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Abstract. Pairings are typically implemented using ordinary pairing-
friendly elliptic curves. The two input groups of the pairing function are
groups of elliptic curve points, while the target group lies in the multi-
plicative group of a large finite field. At moderate levels of security, at
least two of the three pairing groups are necessarily proper subgroups of
a much larger composite-order group, which makes pairing implementa-
tions potentially susceptible to small-subgroup attacks.
To minimize the chances of such attacks, or the effort required to thwart
them, we put forward a property for ordinary pairing-friendly curves
called subgroup security. We point out that existing curves in the litera-
ture and in publicly available pairing libraries fail to achieve this notion,
and propose a list of replacement curves that do offer subgroup security.
These curves were chosen to drop into existing libraries with minimal
code change, and to sustain state-of-the-art performance numbers. In
fact, there are scenarios in which the replacement curves could facilitate
faster implementations of protocols because they can remove the need
for expensive group exponentiations that test subgroup membership.
Keywords: Pairing-based cryptography, elliptic-curve cryptography,
pairing-friendly curves, subgroup membership, small-subgroup attacks.

1 Introduction

In this paper we propose new instances of pairing-friendly elliptic curves that
aim to provide stronger resistance against small-subgroup attacks [41]. A small-
subgroup attack can be mounted on a discrete-logarithm-based cryptographic
scheme that uses a prime-order group which is contained in a larger group of
order divisible by small prime factors. By forcing a protocol participant to carry
out an exponentiation of a non-prime-order group element with a secret expo-
nent, an attacker could obtain information about that secret exponent. This is
possible if the protocol implementation does not check that the group element
being exponentiated belongs to the correct subgroup and thus has large prime
order. In the worst case, the user’s secret key could be fully revealed although
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the discrete logarithm problem (DLP) in the large prime-order subgroup is com-
putationally infeasible. We start by illustrating the possibility of such attacks
in the context of (pairing-based) digital signature schemes, many of which are
based on the celebrated short signature scheme of Boneh, Lynn and Shacham
(BLS) [13]3.

BLS signatures. For both historical reasons and for ease of exposition, au-
thors of pairing-based protocol papers commonly assume the existence of an
efficient, symmetric bilinear map e : G×G→ GT , where G and GT are crypto-
graphic groups of large prime order n. Let P be a public generator of G and let
H : {0, 1}∗ → G be a suitably defined hash function. Boneh, Lynn and Shacham
proposed a simple signature scheme [13] that works as follows. To sign a mes-
sage M ∈ {0, 1}∗ with her secret key a ∈ Zn, Alice computes Q = H(M) ∈ G
and sends the signature σ = [a]Q to Bob. To verify this signature, Bob also
computes Q = H(M) and then uses Alice’s public key [a]P to assert that
e([a]P,Q) = e(P, σ). It is shown in [13] that this scheme is a secure signature
scheme if the Gap Diffie-Hellman (GDH) problem is hard.

Forged system parameters. There are various threat models in which one
might wish to think about the possible implications of small-subgroup attacks.
In one of them, one assumes that it is possible for an attacker to even forge
the public parameters used in the signature system. Such a possibility has for
example been discussed for the Digital Signature Standard by Vaudenay in [57].
For BLS signatures, an attacker could forge the system parameters to use a base
point P of non-prime order. Thus by means of a small-subgroup attack, Alice
reveals information about her private key a to the attacker by simply publishing
her public key [a]P .

In another example of public parameter manipulation, one might assume that
the hash function H maps into the full composite order group, instead of into
the prime order subgroup. Therefore, the hash of a message could be a group
element of composite order and the BLS signature could leak information about
Alice’s private key. Such a faulty hash function might actually be the result of
an implementation bug, for example the omission of cofactor exponentiations to
move group elements to the right subgroup.

Valid system parameters. Even if the system parameters are valid, there are
scenarios in which small subgroup attacks might lead to a security breach. In this
setting, we assume that, since P is a fixed public parameter (that is presumably
asserted to be in G) and Alice hashes elements into G herself, Alice’s public
key and signature are guaranteed to lie in G, and are therefore protected by
the hardness of the discrete logarithm problem (DLP) in G. There is therefore

3 We warn the reader that BLS is commonly used to abbreviate two different author-
ships in the context of pairing-based cryptography: BLS signatures [13] and BLS
curves [4].



no threat to Alice’s secret key in context of BLS signatures, but this is not
necessarily the case in the context of (pairing-based) blind signatures, as we
discuss below.

Blind signatures. Roughly speaking, blind signatures allow Alice to sign a
message that is authored by a third party, Carol. The typical scenarios require
that Carol and Alice interact with one another in such a way that Carol learns
nothing about Alice’s secret signing key and Alice learns nothing about Carol’s
message. In [12, §5], Boldyreva describes a simple blind signature scheme that
follows naturally from BLS signatures. In order to “blindly” sign her message M ,
Carol computes Q = H(M) and sends Alice the blinded message Q̃ = Q+ [r]P ,
for some random r ∈ Zn of Carol’s choosing. Alice uses her secret key a ∈ Zn
to return the signed value [a]Q̃ to Carol, who then uses her random value r and
Alice’s public key [a]P to compute σ = [a]Q̃− [r]([a]P ) = [a]Q. Carol then sends
σ to Bob who can assert that it is a valid BLS signature under Alice’s key.

Unlike for the original BLS signatures, where Alice hashed the message into
G herself before signing it, in the above scheme Alice signs the point that Carol
sends her. If Carol maliciously sends Alice a point that belongs to a group in
which the DLP is easy (e.g. via a small subgroup attack [41]), and if this goes
undetected by Alice, then Carol can recover Alice’s secret key.

Of course, in a well-designed version of the above protocol, Alice validates
that the point she receives is in the correct group before using her secret key to
create the signature. However, for the instantiations of bilinear pairings that are
preferred in practice, this validation requires a full elliptic curve scalar multipli-
cation. In addition, as is discussed in Remark 1 below, authors of pairing-based
protocols often assume that certain group elements belong to the groups that
they are supposed to. If these descriptions were translated into real-world im-
plementations unchanged, then such instantiations could be susceptible to small
subgroup attacks like the example above.

Asymmetric pairings. The original papers that founded pairing-based cryp-
tography [51, 14, 36] assumed the existence of a bilinear map of the form
e : G × G → GT . Such symmetric pairings (named so because the two input
groups are the same) only exist on supersingular curves, which places a heavy
restriction on either or both of the underlying efficiency and security of the
protocol; see [30] or [25] for further discussion. It was not long until practi-
cal instantiations of asymmetric pairings of the form e : G1 × G2 → GT (with
G2 6= G1) were discovered [27, 5], and were shown to be much more efficient
than their symmetric counterparts, especially at high security levels. In recent
times this performance gap has been stretched orders of magnitude further, both
given the many advances in the asymmetric setting [6, 34, 56, 58, 2], and given
that the fastest known instantiations of symmetric pairings are now considered
broken [3]. Thus, all modern pairing libraries are built on ordinary elliptic curves
in the asymmetric setting.



We note that transferring the above blind signature protocol to the asymmet-
ric setting does not remove the susceptibility of the scheme to small subgroup at-
tacks. Following the asymmetric version of BLS signatures [42, 17], in Boldyreva’s
simple blind signature scheme Alice’s public key could be ([a]P1, [a]P2) for fixed
generators (P1, P2) ∈ G1 × G2. If H : {0, 1}∗ → G1, then Carol can blind
the message Q = H(M) by sending Alice Q̃ = Q + [r]P1. Upon receiving
[a]Q̃ back from Alice, Carol removes the blinding factor as before by taking
[a]Q̃ − [r]([a]P1) = [a]Q, and sends this result to Bob. Bob then uses Alice’s
public key to verify that e([a]Q,P2) = e(Q, [a]P2). Here, if Alice does not pay
the price of a scalar multiplication to assert that Q̃ is in fact in G1, then Carol
could use small subgroup attacks to obtain Alice’s private signing key.

In any case, subgroup attacks are inherent to (pairing-based) blind signa-
tures, where signatures are performed blindly on points sent by third parties.

The case of the group G2. In the asymmetric pairing setting, protocols are
often designed to perform the bulk of elliptic curve operations in the group
G1, because G1 can be instantiated as the group of rational points on a pairing-
friendly elliptic curve over the base field. Here group operations are more efficient
than those in G2 and group elements have more compact representations. In
some cases, the group of rational points even has prime order (i.e. it is equal to
G1) and is thus resistant against subgroup attacks (assuming that valid system
parameters are used), while the group G2 almost always lies in a much larger
group with potentially many small prime factors dividing the cofactor. The above
translation of the blind signature scheme would thus not be susceptible to the
attack because the signed point is in G1. Only via forged parameters would
Alice’s public key [a]P2 ∈ G2 leak information about her private key.

However, there are protocols that use the group G2 for the signing operation
for efficiency reasons. This is indicated in the context of BLS signatures as cre-
dentials in the Boneh-Franklin identity-based encryption [14] in [48, Section 2].
An example for which a hash function H : {0, 1}∗ → G2 that is faulty and maps
to a larger set of points containing non-prime order group elements, can lead to
a subgroup attack is the oblivious signature-based envelope (OSBE) scheme by
Li, Du, and Boneh [40]. The original OSBE scheme is described in the symmet-
ric setting, but an asymmetric instantiation would be set up with signatures in
G2. The scheme uses a trusted authority (TA) which hands out Boneh-Franklin
credentials, which are BLS signatures on identities. Given an identity M and the
master key x ∈ Zn, the TA computes and sends [x]H(M) to the receiver allowed
to decrypt messages, which leaks information about x if H(M) does not have
order n.

Subgroup security. The main contribution of this paper is the definition of
a new property for pairing-friendly curves, which we call subgroup security. A
pairing-friendly curve is called subgroup-secure if the cofactors of all pairing
groups, whenever they are of the same size as the prime group order n or larger,
only contain prime factors larger than n. This is a realistic scenario because for



curves targeting modern security levels, at least two of the pairing groups have
very large cofactors. We slightly relax the condition to allow small inevitable
cofactors that are imposed by the polynomial parametrizations in the popular
constructions of pairing-friendly curves. This means that this property distin-
guishes those curves in a given family that provide as much resistance against
small-subgroup attacks as possible.

We select subgroup-secure curves for four of the most efficient families of
pairing-friendly curves that can replace existing curves in pairing libraries with
minimal code change. For example, we find a low NAF-weight Barreto-Naehrig
(BN) curve for which no (related) elliptic curve subgroup of order smaller than n
exists. Replacing BN254 with this one could allow implementers to remove certain
membership tests (via scalar multiplications). Returning to the blind signature
scheme above, this would mean that Alice only needs to check that the point
Q̃ is on the right curve before signing, and this is true whether the protocol is
arranged such that Q̃ is intended to be in G1 or in G2. Even if Carol sends Alice
a point that is not in the order n subgroup, Carol’s job of recovering a from Q
and [a]Q is no easier since, by the application of Definition 1 to the BN family,
the smallest prime factor dividing the order of Q will always be at least n.

While existing curves in the literature are not subgroup-secure and may
therefore require expensive operations to guarantee discrete-log security in the
pairing groups, the curves we propose can, wherever possible, maintain their
discete-log security even in the absence of some of the subgroup membership
checks. Our performance benchmarks show that replacing existing curves with
subgroup-secure curves incurs only a minor performance penalty in the pairing
computation; on the other hand, all group operations remain unaffected by this
stronger security notion and retain their efficiency.

Related work. The comments made by Chen, Cheng and Smart [19] are central
to the theme of this work. We occasionally refer back to the following remark,
which quotes [19, §2.2] verbatim.

Remark 1 ([19]). “An assumption is [often] made that all values passed from one
party to another lie in the correct groups. Such assumptions are often implicit
within security proofs. However, one needs to actually:

(i) check that given message flows lie in the group,
(ii) force the messages to lie in the group via additional computation, or

(iii) choose parameters carefully so as the problem does not arise.

Indeed, some attacks on key agreement schemes, such as the small-subgroup
attack [41], are possible because implementors do not test for subgroup mem-
bership. For pairing-based systems one needs to be careful whether and how one
implements these subgroup membership tests as it is not as clear as for standard
discrete logarithm based protocols.”

The overall aim of this paper is to explore and optimize option (iii) above.



In the paper introducing small-subgroup attacks [41], Lim and Lee suggest
that a strong countermeasure is to ensure that the intended cryptographic sub-
group is the smallest subgroup within the large group. In the context of pairing-
based cryptography, Scott [54] showed a scenario in which a small-subgroup
attack could be possible on elements of the third pairing group GT , the target
group, and subsequently he adapted the Lim-Lee solution to put forward the
notion of “GT -strong” curves. Our definition of subgroup security (see Defini-
tion 1) applies this solution to all three of the pairing groups, the two elliptic
curve input groups G1, G2 as well as the target group GT , and therefore this
paper can be seen as an extension and generalization of Scott’s idea: while he
gave an example of a BN curve that is GT -strong, we give replacement curves
from several families that are both GT -strong and G2-strong – this is the optimal
situation for the families used in practice4.

2 Pairing groups and pairing-friendly curves

For modern security levels, the most practical pairings make use of an ordinary
elliptic curve E defined over a large prime field Fp whose embedding degree (with
respect to a large prime divisor n of #E(Fp)) is k, i.e. k is the smallest positive
integer such that n | pk−1. In this case, there exists a pairing e : G1×G2 → GT ,
where G1 is the subgroup E(Fp)[n] of order n of E(Fp), G2 is a specific subgroup
of order n of E(Fpk) contained in E(Fpk) \ E(Fp), and GT is the subgroup of
n-th roots of unity, in other words, the subgroup of order n of the multiplicative
group F×

pk
.

Let t ∈ Z be the trace of the Frobenius endomorphism on E/Fp, so that
#E(Fp) = p + 1 − t and |t| ≤ 2

√
p . Write t2 − 4p = Dv2 for some square-free

negative integer D and some integer v. All of the pairing-friendly curves in this
paper have D = −3 and 6 | k; together, these two properties ensure that we
can always write the curves as E/Fp : y2 = x3 + b, and that we can make use
of a sextic twist E′/Fpk/6 : y2 = x3 + b′ of E(Fpk) to instead represent G2 by
the isomorphic group G′2 = E′(Fpk/6)[n], such that coordinates of points in G′2
lie in the much smaller subfield Fpk/6 of Fpk . Henceforth we abuse notation and
rewrite G2 as G2 = E′(Fpk/d)[n].

For a particular curve E/Fq : y2 = x3+b with D = −3, where q = pe for some
e ≥ 1, there are six twists of E defined over Fq, including E itself. These twists
are isomorphic to E when considered over Fq6 . The following lemma (cf. [35,
§A.14.2.3]) determines the group orders of these twists over Fq, and is used
several times in this work.

4 Our definition of subgroup security incorporates G1 for completeness, since for curves
from the most popular families of pairing-friendly curves the index of G1 in E(Fp)
is both greater than one and much less than the size of G1, thereby necessarily
containing small subgroups. The only exceptions are the prime order families like
the MNT [43], Freeman [24], and BN [6] curve families, for which this index is 1.



Lemma 1. Let t be the trace of Frobenius of the elliptic curve E/Fq : y2 =
x3 + b, and let v ∈ Z such that t2 − 4q = −3v2. Up to isomorphism, there
are at most six curves (including E) defined over Fq with trace t′ such that
t′2 − 4q = −3v′2 for some square-free v′ ∈ Z. The six possibilities for t′ are
t, −t, (t+ 3v)/2, −(t+ 3v)/2, (t− 3v)/2, and −(t− 3v)/2.

In this work, we focus on four of the most popular families of ordinary pairing-
friendly curves: the Barreto-Naehrig (BN) family [6] with k = 12 which is fa-
vorable at the 128-bit security level; the Barreto-Lynn-Scott (BLS) cyclotomic
family [4] with k = 12 and the Kachisa-Schaefer-Scott (KSS) family [37] with
k = 18, both of which are suitable at the 192-bit security level; and the cyclo-
tomic BLS family with k = 24, which is well suited for use at the 256-bit security
level.

The above examples of pairing-friendly curves are all parameterized families.
This means that the parameters p, t and n of a specific curve from each family
are computed via the evaluation of univariate polynomials p(u), t(u) and n(u) in
Q[u] at some u0 ∈ Z. The typical way to find a good curve instance is to search
over integer values u0 of low NAF-weight (i.e. with as few non-zero entries in
signed-binary, non-adjacent form (NAF) representation as possible) and of a
suitable size, until p(u0) and n(u0) are simultaneously prime. Since our curves
are all of the form E/Fp : y2 = x3 + b, and since Lemma 1 states that there are
at most 6 isomorphism classes over Fp, the correct curve is quickly found by
iterating through small values of b and testing non-zero points P 6= O on E for
the correct order, i.e. testing whether [p(u0) + 1− t(u0)]P = O.

3 Subgroup-secure pairing-friendly curves

In this section we recall small-subgroup attacks and define the notion of subgroup
security, a property that is simple to achieve in practice and that strengthens
the resistance of pairing-friendly curves against subgroup attacks. After that, we
discuss the four most popular choices of pairing-friendly curve families, BN (k =
12), KSS (k = 18) and BLS (k = 12 and k = 24) curves and provide examples of
subgroup-secure curves suitable for efficient implementation of optimal pairings
at the 128-, 192-, and 256-bit security levels.

3.1 Small-subgroup attacks

Small-subgroup attacks against cryptographic schemes based on the discrete
logarithm problem (DLP) were introduced by Lim and Lee [41]. The following
is a brief description of the basic idea in a general group setting.

Suppose that G is a group of prime order n (written additively), which is
contained in a larger, finite abelian group G, and let h be the index of G in G,
|G| = h · n. Suppose that the DLP is hard in any subgroup of G of large enough
prime order. In particular, assume that the prime n is large enough such that the
DLP is infeasible in G. If the index h has a small prime factor r, then there exists



a group element P of order a multiple of r, and if r is small enough, the DLP
in 〈P 〉 can be easily solved modulo r. If an attacker manages to force a protocol
participant to use P for a group exponentiation involving a secret exponent,
instead of using a valid element from G, solving the DLP in 〈P 〉 provides partial
information on the secret exponent. If h has several small prime factors, the
Pohlig-Hellman attack [50] may be able to recover the full secret exponent.

Such small-subgroup attacks can be avoided by membership testing, i.e. by
checking that any point P received during a protocol actually belongs to the
group G and cannot have a smaller order (see point (i) in Remark 1). Another
way to thwart these attacks is a cofactor exponentiation or cofactor multiplication
(which is a solution to achieve point (ii) in Remark 1). If every received element
P is multiplied by the index h, which also means that the protocol needs to
be adjusted to work with the point [h]P instead of P , then points of small
order are mapped to O and any small-order component of P is cleared by this
exponentiation.

3.2 Subgroup security

If h > 1 and it does not contain any prime factors smaller than n, then G is
one of the subgroups in G with the weakest DLP security. In other words, for
any randomly chosen element P ∈ G, the DLP in the group 〈P 〉 is guaranteed
to be at least as hard as the DLP in G, since even if |〈P 〉| = |G|, the Pohlig-
Hellman reduction [50] requires the solution to a DLP in a subgroup of prime
order at least n. Depending on the protocol design, it might be possible to omit
membership testing and cofactor multiplication if parameters are chosen such
that h does not have prime factors smaller than n: this is one possibility that
addresses point (iii) in Remark 1.

One might consider omitting the test as to whether an element belongs to
the group G if this is a costly operation. For example, if testing membership for
G requires a relatively expensive group exponentiation, and testing membership
for G is relatively cheap (i.e. costs no more than a few group operations), one can
replace the costly check by the cheaper one given that the index h does not have
any small factors. When the group G is the group of Fq-rational points on an
elliptic curve E, and G is a prime order subgroup, then testing whether a point P
belongs to G is relatively cheap, because it only requires to check validity of the
curve equation, while testing whether a point belongs to G additionally requires
either a scalar multiplication [n]P to check whether P has the right order, or a
cofactor multiplication [h]P to force the resulting point to have the right order.
If the cofactor is small, the latter cost is low, but for large cofactors, it might
be more efficient to refrain from carrying out any of the exponentiations when
working with suitable parameters.

An attempt to define the notion of subgroup security could be to demand
that the index h (if it is not equal to 1) only contains prime factors of size n
or larger, in which case both exponentiations are very costly. However, in the
case of elliptic curve cryptography (ECC), such a definition does not make sense,
since curves are chosen such that the cofactor is equal to 1 or a very small power



of 2 (such as 4 or 8) depending on the curve model that is selected for efficiency
and security reasons. Although there are good reasons to require cofactor h = 1,
it would unnecessarily exclude curve models which allow performance gains by
having a small cofactor (such as Montgomery [44] or Edwards [23] curve models).
Therefore, demanding only large prime factors in h only makes sense if the group
inherently has large, unavoidable cofactors by construction. This is the case for
some of the groups that arise from pairing-friendly curves.

For the three pairing (sub)groups G1, G2 and GT defined in Section 2, there
are very natural choices of three associated groups G1, G2 and GT for which
testing membership is easy. Namely, we define G1, G2, and GT as follows:

G1 ⊆ G1 = E(Fp), G2 ⊆ G2 = E′(Fpk/d), GT ⊆ GT = GΦk(p),

where GΦk(p) is the cyclotomic subgroup5 of order Φk(p) in F×
pk

. Scott also chose

GT that way when proposing GT -strong curves [54]. Note that testing member-
ship in G1 or G2 simply amounts to checking the curve equation for E(Fp) or
E′(Fpk/d), respectively, and that testing whether an element is in GT can also
“be done at almost no cost using the Frobenius” [54, §8.3]. We give more details
on this check in §5.2, where we also discuss why GT is chosen as the cyclotomic
subgroup of order Φk(p), rather than the full multiplicative group F×

pk
.

Since |G1| = |G2| = |GT | = n, the relevant indices h1, h2, hT ∈ Z are defined
as

h1 =
|G1|
n
, h2 =

|G2|
n
, hT =

|GT |
n

.

The sizes of these cofactors are determined by the properties of the pairing-
friendly curve. For all of the curves in this paper, both G2 and GT are groups
of order n in the much larger groups G2 and GT and the cofactors h2 and hT
are at least of a similar size as n. The group G1 is typically not that large, and
comes closer to the case of a group used in plain ECC. Therefore the cofactor
h1 is smaller than n, and in almost all cases larger than 1.

The next attempt at a definition of subgroup security could demand that
for any of the three pairing groups for which the cofactor is of size similar to n
or larger, it must not have prime factors significantly smaller than n. This is a
more useful definition since it focuses on the case in which large cofactors exist.
However, most pairing-friendly curves are instances of parameterized families
and their parameters are derived as the evaluation of rational polynomials at an
integer value. And for certain families, these polynomials may also necessarily
produce small factors in the indices (cf. Remark 2 below).

The following definition of subgroup security accounts for this fact in cap-
turing – for a given polynomial family of pairing-friendly curves – the best that
can be achieved within that family. We make use of the fact that, for the pa-
rameterized families of interest in this work, the three cofactors above are also
parameterized as h1(u), h2(u), hT (u) ∈ Q[u].

5 Here Φk denotes the k-th cyclotomic polynomial.



Definition 1 (Subgroup security). Let p(u), t(u), n(u) ∈ Q[u] parameter-
ize a family of ordinary pairing-friendly elliptic curves, and for any particular
u0 ∈ Z such that p = p(u0) and n = n(u0) are prime, let E be the resulting
pairing-friendly elliptic curve over Fp of order divisible by n. We say that E
is subgroup-secure if all Q[u]-irreducible factors of h1(u), h2(u) and hT (u) that
can represent primes and that have degree at least that of n(u), contain no prime
factors smaller than n(u0) ∈ Z when evaluated at u = u0.

It should be pointed out immediately that the wording of “smaller” in Defini-
tion 1 can be relaxed in cases where the difference is relatively close. Put simply,
Definition 1 aims to prohibit the existence of any unnecessary subgroups of size
smaller than n inside the larger groups for which validation is easy. We note
that, for simplicity, Definition 1 says that subgroup security is dependent on the
pairing-friendly curve E. However, given that the property is dependent on the
three groups G1, G2 and GT , it would be more precise to say that the property
is based on the pairing that is induced by E and n.

In Table 1, we have collected popular pairing-friendly curves that have been
used in the literature and in pairing implementations because of their efficiency.
We have evaluated all such curves according to their subgroup security. This
means that we had to (partially) factor the indices h1, h2 and hT . Note that h1
is quite small in all cases, and since it is smaller than n, there is no need to find
its factorization in order to test for subgroup security. To find the (partial) fac-
torizations of h2 and hT , we used the implementation of the ECM method6 [39]
in Magma [16]. To illustrate the factorizations, we use pm and cm to denote some
m-bit prime and some m-bit composite number respectively.

It is important to note that the curves chosen from the literature in Table 1
were not chosen strategically; none of them are subgroup secure, but the chances
of a curve miraculously achieving this property (without being constructed to)
is extremely small. Thus, these curves are a fair representation of all ordinary
pairing-friendly curves proposed in previous works, since we could not find any
prior curve that is subgroup secure according to Definition 1 (the closest example
being the BN curve given by Scott [54, §9], which is GT -strong but not G2-
strong).

In §3.3-§3.6, we focus on achieving subgroup security for the four popu-
lar parameterized families of pairing-friendly curves mentioned in Section 2.
Our treatment of each family follows the same recipe: the polynomial param-
eterizations of p, n and t immediately give us parameterizations for hT as
hT (u) = Φk(p(u))/n(u), but in each case it takes some more work to deter-
mine the parameterization of the cofactor h2; this is done in Propositions 1-4.
To find a subgroup-secure curve instance from each family, we searched through
u = u0 values of a fixed length and of low NAF-weight, increasing the NAF-
weight (and exhausting all possibilities each time) until a curve was found with
p(u0), n(u0), h2(u0) and hT (u0) all prime. In theory we could have relaxed the
search condition of h2(u0) and hT (u0) being prime to instead having no prime

6 We tweaked the parameters according to http://www.loria.fr/~zimmerma/

records/ecm/params.html, until enough factors were found.



Table 1. Subgroup security for pairing-friendly curves previously used in the literature,
considering curves from the Barreto-Naehrig (BN) family [6] with k = 12; the Barreto-
Lynn-Scott (BLS) cyclotomic families [4] with k = 12 and k = 24 and the Kachisa-
Schaefer-Scott (KSS) family [37] with k = 18. The columns for p and n give the bitsizes
of these primes. The column marked “where?” provides reference to the literature
in which the specific curves have been used in implementations. The column wt(u0)
displays the NAF-weight of the parameter u0. The symbols pm and cm in the columns
that display factors of the indices h1, h2, and hT are used to denote an unspecified
prime of size m bits or a composite number of size m bits, respectively.

sec. family p n Curve choices sub.
level k (bits) (bits) where? wt(u0) h1 h2 hT sec.?

256 256 [46] 23 1 c17p239 c74c692 no
128 BN 254 254 [47, 2, 49, 53, 59] 3 1 c96p158 c79c681 no

12 254 254 Example 1 6 1 p254 p762 yes

638 427 [1] 4 c212 c48c802 c58c2068 no
192 BLS 635 424 [15] 4 c211 c15c831 c33c2082 no

12 635 425 Example 2 6 c211 p845 p2114 yes

511 378 [53] 8 c133 c50c1106 c26c2660 no
192 KSS 508 376 [1] 4 c133 c85c1063 c15c2656 no

18 508 376 Example 3 9 c133 3p1146 p2671 yes

639 513 [22] 4 c127 22c2040 c41c4556 no
256 BLS 629 505 [53] 4 c125 22p69c1940 c132c4392 no

24 629 504 Example 4 8 c125 p2010 p4524 yes

factors smaller than n, but finding or proving such factorizations requires an
effort beyond the efforts of current factorization records. The fixed length of u0
was chosen so that the parameter sizes closely match the sizes of curves already
in the literature and in online libraries; we also aimed to make sure the parame-
ters matched in terms of efficient constructions of the extension field towerings.
In order to compare to previous curves, we have included the subgroup-secure
curves found in each family in Table 1.

3.3 BN curves with k = 12

The Barreto-Naehrig (BN) family [6] of curves is particularly well-suited to the
128-bit security level. BN curves are found via the parameterizations p(u) =
36u4+36u3+24u2+6u+1, t(u) = 6u2+1, and n(u) = 36u4+36u3+18u2+6u+1.

In this case #E(Fp) = n(u), so G1 = G1 = E(Fp), meaning h1(u) = 1. The
cofactor in GT = GΦ12(p) is parameterized as hT (u) = (p(u)4−p(u)2 +1)/(n(u)).
The following proposition gives the cofactor h2(u).

Proposition 1. With parameters as above, the correct sextic twist E′/Fp2 for
a BN curve has group order #E′(Fp2) = h2(u) · n(u), where

h2(u) = 36u4 + 36u3 + 30u2 + 6u+ 1.



Proof. [45, Rem. 2.13] says that BN curves always have h2(u) = p(u)− 1 + t(u).
ut

Example 1. The BN curve E/Fp : y2 = x3+5 with u0 = 262+259+255+215+210−
1 has both p = p(u0) and n = n(u0) = #E(Fp) as 254-bit primes. A model for
the correct sextic twist over Fp2 = Fp[i]/(i2+1) is E′/Fp2 : y2 = x3+5(i+1), and
its group order is #E′(Fp2) = h2 · n, where h2 = h2(u0) is also a 254-bit prime.
Thus, once points are validated to be in G1 = E(Fp) or G2 = E′(Fp2), no cofactor
multiplications are required to avoid subgroup attacks on this curve, i.e. there are
no points of order less than n in E(Fp) or E′(Fp2). Furthermore, the group GT has
order |GT | = hT ·n, where hT = hT (u0) is a 762-bit prime, so once Fp12 elements
are validated to be in GT = GΦ12(p), no further cofactor multiplications are
necessary for discrete log security here either. For completeness, we note that Fp12
can be constructed as Fp6 = Fp2 [v]/(v3− (i+ 1)) and Fp12 = Fp6 [w]/(w2− v); E
and E′ are then isomorphic over Fp12 via Ψ : E′ → E, (x′, y′) 7→ (x′/v, y′/(vw)).

3.4 BLS curves with k = 12

The Barreto-Lynn-Scott (BLS) family [4] with k = 12 was shown to facilitate
efficient pairings at the 192-bit security level [1]. This family has the parameter-
izations p(u) = (u−1)2 ·(u4−u2 +1)/3+u, t(u) = u+1, and n(u) = u4−u2 +1.

Here #E(Fp) = h1(u) · n(u) with h1(u) = (u − 1)2/3, so there is always a
cofactor that is much smaller than n in G1. Again, the cofactor in GT = GΦ12(p) is
hT (u) = (p(u)4−p(u)2 + 1)/(n(u)). The following proposition gives the cofactor
h2(u).

Proposition 2. With parameters as above, the correct sextic twist E′/Fp2 for
a k = 12 BLS curve has group order #E′(Fp2) = h2(u) · n(u), where

h2(u) = (u8 − 4u7 + 5u6 − 4u4 + 6u3 − 4u2 − 4u+ 13)/9.

Proof. Write #E(Fp2) = p2 + 1 − t2, where p2 = p2 and t2 = t2 − 2p [11,
Corollary VI.2]. The CM equation for E(Fp2) is t22 − 4p2 = −3v22 , which gives
v2 = (x − 1)(x + 1)(2x2 − 1)/3. Lemma 1 reveals that t′ = (t2 − 3v2)/2 gives
rise to the correct sextic twist E′/Fp2 with n | #E′(Fp2) = p2 + 1− t′, and the
cofactor follows as h2 = (p2 + 1− t′)/n. ut

Example 2. The k = 12 BLS curve E/Fp : y2 = x3 − 2 with u0 = −2106 − 292 −
260−234 +212−29 has p = p(u0) as a 635-bit prime and #E(Fp) = h1 ·n, where
n = n(u0) is a 425-bit prime and the composite cofactor h1 = h1(u0) is 211 bits.
A model for the correct sextic twist over Fp2 = Fp[i]/(i2 + 1) is E′/Fp2 : y2 =
x3 − 2/(i + 1), and its group order is #E′(Fp2) = h2 · n, where h2 = h2(u0)
is an 845-bit prime. Furthermore, the group GT has order |GT | = hT · n, where
hT = hT (u0) is a 2114-bit prime. Thus, once elements are validated to be in
either G2 = E′(Fp2) or GT = GΦ12(p), no cofactor multiplications are required
to avoid subgroup attacks. On the other hand, a scalar multiplication (by either
h1 or n) may be necessary to ensure that points in E(Fp) have the requisite



discrete log security, and this is unavoidable across the k = 12 BLS family. For
completeness, we note that Fp12 can be constructed as Fp6 = Fp2 [v]/(v3−(i+1))
and Fp12 = Fp6 [w]/(w2−v); E and E′ are then isomorphic over Fp12 via Ψ : E′ →
E, (x′, y′) 7→ (x′ · v, y′ · vw).

3.5 KSS curves with k = 18

The Kachisa-Schaefer-Scott (KSS) family [37] with k = 18 is another family that
is suitable at the 192-bit security level. This family has the parameterizations
p(u) = u8 + 5u7 + 7u6 + 37u5 + 188u4 + 259u3 + 343u2 + 1763u+ 2401, t(u) =
(u4 + 16u+ 7)/7, and n(u) = (u6 + 37u3 + 343)/73.

Here #E(Fp) = h1(u)·n(u) with h1(u) = (49u2+245u+343)/3, so again there
is always a cofactor much smaller than n in G1. The cofactor in GT = GΦ18(p)

is hT (u) = (p(u)6 − p(u)3 + 1)/(n(u)). The proposition below gives the cofactor
h2(u).

Proposition 3. With parameters as above, the correct sextic twist E′/Fp3 for
a k = 18 KSS curve has group order #E′(Fp3) = h2(u) · n(u), where

h2(u) = (u18+15u17+96u16+409u15+1791u14+7929u13+27539u12+81660u11+
256908u10 + 757927u9 + 1803684u8 + 4055484u7 + 9658007u6 + 19465362u5 +
30860595u4 + 50075833u3 + 82554234u2 + 88845918u+ 40301641)/27.

Proof. Write #E(Fp3) = p3 + 1 − t3, where p3 = p3 and t3 = t3 − 3pt [11,
Corollary VI.2]. The CM equation for E(Fp3) is t23 − 4p3 = −3v23 , which gives
v3 = (x4 +7x3 +23x+119)(5x4 +14x3 +94x+259)(4x4 +7x3 +71x+140)/3087.
Lemma 1 reveals that t′ = (t3+3v3)/2 gives rise to the correct sextic twist E′/Fp3
with n | #E′(Fp3) = p3 + 1− t′, and the cofactor follows as h2 = (p3 + 1− t′)/n.

ut

Remark 2. The KSS parameterization requires u ≡ 14 mod 42. Under this con-
dition, it is straightforward to see that h2(u) ≡ 0 mod 3. Thus, there is always
a factor of 3 in the cofactor of G2 in this family.

Example 3. The k = 18 KSS curve E/Fp : y2 = x3+2 with u0 = 264+247+243+
237+226+225+219−213−27 has p = p(u0) as a 508-bit prime and #E(Fp) = h1·n,
where n = n(u0) is a 376-bit prime and the composite cofactor h1 = h1(u0)
is 133 bits. A model for the correct sextic twist over Fp3 = Fp[v]/(v3 − 2) is
E′/Fp3 : y2 = x3+2/v, and its group order is #E′(Fp3) = 3·h2 ·n (see Remark 2),
where h2 = h2(u0) is a 1146-bit prime. Thus, once points are validated to be
in E′(Fp3), it may be necessary to multiply points by 3 to clear this cofactor.
Furthermore, a scalar multiplication by h1 or n may be necessary to ensure
that random points in E(Fp) are in G1 = E(Fp)[n] before any secret scalar
multiplications take place. On the other hand, once points are validated to be in
GT = GΦ18(p), no cofactor multiplications are required to avoid subgroup attacks
since hT = hT (u0) is a 2671-bit prime in this case. For completeness, we note
that Fp18 can be constructed as Fp9 = Fp3 [v]/(w3−v) and Fp18 = Fp9 [z]/(z3−w);
E and E′ are then isomorphic over Fp18 via Ψ : E′ → E, (x′, y′) 7→ (x′ ·w, y′ ·wz).



3.6 BLS curves with k = 24

The Barreto-Lynn-Scott (BLS) family [4] with k = 24 is well suited to the 256-
bit security level. This family has the parameterizations p(u) = (u− 1)2 · (u8 −
u4 + 1)/3 + u, t(u) = u+ 1, and n(u) = u8 − u4 + 1.

Here #E(Fp) = h1(u) · n(u) with h1(u) = (u − 1)2/3, so once more there is
always a cofactor which is much smaller than n in #G1. Here the cofactor for
GT = GΦ24(p) is hT (u) = (p(u)8 − p(u)4 + 1)/(n(u)). The following proposition
gives the cofactor h2(u).

Proposition 4. With parameters as above, the correct sextic twist E′/Fp4 for
a k = 24 BLS curve has group order #E′(Fp4) = h(u) · n(u), where

h2(u) = (u32−8u31 +28u30−56u29 +67u28−32u27−56u26 +160u25−203u24 +
132u23+12u22−132u21+170u20−124u19+44u18−4u17+2u16+20u15−46u14+
20u13 + 5u12 + 24u11 − 42u10 + 48u9 − 101u8 + 100u7 + 70u6 − 128u5 + 70u4 −
56u3 − 44u2 + 40u+ 100)/81.

Proof. Write #E(Fp4) = p4 + 1− t4, where p4 = p4 and t4 = t4− 4pt2 + 2p2 [11,
Corollary VI.2]. The CM equation for E(Fp4) is t24 − 4p4 = −3v24 , which gives
v4 = (x−1)(x+ 1)(2x4−1)(2x10−4x9 + 2x8−2x6 + 4x5−2x4−x2−4x−1)/9.
Lemma 1 reveals that t′ = (t4+3v4)/2 gives rise to the correct sextic twist E′/Fp4
with n | #E′(Fp3) = p4 + 1− t′, and the cofactor follows as h2 = (p4 + 1− t′)/n.

ut

Example 4. The k = 24 BLS curve E/Fp : y2 = x3 + 1 with u0 = −(263 − 247 −
231−226−224+28−25+1) has p = p(u0) as a 629-bit prime and #E(Fp) = h1 ·n,
where n = n(u0) is a 504-bit prime and the composite cofactor h1 is 125 bits. If
Fp4 is constructed by taking Fp2 = Fp[i]/(i2 + 1) and Fp4 = Fp2 [v]/(v2− (i+ 1)),
then a model for the correct sextic twist is E′/Fp4 : y2 = x3 + 1/v, and its group
order is #E′(Fp4) = h2 ·n, where h2 = h2(u0) is a 2010-bit prime. Furthermore,
the group GT has order |GT | = hT · n, where hT = hT (u0) is a 4524-bit prime.
Thus, once elements are validated to be in either G2 = E′(Fp4) or GT = GΦ24(p),
no cofactor multiplications are required to avoid subgroup attacks. On the other
hand, once random points are validated to be on E(Fp), a scalar multiplication
by h1 or n is required to ensure points are in G1. In this case we note that Fp24
can be constructed as Fp12 = Fp4 [w]/(w3 − v) and Fp24 = Fp12 [z]/(z2 − w); E
and E′ are then isomorphic over Fp24 via Ψ : E′ → E, (x′, y′) 7→ (x′ ·w, y′ ·wz).

4 Performance comparisons: the price of subgroup
security

As we saw in Table 1, subgroup-secure curves are generally found with a search
parameter of larger NAF-weight than non-subgroup-secure curves because of the
additional (primality) restrictions imposed in the former case7. Thus, pairings

7 We note that Scott [54, §9] hinted at this “negative impact” when discussing a
GT -strong curve.



computed with the subgroup-secure curves will naturally be more expensive.
In this section, we give performance numbers that provide a concrete compari-
son between our subgroup-secure curves and the speed-record curves that have
appeared elsewhere in the literature. Table 2 shows the approximate factor slow-
downs incurred by choosing subgroup-secure curves. We note that these slow-
downs are only reported in the computation of the pairing; optimal methods for
group exponentiations are unrelated to the search parameter and will therefore
remain unchanged when using a subgroup-secure curve of the same size in the
same curve family. On the other hand, operations like hashing to G2 [55, 26] do
benefit from a low hamming-weight and will also experience a slowdown when
using subgroup secure curves.

We used a pairing library written in C to obtain the performance numbers
in Table 2, benchmarked on an Intel Xeon E5-2620 clocked at 2.0GHz. We note
that our library does not perform as fast as some other pairing libraries as it
was written entirely in C without using any assembly-level optimizations. Nev-
ertheless, it uses all of the state-of-the-art high-level optimizations such as the
optimal ate pairing [58] with a fast final exponentiation [56], as well as taking
advantage of efficient extension field towerings [7] and enhanced operations in
the cyclotomic subgroups [33]. Moreoever, comparison to speed-record imple-
mentations in the literature is immaterial; our point here is to compare the price
of a pairing on a subgroup-secure curve to the price of a pairing on one of the
popular curves used in the literature, using the same implementation in order to
get a fair performance ratio. The pairing functions use the NAF representation
of the loop parameter u0 for the Miller loop as well as the final exponentiation.
The implementation computes the runtime for pairings on the subgroup-secure
curves by only changing the value for u0 in the Miller loop and final exponentia-
tion in the implementation of the original curves, all other parameters remain the
same. We note that the fastest implementations of field arithmetic for ordinary
pairing-friendly curves, e.g. [2], do not take advantage of the NAF-weight of the
prime p. The results therefore provide a gauge as to the relative slowdown one
can expect in the pairing when employing a subgroup-secure curve, indicating
that, in the worst case, a slowdown factor of 1.13 can be expected.

5 How to use subgroup-secure curves

In this section we discuss the implications of working with a subgroup-secure
pairing-friendly curve and point out possible efficiency improvements. As we
have seen in Section 4, there is a small performance penalty in the pairing
algorithm when switching from the currently used “speed-record curves” to
subgroup-secure curves, which is incurred by the increase in the NAF-weight
of the parameter u0. Note that this penalty only affects the pairing computa-
tion; it does not have any consequences for elliptic curve or finite field arithmetic
in the groups themselves.



Table 2. Benchmarks of the optimal ate pairing on non-subgroup-secure pairing-
friendly curves used previously compared to subgroup-secure curves (according to
Definition 1) from the same family. Timings show the rounded average over 10000
measurements for which Turbo Boost and Hyperthreading were disabled. The exper-
iments only reflect the difference in the NAF-weight of the parameter u0 leading to
an increased number of Miller steps in the Miller loop and multiplications in the final
exponentiation. All other parameters are kept the same.

sec. family p u NAF-weight where? optimal ate subgroup
level k (bits) (bits) of param. u0 (×106 clock cycles) secure

128 BN 254 63 3 [47, 2, 49, 53, 59] 7.68 no
12 254 63 6 Example 1 8.20 yes

approximate slowdown factor 1.07

192 BLS 635 106 4 [15] 51.00 no
12 635 107 6 Example 2 51.98 yes

approximate slowdown factor 1.02

192 KSS 508 65 4 [1] 85.10 no
18 508 65 9 Example 3 94.06 yes

approximate slowdown factor 1.11

256 BLS 629 63 3 [53] 123.79 no
24 629 63 8 Example 4 139.37 yes

approximate slowdown factor 1.13

As we discussed earlier, an important subtlety that is rarely8 factored into
pairing-based protocol papers is the notion of (testing) subgroup member-
ship [19, §2.2]. Naturally then, the cost for performing these checks is often not
reflected in the pairing literature. When using a subgroup-secure curve, there is
the potential to reduce the cost for these checks as hinted to in §3.2, and possibly
to mitigate the performance penalty.

5.1 Reducing the cost of subgroup membership checks

We emphasize that we do not recommend skipping subgroup membership checks.
What we do recommend, though, is that if such checks are in place to guarantee
DLP security, then protocols should be examined to see if these checks can be
replaced by less expensive measures, such as omitting costly scalar multiplica-
tions in the presence of a subgroup-secure curve. Next, we discuss the different
possibilities.

For the group G1, the index h1 of G1 is typically much smaller than n, which
means that we cannot select the parameters to avoid prime factors smaller than
n in |G1|. Therefore, one must carry out either a scalar multiplication by n to
check for the correct order or by the cofactor h1 to force points to have the right
order. Let #E(Fp) = h1 ·n for some cofactor h1 and recall that log2 h1 � log2 n
for all of the above curve families. Thus, for a random point P ∈ E(Fp), it
is faster to compute R = [h1]P to guarantee that R ∈ G1 than it is to check

8 Menezes and Chatterjee recently pointed out another interesting example of this [18].



whether [n]P = O and was in G1 to begin with. However, this solution requires
the protocol to allow the point R to replace the orginal point P , and this might
require slight changes to the protocol; for example, it may require more than one
party to perform the same scalar multiplication by h1 such that it would have
been less expensive (overall) for a single party to check that [n]P = O.

In the group G2, the picture is different. Let #E′(Fpk/6) = h2 · n for some
cofactor h2, and recall from §3.2 that h2 > n for the families in this paper. In
this case, guaranteeing that a point is in the order n subgroup G2 through a
naive cofactor multiplication by h2 seems to be at least as costly as checking
that a point was in G2 to begin with; in particular, for the k = 18 and k = 24
families above, the bit length of h2 is around 3 and 4 times that of n, respectively.
However, the work by Scott et al. [55] and improvements by Fuentes-Castañeda et
al. [26] show that cofactor multiplication with h2 in G2 is significantly faster than
multiplication by the group order n. As in G1, for a curve that is not subgroup-
secure and if the protocol allows, it is thus cheaper to move a pointQ′ ∈ E′(Fpk/6)
to G2 by computing [h2]Q′ than it is to check the condition [n]Q′ = O. On the
other hand, if the curve is subgroup-secure, one could check the curve equation
to ensure that Q′ ∈ E′ and omit either check at no risk of compromising the
DLP security. However, not every protocol might allow working with points of
order different than n. Thus the application of this optimization needs to be
evaluated in every specific protocol. For example, the pairing implementation
might not be bilinear when applied to points of order other than n, or the
subgroup membership check may be in place for a reason different than discrete
log security.

In the context of the Tate pairing, Scott [52, §4.4] pointed out that during the
pairing computation, one can check whether the first input P ∈ G1 to the pairing
function actually has order n, i.e. whether it is in G1. This is possible because the
Miller loop in the Tate pairing inherently computes [n]P alongside the pairing
value, so there is no additional effort required to assert that [n]P = O. However,
when using optimal pairings [58], this is not true anymore. Due to the shortening
of the Miller loop and the swapping of the input groups, optimal pairings only
compute [λ]Q′ for λ much smaller than n, and for Q′ ∈ G2. The trick outlined
by Scott can therefore only help to save part of the exponentiation [n]Q′.

Elliptic curve scalar multiplications in both G1 and G2 can benefit from
GLV/GLS decompositions [32, 31, 28]. In G1, one can use precomputed 2-
dimensional GLV decompositions to speed up the scalar multiplications by h1
and n. In G2, one can use even higher-dimensional GLV+GLS decompositions
of the scalar n. In both cases, since n and h1 are fixed system parameters, their
decomposition can be computed offline. Moreover, these fixed multiplications are
not by secret scalars and therefore need not be implemented in constant time.

Finally, the index of GT in GT = GΦk(p) is hT = Φk(p)/n, which is at least
three times larger than n for the families in this paper. Thus, for a subgroup-
secure curve, hT is prime (up to possibly small factors given by the polynomial
parameterization) and a subgroup membership test for GT may be replaceable by
a cheap membership test for GT (see §5.2 below). Again, this is contingent on the
ability of the protocol to allow GT -elements of order other than n. If membership



tests can not be avoided, then the fixed exponentiation by n can take advantage
of several techniques that accelerate arithmetic in the cyclotomic subgroup GT =
GΦk(p); these include cyclotomic squarings [33], exponent decompositions [31],
and trace-based methods (cf. [54, §8.1]).

5.2 Checking membership in GT

We elaborate on Scott’s observation [54, §8.3] concerning the ease of checking
membership in GT = GΦk(p). For the k = 12 BN and BLS families, checking

that g ∈ GT amounts to asserting gp
4−p2+1 = 1, i.e. asserting that gp

4 · g =
gp

2

. Here the required Frobenius operations are a small cost compared to the
multiplication that is needed, so this check essentially costs one multiplication in
Fp12 . Similarly, the tests for the k = 18 KSS and k = 24 BLS families check that

gp
6 · g = gp

3

and gp
8 · g = gp

4

respectively, which also cost around one extension
field multiplication.

The reason we take GT to be the subgroup of order Φk(p), rather than the full
multiplicative group F×

pk
, is because it is extremely difficult to achieve subgroup

security in F×
pk

. As Scott points out when k = 12, the number of elements in F×p12
factors as p12−1 = (p−1)·(p2+1)·(p2+p+1)·(p2−p+1)·(p+1)·((p4−p2+1)/n)·n,
so here there are 6 factors (excluding n) that we would need to be almost prime if
we were to deem F×

pk
as subgroup-secure. Even if it were possible to find a u0 value

such that these 6 factors were almost prime, it would certainly no longer have a
sparse NAF representation, and the resulting loss in pairing efficiency would be
drastic. On the other hand, taking GT = GΦk(p) means that we can search for
only one additional factor (i.e. (p4 − p2 + 1)/n)) being almost prime, meaning
that sparse u0 values (and therefore state-of-the-art performance numbers) are
still possible and the cost of asserting membership in GT remains negligible.
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We also thank Francisco Rodŕıguez-Henŕıquez for his suggestions to improve the
paper.

References

1. Diego F. Aranha, Laura Fuentes-Castañeda, Edward Knapp, Alfred Menezes, and
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S. L. M. Barreto. A family of implementation-friendly BN elliptic curves. Journal
of Systems and Software, 84(8):1319–1326, 2011.



50. Stephen C. Pohlig and Martin E. Hellman. An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance. Information Theory,
IEEE Transactions on, 24(1):106–110, 1978.

51. Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based on
pairing. In The 2000 Symposium on Cryptography and Information Security, Oki-
nawa, Japan, pages 135–148, 2000.

52. Michael Scott. Computing the Tate pairing. In Alfred Menezes, editor, Topics in
Cryptology – CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science,
pages 293–304. Springer, 2005.

53. Michael Scott. On the efficient implementation of pairing-based protocols. In Liqun
Chen, editor, IMA Int. Conf., volume 7089 of Lecture Notes in Computer Science,
pages 296–308. Springer, 2011.

54. Michael Scott. Unbalancing pairing-based key exchange protocols. Cryptology
ePrint Archive, Report 2013/688, 2013. http://eprint.iacr.org/2013/688.

55. Michael Scott, Naomi Benger, Manuel Charlemagne, Luis J. Dominguez Perez,
and Ezekiel J. Kachisa. Fast hashing to G2 on pairing-friendly curves. In Ho-
vav Shacham and Brent Waters, editors, Pairing-Based Cryptography - Pairing
2009, Third International Conference, Palo Alto, CA, USA, August 12-14, 2009,
Proceedings, volume 5671 of Lecture Notes in Computer Science, pages 102–113.
Springer, 2009.

56. Michael Scott, Naomi Benger, Manuel Charlemagne, Luis J. Dominguez Perez, and
Ezekiel J. Kachisa. On the final exponentiation for calculating pairings on ordinary
elliptic curves. In Pairing-Based Cryptography - Pairing 2009, Third International
Conference, Palo Alto, CA, USA, August 12-14, 2009, Proceedings, pages 78–88,
2009.

57. Serge Vaudenay. Hidden collisions on DSS. In Neal Koblitz, editor, Advances
in Cryptology - CRYPTO ’96, 16th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 83–88. Springer, 1996.

58. Frederik Vercauteren. Optimal pairings. IEEE Transactions on Information The-
ory, 56(1):455–461, 2010.

59. Eric Zavattoni, Luis J. Dominguez Perez, Shigeo Mitsunari, Ana H. Sánchez-
Ramı́rez, Tadanori Teruya, and Francisco Rodŕıguez-Henŕıquez. Software imple-
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A Twist security

In this appendix, we briefly look at the notion of twist security, since it bears
resemblance to the notion of subgroup security described in this work; we dis-
cuss the similarities and differences between the two in §A.3. Twist security has
previously only been considered in the context of elliptic curve cryptography
(ECC); we give a brief overview in §A.1. In §A.2 we put twist security in the
context of pairing-based cryptography (PBC), where we discuss why it may or
may not be relevant, why it is difficult to achieve in practice, and an alternative
countermeasure.

A.1 Twist security in ECC

Bernstein [8] proposed the notion of twist security as a means to allow certain
checks to be omitted during cryptographic scalar multiplications using the Mont-



gomery ladder [44]. On elliptic curves of the form E/K : By2 = x3 + Ax2 + x,
the Montgomery ladder can efficiently compute scalar multiplications using
only the x-coordinates of points. If x(P ) denotes the x-coordinate of a point
P ∈ E, then the Montgomery ladder is essentially a function f that computes
x([k]P ) ← f(x(P ), k, A) for some scalar k ∈ Z. The key point is that, so long
as A is fixed, the function f correctly computes scalar multiplications indepen-
dently of the curve constant B. However, there are only two isomorphism classes
that can be obtained by varying B, depending on whether or not B is a square
in K; these two classes correspond to the quadratic twists – E and E′ – of one
another. Since all x′ ∈ K correspond to the x-coordinate of a point lying on
either9 twist, Bernstein’s solution is to ensure that E and E′ are both crypto-
graphically strong. In the context of elliptic curve Diffie-Hellman, this allows one
to omit the check to which twist any particular x′ ∈ K corresponds to, and to
successfully establish a secure shared secret regardless [8].

A.2 Twist security in PBC

Twist security only offers a concrete and practical advantage when the possibility
of x-coordinate-only arithmetic is available, for if one has access to both the x-
and-y coordinates, then checking curve pertinence is a negligible computation. In
this regard there are then two main reasons why twist security is not likely to be
as relevant in the context of PBC. Firstly, the most popular constructions do not
have the cofactor 4 that is required to facilitate the Montgomery model (cf. [15,
Table 2]), meaning that x-only arithmetic is rarely an option; for example, BN
curves can never have a Montgomery representation10. And secondly, even if a
Montgomery model is an option, pairing-friendly curves typically facilitate scalar
decompositions [31], those of which are best performed via multiexponentiations
that use both coordinates.

Nevertheless, since having a curve with a strong quadratic twist does not
necessarily come at a price, one might consider employing this property in the
context of PBC anyway11. Moreover, Lemma 1 shows that all of the curves in
this paper have six twists over the ground field (rather than just two), so to
be on the very safe side, one might try to find instances in which all six of
the twists have (almost-)prime order. In fact, in the context of fault attacks,
which can even pose a threat in the presence of point validation checks [10],
protecting all six twists is a desirable property. To wit, we point out that just
like the Montgomery ladder function f in §A.1 that did not distinguish between
twists, typical scalar multiplication routines on the pairing-friendly curves in this
paper will also work identically for all six twists. This is because the standard
formulas for scalar multiplication are independent of the constant b, so for any

9 There actually are a few points lying on both, e.g. the point (0, 0), but this is
unimportant here.

10 For E(Fp), n(u0) 6≡ 0 mod 4 is obvious, and the same argument for E′(Fp2) follows
from Proposition 1.

11 As an aside, we note that the BN curve used to fool Alice in Section 1 was twist-
secure.



pair (x̃, ỹ) ∈ F2
p, and for a general scalar k ∈ Z, the scalar multiplication routine

will correctly compute the multiple [k]P of the point P = (x̃, ỹ) on the curve
Ẽ/Fp : y2 = x3 + b̃ with b̃ = ỹ2− x̃3 ∈ Fp. Since there are only six possible group

orders for Ẽ/Fp : y2 = x3 + b̃ as b̃ ranges over [0, p), a fault attack that tries
to prey on the correctness of the scalar multiplication routine for weak curves
could be thwarted completely if all six group orders were strong.

Unfortunately, for all of the families in this paper, the parameterized versions
of the six possible group orders in Lemma 1 reveal that at least one of the six
twists will always have a weak group order. Even if five of the six twists are
cryptographically strong, a sophisticated fault attack [10] has a good chance of
producing an altered point with coordinates on the weak twist, and therefore a
good chance of success.

Of course, the fault attack would have to be sophisticated indeed, if it were
able to get around point pertinence checks at both the beginning and end of a
scalar multiplication routine. Nevertheless, such an attack is not an impossibility,
so we now discuss one potential countermeasure. We propose employing explicit
formulas that do distinguish between the six twists. Recall from above that the
affine schoolbook formulas for arithmetic on E : y2 = x3 + b are independent of
the constant b, and therefore of any particular twist. Thus, it makes sense that
the fastest projective versions of these formulas are also independent of b. These
formulas use Jacobian coordinates [9] and require12 2M+5S for point doublings,
11M+5S for projective additions and 7M+4S for a projective-and-affine (a.k.a.
“mixed”) addition. On the other hand, the projective formulas for arithmetic on
E in homogenous coordinates do incorporate b; these require 3M + 5S for point
doublings [21, §5], 12M + 2S for projective additions and 9M + 2S for mixed
additions [20] (see also [9]). In this case point doublings are 1M slower than
in Jacobian coordinates, but the performance penalty here will be very minor
given the competitive homogenous addition formulas, and the higher density of
such additions in scalar multiplications exploiting decompositions – see [31, 15].
The incentive is that this set of formulas only computes scalar multiplications
correctly for the particular curve they are intended for. This means that any fault
attack that alters the input point (x, y) ∈ E to (x̃, ỹ) ∈ Ẽ will almost certainly
be returned a point that is neither on E or Ẽ, and even in the case where the
returned point is on a twist isomorphic to E or Ẽ, it will not correspond to a
multiplication by the secret scalar.

A.3 Subgroup security vs. twist security

In this section we briefly compare the notion of twist security in the context
of ECC and that of subgroup security in the context of PBC. Indeed, while
neither of these properties are absolutely necessary, they are both intended to
maintain DLP security in certain scenarios when checks are omitted for the sake
of efficiency. In the case of x-coordinate-only ECC, twist security comes at no
price (a well-chosen twist-secure curve introduces no overhead), while in the case

12 Here M and S denote a field multiplication and field squaring respectively.



of PBC, achieving subgroup security introduces a small but noticeable overhead
in the pairing (see Section 4). On the other hand, the potential savings offered
by subgroup-secure curves are far greater in the context of PBC; here we can
possibly save large elliptic curve or finite field group exponentiations, while twist
security for Montgomery curves saves a relatively inexpensive Legendre symbol
computation. Just like twist security in ECC, subgroup security in PBC removes
possible points of failure in practice. We believe that the minor overhead in the
pairing is a small price to pay for the assurance that all elements which are
asserted to be in E′(Fpk/d) or GΦ(k)(p) are guaranteed to have large prime order.


