
Efficient and Secure Delegation of Group
Exponentiation to a Single Server

Bren Cavallo1, Giovanni Di Crescenzo2,
Delaram Kahrobaei3, Vladimir Shpilrain4

1 Graduate Center, City University of New York. E-mail: bcavallo@gc.cuny.edu
2 Applied Communication Sciences. E-mail: gdicrescenzo@appcomsci.com

3 City University of New York. E-mail: DKahrobaei@gc.cuny.edu
4 City University of New York. E-mail: shpil@groups.sci.ccny.cuny.edu

Abstract. We consider the problem of delegating computation of group
operations from a computationally weaker client holding an input and
a description of a function, to a single computationally stronger server
holding a description of the same function. Solutions need to satisfy nat-
ural correctness, security, privacy and efficiency requirements. We obtain
delegated computation protocols for the following functions, defined for
an arbitrary commutative group:
1. Group inverses, with security and privacy holding against any com-

putationally unrestricted malicious server.
2. Group exponentiation, with security and privacy holding against any

computationally unrestricted “partially honest” server.
3. Group exponentiation, with security and privacy holding against any

polynomial-time malicious server, under a pseudorandom generation
assumption, and security holding with constant probability.

1 Introduction

Efficient implementation of cryptographic protocols on RFID tags is a chal-
lenging research area, due to their limited power, storage and computational
resources. Among all types of cryptographic protocols, public-key, or asymmet-
ric, protocols are especially hard to deal with, because their demands in terms
of costs, area and power, are typically higher than their symmetric, or private-
key, counterparts (see, e.g., [3] and references therein for a detailed treatment of
deployment issues in the implementation of public-key cryptography over RFID
tags). An active research direction addressing these challenges consists of modi-
fying known cryptographic protocols into a lightweight version that can be exe-
cuted by computationally weaker devices, such as RFID tags. Another (perhaps
dual, in some sense) research direction addresses these challenges by delegated
(also called outsourced, or server-aided) computation of cryptographic primi-
tives. In this latter direction, a computationally weaker client, holding an input
and a description of a function, wants to delegate much of the computation to
one or more computationally stronger servers holding a description of the same
function. Solutions typically come with the following requirements: correctness



(i.e., if the client and servers are honest, the client obtains the output of the func-
tion evaluated on its input), security (i.e., servers cannot convince the client of
a false computation output), privacy (i.e., servers cannot learn any information
about the client’s input), and efficiency (i.e., the client’s running time is much
smaller than the servers’ running time or the time to non-interactively compute
the function). In this paper, we study delegated computation to a single server
of an operation that is a component of a large number of cryptographic primi-
tives and/or protocols: exponentiation in a (multiplicative) group. The goal in
such delegated protocols is for the client to perform a smaller number of group
multiplications than in a non-delegated group exponentiation. This problem is
expected to be of great interest, given that very recent advances [1] show how to
practically implement group multiplication, for a specific group, and a related
public-key cryptosystem, using RFID tags.

Related Work. Delegating computation has been and continues to be an active
topic, with the increased importance of new computation paradigms, such as
computing with low-power (including RFID) devices, cloud computing, etc. A
number of solutions had been proposed and then broken in follow-up papers.

An elegant solution for a client to provably delegate any polynomial-time cir-
cuit to a single (semi-honest) server was given in [7], using garbled circuits [13]
and fully-homomorphic encryption. Due to its generality, this solution is asymp-
totically efficient, but not so in practical settings, such as low-power devices.

Solutions that provably and efficiently delegate variable-base exponentiation
were given in [8, 5, 6, 12] under a pseudo-random powers generation assumption,
in turn based on the hidden-subset-sum hardness assumption [4, 11], and [10],
under the (stronger) subset sum hardness assumption.

In [8], motivated by efficiency for RFID tags, the authors presented a protocol
where a client only performs O(log2 `) multiplications, where ` is the bit length
of the exponent, to detect, with constant probability, an untrusted response
from either two servers, of which at most one is untrusted, or from one server,
which is trusted on average inputs. A different solution with two servers and
similar features, but improved constants for client running time, was later given
in [5], who explicitly posed the open problem of provable and efficient delegation
of modular exponentiation to a single, untrusted, server. Batch exponentiation
was first studied in [9] and later improved in [10], where a client can delegate
t exponentiations to servers, by performing O(t + `) modular multiplications,
assuming the hardness of the subset sum problem. In [12] the authors present
protocols to delegate variable-exponent, variable-base exponentiation to a single,
untrusted, server. In [6], the authors provide efficient and secure solutions, where
the base is known to the server (thus, not addressing our privacy requirement).

Our Contributions. In this paper we first of all provide rigorous definitions
for the requirements of correctness, privacy, security and efficiency for delegated
computation protocols in the single, malicious, server model. We then construct
three protocols that provably satisfy these requirements while delegating, to a
single malicious server, computations over any arbitrary commutative group G.



Although our main objective is to delegate group exponentiation, our first
protocol is a simple protocol for the delegation of group inverses, where both
security and privacy hold against a computationally unrestricted, malicious,
server. We were surprised to notice that the need for such a protocol has been
overlooked in the literature, even though almost all previous solutions (as well
as ours) for delegated exponentiation do require inverse computations from the
client, and even given the fact that in both theoretical algorithms and practical
implementations, a non-delegated inverse computation is more expensive than a
non-delegated multiplication. Our protocol for inverses works for any (even non-
commutative) group, only requires the client to perform 3 group multiplications,
and satisfies both security (with negligible detection error) and privacy even in
the presence of a computationally unrestricted adversary corrupting the server.

Our second protocol is for the delegation of group exponentiation to a sin-
gle, “partially-honest”, server. This protocol only requires the client to perform
2m + 4 group multiplications, where m can be any super-logarithmic and sub-
linear function in ` = log |G|, and satisfies both security (in a one-wayness sense,
with negligible detection error) and privacy even against a computationally un-
restricted adversary corrupting the server. Proving the security of this protocol
also requires establishing a new lemma of independent interest about the num-
ber of distinct group products. No previous protocol was proved to achieve these
strong security or privacy guarantees, even against a trusted server.

Our third protocol is for the delegation of group exponentiation to a single,
malicious, server. This protocol only requires the client to perform 2mr + 5
group multiplications, where mr is the number of multiplications required by
the pseudo-random power generator (recommended to be set to O((log `)2)),
and satisfies both security (with constant detection error) and privacy under the
hidden-subset-sum assumption, as used in [4, 11]. This protocol improves over
previous solutions with a single, untrusted, server by requiring no inverses and
reducing the number of client multiplications, as detailed in Table 1.

Ma et. al. [10] Wang et. al. [12] Our Third Protocol

Mod Mult O(log k) 7mr + 12 + O(log `) 2mr + 5

Mod Inv 2 4 0

Table 1. Comparison of our third protocol with previous similar solutions delegating
variable-base exponentiation to a single, untrusted, server.

Our protocols are written so to delegate function FG,exp,k(x) = xk (i.e., fixed-
exponent, variable-base exponentiation), but can be reformulated so to delegate
function FG,exp,x(k) = xk (i.e., variable-exponent, fixed-base exponentiation).

2 Definitions and Preliminaries

In this section we formally define delegation protocols, and their correctness,
security, privacy and efficiency requirements (building on the approaches in [7]
and [8]). We start with some basic notations.



Basic notations. The expression y ← T denotes the probabilistic process
of randomly and independently choosing y from set T . The expression y ←
A(x1, x2, . . .) denotes the (possibly probabilistic) process of running algorithm
A on input x1, x2, . . . and any necessary random coins, and obtaining y as output.
The expression (zA, zB , tr) ← (A(x1, x2, . . .), B(y1, y2, . . .)) denotes the (possi-
bly probabilistic) process of running an interactive protocol between algorithm
A, taking as input x1, x2, . . . and any necessary random coins, and algorithm
B, taking as input y1, y2, . . . and any necessary random coins, where tr is the
sequence of messages exchanged by A and B as a result of this execution, and
zA, zB are A and B’s final outputs, respectively.

System scenario, entities, and protocol. We consider a system with two
types of parties: clients and servers, where a client’s computational resources
are expected to be more limited than a server’s ones, and therefore clients are
interested in delegating (or outsourcing) the computation of specific functions
to servers. In all our solutions, we consider a single client, denoted as C, and a
single server, denoted as S.

Let σ be a security parameter, expressed in unary notation (i.e., 1σ), and let
F : Dom(F )→ CoDom(F ) be a function, where Dom(F ) denotes F ’s domain,
CoDom(F ) denotes F ’s co-domain, and desc(F ) denotes F ’s description. Assum-
ing desc(F ) is known to both C and S, and input x is known only to C, we define
a client-server protocol for the delegated computation of F as a 2-party communi-
cation protocol between C and S, denoted as (C(1σ, desc(F ), x), S(1σ, desc(F ))).
A delegated computation of the value y = F (x) is an execution, using indepen-
dently chosen random bits for C and S, of the above client-server protocol, and
is denoted as

(yC , yS , tr)← (C(1σ, desc(F ), x), S(1σ, desc(F )),

meaning that at the end of the execution C learns yC = y, S learns yS (usually
an empty string in this paper), and tr is the transcript of the communication
exchanged between C and S. (We will often omit desc(F ) and 1σ for brevity of
description.) Executions of delegated computation protocols can happen sequen-
tially (each execution starting after the previous one is finished) or concurrently
(S runs at the same time one execution with each one of many clients). 5

Correctness Requirement. Informally, the (natural) correctness requirement
states that if both parties follow the protocol, C obtains some output at the
end of the protocol, and this output is equal to the value obtained by evaluating
function F on C’s input. A formal definition follows.

Definition 1. Let σ be a security parameter, and F be a function, and let
(C, S) be a client-server protocol for the delegated computation of F . We say
that (C, S) satisfies correctness if for any x in F ’s domain, it holds that

Prob [ (yC , yS , tr)← (C(1σ, desc(F ), x), S(1σ, desc(F ))) : y = F (x) ] = 1.

5 We assume that the communication link between each client and S is private or not
subject to confidentiality, integrity, or replay attacks, and note that such attacks can
be separately addressed using known techniques in cryptography and security.



Security Requirement. Informally, the most basic security requirement would
state the following: if C follows the protocol, a malicious adversary corrupting S
cannot convince C to obtain, at the end of the protocol, some output y′ different
from the value y obtained by evaluating function F on C’s input x. To define
a stronger and more realistic security requirement, we augment the adversary’s
power so that the adversary can even choose C’s input x, and even take part
in a polynomial number of protocol executions, with inputs again chosen by the
adversary, before attempting to convince C of an incorrect output.

We also define a natural “partially-honest variant” of this definition, where
the adversary can arbitrarily choose the inputs to all protocol executions but
can only honestly run the protocols.

For simplicity, we only consider sequential protocol executions, but note that
the definition adapts naturally to the case of concurrent protocol executions. A
formal definition follows.

Definition 2. Let σ be a security parameter, and F be a function, and let (C, S)
be a client-server protocol for the delegated computation of F .

We say that (C, S) satisfies (ts, εs)-security against a malicious adversary if
for any algorithm A running in time ts, it holds that

Prob
[
out← SecExpF,A(1σ) : out = 1

]
≤ εs,

for some small εs, where experiment SecExp is detailed below.
We say that (C, S) satisfies (ts, εs)-security against a partially-honest adver-

sary if for any algorithm A running in time ts, it holds that

Prob
[
out← phSecExpF,A(1σ) : out = 1

]
≤ εs,

for some small εs, where experiment phSecExp is detailed below.

SecExpF,A(1σ)
1. i = 1
2. (a, x1, aux)← A(1σ, desc(F ))
3. while (a 6= “attack”) do

(yi, (a, xi+1, aux), tri)← (C(xi), A(aux))
i = i + 1

4. x← A(aux)
5. (y′, aux, tri)← (C(x), A(aux))
6. if y′ 6=⊥ and y′ 6= F (x) then

return: 1
7. if y′ =⊥ or y′ = F (x) then

return: 0.

phSecExpF,A(1σ)
1. i = 1
2. (a, x1, aux)← A(1σ, desc(F ))
3. while (a 6= “attack”) do

(yi, ·, tri)← (C(xi), S)
(a, xi+1, aux)← A(aux)
i = i + 1

4. x← A(aux, tr1, . . . , trq(σ))
5. (y′, ·, tr)← (C(x), S)
6. if y′ 6=⊥ and y′ 6= F (x) then

return: 1
7. if y′ =⊥ or y′ = F (x) then

return: 0.

Privacy Requirement. Informally, the most basic privacy requirement would
state the following: if C follows the protocol, a malicious adversary corrupting
S cannot obtain any information about C’s input x from a protocol execution.
This is formalized by extending the indistinguishability-based approach used in



formal definitions for encryption schemes in the cryptography literature. That
is, the adversary can pick two inputs x0, x1, then one of these two inputs is
chosen at random and used by C in the protocol with the adversary acting as
S, and then the adversary tries to guess which input was used by C. To define
a stronger and more realistic privacy requirement, we augment the adversary’s
power so that the adversary can even take part in a polynomial number of
protocol executions, where it chooses C’s input before attempting to guess C’s
input in one last execution.

We also define a natural “partially-honest variant” of this definition, where
the adversary chooses the inputs to a polynomial number of protocols but can
only honestly run the protocols, and later tries to guess a randomly chosen x′

such that F (x′) = F (x), where x is C’s input.
For simplicity, we only consider sequential protocol executions, but note that

the definition adapts naturally to the case of concurrent protocol executions. A
formal definition follows.

Definition 3. Let σ be a security parameter, and F be a function, and let (C, S)
be a client-server protocol for the delegated computation of F .

We say that (C, S) satisfies (tp, εp)-privacy (in the sense of indistinguisha-
bility) against a malicious adversary if for any algorithm A running in time at
most tp, it holds that

Prob
[
out← PrivExpF,A(1σ) : out = 1

]
≤ εp,

for some small εp, where experiment PrivExp is detailed below.
We say that (C, S) satisfies (tp, εp)-privacy (in the sense of one-wayness)

against a partially-honest adversary if for any algorithm A running in time at
most tp, it holds that

Prob
[
out← phPrivExpF,A(1σ) : out = 1

]
≤ εp,

for some small εp, where experiment phPrivExp is detailed below.

PrivExpF,A(1σ)
1. (a, x1, aux)← A(1σ, desc(F ))
2. while (a 6= “attack”) do

(yi, (a, xi+1, aux), ·)← (C(xi), A(aux))
i = i + 1

3. (x0, x1, aux)← A(aux)
4. b← {0, 1}
5. (y′, b, tr)← (C(x), A(aux))
6. if b = d then return: 1
7. if b 6= d then return: 0.

phPrivExpF,A(1σ)
1. (a, x1, aux)← A(1σ, desc(F ))
2. while (a 6= “attack”) do

(yi, ·, tri)← (C(xi), S)
(a, xi+1, aux)← A(aux)
i = i + 1

3. x← Dom(F )
4. (·, x′, ·)← (C(x), A(aux, tr1, . . . , trq(σ))
5. if F (x′) = F (x) then return: 1
6. if F (x′) 6= F (x) then return: 0.

Efficiency Metrics and Requirements. Let (C, S) be a client-server protocol
for the delegated computation of function F , We say that (C, S) has efficiency
parameters (tF , tC , tS , cc,mc)), if F can be computed using tF (σ) atomic oper-
ations, C can be run using tC(σ) atomic operations, S can be run using tS(σ)



atomic operations, C and S exchange a total of at most mc messages, of total
length at most cc. In our analysis, we only consider group operations as atomic
operations (e.g., group multiplications, inverses, and/or exponentiation), and
neglect lower-order operations (e.g., equality testing between group elements).
Our goal is to design protocols where tC(σ) is smaller than tF (σ), and tS(σ) is
not significantly larger than tF (σ), with the following underlying assumptions,
that are consistent with the state of the art in cryptographic implementations
at least for many group types:
1. group multiplication require significantly less computing resources than group

inverses;
2. group multiplication require significantly less computing resources than group

exponentiation.
Naturally, we also try to minimize other typical protocol efficiency metrics, such
as message complexity mc and communication complexity cc.

3 Delegation of Inverses

In this section we present a client-server protocol for delegated computation
of group inverses. Our protocol is especially simple, works for any (even not
commutative) group and for any computationally unrestricted adversary, and
will be used as a subprotocol in our two protocols for delegated computation of
modular exponentiation.

Notations and formal theorem statement. Let (G, ∗) be a group, where the
group operation ∗ is also referred as multiplication, and 1 denotes G’s identity
element. For any a ∈ G, let b = a−1 denote the inverse of a; i.e., the value b such
that a ∗ b = 1. Let FG,inv : G → G denote the function that maps every a ∈ G
to its inverse a−1. Formally, we show the following

Theorem 1. There exists (constructively) a client-server protocol (C, S) for
delegated computation of function FG,inv which satisfies

1. correctness;
2. (ts, εs)-security (in the sense of indistinguishability) against any malicious
adversary, for ts =∞ and εs = 0;

3. (tp, εp)-privacy (in the sense of indistinguishability) against any malicious
adversary, for tp =∞ and εp = 0;

4. efficiency with parameters (tF , tC , tS , cc,mc), where
• tF and tS are = 1 inversion in G;
• tC is = 3 multiplications in G;
• cc = 2 elements in G and mc = 2.

We remark that Theorem 1 satisfies very strong versions of the security and
privacy requirements (i.e., the adversary can arbitrarily deviate from S’ program
and is not even restricted to run in polynomial time), and of the efficiency
requirement (tC only requires running 3 multiplications in G). In what follows,
we describe the protocol satisfying Theorem 1 and its properties.



Description of protocol (C, S). Informally speaking, the protocol claimed in
Theorem 1 for delegated computation of FG,inv goes as follows. On input x ∈ G,
C uses the group operation to mask x with a random group element, and sends
the masked value to S. The latter inverts the masked element and sends it to C.
Finally, C uses the group operation to check that the received value is a valid
inverse for the masked value and to derive an inverse for its input x. A formal
description follows.

Input to S: 1σ, desc(FG,inv)

Input to C: 1σ, desc(FG,inv), x ∈ G
Protocol instructions:

1. C randomly chooses c ∈ G, computes d = x ∗ c and sends d to S;
2. S computes e = d−1 and sends e to C;
3. C checks whether d ∗ e = 1;

if no, C returns failure symbol ⊥;
if yes, C computes y = c ∗ e and returns: y.

Properties of protocol (C,S) are detailed in Appendix A.

4 Delegation of Exponentiation in the Presence of a
Partially-Honest Adversary

In this section we present a client-server protocol for delegated computation of
group exponentiation, in the model where the adversary corrupting the server
is partially honest and polynomial-time bounded. Our protocol works for any
commutative group and does not rely on any additional complexity assumptions.

Notations and formal theorem statement. Let (G, ∗) be a commutative
group, let ` = dlog |G|e and let b = ak denote the exponentiation of a to the k-th
power; i.e., the value b ∈ G such that a ∗ · · · ∗ a = b, where the multiplication
operation ∗ is applied k−1 times. Let k > 0 be an integer (assumed, for simplicity,
smaller than G’s order), and let FG,exp,k : G→ G denote the function that maps
every a ∈ G to the exponentiation of a to the k-th power. Formally, we show the
following

Theorem 2. Let m be a function super-logarithmic and sub-linear in `. There
exists (constructively) a client-server protocol (C, S) for delegated computation
of function FG,exp,k which satisfies

1. correctness;
2. (ts, εs)-security (in the sense of indistinguishability) against any partially-
honest adversary, for ts =∞ and εs negligible in `;

3. (tp, εp)-privacy (in the sense of one-wayness) against any partially-honest
adversary, for ts =∞ and εs = 2−m+ a quantity negligible in `;

4. efficiency with parameters (tF , tC , tS , cc,mc), where
• tF is = 1 exponentiation in G;
• tS is = m+ 1 exponentiations and 1 inversion in G;



• tC is ≤ 2m+ 4 multiplications in G;
• cc = 2m+ 4 elements in G and mc = 4.

We remark that Theorem 2 only considers privacy in the sense of one-wayness
and partially-honest adversaries for security and privacy. In this model, it does
satisfy a strong version of the security and privacy requirements, in that the
adversary is not restricted to run in polynomial time. The parameter m can be
set as the output of a function of `, that is: (1) super-logarithmic, so to obtain
an εs negligible in `, and (2) sub-linear, so to obtain a tC sub-linear in `. In
the rest of this section, we describe the protocol satisfying Theorem 2 and its
properties.

Informal description of protocol (C, S). Informally speaking, the protocol
claimed in Theorem 2 for delegated computation of FG,exp,k is based on the fol-
lowing ideas. Direct attempts to produce a protocol for group exponentiation as
the natural extension of the protocol for group inverses underlying Theorem 1
fail for efficiency reasons: a small number of multiplications in G do not seem
to suffice for C to derive an exponentiation for input value x from an expo-
nentiation for a masked value produced by S. To deal with this problem, we
require C to do the following: first, C asks S for a number of exponentiations of
random group elements; then, C produces a masked value for x by combining
it with a random subset of the previously used random group elements; finally,
C obtains an exponentiation for the masked value from S and divides it by the
(now known) exponentiations of the random group elements in the subset to
obtain the exponentiation of its own value x. Division is delegated to S by using
a few group multiplications and the inverse delegation protocol from Section 3.
A formal description follows.

Formal description of protocol (C, S). Let (Cinv, Sinv) denote the protocol
satisfying Theorem 1 for delegated computation of inverses in group G. That is,
on input a value in G to be inverted, Cinv returns a group value d to be sent to
Sinv; and, on input d, Sinv returns a group value e to be sent to Cinv.

Let m be a value obtained by applying a super-logarithmic and sublinear
function to `, or, more practically speaking, a value such that 2−m is a s suffi-
ciently small probability and m is sufficiently smaller than `. We do not further
specify m to allow for security/efficiency trade-off analysis.

Input to S: 1σ, desc(FG,exp,k), 1m

Input to C: 1σ, desc(FG,exp,k), x ∈ G, 1m

Protocol instructions:

1. C randomly chooses u1, . . . , um ∈ G, and sends them to S

2. S computes vi = uki and sends vi to C, for i = 1, . . . ,m;

3. C randomly chooses a subset U of {1, . . . ,m};
C computes z = x ∗

∏
i∈U ui and p =

∏
i∈U vi;

C runs Cinv on input p, thus obtaining d

C sends z, d to S;



4. S computes w = zk;
S runs Sinv on input d, thus obtaining e;
S sends w, e to C

5. C runs Cinv on input p, d, e to compute p−1;
if this execution of (Cinv, Sinv) returned ⊥ as output

C returns: ⊥ and the protocol halts;
C computes y = w ∗ p−1 and returns: y

Properties of protocol (C,S). The efficiency properties are verified by pro-
tocol inspection: C runs ≤ 2m + 4 multiplications in G, and S runs m + 1
exponentiations and 1 inversion in G. Thus, if m is sub-linear in the size of
elements in G, C’s running time improves by a factor of about `/m over the
non-delegated computation of an exponentiation in G. With respect to round
complexity, the protocol only requires two rounds, each round being one message
from C to S followed by one message from S to C. With respect to communica-
tion and message complexity, the protocol requires the transfer of 2m+ 4 group
elements and a total of 4 messages.

The correctness properties follows by observing that if C and S follow the
protocol, C’s output y is not ⊥, by the correctness of (Cinv, Sinv), and satisfies

y = w ∗ p−1 = zk ∗

(∏
i∈U

vi

)−1
=

(
x ∗

∏
i∈U

ui

)k
∗

(∏
i∈U

uki

)−1
= xk,

which implies that y = FG,exp,k(x) for each x ∈ G.
The security property follows by combining the following two observations:

(1) in each execution of (C, S), if S follows the protocol, then the equality
y = FG,exp,k(x) holds for each x ∈ G; (2) seeing multiple executions of (C, S)
does not help the adversary violate the equality y = FG,exp,k(x) in a future
execution, even when C’s inputs in these executions are chosen by the adver-
sary. Both observations (1) and (2) are based on the fact that the correctness
property holds for any x ∈ G. Moreover, observation (2) is based on the fact
that a partially-honest adversary is defined to follow the protocol, even when
maliciously choosing the input x for it.

We now show that the privacy property is satisfied. First, for each x ∈ G, let
nz be the number of z values that C can compute in step 3 of the protocol as the
product of a random subset from the u1, . . . , um values computed in step 1. Note
that C can choose at most 2m subsets U in step 3 and therefore it holds that
nz ≤ 2m. Then we show the following two facts: (1) when input x is randomly
chosen from G, the probability that an adversary playing as S can compute x′

such that FG,exp,k(x′) = FG,exp,k(x) at the end of a single execution of (C, S), is
1/nz; (2) if m is super-logarithmic in `, except with negligible (in `) probability,
it holds that nz = 2m.

To see that fact (1) holds, note that the adversary, playing as S, receives the
following information from C: the m-tuple (u1, . . . , um), the value d as part of
the execution transcript of subprotocol (Cinv, Sinv) on input p =

∏
i∈U vi, and

the value z which directly involves x. Then we make the following observations:



1. the values u1, . . . , um received by the adversary at step 1 are randomly chosen
in G and thus do not leak any information about x; and

2. even conditioned on u1, . . . , um and v1, . . . , vm, because of what proved in
Theorem 1, the execution of subprotocol (Cinv, Sinv) does not leak any in-
formation about p, and thus about x, to the adversary.

Given the above two observations, the only protocol value that may leak any
information about x to S is z. In fact, each possible z determines exactly one
possible x value, specifically x = z ∗ (

∏
i∈U ui)

−1, as the value used by C to
compute z. Thus, we obtain that for each z sent by C in step 3, and conditioned
on u1, . . . , um, v1, . . . , vm and the communication transcript of (Cinv, Sinv), the
number of possible x that might have been used to compute z is nz. When x is
randomly chosen, this implies fact (1).

Fact (2) follows from a new lemma of independent interest about the number
of distinct group products, and is detailed in Appendix B.

Facts (1) and (2) imply that the probability of A guessing x′ such that
FG,exp,k(x′) = FG,exp,k(x) is ≤ 2−m plus a negligible (in `) amount.

This concludes the proof of Theorem 2.

A Protocol Extension. We can achieve a stronger privacy notion, in the sense
of indistinguishability instead of one-wayness, by assuming the hardness of the
subset-sum problem in groups. This however imposes one further lower bound
on the number m, due to ensuring that the subset-sub problem is hard, which
decreases the efficiency of the protocol.

5 Delegation of Exponentiation in the Presence of a
Malicious Adversary

In this section we present a client-server protocol for delegated computation of
group exponentiation, in the model where the adversary corrupting the server
can be malicious. Our protocol works for any commutative group, and is based
on a pseudo-random generation assumption, which in previous work was instan-
tiated using the hidden-subset-sum assumption.

Notations and formal theorem statement. Let (G, ∗) be a commutative
group, let ` = dlog |G|e, and let k > 0 be an integer not larger that G’s order.

Let σ be a security parameter. We say that RandG,k is a pseudo-random
(G, k)-powers generator if it is a stateful probabilistic polynomial-time algorithm
with the following syntax and properties:

1. on input i = 0, RandG,k returns an auxiliary state information aux;
2. on input integer i > 0, and auxiliary state information aux, RandG,k returns

a pair (ui, u
k
i ), where ui ∈ G, and an updated state aux;

3. for any polynomial p, the tuple {(u1, uk1), . . . , (up(σ), u
k
p(σ))}, obtained as part

of the output of algorithm RandG,k, is computationally indistinguishable
from the tuple {(z1, zk1 ), . . . , (zp(σ), z

k
p(σ))}, where z1, . . . , zp(σ) are random

and independent elements from G.



A generator with these properties was first designed in [4], then refined in [11],
and since then used in a number of works, including previous work in outsourc-
ing modular exponentiation (see, e.g., [8]). We recall that this generator can
be designed based on the hidden-subset-sum assumption in groups. Using this
same design, the running time of RandG,k is comparable to about mr group
multiplications, where, based on previously recommended parameter settings,
mr = O(log2 `) (see, e.g., [8]). The security parameter σ and the group element
length ` are, in turn, typically set to be the same value.

Formally, we show the following

Theorem 3. Let σ be a security parameter, let k be a positive integer and
assume the existence of a pseudo-random (G, k)-powers generator. There ex-
ists (constructively) a client-server protocol (C, S) for delegated computation of
function FG,exp,k which satisfies

1. correctness;
2. (ts, εs)-security against any malicious adversary, for ts = poly(σ) and εs =
1/2 + ε0, where ε0 is negligible in σ;

3. (tp, εp)-privacy against any malicious adversary, for tp = poly(σ) and εp
negligible in σ;

4. efficiency with parameters (tF , tC , tS , cc,mc), where
• tF is = 1 group exponentiation in G;
• tS is = 2 group exponentiations and 1 group inverse in G;
• tC is = 5 + 2 ·mr multiplications in G, where mr denotes the number of

multiplications in one execution of RandG,k with input > 0;
• cc = 6 elements in G and mc = 2.

We remark that the result in Theorem 3 does not restrict to partially-honest
adversaries, as done in Theorem 2, but holds for malicious adversaries, under the
assumption of the existence of procedure Rand(G, k). In the rest of this section,
we describe the protocol satisfying Theorem 3, together with its properties.

Informal description of protocol (C, S). One approach to construct the pro-
tocol claimed in Theorem 3 for delegated computation of FG,exp,k could be to
produce a protocol secure and private against a malicious adversary by building
on the protocol secure and private against a partially-honest adversary underly-
ing Theorem 2. Although general conversion techniques are known in the cryp-
tography literature to transform a protocol secure against a honest adversary
into one secure against a malicious adversary, these techniques do not perform
well with respect to many efficiency metrics, typically because of their generality.
Instead, we propose the following approach.

Instead of C delegating to S the computation of a k-th power of a random
group element, as done in the protocol from Section 4, C uses the procedure
RandG,k to generate two pairs (u0, v0), (u1, v1) of random group elements u0, u1
and their k-th powers v0, v1, respectively. Then, one of these two pairs is used to
verify that answers from S are correct, and the other pair is used to mask C’s
input x and allow C to compute a k-th power of x, using the answers received
from S. Again, as before, division is delegated by using one group operation and



the inverse delegation protocol from Section 3. The privacy property follows from
the fact that the message sent by C to S is computationally indistinguishable
from random elements in G with their k-th powers, in turn based on the prop-
erties of RandG,k, and thus leaks no information about x. The security property
follows from the fact that the message sent by C to S does not reveal which
of the two pairs of group elements is used for verification and which is used for
computation and therefore any dishonest answer from S will be detected by C
with probability at least 1/2. A formal description follows.

Formal description of protocol (C, S). Let (Cinv, Sinv) denote the protocol
satisfying Theorem 1 for delegated computation of inverses in group G. That is,
on input a value x in G to be inverted, Cinv returns a group value d to be sent
to Sinv; then, on input d, Sinv returns a group value e to be sent to Cinv; finally,
based on x, d, e, algorithm Cinv computes value x−1.

Also, let RandG,k denote a pseudo-random (G, k)-powers generator. We as-
sume that C computes aux = RandG,k(0) once and at setup time, before running
any delegated computation protocol.

Input to S: 1σ, desc(FG,exp,k)

Input to C: 1σ, desc(FG,exp,k), x ∈ G, aux = RandG,k(0)

Protocol instructions:

1. C computes (ui, vi, aux) = RandG,k(i, aux), for i = 0, 1;

C randomly chooses b ∈ {0, 1};
C sets zb = ub, z1−b = x ∗ u1−b;
C runs Cinv on input v1−b, thus obtaining d;

C sends z0, z1, d to S;

2. S computes wi = zki for i = 0, 1;

S runs Sinv on input d, thus obtaining e;

S sends w0, w1, e to C

3. C runs Cinv on input t, d, e to compute v−11−b;

if this execution of (Cinv, Sinv) returned ⊥ as output

C returns: ⊥ and the protocol halts;

if wb 6= vb then

C returns: ⊥ and the protocol halts;

C computes y = w1−b ∗ v−11−b and returns: y

Properties of protocol (C,S). The efficiency properties are verified by proto-
col inspection. With respect to round complexity, the protocol only requires one
round, consisting of one message from C to S followed by one message from S to
C. With respect to communication complexity, the protocol requires the transfer
of 6 group elements. With respect to runtime complexity, S runs 2 exponenti-
ation operations and 1 inversion operation in G, and C runs 2 multiplication
operations in G, 1 execution of the inverse delegation protocols (requiring 3
multiplications) and 2 executions of procedure RandG,k.



The correctness properties follows by observing that if C and S follow the
protocol, C’s equality verification in step 3 will be satisfied, and thus C’s output
y is 6=⊥ and satisfies

y = w1−b ∗ v−11−b = (x ∗ u1−b)k ∗ ((u1−b)
k)−1 = xk ∗ (u1−b)

k ∗ (u1−b)
−k = xk,

which implies that y = FG,exp,k(x) for each x ∈ G.
The privacy property follows by combining the following two observations: (1)

on a single execution of (C, S), the message z0, z1, d sent by C does not leak any
information about x; and (2) seeing multiple executions of (C, S) does not help
the adversary in obtaining information about the input x in a new execution,
even when C’s inputs in these executions are chosen by the adversary. To show
observation (1), first observe that (u0, u1) is computationally indistinguishable
from a pair of random group elements, by property 3 of the pseudo-random
(G, k)-powers generator. Thus, the same holds for pair (z0, z1), since zb = ub
and z1−b = x ∗ u1−b for some b ∈ {0, 1}. Then, the fact that the entire message
z0, z1, d sent by C does not leak any information about x follows from Theorem 1
and the fact that the value d (and, in fact, the entire transcript of the execution
of protocol (Cinv, Sinv)), do not depend on x. Because protocol (C, S) is a one-
round protocol, the analysis done to show observation (1) extends across multiple
executions of the same protocol, thus showing observation (2).

To see that the security property is satisfied, first consider a single execution
of (C, S), where C follows the protocol, and, for any probabilistic polynomial-
time adversary corrupting S, consider the values w0, w1, e returned by the adver-
sary to C. The value e is associated with an execution of the inverse delegation
protocol from Section 3, which is secure against any probabilistic polynomial-
time adversary, as shown in Theorem 1. Thus, if the adversary deviates from the
protocol in computing an e that allows C to compute v−11−b, C will detect this
fact and return the failure symbol ⊥. Now, consider values w0, w1, and let nA
be the number in {0, 1, 2} of i ∈ {0, 1} such that wi = zki . We have two cases:
(a) nA = 2, and (b) nA ≤ 1. If (a) happens, then C will not return the failure
symbol and can compute y as in the last line of protocol step 3, and it will satisfy

y = w1−b ∗ v−11−b = (z1−b)
k ∗ v−11−b = (x ∗ u1−b)k ∗ ((u1−b)

k)−1 = xk,

On the other hand, if (b) happens, since vb = ukb and, assuming property 3 of
the pseudo-random (G, k)-powers generator, S cannot guess random bit b, the
verification wb = vb will be passed with probability at most 1/2. Seeing multiple
executions of (C, S) does not help the adversary increase this probability in the
next execution, since no information is leaked to S in any execution, assuming
property 3 of the pseudo-random (G, k)-powers generator, as discussed when
showing the privacy property.

This concludes the proof of Theorem 3.

A Protocol Extension. We can extend protocol (C, S) to decrease the εs = 1/2
in the security property by a suitable parallel repetition of it, as follows: first of
all, t executions of the protocol are executed in parallel, then, in step 3, C also



returns the failure symbol ⊥ if the value y computed in step 3 is not the same
in each parallel execution. The resulting protocol satisfies the security property
with εs = 2−t, and the efficiency property with tC = t(5+2 ·mr) multiplications
in G. Thus, only small values for t can be used until the value tC becomes as large
as the number of multiplications in a non-delegated computation of FG,exp,k.

6 Performance results

In this section we report our software evaluation of improvements in delegated
computation from non-delegated computation. The experiments were carried out
on a Gateway DX4300 desktop with an AMD Phenom(tm) II X4 820 2.80 GHz
processor with 6GB of RAM running Ubuntu version 15.04. The experiments
were also programmed in Python 2.7 using the gmpy2 package and both input
1024-bit and 2048-bit input lengths. Running times are grouped in the three ta-
bles and two pictures below, as follows. The leftmost table contains the times (in
seconds) to perform modular multiplication (MM), modular inversion (MI) with
gmpy2.invert, modular exponentiation (ME) with gmpy2.powmod, and modular
inversion using the client-server protocol (P1) from Section 3. The middle table
and the leftmost picture contain the running times for the client-server protocol
from Section 4 as parameter m varies. Analogously, the rightmost table and the
rightmost picture contain the running times for the client-server protocol from
Section 5, as parameters mr varies.

Operation 1024-bit 2048-bit

MM 2.8126e-6 3.6781e-6

MI 1.5029e-5 3.1179e-5

ME 5.6877e-4 3.9004e-3

P1 1.3101e-5 1.8432e-5

m 1204-bit 2048-bit

100 2.7657e-4 4.5698e-4

150 3.8839e-4 6.3672e-4

200 4.6488e-4 7.6977e-4

250 4.9629e-4 8.8256e-4

300 6.8792-4 1.2126e-3

m 1204-bit 2048-bit

100 4.1224e-4 6.3293e-4

150 5.0923e-4 1.2045e-3

200 6.5394e-4 1.3220e-3

250 9.0009e-4 1.7628e-3

300 1.0210e-3 2.0004e-3

100 150 200 250 300
m

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

Ti
m

e 
(s

)

Times for Protocol 2
1204-bits
2048-bits

100 150 200 250 300
m

0.0000

0.0005

0.0010

0.0015

0.0020

Ti
m

e 
(s

)

Times for Protocol 3
1204-bits
2048-bits

7 Conclusions

Towards making public-key cryptography more accessible to RFID tags, we con-
sidered the problem of delegating group exponentiation to a single, untrusted,



server. We showed protocols that provably satisfy formal correctness, privacy,
security and efficiency requirements. With our protocols, we highlighted the im-
portance of delegating the group inverse operation, the possibility of achieving
strong privacy and security properties against computationally unrestricted ad-
versaries, and approaches to further improving client computation time even in
the presence of a malicious adversary corrupting the server.

Acknowledgement. Research of Delaram Kahrobaei was partially supported by a

PSC-CUNY grant from the CUNY research foundation, as well as the City Tech foun-

dation. Research of Vladimir Shpilrain was partially supported by the NSF grant CNS-

1117675. Research of Delaram Kahrobaei and Vladimir Shpilrain was also supported

by the ONR (Office of Naval Research) grant N000141210758.

References

1. A. Arbit, Y. Livne, Y. Oren, A. Wool, Implementing public-key cryptography on
passive RFID tags is practical. In: Int. J. Inf. Sec. 14(1): 85-99 (2015)

2. P. Barrett, Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor, in: Advances in Cryptology,
CRYPTO 1986, LNCS 263 (1986), 311-323.

3. L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls and I. Verbauwhede,
Public-Key Cryptography for RFID-Tags. In: Fifth Annual IEEE International
Conference on Pervasive Computing and Communications - Workshops (Per-
Com Workshops 2007), 19-23 March 2007, White Plains, New York, USA, pp.
217-222, 2007.

4. V. Boyko and M. Peinado and R. Venkatesan, Speeding up discrete log and
factoring based schemes via precomputations. In: Advances in Cryptology, EU-
ROCRYPT’98, pp. 221-235, Springer, 1998.

5. X. Chen and J. Li and J. Ma and Q. Tang and W. Lou, New algorithms for secure
outsourcing of modular exponentiations. In: Computer Security–ESORICS 2012,
pp. 541-556, 2012.

6. M. Dijk, D. Clarke, B. Gassend, G. Suh, and S. Devadas, Speeding Up Expo-
nentiation using an Untrusted Computational Resource. In: Designs, Codes and
Cryptography, 39 (2), pp. 253-273, 2006.

7. R. Gennaro, C. Gentry, and B. Parno, Non-interactive verifiable computing:
Outsourcing computation to untrusted workers, in: Advances in Cryptology,
CRYPTO 2010, Lecture Notes Comp. Sc. 6223 (2010), 465-482.

8. S. Hohenberger and A. Lysyanskaya, How to securely outsource cryptographic
computations. In: Theory of Cryptography, pp. 264-282, 2005.

9. M. Jakobsson and S. Wetzel, Secure server-aided signature generation. In: Public
Key Cryptography, pp. 383-401, Springer, 2001.

10. X. Ma and J. Li and F. Zhang, Outsourcing computation of modular exponentia-
tions in cloud computing. In: Cluster Computing (2013) 16:787?796 (also INCoS
2012).

11. P. Q. Nguyen and I. E. Shparlinski and J. Stern, Distribution of modular sums
and the security of the server aided exponentiation. In: Cryptography and Com-
putational Number Theory, pp. 331-342, Springer, 2001.



12. Y. Wang and Q. Wu and D. Wong and B. Qin and S. Chow and Z. Liu
and X. Tao, Securely outsourcing exponentiations with single untrusted program
for cloud storage. In: Computer Security-ESORICS 2014, pp.326-343, Springer,
2014.

13. A. C. Yao, Protocols for secure computations. In: Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, pp. 160-168, IEEE Computer
Society, 1982.

A Properties of Our First Protocol

Properties of protocol (C,S). The efficiency properties are verified by proto-
col inspection: C runs at most 3 multiplications in G, and S runs the inversion
operation in G once. With respect to round complexity, the protocol only re-
quires one message from C to S, followed by one message from S to C. With
respect to communication complexity, the protocol only requires the transfer of
one group element in each of the 2 messages.

The correctness properties follows by observing that if C and S follow the
protocol, C’s check d ∗ e = 1 is satisfied and C’s output y satisfies

y = c ∗ e = c ∗ d−1 = c ∗ c−1 ∗ x−1 = x−1.

The privacy property follows by combining the following two observations:
(1) on a single execution of (C, S), the message d sent by C does not leak
any information about x; and (2) seeing multiple executions of (C, S) does not
help the adversary, even when C’s inputs in these executions are chosen by the
adversary. Both observations are consequences of the fact that in each execution
of (C, S), the value d is uniformly distributed in G and independent from all
previous executions.

The security property follows by combining the following two observations:
(1) on a single execution of (C, S), C’s verification in step 3 forces the adversary
to send a honestly computed value e in step 2; and (2) seeing multiple executions
of (C, S) does not help the adversary, even when C’s inputs in these executions
are chosen by the adversary. Observation (1) follows by the fact that there is a
single value e satisfying C’s check “e∗d = 1” and it is e = d−1; that is, the same
value that an honest S sends. Observation (2) follows from the privacy property.

This concludes the proof of Theorem 1.

B Number of Distinct Group Products

Let X ⊂ G where G is a commutative group. We say that X is not collision free
(NCF) if there exist distinct subsets S1, S2 ⊂ X such that∏

i∈S1

i =
∏
j∈S2

j.

Alternatively if all subsets of X have distinct products, we say that X is collision
free (CF).



Lemma 1. Let m be super-logarithmic and sub-linear in ` = log |G|. Then the
probability that a random subset X ⊂ G where |X| = m has a collision is
negligible in `.

Proof. Let X = {x1, · · · , xm} and Xi = {x1, · · · , xi}, for i = 1, . . . ,m. Then

Pr(X is NCF) = Pr(X is NCF | Xm−1 is CF) ∗ Pr(Xm−1 is CF) +

Pr(X is NCF | Xm−1 is NCF) ∗ Pr(Xm−1 is NCF)

≤ Pr(X is NCF | Xm−1 is CF) + Pr(Xm−1 is NCF)

≤
m∑
i=1

Pr(Xi is NCF | Xi−1 is CF)

≤
m∑
i=1

3i−1

|G|

=
3m − 1

2|G|
,

which is negligible in ` as long as m = o(`), and where the probability derivations
are explained as follows.

The first equality is obtained by an application of the probability conditioning
rule. The first inequality follows by upper bounding Pr(Xm−1 is CF) with 1 and
observing that, by definition, Pr(X is NCF | Xm−1 is NCF) = 1. The second
inequality is obtained by iterating the first inequality to the Pr(Xm−1 is NCF)
term. The second equality is obtained by a geometric summation calculation.
To see how the third inequality is obtained, observe that we compute an upper
bound for Pr(Xi is NCF | Xi−1 is CF) as follows. First note that the only way
Xi can have a collision is if ∃a, b that are products of distinct elements of Xi

such that
axi = b.

Therefore, xi must avoid all distinct elements of the form ba−1. Note that any
element of the form ba−1 can be written as

xj1 · · ·xjkx
−1
jk+1
· · ·x−1jl

where all elements in the above product are distinct and for each xj that appears,
x−1j does not appear. There are a total of 3i−1 such strings and therefore xi must

avoid at most 3i−1 distinct elements. We then have that

Pr(Xi is NCF | Xi−1 is CF) ≤ 3i−1

|G|
.

ut


