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Abstract. Since their introduction in 1985, by Goldwasser, Micali and Rackoff, followed by Feige, Fiat
and Shamir, zero-knowledge proofs have played a significant role in modern cryptography: they allow a
party to convince another party of the validity of a statement (proof of membership) or of its knowledge of
a secret (proof of knowledge). Cryptographers frequently use them as building blocks in complex protocols
since they offer quite useful soundness features, which exclude cheating players. In most of modern telecom-
munication services, the execution of these protocols involves a prover on a portable device, with limited
capacities, and namely distinct trusted part and more powerful part. The former thus has to delegate some
computations to the latter. However, since the latter is not fully trusted, it should not learn any secret
information.
This paper focuses on proofs of knowledge of discrete logarithm relations sets (DLRS), and the delegation of
some prover’s computations, without leaking any critical information to the delegatee. We will achieve vari-
ous efficient improvements ensuring perfect zero-knowledge against the verifier and partial zero-knowledge,
but still reasonable in many contexts, against the delegatee.

1 Introduction

Zero-Knowledge Proofs of Knowledge. The past three decades have witnessed the emergence of several
new cryptographic notions. In 1985, Goldwasser, Micali and Rackoff [16] introduced the concept of
zero-knowledge interactive proofs that enable an entity, called the prover, to convince another entity,
called the verifier, of the validity of a statement without revealing anything else beyond the assertion
of this statement. In other words, one wants to prove that a statement is in the set of the valid
statements, hence the notion of zero-knowledge proof of membership. They were followed by Feige,
Fiat and Shamir [12] with the notion of zero-knowledge proof of knowledge (ZKPK) in which the
prover convinces the verifier not only of the validity of a statement but also that it possesses a witness
for this fact.

Since these seminal papers, many ZKPK have been introduced, such as the Schnorr’s protocol [25],
that provide efficient ways of proving knowledge of a discrete logarithm in finite groups with known
order, and even with unknown order [14, 15]. In modern cryptography, these proofs of knowledge are
heavily used for authentication but also as building blocks in more complex protocols, such as group
signature schemes [1, 11, 4, 21] or Direct Anonymous Attestation (DAA) schemes [5, 3]. Indeed, such
protocols usually require to prove that some public elements, relying on private values, are well-formed.
For anonymous authentications, one classically wants to prove one’s knowledge of a secret key related
to a public key certified by a given authority, without revealing the secret key, the public key, nor the
certificate itself. They can be efficiently addressed by using Schnorr-like interactive ZKPK. Moreover,
these interactive proofs can be turned into non-interactive proofs or signatures using the Fiat-Shamir
paradigm [13, 24], in the random oracle model [2].

Discrete-Logarithm Relation Sets. More complex protocols, such as group signature schemes or DAA
schemes, involve several proofs of knowledge of discrete logarithms or of representations in a fixed
or variable basis: they deal with a Discrete-Logarithm Relation Set (or DLRS, as defined by Kiayias,
Tsiounis and Yung [20]), i.e a set of relations involving objects and free variables. Extensions of
the Schnorr’s protocol can be applied to this setting, but they require the prover to compute many
exponentiations for the first round of the protocol (the commitments).

Pairing-Friendly Settings. Elliptic curves with or without pairing-friendly groups have been widely
used for the past few years, since they offer many new features and provide communication-wise
efficient protocols. They allow to prove complex relations with still reasonable efficiency, namely when
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compared with the RSA setting. Indeed, most of the recent group signature schemes [11, 17, 4, 21] or
DAA schemes [6, 10, 3] are based on groups (G1, G2 and GT ) of prime order with a bilinear map
(e : G1 ×G2 → GT ).

The main interesting feature is definitely the possibility of non-interactive zero-knowledge proofs in
the standard model, using the so-called Groth-Sahai methodology [18]. Unfortunately, while reducing
the number of interactions is quite useful, this leads to quite costly protocols, for both the prover and
the verifier. They are currently totally impractical on constrained devices.

Delegation of Computation. However, most of these complex cryptographic primitives, such as anony-
mous authentications and DAAs, achieve their ultimate impact when implemented on portable and
mobile devices. This increases the contrast between the important needs to embed these protocols
in such lightweight devices and their practical limitations when performing many exponentiations or
pairing evaluations. A common way to overcome this problem is to delegate (when possible) some com-
putations to a more powerful, but not fully trusted, delegatee as in [5, 7, 3, 8]. Since the latter entity
cannot have access to secret values, most of the computations on the prover’s side have to be performed
by the constrained device, which reduces the benefits of server-aided cryptography. Moreover, if the
DLRS involved in the protocol contains several relations or variables, the overall computational cost
may remain prohibitive. One may argue that exponentiations in the first flow of Schnorr’s protocol
are precomputable. This is true if the basis is fixed, but when the proof is used as a building block
in a more complex construction, the basis is not always fixed or known in advance (as e.g. in DAA
schemes [5, 3]). The lack of way to efficiently delegate the prover’s side of the proof of knowledge may
then prevent portable devices to get access to all features of modern cryptography.

Although the delegatee might not be fully trusted, it may have access to some additional informa-
tion. For example, let us consider the following setting: a SIM-card in a smartphone. This is probably
the best illustration of a lightweight but fully trusted device (the SIM-card with embedded secrets)
within a more powerful but partially trusted device (the smartphone with more and more powerful
processors, and even co-processors). In case of group signature or anonymous authentication to a
server, only the SIM-card knows the secret key to perform authentication, and no information about
the identity of the actual user should leak to the server. However, while not trusted enough to learn
the secret key, since it can potentially be corrupted by a virus, the smartphone anyway already knows
its owner. As a consequence, the anonymity has to be enforced with respect to the server but not to
the smartphone (it has other means to learn owner’s identity). However, the secret key should not be
leaked to neither the server nor the smartphone.

Such a SIM-card together with a smartphone issuing anonymous authentication illustrates well the
relaxation on the security model that seems reasonable in practice: during delegation of computation,
some additional information can be leaked to the helper until it does not help it to impersonate the
real prover. We will thus provide several security models in which the delegatee might be given access
to some extra knowledge. We however stress that the delegatee should remain unable to recover the
secrets or to impersonate the prover, but still being able to handle a significant part of the prover’s
computations.

Achievements. In this paper, we provide an efficient way to delegate the prover’s side of zero-knowledge
proofs of knowledge for any DLRS in a group G1. Our method enables a delegator to use the compu-
tational power of a delegatee to prove knowledge of witnesses for any DLRS with significantly fewer
computations than with the classical Schnorr’s based protocol. While lifting the verification relation
into GT , and thus involving pairing computations on the verifier’s side, no pairing computations have
to be performed on the prover’s side (for both the delegator and the delegatee). Moreover, the com-
putations that remain to be done by the delegator do not rely on the objects involved in the DLRS,
but on a fixed basis only, they can thus all be precomputed.

By decreasing the computational cost for the constrained devices (the delegator), our work improves
on the efficiency of protocols using zero-knowledge proofs of knowledge and thus enables engineers to
embed complex primitives on such devices.
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More precisely, we provide two constructions in which the delegator essentially computes as many
exponentiations of a fixed basis as the number of secret discrete logarithms involved in the relations,
whatever the number of relations is. We illustrate the effective gain on concrete examples.

2 Preliminaries

In this section, we provide a basic review of the tools that will be used throughout this paper. Namely,
we recall the notations of bilinear maps and zero-knowledge proofs of knowledge together with the
concept of Discrete-Logarithm Relations Sets (DLRS) and the Schnorr’s protocol for such relations.

2.1 Pairing-Friendly Groups

Let G1,G2,GT be three groups of prime order p. In the following, we will use additive notations for G1

and G2, but multiplicative notations for GT . Elements of G1 will be written in uppercase (G,X, T, . . .)
and elements of G2 will be written (G̃, X̃, T̃ , . . .). Pairing-friendly settings are defined by G1,G2,GT

along with a bilinear map e : G1 ×G2 → GT with the following properties:

1. for all X ∈ G1, X̃ ∈ G2 and a, b ∈ Zp we have e([a]X, [b]X̃) = e(X, X̃)ab;

2. for X 6= 0 and X̃ 6= 0, e(X, X̃) 6= 1;
3. e is efficiently computable.

We emphasize that our protocols will work in any pairing-friendly setting: in both the symmetric (i.e.,
G1 = G2) and asymmetric (i.e., G1 6= G2) cases. In the following, the setting (p,G1,G2,GT , G, G̃, e)
defines the bilinear environment, with G1 = 〈G〉, G2 = 〈G̃〉, and GT = 〈e(G, G̃)〉. All the three groups
being of the same prime order p.

2.2 Zero-Knowledge Proofs of Knowledge

Interactive zero-knowledge proofs of knowledge have been introduced by Goldwasser, Micali and Rack-
off [16] and formalized by Feige, Fiat and Shamir [12]. We recall here the informal definition.

Definition 1. An interactive protocol between a prover P and a verifier V is a zero-knowledge proof
of knowledge of a private witness w for P that a public information Y satisfies a relation R if the
three following properties are satisfied.

– Completeness: for an honest prover P with correct witness w and an honest verifier V, the
protocol succeeds with overwhelming probability.

– Soundness: for any prover P̃ that is accepted by a verifier V with non negligible probability, it
is possible to construct a probabilistic polynomial time Turing machine E (called extractor) that
can extract a valid witness w by interacting with P̃.

– Zero-knowledge: for every verifier V, there exists a probabilistic polynomial-time Turing machine
S (called simulator) that just takes Y as input and outputs a string that is indistinguishable from
the transcript of the communications between an honest prover P with a valid witness w and V.

The soundness property models the fact that in order to be accepted, the prover must actually know
a valid witness, while the zero-knowledge property shows that the real protocol with the prover that
uses the witness w does not leak more information than a simulation that does not know the witness.

2.3 Discrete-Logarithm Relations Set

Discrete-logarithm relations sets (DLRSs) were introduced by Kiayias et al. [20] to describe sets
of relations involving secret variables that correspond to discrete logarithms. Many cryptographic
protocols [22, 10, 3] require some entity to prove that some public elements (a ciphertext, a certificate,
. . . ) relying on several secret values, are well-formed and based on a DLRS. They thus require a proof
of knowledge for a DLRS. More formally, a DLRS can be defined as follows:
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P V
∀j ∈ {1, ...,m}, kj $← Zp

∀i ∈ {1, ..., r},Ki ←
∑

j∈Ji
[kj ]Avi,j

{Ki}i−−−−−−−−→
c←−−−−−−−− c

$← {0, 1}`

∀j ∈ {1, ...,m}, sj ← kj + cαj mod p
{sj}j−−−−−−−−→ ∀i ∈ {1, ..., r},

Ki + [c]Vi
?=
∑

j∈Ji
[sj ]Avi,j

Setting: A group G of prime order p and a DLRS R in G: for A1, . . . , Aw, V1, . . . , Vr ∈ G, and J1, . . . ,Jr ⊆ {1, . . . , w},
the prover P knows variables α1, . . . , αm ∈ Zp such that Vi =

∑
j∈Ji

[αj ]Avi,j , for i = 1, . . . , r.

Fig. 1. The Extended Schnorr’s Protocol for any DLRS R

Definition 2. A DLRSR on the group G (of prime order p) with r relations over m variables and w+r
objects in G is a set of relations R1, . . . , Rr defined over objects A1, . . . , Aw, V1, . . . , Vr ∈ G and the
free variables α1, . . . , αm ∈ Zp where Ri, for i = 1, . . . , r, is to be interpreted as: Vi =

∑
j∈Ji [αj ]Avi,j ,

where Ji ⊆ {1, . . . ,m} and vi,j ∈ {1, . . . , w} for i = 1, . . . , r and j ∈ Ji. We will write R(α1, . . . , αm)
to denote the conjunction of all the relations Ri on the variables α1, . . . , αm.

Remark 3. The above definition is given in a group G, but it could be in any group. In our practical
applications, as we will work in pairing-friendly settings, relations could be all in G1 but also all in G2

or in both G1 and G2. In the following, we will describe our results in the group G1, with companion
values in G2, and we will give evidences that it can also work in the general case.

Using these notations, a prover that knows witnesses α1, . . . , αm such that R(α1, ..., αm) = 1 will
generally use the 3-flow zero-knowledge proof of knowledge described in Figure 1 (which is easily
derived from the Schnorr’s protocol [25] for groups of known order). This protocol then corresponds
to a proof of knowledge for a DLRS. The completeness comes from the fact that for valid witnesses
α1, . . . , αm that satisfy, for all i, Vi =

∑
j∈Ji [αj ]Avi,j , then for all i ∈ {1, ..., r},∑

j∈Ji

[sj ]Avi,j =
∑
j∈Ji

[kj + cαj ]Avi,j =
∑
j∈Ji

[kj ]Avi,j + [c]
∑
j∈Ji

[αj ]Avi,j = Ki + [c]Vi.

The complexity for the prover is:
∑r

i=1 #Ji multiplications by scalars in G and
∑r

i=1(#Ji−1) additions
in G to get the commitments Ki for i ∈ {1, ..., r}.

For complex DLRSs, it can represent too many computations. In the next section, we explain how
to delegate such proofs of knowledge of DLRSs, where the constrained device has to compute m scalar
multiplications in G2 to prove knowledge of α1, . . . , αm satisfying a DLRS R in G1, no matter how
many relations Ri are involved in R.

3 Delegating Proofs of Knowledge

As in [5, 7, 3], we will split the prover into a trusted device which has a limited computational power
and a more powerful, but untrusted, machine. As in DAA [5] schemes, the trusted device will be called
the TPM (Trusted Platform Module) and the untrusted machine will be called the host.

3.1 Our First Protocol

We consider the following situation: the TPM knows witnesses (α1, . . . , αm) for the DLRS R, such
that R(α1, . . . , αm) = 1, and wants to use the computational power of the host to prove knowledge
of these witnesses. Since the host is not trusted, we do not want to give (α1, . . . , αm) to it (else it
would be able to impersonate the TPM). However, we allow it to get access to more information
than a standard verifier (see Theorem 5). This is a common requirement in DAA schemes and, more
generally, in server-aided cryptography (see e.g. [8]).
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TPM Host Verifier

∀j ∈ {1, . . . ,m}, ∀i ∈ {1, . . . , r},
kj

$← Zp, Z̃j ← [kj ]G̃ (bi,j)j
$← (Z∗p)m, (ti,j)j

$← (Zp)m

such that
∑

k∈Ji
ti,k = 0 mod p

{Z̃j}j−−−−−−−−→ ∀i ∈ {1, . . . , r},∀j ∈ Ji,
Zi,j ← [b−1

i,j ]Avi,j

B̃i,j ← [bi,j ](Z̃j + [ti,j ]Ãi,j)

{Zi,j , B̃i,j}i,j−−−−−−−−−−−→
∀j ∈ {1, . . . ,m}, c←−−−−−−−− c←−−−−−−−−−−− c

$← {0, 1}`
sj ← kj + cαj mod p

{sj}j−−−−−−−−→
{sj}j−−−−−−−−−−−→ ∀i ∈ {1, . . . , r}

e
(∑

j∈Ji
[sj ]Avi,j − [c]Vi, G̃

)
?=
∏

j∈Ji
e(Zi,j , B̃i,j)

Setting: A pairing-friendly setting (p,G1,G2,GT , G, G̃, e) and a DLRS R in G1: for A1, . . . , Aw, V1, . . . , Vr ∈ G1, and
J1, . . . ,Jr ⊆ {1, . . . , w}, the TPM knows variables α1, . . . , αm ∈ Zp such that Vi =

∑
j∈Ji

[αj ]Avi,j , for i = 1, . . . , r.
Notations: For i = 1, . . . , w, we denote ai ∈ Zp the discrete logarithms such that Ai = [ai]G, and, for i = 1, . . . , r and

j ∈ Ji, one computes Ãi,j =
[

1
avi,j

∏
k∈Ji

avi,k

]
G̃ that are added to the public parameters (see Section 3.2 for details).

Players’ inputs: The public input contains G, G̃, {Vi}i, {Ji}i, {Aj}j and the {Ãi,j}i,j ; The TPM additionally knows
{αi}i.

Fig. 2. Delegation of Proof of Knowledge of Witnesses for a DLRS

Intuition. Informally, we do not want the TPM to have to compute [kj ]Avi,j for all the pairs (i, j),
as in the extended Schnorr’s protocol, then we essentially lift them to GT , by applying pairing with
G̃, and then the Ki’s become

e
(
Ki, G̃

)
= e

∑
j∈Ji

[kj ]Avi,j , G̃

 =
∏
j∈Ji

e
(
Avi,j , [kj ]G̃

)
=
∏
j∈Ji

e
(
Avi,j , Z̃j

)
.

The verification Ki
?=
∑

j∈Ji [sj ]Avi,j − [c]Vi would then become

∏
j∈Ji

e
(
Avi,j , Z̃j

)
?= e

∑
j∈Ji

[sj ]Avi,j − [c]Vi, G̃

 .

This is the reason why the TPM can just compute Z̃j = [kj ]G̃, for k = 1, . . . ,m.

A First Note. However, it cannot directly send these values to the verifier. Otherwise, the zero-
knowledge property obtained by our protocol would not be equivalent to the one of the initial Extended
Schnorr’s protocol, from the verifier’s view: from Z̃j = [ki]G̃ and sj = kj − cαj mod p, one would be

able to compute [c−1]
(
Z̃j − [sj ]G̃

)
= [c−1][cαj ]G̃ = [αj ]G̃. This might be too much information about

αj . These values are thus just sent to the host who will compute blinded versions Zi,j ← [b−1i,j ]Avi,j and

B̃i,j ← [bi,j ](Z̃j + [ti,j ]Ãi,j), with random scalars (bi,j)i,j and (ti,j)i,j and additional elements (Ãi,j)i,j
(defined in Figure 2), so that for any i,∏

j∈Ji

e
(
Avi,j , Z̃j

)
=
∏
j∈Ji

e
(
Zi,j , B̃i,j

)
/
∏
j∈Ji

e
(
Avi,j , [ti,j ]Ãi,j

)
where the latter denominator is equal to, with ci =

∏
k∈Ji avi,k ,

∏
j∈Ji

e

[avi,j ]G, [ti,j/avi,j ]
∏
k∈Ji

[avi,k ]G̃

 = e

G,
∑

j∈Ji

ti,j

 ci

 G̃
 .

By choosing (ti,j)i,j such that
∑

j∈Ji ti,j = 0 mod p, it is equal to 1GT
.
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A Second Note. If one just uses the factors (bi,j)i,j , but not (ti,j)i,j , the values (Zi,j)i,j and (B̃i,j)i,j
would reveal to much information too. Let us consider any pair (i, j) such that j ∈ Ji and k = vi,j :

e(Zi,j , B̃i,j) = e(Ak, Z̃j), and thus(
e(Zi,j , B̃i,j)/e(Ak, [sj ]G̃)

)1/c
= e

(
Ak, [c

−1]
(
Z̃j − [sj ]G̃

))
= e

(
Ak, αjG̃

)
.

Then, e(Ak, G̃)αj would leak, which is again too much information about αj .
In the case of a singleton Ji = {j}, Vi = [αj ]Ak indeed leaks this information too, but in case of

larger sets, such information does not leak, and thus should not leak from the proof either.

Description. These blinding factors (bi,j)i,j and (ti,j)i,j will make the protocol zero-knowledge from
the verifier’s view (as formally proven in Section 4). This leads to the 3-flow protocol described on
Figure 2, that enables the TPM to prove knowledge of (α1, . . . , αm) with fewer computations than in
the extended Schnorr’s protocol (see Figure 1).

Example I. Let us consider the following example:

V1 = [α1]A1 . . . Vq = [α1]Aq

Vq+1 = [α2]Aq+1 . . . Vq+s = [α2]Aq+s

Vq+s+1 = [α1]Aq+s+1 + [α2]Aq+s+n+1 . . . Vq+s+n = [α1]Aq+s+n + [α2]Aq+s+2n

Using the extended Schnorr’s protocol described on Figure 1, one would require q + s + 2n multi-
plications by scalars in G1 (group exponentiations) and n additions in G1 from the TPM. With our
protocol (see Figure 2), the TPM has to compute only 2 multiplications by scalars in G2 (group
exponentiations).

3.2 Additional Computations

One might have noted that the public parameters must now contain several Ãi,j that may not be known
in practice. However, in most cases, there is no need of additional values. First, when Ji = {j} is a
singleton, Ãi,j = G̃. Second, when Ji = {α, β} is a pair, and vi,α = u and vi,β = v, then Ãi,α = [av]G̃

and Ãi,β = [au]G̃. Thus, Ãi,α = Av and Ãi,β = Au in the case of symmetric pairing (i.e., G1 = G2).

Our above Example I involves singletons and pairs only, and thus the Ãi,j can be easily publicly
computed. However, in Section 5, we provide another delegation protocol that does not present these
limitations, and can thus be used in more situations.

3.3 Computational Cost

Since the TPM is considered to be far less powerful than the host and the verifier, we want to decrease
its computational load even if it involves a slight increase of work for the host and for the verifier. Let
us evaluate the computational cost for each party (see Table 1):

– the TPM has to compute m multiplications by a scalar in G2 (one per variable αi), which are
moreover all precomputable. Its computational cost is thus independent of the number of relations,
which can be very useful when a variable is involved in many relations (as in our above Example
I);

– the host has to compute
∑r

i=1 #Ji multiplications by a scalar in G1 and at most the same number
of additions in G2 and twice as many multiplications by a scalar in G2;

– the verifier has to compute
∑r

i=1 #Ji additions in G1, r +
∑r

i=1 #Ji multiplications by a scalar
in G1, r +

∑r
i=1 #Ji pairings, and some multiplications in GT .
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Table 1. Complexity Comparisons

Prover

TPM Host Verifier

Ext. Schnorr JM + (J − r)A JM + (J − r)A
Example I (q + s+ 2n)M + nA (q + s+ 2n)M + nA

Example II 7M + 2A 7M + 2A
Example III 9M + 3A 9M + 3A

Figure 2 mM2 J(M1 + 2M2 +A2)
J(M1 +A1 + P +MT )

+r(M1 + P −MT )

Example I 2M2 (q + s+ 2n)(M1 + 2M2 +A2)
(2q + 2s+ 3n)(M1 + P )
+(q + s+ 2n)A1 + nMT

Example II 2M2 7(M1 + 2M2 +A2) 12(M1 + P ) + 7A1 + 2MT

Example III 6M2 9(M1 + 2M2 +A2) 15(M1 + P ) + 9A1 + 3MT

Figure 3 mM2
J(2M1 + 2M2 +A2 +A1)

−rA1

(J + r)(M1 +A1 + P )
+(J − r)MT

Example I 2M2
(q + s+ 2n)(2M1 + 2M2 +A2)

+nA1

(2q + 2s+ 3n)(M1 +A1 + P )
+nMT

Example II 2M2 7(2M1 + 2M2 +A2) + 2A1 12(M1 +A1 + P ) + 2MT

Example III 6M2 9(2M1 + 2M2 +A2) + 3A1 15(M1 +A1 + P ) + 3MT

Generic DLRS: m secret scalars, r relations each involving Ji elements respectively for i = 1, . . . , r, and thus globally
J =

∑
Ji.

For the extended Schnorr, all computations have to be done by the TPM itself.
A,A1, A2 denote point additions in G, G1, G2 respectively;
M,M1,M2 denote point multiplications by a scalar in G, G1, G2 respectively;
MT denotes multiplication in GT ; P denotes a pairing.

3.4 More Examples

We now provide some concrete examples, with comparisons of the complexity computations on Table 1:
Extended Schnorr is the natural 3-round protocol between a prover and a verifier, while the two other
protocols are the delagated protocols proposed above (in Section 3) and below (in Section 5). One can
note that our protocols with delagation drastically reduce the computational cost for the TPM with
respect to the Prover in the basic protocol. To this aim, one can indeed use G2 as the efficient group
and G1 as the less efficient group in the pairing-friendly setting.

Example II. In 2007, Shacham [26] described an encryption scheme based on the DLIN assumption.
This is a Cramer-Shoup variant of the linear encryption, where the first triple is a linear tuple used
for masking the plaintext in the fourth element, while the last element helps to verify validity with a
hash proof system (see also [19]). With the public parameters (G1, G2, G3) ∈ G3

1 and the public key
(H1, H2, C1, C2, D1, D2) ∈ G6

1 and a collision-resistant hash function H, to encrypt a message M ∈ G1,
one computes, for random scalars α1, α2 ∈ Zp:(

U1 = [α1]G1, U2 = [α2]G2, U3 = [α1 + α2]G3,
E = M + [α1]H1 + [α2]H2, V = [α1](C1 + [u]D1) + [α2](C2 + [u]D2)

)
where u = H(U1, U2, U3, E) ∈ Zp. We may need to prove, as in [9], that (U1, U2, U3, E, V ) is a valid
ciphertext. Since 2 secret variables (α1 and α2) are involved in the 4 relations to be checked for
ciphertext validity (on U1, U2, U3, and V ), our protocol only requires 2 multiplications by a scalar
from the TPM.

Example III. In [23], the authors provided a group signature with message-dependent opening (GS-
DMO) scheme secure in the random oracle model. With the public parameters (U, V,G,H) ∈ G4

1, to
issue a signature σ, one has to prove knowledge of α, β, x, δ1, δ2, δ3 ∈ Zp such that:(

T1 = [α]U, T2 = [β]V, T3 = [α+ β]H,
0 = [x]T1 − [δ1]U, 0 = [x]T2 − [δ2]V, 0 = [x]T5 − [δ3]G

)
where T1, T2, T3, T5 ∈ G1 are part of the signature σ. Since 6 secret variables are involved in these
relations, our protocol only requires 6 multiplications by a scalar from the TPM.
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3.5 Security Properties

The protocol described on Figure 2 may actually be divided in two parts: a proof of knowledge between
P (TPM + host) and V (verifier) and a proof of knowledge between P (TPM) and V (host). We consider
the security of each part in the following theorems, which proofs are provided in Section 4.

Theorem 4. The protocol described on Figure 2 is a 3-move zero-knowledge proof of knowledge of
the witnesses α1, ..., αm between P (TPM + host) and V (verifier), where the description of R is the
unique auxiliary input.

The first theorem essentially shows that this proof of knowledge does not leak any information outside
the host. But one may wonder if the host learns a lot of information. This is the goal of the second
theorem below that says that the host just learns {[αi]G̃}i, which is not enough to impersonate the
TPM later.

Theorem 5. The protocol described on Figure 2 is a 3-move zero-knowledge proof of knowledge of the
witnesses α1, ..., αm between P (TPM) and V (host), where the auxiliary input contains the description
of R and the additional values {[αi]G̃}i.

3.6 Discussions

Honest Verifier Zero-Knowledge. As usual, this protocol is actually a zero-knowledge proof of
knowledge if the challenge c is selected from {0, 1}` and the proof is repeated k times with ` logarithmi-
cally bounded in the security parameter and 2k` super-polynomial. If one wants the soundness in one
execution only, which implies 2` to be super-polynomial, then the protocol is no longer zero-knowledge
but honest-verifier zero-knowledge only.

Precomputation. As already noticed, if computations of a party are independent of external values,
they can be prepared and stored in advance. This is the case of the elements Z̃j computed by the
TPM.

For example let us consider the Sign protocol of the DAA scheme from [3, page 32]. The TPM
has to prove knowledge of its secret key s involved in two relations (namely K = [s]J and W = [s]S).
Since the authors use the standard Schnorr’s protocol, this leads to 2 multiplications by a scalar for
the TPM, one of which (the one involving J) has to be computed online because J is determined
by the basename submitted by the verifier. Using our protocol, the TPM only has to compute one
multiplication by a scalar, and it can even be precomputed, since the basis G̃ is a public parameter.

We even emphasize that these precomputations (the group elements Z̃j) can even be sent to the
host. The TPM just has to store the scalars kj , or even a seed (and some index), as off-line pre-
computed coupons [15].

Extra Inputs. In the Theorem 5, we allow the host to learn the elements [αj ]G̃ for all j ∈ {1, . . . ,m}.
In the DAA scheme considered above, this means that the host can learn [s]G̃, which does not endanger
the security properties.

Indeed, the non-frameability property of their scheme is based on the fact that the adversary does
not know s. However, recovering s from both [s]G and [s]G̃ is not known to be much easier than
recovering s from [s]G alone. As a consequence, the non-frameability still holds.

However, one could argue that this additional information helps to break the anonymity property.
But as already remarked, one does not require to enforce anonymity of the TPM with respect to the
host, since the latter already knows which TPM is inserted (or even sees the signature which is sent
outside). And as explained in [7], in DAA schemes and in server-aided version of group signatures,
the host is not adversarially-controlled in the anonymity experiment, but just for the impersonation
or frameability.
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More General Relations. The protocol described on Figure 2 only considers relations in G1. But
as already said, our protocol would work the same way if all relations were in G2, by simply swapping
the role of G1 and G2 in our protocol described in Figure 2.

However, one could have to prove knowledge of variables involved in relations in both G1 and G2.
In such a case the host would need to know a commitment in G2 (to compute the proof for relations in
G1) and one in G1 (for the relations in G2). The computational cost for the TPM would then depend
on the type of the pairing. For pairings of Type 1 or Type 2, the computational cost will remain the
same because of the isomorphism. For pairings of Type 3 (without any efficient isomorphism), the
TPM would have to compute the values in both groups, and thus with a multiplication by a scalar in
G1 and a multiplication by a scalar in G2 for each variable involved in both G1 and G2. In any case,
the computational cost remains independent of the number of relations.

4 Security Proofs

We now formally prove the two above theorems. Completeness and soundness will be similar for both,
but the zero-knowledge property will involve two different simulators.

4.1 Completeness

It follows from the construction explained in Section 3.1: The verifier checks whether

e

∑
j∈Ji

[sj ]Avi,j − [c]Vi, G̃

 ?=
∏
j∈Ji

e(Zi,j , B̃i,j).

Since, for all i ∈ {1, . . . , r}, Vi =
∑

j∈Ji [αj ]Avi,j and for all j ∈ {1, . . . ,m}, sj = kj + cαj mod p, then∑
j∈Ji [sj ]Avi,j =

∑
j∈Ji [kj + cαj ]Avi,j =

∑
j∈Ji [kj ]Avi,j + [c]Vi, and one easily verifies that both sides

are equal to e
(∑

j∈Ji [kj ]Avi,j , G̃
)

, which proves the completeness.

4.2 Soundness

Let {Zi,j , B̃i,j}i,j be the values sent to the verifier at the first flow. If the adversary (trying to im-
personate P (TPM + host)) can answer successfully with probability significantly greater than 1/2`,
then it can send {sj}j and {s′j}j for two different challenges c and c′: ∀i ∈ {1, . . . , r},

e

∑
j∈Ji

[sj ]Avi,j − [c]Vi, G̃

 =
∏
j∈Ji

e(Zi,j , B̃i,j) = e

∑
j∈Ji

[s′j ]Avi,j − [c′]Vi, G̃

 ,

which leads to e
(∑

j∈Ji [sj − s
′
j ]Avi,j − [c− c′]Vi, G̃

)
= 1GT

and thus, from the non-degeneracy of the

pairing,
∑

j∈Ji [sj−s
′
j ]Avi,j− [c−c′]Vi = 0G1 . As a consequence, αj = (sj−s′j)/(c−c′) for j = 1, . . . ,m,

we have Vi =
∑

j∈Ji [αj ]Avi,j for i = 1, . . . , r. This is thus a solution to the DLRS R.

4.3 Zero-Knowledge w.r.t. the Host

For Theorem 5, we assume the host already knows (or can learn, as explained above) Tj = [αj ]G̃,
∀j ∈ {1, . . . ,m}. The simulator operates as follows:

– it first selects c
$← {0, 1}` and {sj}j $← Zp;

– it computes: Z̃j ← [sj ]G̃− [c]Tj , for all j ∈ {1, . . . ,m};
– it then outputs {Z̃j}j , and waits for the challenge and rewinds in case of incorrect guess of c;
– it eventually answers {sj}j .

This is statistically indistinguishable from transcripts generated during a real protocol between the
TPM and the host. Since the initial guess for c is perfectly hidden in {Z̃j}j , the probability of successful
simulation is 1/2`, which is non-negligible for a logarithmic value `. For a larger `, it remains honest-
verifier zero-knowledge.
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4.4 Zero-Knowledge w.r.t. the Verifier

For Theorem 4, the verifier just knows the public parameters: G, G̃, {Aj}j , {Vi}. The simulator operates
as follows:

– it first selects c
$← {0, 1}` and {sj}j $← Zp;

– it computes Ki ←
∑

j∈Ji [sj ]Avi,j − [c]Vi, for all i ∈ {1, . . . , r};
– it additionally selects, for i ∈ {1, . . . , r} and j ∈ Ji, ui,j $← Z∗p and Ui,j

$← G1\{0G1}, such that∑
j∈Ji Ui,j = Ki (which conditions the last Ui,j);

– it then computes, for i ∈ {1, . . . , r} and j ∈ Ji, Zi,j = [u−1i,j ]Ui,j and B̃i,j = [ui,j ]G̃;

– it then outputs {Zi,j , B̃i,j}i,j , and waits for the challenge and rewinds in case of incorrect guess of
c;

– it eventually answers {sj}j .

A problem can occur with the above simulation if some elements get zero while it is not allowed.
But the large order of the groups makes this problem to happen with negligible probability only. We
exclude these bad cases in the following.

In order to prove the zero-knowledge property, we need to show that our simulated tuples are
indistinguishable from the tuples generated during a real protocol, for the verifier. In a real protocol,
the verifier sees: {Zi,j , B̃i,j}, c, {sj}j , where Zi,j = [b−1i,j ]Avi,j = [avi,j/bi,j ]G for random non-zero scalars

bi,j , and B̃i,j = [bi,j ](Z̃j + [ti,j ]Ãi,j) = [bi,j/avi,j · (kjavi,j + ti,j
∏
k∈Ji avi,k)]G̃ for random scalars ti,j ,

such that
∑

j∈Ji ti,j = 0 mod p.
Let us denote u′i,j = (bi,j/avi,j ) · (kjavi,j + ti,j

∏
k∈Ji avi,k), for i = 1, . . . , r and j ∈ Ji. Then

B̃i,j = [u′i,j ]G̃. Since the bi,j ’s are independent random scalars, the u′i,j ’s are also independent random
scalars, and thus follow the same distribution as the ui,j ’s.

With such a notation and di =
∏
k∈Ji avi,k , we have Zi,j = [(u′i,j)

−1(kjavi,j + ti,jdi)]G. Let us
denote U ′i,j = [kjavi,j + ti,jdi]G. Since the ti,j are random scalars with the unique constraint that∑

j∈Ji ti,j = 0 mod p, for i = 1, . . . , r, then the U ′i,j ’s are random elements in G1 with the constraint
that, for i = 1, . . . , r,∑

j∈Ji

U ′i,j = [
∑
j∈Ji

kjavi,j ]G =
∑
j∈Ji

[sj − cαj ]Avi,j =
∑
j∈Ji

[sj ]Avi,j − [c]Vi = Ki.

As a consequence, in the real protocol execution, for i ∈ {1, . . . , r} and j ∈ Ji, Zi,j = [(u′i,j)
−1]U ′i,j

and B̃i,j = [u′i,j ]G̃, where the u′i,j ’s and U ′i,j ’s follow the same distributions as the ui,j ’s and Ui,j ’s
generated by our simulator.

5 Delegating with Weaker Assumptions

5.1 Description

As said in Section 3.2, our first protocol required the knowledge of the elements Ãi,j . In many ap-
plications, such as our first example, this is not a strong requirement. However, in some other cases,
this can be a problem. We thus now provide another protocol for the same delegation from the TPM
to the host, with just a slight increase of the computations for the host, but without any additional
information. The main difference with our first protocol is that the Host now needs to additionally
compute the Hi’s which permit to blind the Ãi,j ’s. This protocol is described on Figure 3 and the
obtained efficiency is given in Table 1.

5.2 Security Results

Theorem 6. The protocol described on Figure 3 is a 3-move zero-knowledge proof of knowledge of
the witnesses α1, ..., αm between P (TPM + host) and V (verifier), where the description of R is the
unique auxiliary input.
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TPM Host Verifier

∀j ∈ {1, . . . ,m}, ∀i ∈ {1, . . . , r},
kj

$← Zp, Z̃j ← [kj ]G̃ (bi,j)j
$← (Z∗p)m, (ti,j)j

$← (Zp)m

Hi ←
∑

j∈Ji
[ti,j ]Avi,j

{Z̃j}j−−−−−−−−→ ∀i ∈ {1, . . . , r},∀j ∈ Ji,
Zi,j ← [b−1

i,j ]Avi,j

B̃i,j ← [bi,j ](Z̃j + [ti,j ]G̃)

{Hi}i, {Zi,j , B̃i,j}i,j−−−−−−−−−−−→
c←−−−−−−−− c←−−−−−−−−−−− c

$← {0, 1}`
∀j ∈ {1, . . . ,m},
sj ← kj + cαj mod p

{sj}j−−−−−−−−→
{sj}j−−−−−−−−−−−→ ∀i ∈ {1, . . . , r}

e
(
Hi +

∑
j∈Ji

[sj ]Avi,j − [c]Vi, G̃
)

?=
∏

j∈Ji
e(Zi,j , B̃i,j)

Setting: A pairing-friendly setting (p,G1,G2,GT , G, G̃, e) and a DLRS R in G1: for A1, . . . , Aw, V1, . . . , Vr ∈ G1, and
J1, . . . ,Jr ⊆ {1, . . . , w}, the TPM knows variables α1, . . . , αm ∈ Zp such that Vi =

∑
j∈Ji

[αj ]Avi,j , for i = 1, . . . , r.

Players’ inputs: The public input contains G, G̃, {Vi}i, {Ji}i, {Aj}j ; The TPM knows {αi}i.

Fig. 3. Delegation of Proof of Knowledge of Witnesses for a DLRS (without additional information)

As for Theorems 4 and 5, the first theorem essentially shows that this proof does not leak any infor-
mation outside the host, and the next one says that the host just learns {[αi]G̃}i, which is not enough
to impersonate the TPM later.

Theorem 7. The protocol in Figure 3 is a 3-move zero-knowledge proof of knowledge of the witnesses
α1, ..., αm between P (TPM) and V (host), where the auxiliary input contains the description of R
and the additional values {[αi]G̃}i.

5.3 Proofs of the Theorems

Completeness. The verifier checks, for i = 1, . . . , r, e(Hi+
∑

j∈Ji [sj ]Avi,j−[c]Vi, G̃) =
∏
j∈Ji e(Zi,j , B̃i,j),

where

e

Hi +
∑
j∈Ji

[sj ]Avi,j − [c]Vi, G̃

 = e

Hi +
∑
j∈Ji

[kj ]Avi,j , G̃


and ∏

j∈Ji

e(Zi,j , B̃i,j) =
∏
j∈Ji

e(Avi,j , Z̃j + [ti,j ]G̃) =
∏
j∈Ji

e(Avi,j , [kj + ti,j ]G̃)

= e

∑
j∈Ji

[ti,j ]Avi,j +
∑
j∈Ji

[kj ]Avi,j , G̃

 = e

Hi +
∑
j∈Ji

[kj ]Avi,j , G̃

 .

Soundness. The proof is similar to the one in Section 4 since everything was on the left-hand side
of the verification equation, that remains the same plus a constant Hi.

5.4 Zero-Knowledge w.r.t. the Host

The protocol between the TPM and the host is the same as the first protocol, and thus the security
analysis is the same as in Section 4.

5.5 Zero-Knowledge w.r.t. the Verifier

As in Section 4, the verifier just knows the public parameters: G, G̃, {Aj}j , {Vi}. The simulator operates
as follows:
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– it first selects c
$← {0, 1}` and {sj}j $← Zp;

– it computes Ki ←
∑

j∈Ji [sj ]Avi,j − [c]Vi, for all i ∈ {1, . . . , r};
– it additionally selects, for i ∈ {1, . . . , r} and j ∈ Ji, ui,j $← Z∗p and Ui,j

$← G1\{0G1}, with no
constraint;

– it then computes, for i ∈ {1, . . . , r}, Hi =
∑

j∈Ji Ui,j − Ki and for j ∈ Ji, Zi,j = [u−1i,j ]Ui,j and

B̃i,j = [ui,j ]G̃;

– it then outputs {Hi}i, {Zi,j , B̃i,j}i,j , and waits for the challenge and rewinds in case of incorrect
guess of c;

– it eventually answers {sj}j .

As in Section 4, a problem can occur with the above simulation if some elements gets zero while
it is not allowed. But the large order of the groups makes this problem to happen with negligible
probability only. We exclude these bad cases in the following analysis.

In a real protocol, the verifier sees: {Hi}i, {Zi,j , B̃i,j}, c, {sj}j , where Hi =
∑

j∈Ji [ti,j ]Avi,j =∑
j∈Ji [ti,javi,j ]G, for random scalars ti,j , Zi,j = [b−1i,j ]Avi,j = [avi,j/bi,j ]G for random non-zero scalars

bi,j , and B̃i,j = [bi,j ](Z̃j + [ti,j ]Ãi,j) = [bi,j/avi,j · (kjavi,j + ti,j
∏
k∈Ji avi,k)]G̃.

Let us denote u′i,j = (bi,j/avi,j ) · (kjavi,j + ti,j
∏
k∈Ji avi,k), for i = 1, . . . , r and j ∈ Ji. Then

B̃i,j = [u′i,j ]G̃. Since the bi,j ’s are independent random scalars, the u′i,j ’s are also independent random
scalars, and thus follow the same distribution as the ui,j ’s.

With such a notation and di =
∏
k∈Ji avi,k , we have Zi,j = [(u′i,j)

−1(kjavi,j +ti,jdi)]G. Let us denote
U ′i,j = [kjavi,j + ti,jdi]G. Since the ti,j are random scalars, then the U ′i,j ’s are random elements in G1.
Eventually, ∑

j∈Ji

U ′i,j = [
∑
j∈Ji

kjavi,j + ti,jdi]G = Ki +
∑
j∈Ji

[ti,j ]Avi,j = Ki +Hi.

As a consequence, in the real protocol execution, for i ∈ {1, . . . , r}, Hi =
∑

j∈Ji Ui,j − Ki, and for

j ∈ Ji, Zi,j = [(u′i,j)
−1]U ′i,j and B̃i,j = [u′i,j ]G̃, where the u′i,j ’s and U ′i,j ’s follow the same distributions

as the ui,j ’s and Ui,j ’s generated by our simulator.
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