Efficient Format Preserving Encrypted Databases

Prakruti C
III'T- Bangalore
Email: prakruti @iiitb.org

Abstract—We propose storage efficient SQL-aware encrypted
databases that preserve the format of the fields. We give exper-
imental results of storage improvements in CryptDB using FNR
encryption scheme.

Keywords Format preserving Encryption, CryptDB, computa-
tional privacy, block ciphers, FNR

I. INTRODUCTION

Cloudification of application stacks, legacy systems,
databases etc. has many benefits but ensuring privacy of
sensitive fields while retaining their computability is quite
challenging. Such privacy preserving efforts involve identi-
fication of sensitive fields in the system and re-engineering
such data fields in order to encrypt them. Many companies are
skeptical from moving their critical applications to the cloud
due to privacy issues associated with outsourcing sensitive data
to third party cloud providers.

For example, a data field might be well-defined for ac-
commodating IPv4 address of size 32 bits with number of
validations throughout the application stack (and/or database)
to ensure the input data is in fact IPv4 address. In order to
preserve the privacy of this field using traditional AES-128
scheme it has to be re-engineered to accommodate 128 bits of
memory instead of 32 bits. Also any validations that identifies
the type of the data (dotted notation of IPv4 address) needs to
be removed in order to accommodate a random cipher string
of encrypted IPv4 address.

While the length expansion of the field needs more storage
(and/or bandwidth) the removal of validations might open
up serious security vulnerabilities in the form of injection
attacks. The same issue is applicable while ensuring privacy
of any sensitive fields like MAC addresses, Email addresses,
Usernames, Account numbers, Serial Numbers, SSN, Credit
Card numbers etc.

Recent advances in SQL-aware encrypted database systems
like CryptDB[1] attempts to solve this problem. CryptDB is a
system that provides practical and provable confidentiality for
applications that are backed by SQL databases. It allows run-
ning most standard SQL queries over encrypted data without
ever decrypting it.

CryptDB uses conventional Symmetric Encryption schemes
like AES and BlowFish to encrypt the data that is to be
stored in the database. Cryptographic Schemes like AES and
BlowFish do not preserve the format of the plaintext after
encryption. As a result of which there is a change in database
field length and field types. For example, encrypting a 16 digit
credit card number(of data type Integer) using AES produces

Sashank Dara
Cisco Systems India Pvt. Ltd
Email: sadara@cisco.com

V. N. Muralidhara
IIT- Bangalore
Email: murali @iiitb.ac.in

a 128 bit ciphertext. The major drawback involved in using
conventional encryption schemes like AES and BlowFish is
that it adds up to the storage space required to store the
encrypted data.

A. Key Contributions

In this paper we propose usage of a Format Preserving
Encryption(FPE) to encrypt data fields in CryptDB. This pre-
serves the length and formats of the plaintext upon encryption.
Hence we name our implementation as FP-CryptDB. We
provide experimental results on improvements in storage gains
with minor impact on performance.

II. PRELIMINARIES
A. Format Preserving Encryption

Format Preserving Encryption(FPE) retains the formats of
the input domains upon encryption. Encryption of an IPv4
address (represented in dotted notation format) using con-
ventional encryption techniques like AES would result in a
random string but not an IPv4 address format again. Whereas
encrypting using FPE encryption schemes would ensure that
resultant cipher text is again an IPv4 address.

We use simplified definitions of FPE scheme without loss of
generality. More rigorous definitions and proofs are available
in [2]. FPE algorithms have additional parameters tweak ¢ and
domain d. Tweak ¢ is similar to cryptographic salt to provide
additional randomness. Domain d defines the domain in which
the plain text belongs to. For example input domains could be
IPv4 address or Credit card number etc.

The basic algorithms of an FPE encryption scheme are
defined as below

1) KeyGen(o) Generates a key k, tweak t based on a
security parameter o.

2) Encryption(p, k,t,d) Given a plaintext p, key k and a
tweak ¢ the algorithm produces cipher text ¢ such that
both the plaintext p and ciphertext c are in the same do-
main d. As shown in the Fig.4, it internally uses rank and
de-rank methods along with a length preserving block
cipher enc . Detailed examples of ranking functions are
discussed later.

3) Decryption(c, k,t,d) Given a ciphertext ¢, key k and
a tweak t the algorithm returns the corresponding plain
text p. Here both ¢, p are in same domain.

FNR is a arbitrary length small domain block cipher pro-

posed in [3]. FNR scheme could be used to preserve the
format and length of arbitrary length small domain sensitive

data like MAC addresses, IPV4(32), IPV6(32) etc. FNR uses
Pair wise Independent Permutations along with classic Feistel
Networks which is proven to provide additional security to its
alternatives.

B. SQL Aware Encryption

SQL Aware Encryption is a technique that defines an
encryption scheme for each of the pre-defined set of SQL
operations like equality checks, joins, aggregates, inequality
checks etc. As a result of this every data item is encrypted in
a way such that it is possible to perform computations on the
resultant ciphertext[1].

III. TECHNICAL ARCHITECTURE
A. FP-CryptDB

The fundamental architecture of our modified version is
same as CryptDB. We differentiate in the encryption tech-
niques used internally as discussed in below sections.

CryptDB comprises of three major components, namely the
Application Server, Proxy Server and DBMS Sever. Applica-
tion Server is the main server that runs CryptDB’s database
proxy and also the DBMS Server. The Proxy Server stores
a secret Master Key, the database Schema and the onion
layers of all the columns in the database. The DBMS server
has access to the anonymized database schema, encrypted
database data and also some cryptographic user-defined-
functions(UDF’s). The DBMS server uses these cryptographic
UDF’s to carry out certain operations on the encrypted
data(ciphertext).

Fig.1 describes the architecture of CryptDB.

Application Server Proxy Server DBMS Server

Fig. 1: CryptDB Architecture

Below we describe the steps involved in processing a query
inside CryptDB.

1) In the first step a query is issued by the application
server. The proxy server receives this query and it
anonymizes the table name and each of the column
names. The proxy server also encrypts all the constants
in the query using the stored secret master key. The
encryption layers or the onion layers are also adjusted
based on the type of operation required by the is-
sued query. For example if the query has to perform
some equality checks then the deterministic encryption
scheme(DET)is applied to encrypt all the values in that
particular column (on which equality check is to be
performed).

2) The encrypted user query is then passed on to the
DBMS server. The DBMS server executes these queries
using standard SQL and also invokes UDF’s to perform
certain operations like token search and aggregation. The
queries are executed on the encrypted database data.

3) The DBMS server performs computations on the en-
crypted data and forwards the encrypted results back to
the proxy server.

4) The proxy server decrypts the encrypted query result
obtained and returns it to the application server.

B. Encryption Techniques

CryptDB uses different Encryption techniques based on the
operations desired by the issued query. For example if the
query does not involve any equality or inequality checks then
the query is encrypted using random encryption scheme(RND
layer). If the query involves any SUM aggregate calculation
then CryptDB uses homomorphic encryption scheme[4](HOM
layer). For performing equality checks deterministic encryp-
tion scheme(DET layer) is used. CryptDB uses separate en-
cryption schemes for performing inequality checks and joins.

In this paper we have focused on two encryption layers
Random and deterministic(DET).

1) Random (RND)
It is a probabilistic encryption scheme which means
that two equal plaintexts map to two different cipher-
texts. Due to this probabilistic property it provides the
maximum security and is IND-CPA secure. The random
encryption layer in CryptDB is implemented using AES-
CBC-128 for strings and Blowfish (CBC mode) for
integers. Both these schemes use a random initialization
vector(IV).

2) Deterministic (DET)
It is a deterministic encryption scheme which means that
two equal plaintexts map to the same ciphertext. Due
to deterministic property this layer is less secure than
random (RND) layer. The deterministic encryption layer
in CryptDB is implemented using AES-CMC-128 and
Blowfish, using a zero initialization vector. This layer
is used by the server to compute select queries with
equality checks, equality joins, COUNT and DISTINCT.

Fig.2 describes the various encryption layers of CryptDB for
a simple INSERT query. As shown in the Fig.2, the columns
in the query are encrypted twice using DET layer followed by
encryption using RND layer. The output of RND_int(for a
column with Integer Input type) and RND__st r(for a column
with varchar input type) is the final ciphertext that is stored
in the database.

FP-CryptDB achieves both the above described properties
of Format Preserving Encryption (FPE) schemes. The follow-
ing Fig.3 describes the various onion layers of FP-CryptDB.

In addition to the above two described layers CryptDB [5]
has many other onion layers like OPE(order-preserving en-
cryption layer) to support range queries, HOM(homomorphic
encryption layer)[6] [4] to support aggregation and counts,
SEARCH layer performs full word keyword searches on
encrypted data[7].

These additional layers aide to perform different SQL
operations on the encrypted data without decrypting the data.
These layers are left as is in our modified implementation FP-
CryptDB.

Get Datatype of
database fields

Integer Datatype- String Datatype
Execute Execute AES-CMC-
BlowFish Encryption Execute DET Execute DET |_| 128 Algorithm
Algorit Layer Layer 9
Execute
BlowFishEncryption aef_‘:’;‘"" E"‘f_‘;“g:‘"" b Execute AES-CBC-
Algorit v v 128 Algorithm

CipherText CipherText

Fig. 2: Onion Layers of CryptDB for an SQL INSERT query

Get Datatype of
database fields

Integer Datatype

E;::f;:ﬁf Execute DET Execute DET Execute FPE
wm\ Layer Layer rm— Algorithm
Execute FNR
Encryption == Exet:;:f ne E“f_:‘;? ND et Execute FrE
Algori Algorithm

CipherText CipherText

Fig. 3: Onion Layers of FP-CryptDB for an SQL INSERT query

IV. IMPLEMENTATION

A. Toy Application

We take network monitoring application as reference. The
data used in our implementation is used by security analysts to
monitor and analyze network traffic. Attributes of the data are
Source IP address, Destination IP address,Protocol, Number
of packets, Number of Records, No of Bytes, Start date, End
date, Sensor. These fields are useful for network monitoring
applications to perform traffic analysis, intrusion detection and
packet filtering. For our analysis, we have taken five fields
from this dataset, which are described in Fig.5.

B. Encryption of Data Types

In our modified FP-CryptDB we preserve the formats and
lengths of the input strings. We chose Flexible Naor and
Reingold (FNR) is length preserving block cipher for inputs
32 to 128 bits [3], [8]. We preserve the lengths and formats
while encrypting IPv4 (Table I) , Time Stamps (Table II) as
discussed below.

1) IPv4 Addresses: An IPv4 address is ranked as a 32 bits
integer. The ranked integer is then encrypted using a block
cipher like FNR to result in another 32 bits integer. The
resultant cipher text is converted back (de-ranked) to dotted
notation of IPv4 address in order to preserve the format. The
outline of the algorithm is show in Fig.4.

Plain Text

i

Rank
M

[]
[]
(e]
[)
[)
l J

De Rank

!

Cipher Text

n bits

|

Fig. 4: Format-preserving encryption

Plain Text Cipher Text
Raw(Dotted) Ranked(Integer) Raw(Integer) | De-ranked(Dotted)
64.243.129.86 941079480 1226870871 73.32.144.87
56.23.187.184 2213763856 1067498731 63.160.188.235
131.243.91.16 4026531837 2739475379 163.73.19.179
239.255.255.253 905584639 2223369266 132.133.236.50
53.250.31.255 3222780570 2000079960 119.54.204.88

TABLE I: Samples for IPv4 Addresses

2) Time Stamps: To preserve the format of the input time
stamp, first the date field is ranked to epoch value '. The
obtained epoch value is then encrypted using FNR encryption
scheme. The encrypted epoch value is then again is de-ranked
back to date. The obtained date is the ciphertext and is in the
same format as that of the plaintext.

3) Integers: Few fields in the application like Port Number,
Packets transfered are plain integers. On encrypting integers
with FNR scheme we get back an integer as the ciphertext.
These fields do not need any special ranking functions. In our
implementation we have used unsigned 64-bit integer data type
to store the ciphertexts.

V. EXPERIMENTS
A. Setup

We used Ubuntu 12.04 setup with 4GB RAM, 2.60 GHz
Processor, Intel(R) Core(TM) i5-320M. We have taken refer-
ence data derived from anonymized enterprise packet header
traces obtained from Lawrence Berkeley National Laboratory
and ICSI [9][10]. This data covers the network traffic in

'Epoch is the date and time with reference to which a computer’s clock
and time-stamp values are determined. Most versions of Unix, use January 1,
1970 as the Unix Epoch. Unix Time-stamp is basically the number of seconds
between a particular date and the Unix Epoch.

Plain Text Cipher Text

Raw(String) Ranked(Integer)| Raw(Integer) | De-Ranked(String)

Date String Unix Timestamp |Unix timestamp Date String
2004/11/16T21:04:05| 1100639045 1531152620 |2018/07/09T16:10:20
2004/11/15T15:44:38| 1100533478 627185476 [1989/11/16T02:11:16
1988/01/14T09:27:05| 569150825 3645016902 |2085/07/03T16:41:42
2005/01/7T41:33:07 | 1105205587 2685279782 |2055/02/03T15:03:02
2005/01/6T22:07:06 | 1105049226 3275728681 |2073/10/20T12:38:01

TABLE II: Samples for Time stamps

particular hours on dates in late 2004 and early 2005. The
data sets are in SILK flow record format. We have encrypted
up to 1 million SILK flow records[11], using FNR encryption
scheme and analyzed the performance.

B. Results

1) Storage: Our experimental results show approximately
50% 2 storage efficiency in FP-CryptDB for our application
chosen. The storage gain is due to length preserving nature of
FNR scheme used in FP-CryptDB. The database schema of
our application is shown in Fig.5. Fig.6 is a graph that shows
the estimated storage space for data encrypted in CryptDB
(using AES) and FP-CryptDB (using FNR).

The X-axis represents the Number of records inserted into
the database and the Y-axis represents the Database Size in
MB.

Column Field Plaintext AES FNR
Id (char) (char) (char)
1 Source ip 15 48 15
2 Destination ip 15 48 15
3 Start-Date 19 64 19
4 End-Date 19 64 19
5 Sensors 2 48 2

Fig. 5: Database Schema of FP-CryptDB

In our implementation, we have five VARCHAR fields in
our database as shown in Fig.5 and the encrypted database
also stores the salt values which is used to encrypt queries
and onion layers in CryptDB. Therefore the estimated average
row length is the sum of variable data length(size of ciphertext
stored) and the total size required to store the salt value for
each field.

Storage Gain (FP-CryptDB Vs CryptDB)
400 W DB size (in
MB) using
CryptDB
300 M DB size (in
MB) using
FP-

CryptDB
200 P

DB size (in MB)

100

100000 300000 500000 700000 900000

No of Records

Fig. 6: Storage in MB for CryptDB and FP-CryptDB

2) Performance: The following graph shows the perfor-
mance of FNR when compared to AES-128. The X-axis
represents the No of records inserted and Y-axis represents the
time (in milliseconds) to execute n number of SQL INSERT
queries.

2Note that this varies based on the data fields of the application chosen.

The performance degrades in the case of FP-CryptDB as
compared to CryptDB. It could be noticed that the perfor-
mance degrades y ~ 7x times. This is in lines with theory,
FNR scheme internally uses 7 rounds of AES by design [3].

Performance (FP-CryptDB Vs CryptDB)

160 M Time Taken{
ms) using
CryptDB

120 M Time Taken{

ms) using

FP-CryptDB

80

Time Taken (in ms)

40

100000 300000 500000 700000 900000

Mo of Records

Fig. 7: Performance of CRYPTDB versus FP-CRYPTDB

VI. CONCLUSIONS

In this paper we have proposed Format Preserving En-
crypted Databases FP-CryptDB. We took network monitoring
as reference application. We provided experimental results on
storage gains that could be achieved using FPE schemes with
minor degrade in performance.

REFERENCES

[1] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb:
protecting confidentiality with encrypted query processing,” in Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles. ACM, 2011, pp. 85-100.

[2] M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers, “Format-
preserving encryption,” in Selected Areas in Cryptography. Springer,
2009, pp. 295-312.

[3] S.Daraand S. Fluhrer, “Fnr : Arbitrary length small domain block cipher
proposal,” in Security, Privacy, and Applied Cryptography Engineering.
Springer, 2014.

[4] P. Paillier, in Proceedings of the 18th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, 1999.

[5]1 Y. A. Boldyreva, N. Chenette and A. O’Neill, “Order-preserving sym-
metric encryption,” in Proceedings of the 28th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
(EUROCRYPT), 2009.

[6] C. Gentry, “Fully homomorphic encryption using ideal lattices.” in
STOC, vol. 9, 2009, pp. 169-178.

[71 D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Security and Privacy, 2000. S&P 2000.
Proceedings. 2000 IEEE Symposium on. 1EEE, 2000, pp. 44-55.

[8] https://github.com/cisco/libfnr.

[9] https://tools.netsa.cert.org/silk/referencedata.html.

[10] http://www.icir.org/enterprise-tracing/Overview.html.

[11] T. Shimeall, S. Faber, M. DeShon, and A. Kompanek, “Using silk
for network traffic analysis,” tech. rep., CERT Network Situational
Awareness Group, Tech. Rep., 2010.

