Scorrupt

UVCDN
(Process 10) for adversaries that corrupt a majority. Below, we present the sim-
ulators and prove that they correctly simulate the protocol in their respective
cases. Theorem 1 follows directly from Lemmas 2 and 3 below.

C.1 The Honest Majority Case

If fewer than dn/2e computation parties are corrupted, then we guarantee privacy
like the original CDN protocol. Our simulator Shonest

UVCDN (Process 9) for this case is
an adaptation of CDN simulator from [CDN01]. This simulator follows the CDN
simulator except for simulating non-interactive proofs rather than interactive
proofs; UVCDN’s modified input phase; the improved [DN03] multiplication
protocol rather than the original protocol from [CDN01]; and UVCDN’s proof
phase. Non-interactive proofs using the multiparty Fiat-Shamir heuristic are
simulated by simulator SMΣ (Algorithm 8) whose correctness we have proven in
Appendix B.

Compared to CDN’s input phase, the input phase of UVCDN has an extra
round (line 6 of the protocol) in which the input parties first commit to their

Process 9 Shonest
UVCDN: Simulator for Universally Verifiable CDN (honest majority)

1. // pre: pk public key; C (|C| < dn/2e) corrupted parties with secret keys
2. // {si}i∈P∩C , inputs {xi}i∈I∩C
3. // post: attacker simulated, values provided to T to mimic real execution outputs
4. (r,O)← Shonest

UVCDN,A(pk=(N, v, v0, {vi}i∈P), C, {xi}i∈I∩C , {si}i∈P∩C , a) :=
5. foreach i ∈ I \ C do // input phase
6. xi := 0; ri ∈R Z∗N ;Xi := (1 +N)xirNi
7. hi, h

′
i ∈R codom(O); (ai, h′i, ri) := ΣPK.sim(Xi, h

′
i);πPK,i := (ai, h

′
i, ri)

8. if (Xi||ai||i) ∈ dom(O) ∨ (Xi||πPK,i||i) ∈ dom(O) then fail
9. O := O ∪ {(Xi||ai||i, h′i), (Xi||πPK,i||i, hi)}

10. {hi}i∈I∩C := AO({hi}i∈I\C)
11. {(Xi;πPK,i;xi, ·)}i∈I∩C ← EOA ({(Xi;πPK,i;xi, ·)}i∈I\C)
12. F := {i ∈ I | (Xi||πPK,i||i, hi) /∈ O ∨ ¬fsver(ΣPK;Xi;πPK,i; i)}
13. foreach i ∈ I ∩ F do xi := 0; Xi := 1
14. send({xi}i∈I∩C , T)
15. foreach gate do // computation phase
16. if 〈constant gate c with value v〉 then xc := v; Xc := (1 +N)v

17. if 〈addition gate c with inputs a, b〉 then xc := xa + xb;Xc := XaXb

18. if 〈subtraction gate c with inputs a, b〉 then xc := xa − xb;Xc := XaX
−1
b

19. if 〈multiplication gate c with inputs a, b〉 then // [DN03] multiplication
20. foreach i ∈ P \ C do
21. di ∈R ZN ; ri, ti ∈R Z∗N ; Di := (1 +N)dirNi ;Ei := (Xb)

ditNi
22. xc := xaxb;m ∈R P \ C;Dm := DmX

−1
a ;Em := Em(1 +N)−xc

23. {(Di, Ei)}i∈(P\F)∩C := AO({(Di, Ei)}i∈P\C)
24. (·, Dc, Ec;πCMc; {(di, ·, ·)}i∈(P\F)∩C) :=
25. SMΣ(ΣCM, ΦCM,P \ F, {(Xb, Di, Ei)}i∈P\F)
26. Sc := Xa ·Dc; {Si}i∈P\C :=

〈
decr. shares s.t. Sc decrypts to Σi∈P\F di

〉
27. {Si}i∈(P\F)∩C := AO({Si}i∈P\C)
28. ((·, S0,c, ·, ·), πCDc, ·) := SMΣ(ΣCD, ΦCD,P \ F, {(Sc, Si, v, vi)}i∈P\F)
29. Xc := (Xb)

Σi∈P\F diE−1
c

30. if R /∈ C then // output phase
31. X := recv(T); y ∈R ZN ;D := (1 +N)−yX;h ∈R codom(O)
32. (a, h, r) := ΣPK.sim(D,h); if (D||a||R) ∈ dom(O) then fail

33. πPKd := (a, h, r);O := O ∪ {(D||a||R, h)};AO(D,πPKd)
34. else
35. r := recv(T);D;πPKd; d, s← EOA (); y := r − d
36. if fsver(ΣPK;D;πPKd;R) then
37. Y := Xoutgate ·D−1; {Yi}i∈P\C := 〈decr. shares s.t. Y decrypts to y〉
38. {Yi}i∈(P\F)∩C := AO({Yi}i∈P\C)
39. (·, Y0, ·, ·;πCDy; ·) := SMΣ(ΣCD, ΦCD,P \ F, {(Y, Yi, v, vi)}i∈P\F , D)
40. π := ({(Dc, Ec, πCMc, S0,c, πCDc)}c∈gates;D,πPKd, Y0, πCDy)
41. if R ∈ C then // proof phase, result party corrupted
42. if V /∈ C then π := AO()
43. if vercomp(pk, {Xi}i∈I , π) then send(s, T) else send(⊥, T)
44. else if V ∈ C then AO(π) // proof phase, verifier corrupted
45. return (AO(),O) // return adv.-chosen output and simulated random oracle

encrypted inputs and proofs of knowledge. For the simulator Shonest
UVCDN, this extra

round makes little difference: as in the CDN simulator, it produces the encryp-
tions, proofs, and commitments of the honest parties using zero for their inputs
(line 6–9).5 Because of the non-interactive proofs, we use witness-extended em-
ulation to extract the inputs of the corrupted party. Namely, in line 10, Shonest

UVCDN
first obtains the corrupted commitments from A. The next invocation of the
adversary would return the encryptions and proofs of knowledge; by calling the
witness-extended emulator EOA , we additionally get the witnesses for these proofs,
i.e., the plaintexts of the encryptions (line 11). (As discussed, this call includes
possible recursive calls to the simulator.) These can then be provided to the
trusted party (line 14).

Lines 20–29 of Shonest
UVCDN show our simulation of the improved multiplication

protocol from [DN03]. Analogously to Theorem 3 of [CDN01], lines 20–29 simu-
late multiplication given encryptions Xa, Xb of the values to be multiplied, and
plaintext xc of the result6. This simulation is constructed to be statistically in-
distinguishable from the multiplication protocol itself (lines 14–25 of UVCDN).
The simulator generate values di, ri, ti, Di, Ei on behalf of the honest parties as
in the protocol (lines 20–21); but then multiplies one of the resulting (Di, Ei)
by X−1a and (1 + N)−xc , respectively (line 22). This way, the simulator knows
that Sc = Xa ·Dc = Xa ·

∏
i∈P\F Di computed in line 26 encrypts

∑
i∈P\F di.

It simulates the proofs of correct multiplication of the (Di, Ei) (line 24–25); and
computes Sc as in the protocol (line 26). Finally, it simulates decryption of Sc to∑
i∈P\F di (line 28), and computes Xc as in the protocol (line 29). One checks

that this is indeed a statistically indistinguishable simulation.
Our simulation of the output and proof phases (line 30–44 of the simulator)

differs from the simulation in [CDN01]. Namely, in our case, simulation of the
output phase results in an encryption of the actual result of the computation
(obtained from the trusted party), whereas the CDN simulator works with a
simulated encryption until the end. Indeed, if the result party is honest, our
simulator receives an encryption X of the actual result (line 31). Recall that the
verifier sets the encrypted computation result to (1+N)yD with D provided by
the result party, so we simulate D from the result party as D = (1 + N)−yX
to ensure that the verifier’s output will be X. If the result party is corrupted,
the simulator receives D from the adversary. To ensure that (1 +N)yD indeed
encrypts the result of the computation, the simulator extracts plaintext d and
randomness s of D (line 35), and threshold decrypts Xoutgate ·D−1 to y = r− d
(line 37). Apart from this, the output phase is as in [CDN01]. Finally, in the
proof phase, the simulator provides an honest proof to a corrupted verifier; or
receives the proof of a corrupted result party for an honest verifier. In the latter

5 Note that, instead of invoking ΣPK’s simulator, it could equivalently have made a
real proof; but in our security proof, we need that Shonest

UVCDN can function just using
the encryption Xi, which is done using the simulator.

6 Technically, the multiplication simulator of [CDN01] uses an encryption of the result
that it determined at the start of the CDN simulation, whereas we in effect determine
this encryption during the gate-by-gate evaluation of the circuits. These two methods
are clearly equivalent.

case, if the verifier receives a correct proof, then the randomness used will be s
(as we will show later), so the simulator provides this randomness to the trusted
party.

Lemma 2. For all inputs x1, . . . , xm, C, a with |P ∩ C| < dn/2e, Shonest
UVCDN,A

runs in polynomial time, and

EXECUVCDN,A(k;x1, . . . , xm;C; a) and IDEALf,SUVCDN,A(k;x1, . . . , xm;C; a)

are computationally indistinguishable in security parameter k.

Proof. Clearly, Shonest
UVCDN is p.p.t. since it only calls p.p.t. subroutines.

For computation indistinguishability, we extend the proof for the CDN proto-
col from [CDN01]. In this proof, an algorithm YADA(B, k, (x1, . . . , xm), C, a) is
defined that, depending on an encrypted bit B = (1+N)brN , simulates either an
execution of the protocol with the real inputs (if B encrypts 1); or an execution
with zero inputs for the honest parties (ifB encrypts 0). It is shown that the b = 0
case is statistically indistinguishable to IDEALf,SA(k, (x1, . . . , xm), C, a) and the
b = 1 case is statistically indistinguishable to EXECCDN,A(k, (x1, . . . , xm), C, a).
Moreover, the b = 0 and b = 1 cases are computationally indistinguishable by
semantic security of the Paillier threshold cryptosystem (otherwise, the distin-
guisher between the two cases can distinguish random encryptions of 0 and 1).

To prove computational indistinguishability for the UVCDN protocol, we
need to modify the algorithm YADA(B, k, (x1, . . . , xm), C, a) to take into ac-
count the changed output of the result party and the additional output of the
verifier. Namely, for honest R, YADA outputs the result of the (real) computa-
tion and randomness s for encryption D from line 27 of the protocol; for honest
V, YADA outputs the return value of vercomp. Statistical indistinguishability
of the b = 1 case to EXECUVCDN,A and computational indistinguishability of
the b = 0 and b = 1 cases are proven analogously to [CDN01]. For statistical
indistinguishability of the b = 0 case to IDEALf,SUVCDN,A , the output of V in
case of a corrupted R is problematic: in YADA it returns the output of vercomp,
but in IDEALf,SUVCDN,A , it outputs (1 +N)rsN with s the randomness of D in
line 27 of UVCDN. These values coincide if R provides the same Y0 and D to V
that it computed with the computation parties during the protocol; but R could
of course present a Y0 or D with a valid proof to V, in which case the output of
V in the two distributions is different.

However, this latter possibility can only happen with negligible probability.
For suppose that it happens with non-negligible probability. Because Y0 and D
are both input to the proof of correct decryption (D being the auxiliary input),
R needs to provide a valid proof of correct decryption apart from the one pro-
duced in line 31 of UVCDN. But from this proof, witness ∆2d can be extracted
by witness-extended emulation. From this, we can build a distinguisher that,
given an encryption B, runs YADA(rN , k, (x1, . . . , xm), C, a) (r random), and,
whenever it gets witness ∆2d, outputs the decryption of B. By the above discus-
sion, this distinguisher succeeds with non-negligible probability, contradicting
semantic security of the Paillier threshold cryptosystem. So, IDEALf,SUVCDN,A

and YADA with b = 0 are in fact statistically indistinguishable, as we needed to
show. This completes the proof. ut

Process 10 Scorrupt
UVCDN: Simulator for Universally Verifiable CDN (corr. majority)

1. // pre: pk public key; C (|C| ≥ dn/2e) corrupted parties with secret keys
2. // {si}i∈P∩C , inputs {xi}i∈I∩C
3. // post: attacker simulated, values provided to T to mimic real execution outputs
4. (r,O)← Scorrupt

UVCDN,A(pk=(N, v, v0, {vi}i∈P), C, {xi}i∈I∩C , {si}i∈P∩C , a) :=
5. foreach i ∈ I \ C do hi ∈R codom(O)
6. function B :=

7. {hi}i∈I∩C := AO({hi}i∈I\C)
8. foreach i ∈ I ∩ C do (Xi, πPK,i) := ((x, π) s.t. (x||π||i, hi) ∈ O else ⊥)
9. F := {i ∈ I ∩ C | Xi = ⊥ ∨ ¬fsver(ΣPK;Xi;πPK,i; i)}

10. return ({hi}i∈I∩C , F, {(Xi;πx,i)}i∈I\S)
11. ({hi}i∈I∩C , F, {(Xi;πPK,i;xi, ·)}i∈I\S) := EB()
12. foreach i ∈ I ∩ F do x′i := 0;Xi := ⊥
13. send({x′i}i∈I∩C , T); {xi}i∈I\C := recv(T)
14. foreach i ∈ I \ C do
15. ri ∈ Z∗N ;Xi := (1 +N)xirNi ;h′i ∈R codom(O); (ai, h′i, ri) := ΣPK.sim(Xi, h

′
i)

16. if (Xi||ai||i) ∈ dom(O) ∨ (Xi||πPK,i||i) ∈ dom(O) then fail
17. O := O ∪ {(Xi||ai||i, h′i), (Xi||πPK,i||i, hi)}
18. {(X ′i, π′x,i)}i∈I∩C := AO({(Xi, πPK,i)}i∈I\C)
19. F = F ∪ {i ∈ I \ F | (X ′i, π′PK,i;hi) /∈ O}
20. if ∃j : X ′i 6= Xi ∧ (X ′i, π

′
PK,i;hi) ∈ O ∧ fsver(ΣPK;X

′
i;π
′
PK,i; i) then fail

21. 〈run UVCDN(pk, {si}i∈P , {xi}i∈I}) line 9–26 with adversary〉
22. if |P \ F | < dn/2e then send(⊥, T); return (AO(),O)
23. if R /∈ C then // result party honest: receive output encryption from T
24. X := recv(T); y ∈R ZN ;D := (1 +N)−yX;h ∈R codom(O)
25. (a, h, r) := ΣPK.sim(D,h); if (D||a||R) ∈ dom(O) then fail

26. πPKd := (a, h, r);O := O ∪ {(D||a||R, h)};AO(D,πPKd)
27. else
28. D;πPKd := AO()
29. if ¬fsver(ΣPK;D;πPKd;R) then send(⊥, T); return (AO(),O)
30. Y := Xoutgate ·D−1; foreach i ∈ P \ C do Yi := Y 2∆si

31. {Yi}i∈(P\F)∩C := AO({Yi}i∈P\C)
32. ((·, Y0, ·, ·), πCDy, ·) := SMΣ(ΣCD, ΦCD,P \ F, {(Y, Yi, v, vi)}i∈P\F , D)

33. if |P \ F | < dn/2e then send(⊥, T); return (AO(),O)
34. if R /∈ C then
35. send(>; T); if V ∈ C then AO({(Dc, . . .)}c∈gates;D,πPKd, Y0, πCDy)
36. else
37. // EOA

′
: if valid proof, extract s from line 17 of vercomp; otherwise, return ⊥

38. if V /∈ C then (π, s) := EOA
′
() else s := ⊥

39. send(s, T)
40. return (AO(),O) // return adv.-chosen output and simulated random oracle

C.2 The Corrupted Majority Case

If at least dn/2e parties are corrupted, then the simulator has to simulate an
adversary that can decrypt all values that it sees. In this case, Scorrupt

UVCDN (Pro-

cess 10) performs a run of the actual protocol with respect to the adversary. It
can do this, because it gets the inputs of the honest parties from TVSFE (line 6);
and it can compute their shares of the decryption key by Lagrange interpolation
from the shares of the corrupted parties7. There are two difficulties. The first
is that, in the input phase, the simulator needs to provide the inputs of the
corrupted parties to TVSFE before it receives the inputs of the honest parties.
Hence, it needs to simulate the “hashed inputs” round of the UVCDN protocol
without knowing the honest inputs. The second is that, in the output phase with
a honest result party, the simulator obtains the encrypted output from TVSFE,
and needs to force the computation to give this output.

In more detail, lines 5–20 of Scorrupt
UVCDN simulate UVCDN’s input phase. Recall

that in UVCDN, the parties first provide hashes of their encrypted inputs, and
then open these hashes to reveal the encryptions. When simulating the opening of
these hashes, Scorrupt

UVCDN needs to provide actual encryptions of the honest parties’
inputs: indeed, a corrupted majority can perform decryption so the encryptions
need to be correct. Because Scorrupt

UVCDN needs to supply the corrupted inputs to
TVSFE before obtaining the honest inputs, it needs to extract the corrupted in-
puts already from the hashes. First, Scorrupt

UVCDN generates random hash images for
the honest parties (line 5). Now, define a function B that exchanges the honest
and corrupted hashes (line 7), inspects the oracle O to find the corrupted pre-
images (line 8), and checks their proofs (line 9). B is an algorithm that produces
non-interactive zero-knowledge proofs of knowledge of the plaintexts of the cor-
rupted Xi, so applying witness-extended emulation to B gives an algorithm that
additionally gives the plaintexts xi (line 11). Scorrupt

UVCDN supplies these inputs to
TVSFE, and in return gets the inputs of the honest parties (line 13). Given the
honest parties’ inputs, Scorrupt

UVCDN can now compute real zero-knowledge proofs on
behalf of the honest parties (line 15–16), and provide these to the adversary (line
18). Unless Scorrupt

UVCDN is unlucky with the random oracle (lines 16, 20), this is a
perfect simulation of the input phase with respect to the adversary.

In the computation phase, the simulator can do little else but perform the ac-
tual combination with the adversary (line 21): indeed, the adversary can decrypt
all exchanged values so it can directly tell if the computation is manipulated.

In the result phase, if the result party is not corrupted, then Scorrupt
UVCDN re-

ceives the encrypted output X of the computation (line 24). As in the honest
majority case, it computes D so that X will indeed be output, and simulates
D’s proof (lines 25–26). Otherwise, the adversary chooses encryption D (line 28).
Finally, Scorrupt

UVCDN simulates the threshold decryption (line 30–32). Scorrupt
UVCDN has

now simulated the full protocol and just needs to check what its outcome was. If
too many parties provided incorrect proofs, it signals to the trusted party that
the computation was unsuccessful (line 33) If the result party is honest and the
verifier is corrupted, then Scorrupt

UVCDN simulates the provision of the proof to the
adversary (line 35). Conversely, if the result party is corrupted and the verifier
is not, then it receives the proof from the adversary. From this proof, it extracts

7 Actually, the simulator can only determine ∆si because it cannot divide by ∆ under
unknown modulus pp′qq′; but one observes that the UVCDN protocol always uses
si in combination with ∆, so knowing ∆si is sufficient.

the randomness of the encryption that is verified in line 17 of vercomp (line 38),
and provides this randomness to the trusted party as the randomness of the
result (line 39). (This encryption will typically be D from line 28, in which case
the witness-extended emulator EOA

′ implicitly rewinds the simulation.)
We achieve statistical indistinguishability (computational indistinguishabil-

ity would be sufficient):

Lemma 3. For all inputs x1, . . . , xm, C, a with |P ∩ C| > dn/2e, Scorrupt
UVCDN,A

runs in polynomial time, and

EXECUVCDN,A(k;x1, . . . , xm;C; a) and IDEALf,SUVCDN,A(k;x1, . . . , xm;C; a)

are statistically indistinguishable in security parameter k.

Proof. Clearly, Scorrupt
UVCDN is p.p.t. since it only calls p.p.t. subroutines.

By construction, a full run of the protocol is simulated with respect to the
adversary in a statistically indistinguishable way. It remains for us to check that
also the output of honest R and V are indistinguishable.

In case the result party is corrupted, only the verifier produces an output. In
the ideal world, a honest verifier outputs (1+N)rsN , where r is the computation
result; in the real world, a honest verifier outputs (1+N)∗sN for D = (1+N)†sN

from line 21 of vercomp (or both output ⊥ if the computation failed). Now, since
Scorrupt

UVCDN does not simulate any proofs for statements that are not in the language
of their respective Σ-protocols, and the adversary cannot produce any proofs
for statements not in the language, with overwhelming probability all verifying
proofs are for true statements, so also (1 + N)∗sN has to be an encryption of
the actual computation result. Hence we get indistinguishability.

Similarly, if the result party is honest, then the randomness it outputs in the
ideal and real world is the same by construction; and the computation output has
to be correct because the actual protocol was followed, and with overwhelming
probability, no incorrect proofs have been produced. Hence, also in this case
indistinguishability holds, which concludes the proof. ut

	Universally Verifiable Multiparty Computationfrom Threshold Homomorphic Cryptosystems

