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Abstract

Pairing-based cryptography has exploded over the last decade, as this algebraic setting offers
good functionality and efficiency. However, there is a huge security gap between how schemes
are usually analyzed in the academic literature and how they are typically implemented. The
issue at play is that there exist multiple types of pairings: Type-I called “symmetric” is typically
how schemes are presented and proven secure in the literature, because it is simpler and the
complexity assumptions can be weaker; however, Type-III called “asymmetric” is typically the
most efficient choice for an implementation in terms of bandwidth and computation time.

There are two main complexities when moving from one pairing type to another. First, the
change in algebraic setting invalidates the original security proof. Second, there are usually
multiple (possibly thousands) of ways to translate from a Type-I to a Type-III scheme, and the
“best” translation may depend on the application.

Our contribution is the design, development and evaluation of a new software tool, Auto-
Group+, that automatically translates from Type-I to Type-III pairings. The output of Au-
toGroup+ is: (1) “secure” provided the input is “secure” and (2) optimal based on the user’s
efficiency constraints (excluding software and run-time errors). Prior automation work for pair-
ings was either not guaranteed to be secure or only partially automated and impractically slow.
This work addresses the pairing security gap by realizing a fast and secure translation tool.
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1 Introduction

Automation is increasingly being explored as a means of assisting in the design or implementation
of a cryptographic scheme. The benefits of using computer assistance include speed, accuracy, and
cost.

Recently, automation for pairing (also called bilinear) cryptographic constructions (e.g., [AGHP12,
AGH13, AGOT14, BFF"14]) has been under exploration. Since the seminal work of Boneh and
Franklin [BFO01], interest in pairings is strong: they have become a staple at top cryptography and
security conferences, the open-source Charm library has been downloaded thousands of times world-
wide and recently pairing-commercializer Voltage Security was acquired by a major US company
(HP) [Kril5].

Pairings are algebraic groups with special properties (see Section 2.1), which are often employed
for their functionality and efficiency. There are different types of pairings: Type-I called “symmet-
ric” is typically how schemes are presented and proven secure in the literature, because it is simpler
and the complexity assumptions can be weaker; however, Type-III called “asymmetric” is typically
the most efficient choice for an implementation in terms of bandwidth and computation time.

Unfortunately, translating a Type-I scheme into the Type-III scheme is complicated. First, there
may be thousands of different Type-III translations of a Type-I scheme and the “best” translation
may depend on the application. For instance, one translation might optimize ciphertext size while
another offers the fastest decryption time. Second, each new translation requires a new proof under
Type-IIT assumptions. Exploring and analyzing all possible translations is clearly a great burden
on a human cryptographer. Indeed a small subset of manual translations of a scheme or particular
set of schemes is regarded as a publishable result in its own right, e.g., [RCS12, CLL*13, CLL*14].

Given this translation hurdle, common practice today is to analyze a Type-I scheme, but then
use ad-hoc means to derive a Type-III translation that is unproven and possibly non-optimal. The
goal of this work is to address this problem by covering new ground in cryptographic automation.

Our Contribution: The AutoGroup+ Tool. Our primary contribution is the design, devel-
opment, and performance evaluation of a new publicly-available! tool, AutoGroup+, that auto-
matically translates pairing schemes from Type-I to Type-III. The output of AutoGroup+ is: (1)
“secure” provided the input is “secure” (see Section 3.2) and (2) optimal based on the user’s ef-
ficiency constraints (see Section 3.1.5).2 The input is a computer-readable format of the Type-I
construction, metadata about its security analysis, and user-specified efficiency constraints. The
output is a translated Type-III construction (in text, C++, Python, or IWTEX) with metadata about
its security analysis. (See Figure 1.)

The audience for this tool is: (1) anyone wanting to implement a pairing construction, and (2)
pairing construction designers. We highlight some features.

New Scheme Description Language (SDL) Database. The input to AutoGroup+ requires a computer-
readable format of the Type-I construction, the Type-I complexity assumption(s), and the Type-I
security proof. It was a challenge to create a means of translating human-written security proofs
into SDL. We focused on a common type of proof exhibiting a certain type of black-box reduction.?
We created a new SDL structure for representing assumptions and reductions of this type that

! AutoGroup+ can be downloaded at https://github.com/jhuisi/auto-tools.

2These claims regard the cryptographic transformation and exclude any software or run-time errors.

3The theoretical translation security results of [AGOT14] on which we will base our security are also limited to
this class of proof.


https://github.com/jhuisi/auto-tools

may be of independent interest. Additionally, we did the tedious work of carefully transcribing
five assumptions, eight reductions and improving the SDLs for nine popular constructions (from
[AGH13]). (See Appendix B for an example of a simple case.) One transcribed, however, these
SDL files can be reused. We believe the future of cryptographic automation research will involve
processing the assumptions and proofs; thus our database is made public as a testbed for future
automation research.

Speed of Tool. AutoGroup+ took less than 21 seconds to process any of the test set, which included
seven simple schemes (16 or less solutions), three medium schemes (256 to 512 solutions), and three
complex schemes (1024 to 2048 solutions). (The preference for simple schemes was to compare
with prior work.) This measures from SDL input to a C++ (or alternative) output. Speed is very
important here for usage, because we anticipate that designers may iteratively use this tool like a
compiler and implementors may want to try out many different efficiency optimizations.

In contrast, in CRYPTO 2014, Abe, Groth, Ohkubo and Tango [AGOT14] laid out an elegant
theoretical framework for doing pairing translations in four steps. It left open the issue of whether
their framework was practical to implement for a few reasons: (1) they automated only one of four
steps (code not released), (2) their algorithm for this step was exponential time, and (3) they tested
it on only simple and medium schemes, but their medium scheme took over 1.75 hours for one step.
Our fully automated translation of that scheme took 6.5 seconds, which is much more in line with
the “compiler”-like usage we anticipate.

We attribute our drastic efficiency improvement in part to our use of the Z3 SMT Solver. As
described in Section 3, we encode the translation of the scheme, its assumption(s) and its reduction
as a constraint-satisfaction problem and then use Z3 to quickly find the satisfying set of solutions.

New Results. We evaluated AutoGroup+ on 9 distinct constructions (plus 4 additional variations
of one scheme), with various optimization priorities, for 48 bandwidth-optimizing translations. In
Figure 8, we report the sizes compared to the symmetric case, which are significantly smaller. In
Figure 9, we report on over 140 timing experiments resulting from the translations. Due both to
the asymmetric setting and AutoGroup+’s optimizations, in most cases, the running times were
reduced to less than 10% of the symmetric case. In Figure 10, we report on the effect that different
levels of complexity have on translation time for a single scheme.

In Section 5, we compare the performance of AutoGroup+ to prior automation works, published
manual translations, and translations existing as source code in the Advanced Crypto Software
Collection [Con] and Charm library [AGM*13]. We discovered a few things. In fourteen points of
comparison with AutoGroup, AutoGroup+ matches those solutions and provides a security validation
and new assumptions, adding only a few additional seconds of running time. In three points of
comparison with Abe et al. [AGOT14] and subsequent personal communications [AGOT15], our
translated results match.

In the five points of overlap with ACSC and Charm, we are able to confirm the security and
ciphertext-size optimality of one broadcast encryption and one hierarchical identity-based encryp-
tion implementation. We are also able to confirm the security of two signature implementations,
although only one is signature-size optimal. These confirmations are new results. Our tool was
able to confirm the ciphertext-size optimality, but not the security of the Charm implementation
of Dual System Encryption [Wat09] (meaning it may not be secure). That implementation made
changes to the keys outside the scope of the translations here or in [AGH13, AGOT14]. However,
our tool did find a secure translation with the same ciphertext-size.

Overall, our tests show that the tool can produce high-quality solutions in just seconds, demon-



strating that pairing translations can be practically and securely performed by computers.

1.1 Prior Work

The desirability of translating Type-I to Type-III pairings is well documented. First, this is an
exercise that cryptographers are still actively doing by hand. In PKC 2012, Ramanna, Chatter-
jee and Sarkar [RCS12] nicely translated the dual system encryption scheme of Waters [Wat09]
from the Type-I pairing setting to a number of different Type-III possibilities. Recently, Chen,
Lim, Ling, Wang and Wee [CLL"13, CLL"14] presented an elegant semi-general framework for
(re-)constructing various IBE, Inner-Product Encryption and Key-Policy Functional Encryption
schemes in the Type-III setting, assuming the SXDH assumption holds.* These works go into
deeper creative detail (changing the scheme or adding assumptions) than our automator, and thus
mainly get better results, but then, these works appear to have taken significant human resources.
In contrast, our work offers a computerized translation as a starting point.

The Advanced Crypto Software Collection (ACSC) [Con], including the Charm library [AGM*13],
contains many Type-III implementations of schemes that were published and analyzed in the Type-
I format. To the best of our knowledge, there is no formal analysis of these converted schemes and
thus also no guarantees that the translations are secure or optimal efficiency-wise for a user’s spe-
cific application. (We remark that ACSC/Charm makes no claims that they are secure or optimal.)
The public Github records for Charm show that it has been downloaded thousands of times; thus,
it would be prudent to verify these implementations. (See our results on this in Section 5.)

In ACM CCS 2013, Akinyele, Green and Hohenberger [AGH13] presented a publicly-available
tool called AutoGroup, which offered an automated translation from Type-I to Type-III pairing
schemes. This work employed sophisticated tools, such as the Z3 Satisfiability Modulo Theories
(SMT) solver produced by Microsoft Research (see Section 2), to quickly find a set of possible
assignments of elements into G; or Gy. There was not, however, any guarantee that the resulting
translation remained secure. Indeed, Akinyele et al. [AGH13| explicitly framed their results as
follows: translation has two parts: (1) the search for an efficient translation, and (2) a security
analysis of it. They automated the first part and left the security analysis to a human cryptographer.
Since they made their source code public, we used it as a starting point and thus named our work
after theirs.

While using AutoGroup is certainly faster than a completely manual approach, the lack of a
security guarantee is a real drawback. At that time, there was simply no established theory on how
to generalize these translations.

Fortunately, in CRYPTO 2014, Abe, Groth, Ohkubo and Tango [AGOT14] pushed the theory
forward in this area. They elegantly formalized the notion that if certain dependencies from the
Type-I complexity assumption(s) and the reduction in the security analysis were added to the
dependencies imposed by the scheme itself, then there was a generic way to reason about the
security of the translated scheme. Their main theorem, which we will later use, can informally be
stated as:

Theorem 1.1 (Informal [AGOT14]). Following the conversion method of [AGOT1}4], if the Type-I
scheme is correct and secure in the generic Type-I group model, then its converted Type-I1II scheme
1s correct and secure in the generic Type-III group model.

“Informally, the SXDH assumption asserts that in a Type-III pairing group, there exist no efficient isomorphisms
from G1 to G2 or from G2 to Gy.



There are four steps in their translation: (1) build a dependency graph between the group
elements for each algorithm in the construction, the complexity assumption(s) and the security
reduction (In the graph, elements are nodes and a directed edge goes from ¢ to h if h is derived
from g, such as h = ¢*.), (2) merge all graphs into a single graph, (3) split this graph into two
graphs (where elements of the first graph will be assigned to G; and elements of the second assigned
to G2), and (4) derive the converted scheme.

For the four schemes tested in [AGOT14], steps (1), (2), and (4) were done by hand. The
algorithm for step (3) was exponential in two variables® and the Java program to handle step (3)
reported taking 1.75 hours on a medium scheme. Thus, this is a great theory advance, but it left
open the question of whether the entire translation could be efficiently automated as a “real-time”
tool.

AutoGroup+ in a Nutshell. In short, prior work admitted a public tool that is fast, but possibly
insecure [AGH13], and a cryptographic framework that is slow, but secure [AGOT14]. Our goal was
to realize the best of both worlds. Even though the implementations differed, we discovered that
both works began by tracing generator to pairing dependencies, where [AGH13] did this bottom up
and [AGOT14] used a top down approach. Since both of these representations can be helpful for
different optimizations, AutoGroup+ does both. It also traces these dependencies for the complexity
assumptions and reductions. The pairings and hash variables in the combined dependency graph
are translated into a formula and constraints, and then fed into a SMT solver. The output set is
then efficiently searched for an optimal solution using the SMT solver again, then verified as a valid
graph split (as formalized in [AGOT14]). Finally, if the split is valid, then a converted scheme and
complexity assumption(s) are output.

2 Background

2.1 Pairings

Let G1, Go and Gr be groups of prime order p. A map e : G; X Go — Gr is an admissible pairing
(also called a bilinear map) if it satisfies the following three properties:

1. Bilinearity: for all g € Gy, h € G, and a,b € Z,, it holds that e(g?, h®) = e(g’, h®) = e(g, h)?.

2. Non-degeneracy: if g and h are generators of G and Gg, resp., then e(g, h) is a generator of
Gr.

3. Efficiency: there exists an efficient method that given any g € Gy and h € Go, computes
e(g,h).

A pairing generator is an algorithm that on input a security parameter 1, outputs the param-
eters for a pairing group (p, g, h, G1, Go, Gr, e) such that p is a prime in ©(2*), G1, G, and G are
groups of order p where g generates Gi, h generates Gy and e : G; X Gy — Gp is an admissible
pairing.

The above pairing is called an asymmetric or Type-III pairing. This type of pairing is generally
preferred in implementations for its efficiency. We also consider symmetric or Type-1 pairings,
where there is an efficient isomorphism ¢ : G; — G2 (and vice versa) such that a symmetric map

STheir splitting algorithm runs exponentially in both the number of pairings and the bottom nodes (without
outgoing edges) of the dependency graph. Thus, scalability is a real concern.



is defined as e : G; X ¥(G1) — Gp. We generally treat G = G; = Go for simplicity and write
e : G x G — Gr. These types of pairings are typically preferred for presenting constructions in
the academic literature for two reasons. First, they are simpler from a presentation perspective,
requiring fewer subscripts and other notations. More importantly, they are sometimes preferred
because the underlying symmetric assumption on which the proof is based may be viewed as simpler
or weaker than the corresponding asymmetric assumption.

We include current efficiency numbers for Type-I and Type-III groups in Appendix A, demon-
strating the significant advantages of the latter.

2.2 The Z3 Satisfiability Modulo Theories (SMT) Solver

Our implementation also relies on the power of the state-of-the-art Z3 SMT solver [DMBO8] de-
veloped at Microsoft Research. SMT is a generalization of boolean satisfiability (or SAT) solving
where the goal is to decide whether solutions exist to a given logical formula. The publicly available
73 is one such tool that is highly efficient in solving constraint satisfaction problems and used in
many different applications.

2.3 A Scheme Description Language (SDL) and Toolchain

This work builds on the efforts of prior automation works [AGHP12, AGH13] which include several
tools such as a scheme description language (or SDL), an accompanying parser for SDL, a code
generator that translates SDL schemes into executable code in either C+4 or Python, and a
IXTEX generator for SDL descriptions. We obtained all these prior tools from the publicly-available
AutoTools GitHub repository.® Our code and SDL database will be made public in this repository
as well. The SDL for the constructions are the same in AutoGroup and AutoGroup+; the difference
is that the latter also includes SDL for assumptions and security reductions. Since we used the
code of AutoGroup as a starting point, we derived our tool name from it.

3 The AutoGroup+ System

As described in Section 1, AutoGroup+ is a new tool built to realize the best of both worlds
from a prior tool called AutoGroup [AGH13] (fast, but no security guarantees) and new theoretical
insights [AGOT14] (secure, but exponential time and no public tool.)

3.1 How It Works

We begin with an illustration of the AutoGroup+ system in Figure 1. This system takes in the
description of a symmetric (Type-I) pairing-based scheme S, together with metadata about its
security and user-desired efficiency constraints, and outputs an asymmetric (Type-III) pairing-
based translation S’, together with metadata about its security. Informally, if S was secure, then
S’ will be both secure and optimal for the constraints set by the user over the space of “basic”
translations.

5Project link: https://github.com/jhuisi/auto-tools
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Figure 1: A high-level presentation of the AutoGroup+ tool. Components that are new or improved,
over AutoGroup, are included with dashed lines. Both AutoGroup+ and AutoGroup use external tools
Z3, SDL Parser and Code generator (omitted from the figure).

3.1.1 Step 1: Generating Computer-Readable Inputs

AutoGroup+ operates on four inputs: an abstract description of the (1) scheme itself, (2) the
complexity assumption(s) on which the scheme is based, (3) the black-box reduction in the scheme’s
proof of security, and (4) a set of efficiency optimization constraints specified by the user (e.g.,
optimize for smallest key or ciphertext size.). The abstract descriptions are all specified in a
Scheme Description Language (SDL) [AGHP12, AGH13].

The need for SDL representations of the complexity assumptions and security reductions are
new challenges for this work. To run our Section 5 tests, we had to translate the text in the
published papers to the SDL format by hand. This was a time-consuming and tedious task. How-
ever, we maximize the benefit of doing this, by making these SDL files publicly available. This
enables anyone to check their correctness and provides a ready-made base of test files for any future
automation exercises that require this deeper scheme analysis.

One novel and curious observation we made during these experiments was that how group
elements were derived in the symmetric group impacted the dependency graphs and therefore the
asymmetric results. To say this another way, two schemes computing the exact same elements,
but in different ways, could have different dependency graphs and therefore different asymmetric
translations. As a toy example, suppose a scheme has PK = (g,A = ¢*, B = ¢°) and SK =
(PK,a,b). Now suppose that as part of a signing algorithm, the holder of SK must compute the
value C' = g%. Suppose in Scheme 1, the signer computes this as £ = ab mod p and C' = ¢*.
Suppose in Scheme 2, the signer computes this as C = A. Then in the dependency graph for
Scheme 1, there is a root node g, with nodes A and C hanging off it. Whereas for the graph of
Scheme 2, there is a root node g with A off it, and C' off of A. The importance of these differences
comes alive when we attempt to split the graph (see Step 3.1.4). Suppose there is the pairing
e(A,C). Then in Scheme 1, the generator g must be split, but A can be assigned to G, and C' to
Go, resulting in a 4 element public key. However, in Scheme 2, the generator g and the element A
must be split, with A; € G; and Ay € Go, so that one can compute C' = (A3)? € Gy. This results
in a 5 element public key. The general rule is that the fewer unnecessary dependencies the better.



Interestingly, Abe et al. [AGOT14] sometimes added dependencies that did not exist in the original
schemes. For instance, for the Waters 2005 IBE [Wat05], Waters clearly states to choose ga, v, u;
as fresh random generators, but Abe et al. explicitly ”assume” that they are generated from a
separate generator g. For this particular scheme, this does not impact the asymmetric translations,
but in theory it could.

Our experiments did not add any dependencies. We note that in this step, a human is not
being tasked with any job but simple transcription of the input into a language the computer can
understand.

System Limitations and Allowable Inputs This system shares some of the same limitations
as prior works [AGH13, AGOT14]. First, this is a junk-in-makes-junk-out system. AutoGroup+ as-
sumes that the security reduction is correct, the complexity assumptions are true, and that the
SDL was typed in correctly. If any of these turn out to be false, the output cannot be depended on.
Fortunately, we can mitigate these risks as follows. The correctness of the security reductions might
be verified automatically using a number of tools, such as EasyCrypt [Teal, but this likely requires
further research. The pairing-based assumptions may be sanity-checked in the generic group model
using the recently developed tool by Barthe et al. [BFF*14] from CRYPTO 2014. Finally, the SDL
transcriptions can be verified in the usual crowd-based manner which we encourage by making
them public.

Second, the system does not accept all possible schemes that might appear in the literature.
AutoGroup+ supports only prime-order symmetric pairing schemes with a “standard” reduction
7. It can support most non-interactive assumptions. It can also support dynamic (also
called g-based) assumptions, where the size of the assumption may grow depending on the usage
of the scheme. It can also support interactive (also called oracle-based) assumptions such as the
LRSW assumption behind the popular Camenisch-Lysyanskaya [CL04] pairing-based signatures.

Third, how the scheme hashes into pairing groups also may disqualify it from being translated.
We now give an example of how to alter the Setup algorithm of the Waters 2005 IBE scheme [Wat05],
so that AutoGroup+ cannot translate it. (Indeed, it is not clear to us if a translation even exists.)
In the original Setup algorithm, the master authority chooses a generator g € G at random. Then
public parameter g; is derived from g, while parameters g2, ug, . .., u, € G are chosen independently
at random. Instead, suppose we treat the hash function H : {0,1}* — G as a random oracle. Let
generator ¢ € G be computed as g = H(ID), where ID is some string describing the master
authority. Then ¢y is derived from g as before, but we set go = ¢",ug = ¢'°,...,u, = g™ for
random 7,7g, ...,y € Zy, (where p is the order of G). It is easy to see that the public parameters
have the same distribution as before (assuming the random oracle model); all we have changed is
how the master authority samples these parameters. Thus, this variant of the Waters IBE remains
secure in the symmetric setting, and yet it is not clear how to translate it to the asymmetric setting.
We return to this example in Section 5.

These limitations also appear in the theoretical work of Abe et al. [AGOT14], and fortunately,
these issues seem relatively rare and did not come up for any of the schemes we tested (except
our hand-made counterexample). As in [AGH13, AGOT14], we note that if AutoGroup+ cannot
produce a translation, it does not imply that a translation does not exist. A characterization of

analysis

"We refer the reader to Abe et al. [AGOT14] for a formal definition of the allowed reductions. Roughly, we mean
an analysis where there is an efficient algorithm called a reduction that is successful in solving the hard problem
(underlying the complexity assumption) given black-box access to an adversary that successfully attacks the scheme.



untranslatable schemes is an open theoretical problem.

3.1.2 Step 2: Extracting Algebraic Dependencies

Once AutoGroup+ has parsed all its input files, it begins processing them to graph the algebraic
dependencies between source group elements in a scheme, assumption and reduction. All source
group elements are nodes in the graph and a directed edge exists if there is a direct dependency
between two elements. E.g., if h = g%, then h is derived from g and we place an edge from g and h.

AutoGroup+ extracts the dependency graphs automatically from the SDL for each input file and
builds a distinct graph from the SDL representations and metadata. AutoGroup+ defines two new
procedures that programmatically extract the dependency graph for the assumption(s) as well as
the reduction(s) (see Section 4 for an example). Then, AutoGroup+ reuses logic from AutoGroup to
programmatically build the graph of the scheme by tracking the generators in the setup algorithm
and by tracing backward from each pairing in the scheme. It merges the program slice (or trace)
extracted for each pairing input into one dependency graph for the scheme. The resulting graphs
are the same as those produced by Abe et al. [AGOT14] (except where we reduced dependencies
by computing elements more directly as discussed in the last step.)

The work of Abe et al. [AGOT14] required a human to build (and later merge) these dependency
graphs by hand and the graphs were constructed starting from the common generators downward.
The AutoGroup work of Akinyele et al.[AGH13] automatically derived these graphs for the scheme
only from the SDL description of the scheme. They did not consider the assumptions or reduction
dependencies. Indeed, AutoGroup only graphed the dependencies as a traceback from the pairings,
whereas AutoGroup+ also adds a top-down analysis from the assumption down to the pairings for
the security logic.

3.1.3 Step 3: Merge Dependency Graphs

After extracting the dependencies, AutoGroup+ has a set of distinct graphs: one graph that repre-
sents dependencies from the setup, key generation, encryption/signature and decryption/verification
algorithms, as well as a graph for each complexity assumption and one or more graphs for the re-
duction. These graphs are then systematically merged together using the metadata provided with
the SDL inputs. The metadata includes a reduction map which relates the names of source group
elements in the reduction to those in the assumption. We require this map to understand which
nodes represent the same group element (across the scheme, assumption and reduction) to simplify
merging into a single node. See the example in Section 4. AutoGroup+ programmatically checks
the type information in the reduction map across all SDL inputs to ensure correctness during the
merge.

3.1.4 Step 4: Assign Variables using the SMT Solver

This is the most complex step in the automation. In the symmetric setting, all group elements
in the scheme were in G. To move to the asymmetric setting, we must assign elements to either
G1 or Gy in such a way that the dependencies between elements are not violated (e.g., if h = g7,
then both g, h must be in the same group) and such that for all variables a, b, if we have a pairing
between them e(a,b), then a and b must be in distinct source groups (e.g., a € Gy and b € Gy or



vice versa). Such an assignment may not be feasible (see such an example in Section 3.1.1) or it
may require that one or more variables in the symmetric scheme be duplicated in the asymmetric
scheme with one assigned to G; and another to Gs. E.g., in the symmetric setting if g € G, a = ¢g*
and b = ¢g¥ and these elements are paired as e(a, b), then in the asymmetric setting, g will be split
into g1 € Gy and g2 € Go, where a = g and b = gj, so that one can compute e(a,b).

To efficiently make these variable assignments, AutoGroup+ follows the approach of Auto-
Group in that it uses a powerful Z3 Satisfiability Modulo Theories (SMT) solver produced by
Microsoft Research (see Section 2) to compute the set of all possible splits (i.e., all possible vari-
able assignment combinations) and then later identifies the best one. Z3 takes as input a logical
formula and determines whether valid variable assignments exist that evaluate that formula to true.
Similar to AutoGroup, AutoGroup+ expresses the pairing equations as a logical formula of conjunc-
tions and inequality operations over binary variables. For example, e(a,b) - e(c,d) is translated
to the logical formula P1[0] # P1[1] A P2[0] # P2[1] where P1[0] is a reference to a, P1[1] to
b, and so on. AutoGroup+ simply follows the pairing identifier convention established by Abe et
al. [AGOT14].

One major difference between AutoGroup+ and AutoGroup is that the former’s dependency
graphs include dependencies based on the assumptions and reductions. The formula is derived
from the pairings that occur in the graph (from the construction, reduction and assumption(s))
with a conjunction joining each pairing piece, plus extra constraints added for variables that cannot
be duplicated (regarding hashing). This formula is then fed into the solver. The solver returns a
set of 0 or 1 assignments for each variable. We then apply each solution to the merged dependency
graph to generate the split (variables assigned to 0 on one side and the rest on the other).

3.1.5 Step 5: Search for Optimal Solution

There are often many (possibly thousands) of ways to translate a symmetric scheme into an asym-
metric scheme; thus, we can end up with many feasible graph splits. Indeed, the output of the
SMT solver in the last step is a set of assignments of the variables. In this step, we again use
the SMT solver to deduce which assignment from this set is “best”. AutoGroup+ allows selection
of assignments based on a number of user-specified optimization constraints. For public-key en-
cryption, the user can choose to minimize the public-key, assumption, secret key and/or ciphertext
size. Similarly for signature schemes, the user can mimize the public-key parameters, assumption,
and/or the signature size.

To select an optimal assignment, AutoGroup+ encodes these user requirements as parameters
of some objective function. We then call the solver a second time with this objective function set to
rank /narrow the given solutions to one. Depending on the optimization goal, the objective function
can be specified in one of two ways. If reducing public-key size or the assumption, then we are
concerned with minimizing the duplication of source group elements. As such, we first specify an
EvalGraph function that the solver uses to compute the splits for each element in the public key
or assumption: EvalGraph(4;, B,G) = S, where A; = a1, ..., a, represents pairing input variable
assignments for the j-th solution (each a; variable is either 0 = G; or 1 = Gg), B = by,...,bn
represents the source group elements to minimize either in the assumption or public-key, and G
represents the merged dependency graph.

Our search algorithm first applies the EvalGraph function to determine how the b; values are
assigned for each solution. Once the b; values are assigned, we then compute S = s1,..., S, where



each s; corresponds to one of three values for each b; assignment. That is, let a w; value denote a
G1 only assignment, ws is G2 only, and ws = wy + we is both a Gy and G4 assignment (or simply
a split). We then set w; and wy to the group size of G; and Gg for Type-III pairing curves (e.g.,
BN256). Each solution is ranked in terms of splits and the total size of group elements in B. Our
search returns the j-th solution that results in the fewest splits in B with the smallest overall size
S;. This overall size breaks ties between multiple solutions with the same number of splits.

min (CountSplits(S;), Y _ S.i) (1)

JEIA]

For the other optimization options (i.e., secret-key, ciphertext, etc), we can reuse the objective
function specified by AutoGroup as is:

n

%Iiz{lll F(A;,C,wi,we) = Z((l —a;) - wi+a;-w2) -G (2)
J i=1
where the A; represents the j-th solution as before, C'= {c1, ..., ¢, } represent some cost associated

with each a; variable reference, and w; and we correspond to weights (for different Type-III pairing
curves) over groups G; and Gg. By encoding these cost values, it is feasible to create different
weight functions that adhere to the user specified constraints. Once these functions are specified
correctly, we minimize it across the set of assignments and return the solution that yields the lowest
value. Thus, the combination of equations 1 and 2 yield all the possible ways a current user can
optimize a given symmetric scheme. Further optimizations are future work.

Once the “best” solution is found, we have a CheckValidSplit procedure that verifies that the
conditions (1) and (2) of a “valid split” hold as defined in Definition 3.1. If this solution satisfies
these conditions, we are done. If not, we simply test the next best solution, because the solver
caches all solutions and we record metadata about each solution in terms of efficiency and security.

3.1.6 Step 6: Evaluate and Process the Solution

Once a split is chosen, AutoGroup+ must reconstruct SDL for the asymmetric scheme and assump-
tion(s). It reuses the functionality provided by AutoGroup to construct the SDL as dictated by
the split.® To output the new asymmetric assumptions, AutoGroup+ follows the logic of Abe et
al. [AGOT14] (although they did not implement this step) and implements a new procedure that
uses the graph split to reconstruct the asymmetric assumption(s). For each element in the asymmet-
ric assumption, we learn the new assignments of the elements using the graph split and mechanically
generate the asymmetric assumption SDL. Finally, we rely on existing tools [AGHP12, AGH13] to
translate the new asymmetric SDL representation into executable code for C4++ or Python, or

simply IATEX.
3.2 Analysis of AutoGroup+

We analyze AutoGroup+’s security and optimizations.

Security. At a high-level, the Abe et al. [AGOT14] security argument works as follows. In the
Type-1 setting, we treat G; = Go because there are efficient isomorphisms between these two

8We further perform an efficiency check on the final scheme as previously done in AutoGroup.
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groups. However, suppose we work in the generic Type-I group model, where elements are a
black box and to compute this isomorphism, a party must utilize an oracle . Next, consider
moving to a Type-III group, where every element (for which the discrete logarithm is known with
respect to the base generators) is duplicated; that is, for h = ¢* € G, we have h; = ¢f € Gy
and hy = g3 € Gy. Then in the generic Type-III group model, we can simulate having efficiently
computable isomorphisms between these groups by exposing an oracle @ that on input d; € Gy
outputs do € Go (or vice versa). In essence, by exposing the “corresponding” group element
(through the oracle in the Type-III setting), we “allow” all necessary isomorphism computations
for the scheme itself to operate, however, at the same time, we can argue that any adversary
that breaks this scheme (with these elements exposed) can be turned into an attacker against the
Type-1 scheme, where these isomorphisms are natively computable. The resulting theorem was
summarized in Theorem 1.1: namely, the Type-III conversion will be secure in the generic group
model, if one follows the conversion criteria in [AGOT14] and the Type-I input was secure in the
generic group model.

Thus, we must argue that the AutoGroup+ implementation satisfies the criteria in [AGOT14].
The dependency graphs are created and merged according to the same algorithm. (AutoGroup+
tracks some additional information on the side for optimization purposes.) What is required is that
the splitting of the merged dependency graph satisfies Abe et al.’s notion of a “valid split.”

Definition 3.1 (Valid Split [AGOT14]). Let ' = (V, E) be a dependency graph for Il = (S,R,A), a
tuple representing a scheme, reduction and assumption(s) that are in the set covered by the [AGOT1/]
translation. Let P = (p1]0],...,pn[l]) C V be pairing nodes. A pair of graphs I'v = (Vo, Ep) and
'y = (Vi, Ev) is a valid split of T with respect to NoDup C V' if the following hold:

1. merging I'g and I'1 recovers T,
2. for each i € {0,1} and every X € V;\ P, the ancestor subgraph of X in I' is included in T';.
3. for each i € {1,...,n,} pairing nodes p;[0] and p;[1] are separately included in Vo and V1,

4. No node in Vo N'Vy is included in NoDup. NoDup is a list of nodes that cannot be assigned to
both Vy and V7.

In terms of AutoGroup+ security, conditions (1) and (2) are satisfied in the search procedure
(step 5). That is, before we admit a split, we do these simple tests. Condition (3) is satisfied by
the SMT solver with the logical formula encoding of pairing nodes (step 4). Condition (4) is also
satisfied by the SMT solver (step 4). We encode the output of hashes as constraints over the logical
formula; specifically, we ask the solver to find splits that keep hashes in G;. This is the only place
we differ slightly. Abe et al. allow Gy or Go assignment for hashes but not both. Our approach
prioritizes solutions that preserve efficiency but we could give the user the option of relaxing this
to match Abe et al. The translation back to SDL is fairly straightforward from the split.

Optimizations. In terms of optimality over the set of solutions admitted by the “valid split”
method, AutoGroup+ finds the “best” one by searching over the entire set. It does this efficiently
by turning the user-specified optimizations into the appropriate objective function and passing this
function into the SMT solver. Our experiments in Section 5 provide evidence that the tool is,
indeed, finding the optimal solutions over the space of valid translations.
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As discussed in Section 1.1, we do not rule out the existence of even better solutions that employ
insights outside of this method (such as altering the construction or adding “stronger” assumptions,
such as SXDH.)

4 An Automation Example with BB-HIBE

In this section, we illustrate each phase of the AutoGroup+ implementation described in Section 3
by showing the step-by-step translation of the Boneh-Boyen hierarchical identity-based encryp-
tion [BB04a] (or BB HIBE) scheme. We begin by recalling the scheme: an efficient HIBE scheme
(with ¢ = 2) [BB04b, §4.1] that is selective identity secure based on the standard Decisional
Bilinear-Diffie Hellman (DBDH) assumption.

This scheme consists of four algorithms: Setup, KeyGen, Encrypt and Decrypt. The Setup
algorithm takes as input a security parameter and defines public keys (ID) of depth ¢ as vectors
of elements in Zf). We define ¢ = 2, thus the identity is comprised of ID = (ID1,ID3) € Zg.
The algorithm generates system parameters as follows. First, select a random generator g € G,
a random « € Zjp, and sets g1 = g“. Then, pick random hi, h2,g2 € G. Set the master public
parameters params = (g, g1, g2, h1, he) and the master secret key msk = g2.

The KeyGen algorithm takes as input an ID = (IDy,1D9) € ZPQ, picks random 71,72 € Z, and
outputs:

di = g% (1P b)) (1 1P2 - ho)2 dy = g™ dy = g™

and the algorithm outputs d;p = (dy, d2, d3)

The Encrypt algorithm takes as input the public parameters params, an identity ID and a message
M € Gp. To encrypt the message M under the public key ID = (IDy,1D;), picks a random s € Z,,
and computes:

C = (e(g1,92)° - M, g%, (g1"P - h1)®, (91772 - ha)?)

and the algorithm outputs C = (C1, Cs, Cs, Cy).
The Decrypt algorithm takes as input a private key drp = (di,d2,ds) and a ciphertext C' and

computes M as:
e(Cs,dz) - e(Cy,d3)

6(021 dl)
The scheme is based on the DBDH assumption.

M=0C-

Assumption 1 (Decisional Bilinear Diffie-Hellman). Let g generate group G of prime order p €
O(2*) with mapping e : G x G — Gp. For all p.p.t. adversaries A, the following probability is
negligible in \:
% — Prla,b,c < Zp,z + {0,1}, A = ¢,
B=g"C =g To=elg,9)" T1 + Gr;
2+ Alg,A,B,C,T,) : z = 2]|.
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Step 1: Generating SDL Inputs In order for AutoGroup+ to perform the translation, we first
begin by transcribing the scheme, reduction and the DBDH assumption into SDL. We provide the
SDL description of the above scheme, reduction and assumption in Appendix B. The reader will
notice that the SDL descriptions closely and concisely follow the paper counterpart. This design
is on purpose as to reduce the burden of transcribing these constructions for AutoGroup+ users.
Indeed, in our experience the most time consuming and tedious part is in specifying the reductions
accurately.

Step 2: Extracting the Dependencies Once the SDLs have been generated along with the
metadata and the user’s desired optimization goal, the user can proceed with executing Auto-
Group+ to begin deriving the dependency graphs for each input file. AutoGroup+ programmati-
cally extracts the dependencies from the SDL descriptions starting with the assumption(s), then
the reduction(s) and finally, the scheme. The dependency graph diagrams for BB HIBE [BB04b,
§4.1] are included in Figures 2, 3, and 4. Note that these diagrams were generated automatically
by our tool; we believe this feature provides more transparency to make it easier for humans to
verify that the software is operating correctly. In “naming” the nodes of our dependency graphs,
we closely follow the naming conventions that the user employed in the SDL, thus supporting the
quick and easy verification.

Step 3: Merge the Graphs In Figure 5, we show the third step in AutoGroup+ which is to
merge the multiple dependency graphs (assumption, reduction and scheme graphs) into one single
graph.

Step 4: Assignment of Variables With the merged graph, we encode the pairing equations as
a logical formula as in AutoGroup but also encode certain group elements in the dependency graph
as additional constraints to the solver (with optimization requirements):

P1[0] # P1[1] A P2[0] # P2[1] A P3[0] # P3[1] A P4[0] # PA4[1]

Recall that pairing identifiers (e.g., P2[0], P2[1]) are unique references which refer to pairing inputs
from the scheme (e.g., e(Cs,d3)).

Step 5: Search for an Optimal Solution In our BB HIBE example, the goal is to minimize the
number of splits in the master public parameters params, so this requires specifying the following
parameters of the EvalGraph function. Let B = {g, 91,92, h1,h2} be the set of elements in the
public parameters we wish to minimize and let G be an encoding of the merged dependency graph
shown in Figure 5. As reflected in Table 8, the solver identifies 16 possible solutions for the BB
HIBE scheme and computes the following on each solution as S; = EvalGraph(A4;, B, G) where
A; is the j-th set of possible variable assignments. Recall that EvalGraph simply applies a given
solution to G and records how elements of B are assigned. From the set S, the solver finds
an assignment that has the fewest number of duplicated public key elements with the smallest
overall size. Based on this criteria, the solver returned a optimal solution in the fifth step which
consisted of 2 splits (i.e., two duplicated elements). The new public key elements are assigned as
B' =1{9,3,91,92, G2, h1,ha} € G} x G3. This constitutes only an addition of 2 group elements in
Ga.
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Figure 2: Dependency graph for the DBDH instance generated by AutoGroup+.

Figure 3: Dependency graph that merges Setup, KeyGen, Encrypt and Decrypt algorithms in BB
HIBE and generated by AutoGroup+. For brevity, we only show the combined scheme graph and
omit the smaller ones for each routine in the scheme. Note that nodes P1 through P4 represent
unique pairing identifiers, with a 0 index representing a left-hand pairing element and a 1 the right.

Figure 4: Dependency graph for the reduction to DBDH in BB HIBE. This graph was generated
by AutoGroup—+.
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Figure 5: The merged dependency graph for the assumption, reduction to DBDH, and the BB
HIBE scheme. This graph was generated by AutoGroup+.

Step 6: Assignment of Variables In the last step, AutoGroup+ splits the graph as dictated
by the optimal solution found by the solver. The resulting graphs for G; and Gy assignments for
the BB HIBE scheme are shown in Figure 6. AutoGroup+ programmatically converts the split
graph into an asymmetric translation for the scheme and assumption. We improve on code from
AutoGroup to do the former translation and write a new module to do the latter (see Figure 7 for the
graph split of co-DBDH). These resulting SDL files are provided in Appendix B.2. As mentioned
before, there is a publicly-available tool (see Section 2.3) for automatically turning this SDL into
C++, Python or INTEX.

5 AutoGroup+: Experimental Evaluation

We tested AutoGroup+ on 9 schemes, with 3-4 optimization options and 4 different levels of BB
HIBE, for 48 total translations.? Figure 8 summarizes the translation times and resulting scheme
sizes.'® To demonstrate the improvement in running times due to both the asymmetric setting
and AutoGroup—+’s optimizations, Figure 9 includes over 140 timing experiments, showing drastic
improvements. In Figure 10, we summarize the effect of scheme complexity on AutoGroup+ conver-
sion time by varying the complexity of BB HIBE. We note that even given a more complex scheme
than attempted by any other tool, AutoGroup+ still provides fast conversion times.

System Configuration. All of our benchmarks were executed on a standard workstation that has a
2.20GHz quad-core Intel Core i7-2720QM processor with 8GB RAM running Ubuntu 11.04 LTS,
Linux Kernel version 2.6.38-16-generic (x86-64-bit architecture). Our measurements only use a
single core of the Intel processor for consistency. The AutoGroup+ implementation utilizes the

9Currently the tool does not support the assumption minimization option for schemes with more than one as-
sumption. This is future work, although we would like to explore how valuable assumption minimization is to tool
users.

10We only give details for two variations of BB HIBE because the results are similar for all levels.
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(a) Showing G; elements in the scheme (b) Showing G elements in the scheme

Figure 6: The dependency graphs for the asymmetric translation of BB HIBE scheme only (with
PK optimization). This graph was generated by AutoGroup+.

Figure 7: The dependency graph for the co-DBDH assumption and generated by AutoGroup+.

same building blocks as AutoGroup which include the MIRACL library (v5.5.4) and/or RELIC
cryptographic toolkit [AG], Charm v0.43 [AGM*13] in C++ or Python code, and the Z3 SMT
solver (v4.3.2).

Limitations. In Section 3.1.1, we provide an example of a scheme which falls into a category of things
that Abe et al. warned about and on which AutoGroup gets confused. AutoGroup tries to power
through and split the hash output (which it cannot really do because the discrete log is unknown),
so while it eventually outputs some SDL, this SDL is not a proper translation. Unlike AutoGroup,
AutoGroup+ includes logic to output a warning when processing such inputs and continues trying
to translate the scheme. If the verification check of a valid split fails (e.g., due to hash split), then
AutoGroup+ identifies the split as invalid and attempts checking the next best solution. If there
are no such solutions, AutoGroup+ outputs no solution.
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Conversion Number of Group Elements Assumption Num.
Time Public Key Secret Key Ciphertext Assumption Solutions

ID-Based Enc.
BB04 HIBE [BB04a, §4] Symmetric (1 = 2) - G G* G* x Gr GTx Gr DBDH
Asymmetric [Min. PK] 592 ms G x G G, x G3 G? x Gy x Gr G} x G} x Gr 16
Asymmetric [Min. SK] 641 ms G} x G G} G3 x Gr G} x G3 x Gr 16
Asymmetric [Min. CT)] 626 ms G} x G G G} x Gr G} x G3 x Gr 16
Asymmetric [Min. Assump] 582 ms Gi x Gi G3 G} x Gr G} x G3 x Gr 16
BB04 HIBE [BB04a, §4] Symmetric (1 = 9) - G2 G0 G x Gr G" x Gr DBDH
Asymmetric [Min. PK] 20629 ms GI* x G3 Gy x G G) x G2 x Gr G} x G} x Gr 2048
Asymmetric [Min. SK] 15714 ms Gi? x Git Gi° G0 x Gr G3 x G3 x Gy 2048
Asymmetric [Min. CT] 15690 ms Gl x G2 GY° Gi®x Gr G} x G3 x Gr 2048
Asymmetric [Min. Assump] 20904 ms Gl x GI? Gl G0 x Gy G x G3 x Gy 2048
GENTRY06 [Gen06, §3.1] Symmetric - G Zp x G G x G% G x Gr trunc. dec. ¢-ABDHE
Asymmetric [Min. PK] 669 ms G? x G} Zy x Gy G1 x G% Gi” X G§+" x Gy 4
Asymmetric [Min. SK] 718 ms GI x G} Z, x Gy Gy x G2 G x G5 x Gy 4
Asymmetric [Min. CT) 723 ms G? x G2 Zp x Gy Gi1 x G2 G % G X Gy 4
Asymmetric [Min. Assump] 676 ms G? x G} Zy X Gy G, x G& G x Gy x Gr 4
WATERS05 [Wat05, §4] Symmetric - G G? G? x Gr G x Gy DBDH
Asymmetric [Min. PK] 725 ms Gt x G} G1 x Gy G1 x Gy x Gp G} x G} x Gr 8
Asymmetric [Min. SK] 770 ms G x Gyt G3 G3 x Gr G} x G3 x Gr 8
Asymmetric [Min. CT] 767 ms G x Gyt G3 G? x Gr G3 x G3 x Gy 8
Asymmetric [Min. Assump) 716 ms G x Gyt G? G2 x Gr G} x G} x Gr 8
WATERS09 (DSE) [Wat09, §3.1] Symmetric - GB x Gr G® x Zy Z, x G x Gr (G*x Gr), (G°), (G5) DBDH, DLIN, DLIN
Asymmetric [Min. PK] 6217 ms GI°xG3xGr | GI xGixZ, | G} xGj x Gr (G} x G} x Gr), (G§ x GY) 256
Asymmetric [Min. SK] 5871 ms G] x G} x Gr G} x Z, G3 x Gr (G} x G3 x Gr), (G$ x GY), (G} x GS) 256
Asymmetric [Min. CT] 5858 ms G1® x G} x Gr G x Z, G{ x Gr (G} x G3 x Gr), (G} x GS), (G$ x GS) 256
Asymmetric [Min. Assump) 6228 ms GI’xG3xGr | GIx Gy xZ, | G xG} xGr | (Gf x G} x Gr),(G§ x GY), (G} x GY) 256
Broadcast Encryption
BGWO05 [BGWO05, §3.1] Symmetric (n users) - G G G’ G x Gr decision I-BDHE
Asymmetric [Min. PK] 530 ms G x G3» Go G? x Gr G2 x G2 x Gr 4
Asymmetric [Min. SK] 601 ms G3" x Gt Gy G3 x Gr G2 x G2 x Gr 4
Asymmetric [Min. CT] 587 ms G x G G2 G2 x Gr G¥ x G2 x Gp 4
Asymmetric [Min. Assump] 544 ms Gt x G G2 G2 x Gr G¥ x G x G 4
Signature
ACDKNO [ACD¥12, §5.3] Symmetric - G™® G G* (G, (G°), (G5 CDH, DLIN, DLIN
Asymmetric [Min. PK] 18216 ms Gi*x G3 52 Gy x G (G? x GY), (G2 x GY), (G2 x GY) 1024
Asymmetric [Min. Sig] 14689 ms G§ x G&* G3 G} (G} x G3), (G} x G3), (G§ x G3) 1024
Asymmetric [Min. Assump] 18135 ms G} x G3* G? GI x G» (G4 x G3), (G x G2), (GY x G3) 1024
BLS [BLS04, §2.2] Symmetric - G Z, G G* CDH
Asymmetric [Min. PK] 515 ms G3 z; G, (G x G3), (G} x G3), (G} x G3) 2
Asymmetric [Min. Sig] 556 ms G3 z; G, (G x G3), (G} x G3), (G} x G3) 2
Asymmetric [Min. Assump) 517 ms G3 7 Gy (G x G3), (G} x G2), (G} x G3) 2
CLO04 [CL04, §3.1] Symmetric - G? z* G? G? LRSW
Asymmetric [Min. PK] 278 ms G3 x Gy z}",z G3 G} 2
Asymmetric [Min. Sig] 328 ms G1 x G} z? G} G3 2
Asymmetric [Min. Assump) 275 ms G} x Go 72 G3 G3 2
WATERS05 [Wat05, §7] Symmetric - G G G G"x Gr DBDH
Asymmetric [Min. PK] 724 ms G} x Gy G3 Gy x Ga G} x G x Gr 8
Asymmetric [Min. Sig] 721 ms Gt x Gyt G, G? G} x G3 x Gy 8
Asymmetric [Min. Assump] 755 ms Gi™™ x G} Gy G1 x Gy G} x G3 x Gr 8

Figure 8: A summary of the experimental evaluations of AutoGroup+ on a variety of schemes and
optimization options. For the symmetric baseline with curve $S51536, elements in G are 1536 bits
and Gr are 3072 bits. For the asymmetric translations with BN256, elements in G; are 256 bits,
Go are 1024 bits, and G are 3072 bits. For BGWO05, the private key size is listed for a single user.

5.1 Comparison with ACSC/Charm

Our experiments have five schemes in common with public implementations in the Advanced Crypto
Software Collection [Con] and Charm [AGM*13]. Where we have matches, our new results confirm
the security and optimality of those (unproven) implemented translations.

For Waters 2009 [Wat09], we compare with the Charm implementation by Fan Zhang. For
our PK-size optimization, our translation is 3 elements shorter (we split only g, whereas they split
g,w,u,h.) For our ciphertext-size optimization, it looks the closest to theirs, but they do not
match. Both translations have short ciphertexts leaving all base elements in G;. However, the
Charm translation appears to have shifted some elements from the public key to the secret key and
dropped some elements from the master secret key (e.g., we split v and include both in the MSK,
because that is the naive way to do it, but they use the v split for G; only in the Setup and then
drop it from the MSK.) While we cannot confirm the security of this implementation using our tool
(so we believe this is left as an open question), the tool did produce a translation with the same
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Time®
Setup Keygen | Encrypt/ Decrypt/
Sign Verify

1D-Based Enc.
BB04 HIBE [BB04a, §4] Symmetric (S51536) (1 = 2) 346.47 ms | 84.75 ms 118.64 ms 133.48 ms
Asymmetric (BN256) [Min. PK] 5.09 ms 4.79 ms 12.92 ms 21.36 ms
Asymmetric (BN256) [Min. SK] 8.15 ms 2.95 ms 14.95 ms 21.32 ms
Asymmetric (BN256) [Min. CT)] 9.84 ms 6.23 ms 12.38 ms 21.22 ms
Asymmetric (BN256) [Min. Assump] 9.08 ms 7.30 ms 12.27 ms 21.64 ms
BB04 HIBE [BB04a, §4] Symmetric (S51536) (1 = 9) 892.69 ms | 283.11 ms | 217.39 ms 446.10 ms
Asymmetric (BN256) [Min. PK] 9.25 ms 17.64 ms 17.10 ms 70.84 ms
Asymmetric (BN256) [Min. SK] 20.53 ms 11.14 ms 24.36 ms 71.45 ms
Asymmetric (BN256) [Min. CT)] 21.60 ms 27.02 ms 16.48 ms 72.03 ms
Asymmetric (BN256) [Min. Assump)] 21.68 ms 31.96 ms 16.77 ms 70.48 ms
GENTRYO06 [Gen06, §3.1] Symmetric (SS1536) 172.30 ms | 28.23 ms 137.79 ms 48.42 ms
Asymmetric (BN256) [Min. PK] 2.88 ms 2.47 ms 21.08 ms 10.01 ms
Asymmetric (BN256) [Min. SK] 4.22 ms 1.18 ms 22.46 ms 9.96 ms
Asymmetric (BN256) [Min. CT)] 2.93 ms 2.53 ms 21.02 ms 10.02 ms
Asymmetric (BN256) [Min. Assump)] 2.88 ms 2.53 ms 21.10 ms 10.09 ms
WATERS05 [Wat05, §4] Symmetric (S51536) 908.94 ms | 29.78 ms 78.08 ms 111.76 ms
Asymmetric (BN256) [Min. PK] 10.31 ms 2.04 ms 11.98 ms 14.23 ms
Asymmetric (BN256) [Min. SK] 24.11 ms 1.37 ms 13.68 ms 14.11 ms
Asymmetric (BN256) [Min. CT)] 25.39 ms 3.67 ms 11.25 ms 14.23 ms
Asymmetric (BN256) [Min. Assump] 23.81 ms 1.36 ms 13.71 ms 14.38 ms
WATERS09 (DSE) [Wat09, §3.1] Symmetric (551536) | 755.50 ms | 195.27 ms | 212.88 ms 414.79 ms
Asymmetric (BN256) [Min. PK] 23.13 ms 9.71 ms 13.70 ms 66.45 ms
Asymmetric (BN256) [Min. SK] 36.83 ms 7.07 ms 20.08 ms 66.42 ms
Asymmetric (BN256) [Min. CT)] 34.41 ms 14.82 ms 11.08 ms 66.92 ms
Asymmetric (BN256) [Min. Assump)] 29.90 ms 11.09 ms 13.03 ms 66.92 ms
Broadcast Encryption
BGWO05 [BGWO05, §3.1] Symmetric (551536) (n =10) | 376.84 ms | 140.27 ms 86.96 ms 68.65 ms
Asymmetric (BN256) [Min. PK] 55.29 ms 13.98 ms 11.457 ms 6.13 ms
Asymmetric (BN256) [Min. SK] 38.45 ms 5.82 ms 12.49 ms 8.122 ms
Asymmetric (BN256) [Min. CT] 37.75 ms 12.32 ms 11.18 ms 6.27 ms
Asymmetric (BN256) [Min. Assump)] 37.74 ms 12.31 ms 11.186 ms 6.12 ms
Signature
ACDKNO [ACD™12, §5.3] Symmetric (551536) 395.23 ms | 497.04 ms | 275.99 ms 937.14 ms
Asymmetric (BN256) [Min. PK] 9.05 ms 17.19 ms 15.27 ms 147.62 ms
Asymmetric (BN256) [Min. Sig] 8.31 ms 22.65 ms 14.33 ms 152.60 ms
Asymmetric (BN256) [Min. Assump)] 8.43 ms 22.23 ms 13.94 ms 147.77 ms
BLS [BLSO04, §] Symmetric (S51536) - 93.20 ms 92.61 ms 167.73 ms
Asymmetric (BN256) [Min. PK] - 2.99 ms 0.74 ms 14.20 ms
Asymmetric (BN256) [Min. Sig] - 3.00 ms 0.75 ms 14.20 ms
Asymmetric (BN256) [Min. Assump)] - 3.03 ms 0.69 ms 14.18 ms
CL04 [CLO4, §3.1] (551536) - 164.7 ms | 178.18 ms 973.48 ms
Asymmetric (BN256) [Min. PK] - 9.27 ms 15.12 ms 121.61 ms
Asymmetric (BN256) [Min. Sig] - 14.54 ms 7.38 ms 119.16 ms
Asymmetric (BN256) [Min. Assump] - 11.53 ms 15.32 ms 124.19 ms
WATERS05 [Wat05, §7] (551536) - 720.75 ms 29.72 ms 135.00 ms
Asymmetric (BN256) [Min. PK] - 10.42 ms 2.02 ms 21.44 ms
Asymmetric (BN256) [Min. Sig] - 25.60 ms 1.43 ms 23.13 ms
Asymmetric (BN256) [Min. Assump] - 10.18 ms 2.01 ms 21.42 ms

* Average time measured over 100 test runs and the standard deviation in all test runs were within £1% of the average.

Figure 9: A summary of the running times of the AutoGroup+ translations using curve BN256 as
compared to the running times using the roughly security-equivalent symmetric curve SS1536 in
MIRACL. The asymmetric setting plus AutoGroup+’s optimizations cut the running times by one
or two orders of magnitude.

ciphertext-size that is secure.

For BGW 2005 [BGWO05], we compared with the C implementation on the ACSC website by
Matt Steiner and Ben Lynn. Indeed, our translations that minimize the public parameters or
ciphertext size are the same, and the same as their manual translation. We confirm security and
PP /ciphertext-size optimality.

For BB HIBE [BB04a], Charm has a full HIBE implementation. We tested it for a minimum of
2 levels, but their implementation matches ours for ciphertext minimization, except that they add
a precomputed pairing (element in G7) to the public key so that it does not have to be done per
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Conversion Num.
Time ‘ Solutions

BB04 HIBE [BB04a, §4] (1 = 2) - -
Asymmetric [Min. PK] 592 ms 16
Asymmetric [Min. SK] 641 ms 16
Asymmetric [Min. CT] 626 ms 16
Asymmetric [Min. Assump] 582 ms 16
BB04 HIBE [BB04a, §4] (L = 6) - -
Asymmetric [Min. PK] 2361 ms 256
Asymmetric [Min. SK] 2019 ms 256
Asymmetric [Min. CT] 2023 ms 256
Asymmetric [Min. Assump] 2375 ms 256
BB04 HIBE [BB04a, §4] (1= 7) - -
Asymmetric [Min. PK] 4555 ms 512
Asymmetric [Min. SK] 3644 ms 512
Asymmetric [Min. CT] 3662 ms 512
Asymmetric [Min. Assump] 4519 ms 512
BB04 HIBE [BB04a, §4] (1 = 8) - -
Asymmetric [Min. PK] 9344 ms 1024
Asymmetric [Min. SK] 7148 ms 1024
Asymmetric [Min. CT] 7194 ms 1024
Asymmetric [Min. Assump] 9299 ms 1024
BB04 HIBE [BB04a, §4] (1= 9) - -
Asymmetric [Min. PK] 20629 ms 2048
Asymmetric [Min. SK] 15714 ms 2048
Asymmetric [Min. CT] 15690 ms 2048
Asymmetric [Min. Assump] 20904 ms 2048

Figure 10: A summary of the conversion times of AutoGroup+ for various levels/degrees of com-
plexity of BB04 HIBE [BB04a, §4] and a variety of optimization options.

encryption. This impacts only efficiency. We confirm security and ciphertext-size optimality.

For CL [CL04], we can confirm that the Charm implementation is secure and public-key-size
optimal. However, in the more likely event that one wants to minimize signature size, AutoGroup+
found a translation with a shorter signature.

For BLS [BLS04], our translations also match. This is a simple case with only two translation
options.

Charm [AGM™13] also includes variants of the Waters encryption and signature schemes [Wat05]
from 2005, but we translated the original schemes (as did [AGH13, AGOT14]), so our translations
are not directly comparable to these Charm variants.

5.2 Comparison with Abe et al.

Abe et al. [AGOT14] tested their method on two encryption schemes: Waters 2005 [Wat05] and
Waters 2009 (Dual System Encryption) [Wat09]. They looked at minimizing the size of the public
key and the Type-IIT assumption. We conjecture that practitioners would be more interested in
minimizing ciphertext or private key size, so our summary also includes those optimizations.

For Waters 2005, AutoGroup+ found the same construction as their semi-automated method.
As remarked in Section 3.1.1, their dependency graph for this scheme included some unnecessary
dependencies. Waters [Wat05] clearly states to choose ga, v, u; as fresh random generators, but Abe
et al. explicitly “assume” that they are generated from a common generator g. From a functionality
and security standpoint of the Type-I scheme, this distinction certainly does not matter. However,
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it does change the intermediate dependency graphs, which could in some cases affect the output
(though it does not in this situation). Both their partial automation and our full automation of
Waters 2005 took under one second.

For Waters 2009, AutoGroup+ first appeared to find a PK-optimized construction with one less
group element than the PK-optimized construction of Abe et al. [AGOT14]. However, subsequent
discussions [AGOT15] determined that this was merely the product of a different counting method;
the numbers reported in this work are the correct ones for both AutoGroup+and the Abe et al.
method.

In the original work [AGOT14], no schemes with interactive assumptions were reported on. In
subsequent communcations [AGOT15], Abe et al. demonstrated a translation for the Camenisch-
Lysyanskaya (CL) signatures [CLO04] based on the interactive LSRW assumption. We derived the
SDL files for the scheme, assumption and proof and ran it through AutoGroup+. The results
matched. (See Appendix C for the CL graph split).

Drawing and merging the dependency graphs by hand is tedious and becomes infeasible for
a complex scheme like [ACD"12]. In addition, the Abe et al. graph splitting program took 1.75
hours for Waters09, whereas our tool handled everything in 6.5 seconds. Thus, we find that it is
considerably easier and faster to transcribe the SDL and use AutoGroup+-.

5.3 Comparison with AutoGroup

The AutoGroup tool [AGH13| was used as the starting point for our implementation, hence the
name of AutoGroup+. Our 48 translation experiments overlap with AutoGroup in 14 points (seven
schemes in common and they do fewer optimizations). For these 14, the tools found the same
constructions. However, a major difference is that with AutoGroup+, we have security guarantees.
This required us to write new SDL descriptions for all the assumptions and proofs involved.

Indeed, one crucial question was how the security logic would increase translation times. We
focused our effort on leveraging an SMT Solver to help handle this security logic, which kept the
running times of AutoGroup+ within a few seconds of AutoGroup.

In addition to the security logic we added, we also found that the public key optimization flag
for encryption was not implemented. Because we wanted to compare our results with [AGOT14],
we implemented it.

AutoGroup was tested on one signature scheme omitted here. Boneh-Boyen [BB04c| has a nested
proof structure that falls outside of the black box reductions considered in this work.

5.4 Comparison with manual translations

The Dual System Encryption scheme of Waters [Wat09] has a few manual translations with a secu-
rity analysis. Ramanna, Chatterjee and Sarkar [RCS12] provide a variety of translations, one with
the smallest public parameter /key size, at the cost of introducing some mild complexity assump-
tions. Similarly, Chen, Lim, Ling, Wang and Wee [CLL" 13| presented a translation introducing
the SXDH assumption, which achieved the shortest ciphertext size. These results are superior to
those derived by AutoGroup+ and [AGH13, AGOT14], but it is not yet clear how to generalize and
systematize the human creativity used.
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6 Conclusions

Automation is the future for many cryptographic design tasks. This work successfully demonstrates
automating a complex translation of a scheme from one algebraic setting to another. There was a
demonstrated need for such a compiler both for pairing designers and implementors. Its realization
combined and improved on contributions from the systems [AGH13] and theory [AGOT14] com-
munities. The result is a practical tool, AutoGroup+, that enables secure pairing translations for
everyone.

7 Acknowledgments

The authors thank Masayuki Abe, Jens Groth, Miyako Ohkubo, Takeya Tango for very helpful
discussions regarding this work and their prior CRYPTO 2014 work.

References

[ACD'12] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako Ohkubo.
Constant-size structure-preserving signatures: Generic constructions and simple assumptions. Cryptology
ePrint Archive, Report 2012/285, 2012. http://eprint.iacr.org/.

[AG] D. F. Aranha and C. P. L. Gouvéa. RELIC is an Efficient Library for Cryptography. http://code.
google.com/p/relic-toolkit/.

[AGH13] Joseph A. Akinyele, Matthew Green, and Susan Hohenberger. Using SMT solvers to automate design
tasks for encryption and signature schemes. In ACM Conference on Computer and Communications
Security, CCS’13, pages 399-410, 2013.

[AGHP12] Joseph A. Akinyele, Matthew Green, Susan Hohenberger, and Matthew W. Pagano. Machine-generated
algorithms, proofs and software for the batch verification of digital signature schemes. In ACM CCS,
pages 474-487, 2012.

[AGM™'13] Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew W. Pagano, Michael Rushanan, Matthew
Green, and Aviel D. Rubin. Charm: a framework for rapidly prototyping cryptosystems. Journal of
Cryptographic Engineering, 3(2):111-128, 2013. http://www.charm-crypto.com/Main.html.

[AGOT14] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Takeya Tango. Converting cryptographic schemes from
symmetric to asymmetric bilinear groups. In CRYPTO, pages 241-260, 2014.
[AGOT15] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Takeya Tango, 2015. Private communications.

[BB04a] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random
oracles. In Advances in Cryptology - EUROCRYPT 2004, volume 3027, pages 223—-238. 2004.

[BBO4b] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity based encryption without random
oracles. Cryptology ePrint Archive, Report 2004/172, 2004. http://eprint.iacr.org/.

[BB04c] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In EUROCRYPT, volume 3027,
pages 382-400, 2004.

[BFO1] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In CRYPTO,
pages 213-229, 2001.

[BFFT14] Gilles Barthe, Edvard Fagerholm, Dario Fiore, John C. Mitchell, Andre Scedrov, and Benedikt Schmidt.
Automated analysis of cryptographic assumptions in generic group models. In CRYPTO 2014, pages
95-112, 2014.

[BGWO05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with short cipher-
texts and private keys. In CRYPTO’05, pages 258275, 2005.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. Journal of Cryp-
tology, 17(4):297-319, 2004.

21


http://eprint.iacr.org/
http://code.google.com/p/relic-toolkit/
http://code.google.com/p/relic-toolkit/
http://www.charm-crypto.com/Main.html
http://eprint.iacr.org/

[BNOG6]
[CLO4]
[CLL*13]
[CLL*14]

[Con]
[DMBOg]

[Gal01]
[Gen06]

[GPS06]
[Gt12]
[Kril5]
[PSV06]
[RCS12]
[Tea]
[Wat05]

[Wat09)]

Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order. In SAC,
volume 3897, pages 319-331, 2006. http://cryptojedi.org/papers/#pfcpo.

Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear
maps. In CRYPTO, volume 3152, pages 56-72, 2004.

Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee. Shorter IBE and signatures via
asymmetric pairings. In Pairing-Based Cryptography—Pairing 2012, pages 122—-140. Springer, 2013.

Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee. Shorter identity-based encryption
via asymmetric pairings. Des. Codes Cryptography, 73(3):911-947, 2014.

ACSC Contributors. Advanced crypto software collection. http://hms.isi.jhu.edu/acsc/.

Leonardo De Moura and Nikolaj Bjgrner. Z3: an efficient SMT solver. In Proceedings of the Theory and
practice of Software, TACAS’08/ETAPS’08, pages 337-340, 2008.

Steven D. Galbraith. Supersingular curves in cryptography. In ASIACRYPT, pages 495-513, 2001.

Craig Gentry. Practical identity-based encryption without random oracles. In EUROCRYPT, pages
445-464, 2006.

Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers, 2006.
Cryptology ePrint Archive: Report 2006/165.

Torbjorn Granlund and the GMP development team. GNU MP: The GNU Multiple Precision Arithmetic
Library, 5.0.5 edition, 2012. http://gmplib.org/.

Sathvik Krishnamurthy. HP to Acquire Voltage Security to Expand Data Encryption Security Solutions
for Cloud and Big Data. http://www.voltage.com/blog/releases, February 9, 2015.

Dan Page, Nigel Smart, and Fre Vercauteren. A comparison of MNT curves and supersingular curves.
Applicable Algebra in Eng,Com and Comp, 17(5):379-392, 2006.

Somindu C. Ramanna, Sanjit Chatterjee, and Palash Sarkar. Variants of Waters’ dual system primitives
using asymmetric pairings - (extended abstract). In PKC ’12, pages 298-315, 2012.

EasyCrypt Project Team. Easycrypt: Computer-aided cryptographic proofs. https://www.easycrypt.
info/trac/.

Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT ’05, volume
3494 of LNCS, pages 320-329. Springer, 2005.

Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions. In
CRYPTO, pages 619-636, 2009.

A Current Efficiency Numbers for Type-I and Type-I1I Pairings

Size (in bits) Exp. Time (in milliseconds)
Sym. vs. Asym. Setting G, ‘ Go ‘ Gr H Gq ‘ Go ‘ Gr H Pairing Time
SS1536 (or Type-I) 1536 1536 3072 5.3 ms 5.3 ms 1.0 ms 14.9 ms
BN256 (or Type-III) 256 1024 3072 0.2 ms 1.2 ms 2.1 ms 2.2 ms

Table 1: Comparing Size and Efficiency of Pairing-based Curves.

We include current efficiency numbers for Type-I and Type-II1 groups as implemented in the
highly efficient RELIC cryptographic toolkit version 0.4 [AG] (using the GMP library [Gt12] for big
number operations and the default configuration options for prime field arithmetic) measured on a
standard workstation.'’ In Table 1, we show the differences between Type-I and Type-III pairings

'19.4 GHz Intel Core i5 processor and 8GB of RAM (1067 MHz DDR3) running Mac OS X Lion version 10.7.5
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at the same security level in terms of group representation and efficiency. > A typical candidate
for Type-I are supersingular elliptic curves (or SS) [Gal0l, PSV06] in which the embedding degree
is typically small (i.e., & < 6). One such example is a supersingular curve at the 128-bit security
level where the prime order of the group is large, |p| = 1536-bits, and the embedding degree is
k = 2. Conversely, one common Type-III candidate at the same security level are Barreto-Naehrig
(BN) [BNO6] curves in which the embedding degree is much larger (e.g., K = 12) and the prime
order can be as small as |p| = 256-bits. As reflected in Table 1, group operations and pairing times
in the Type-III setting can be drastically more efficient and have shorter representations than the
Type-I setting.

We remark on hashing into Type-I and Type-III pairing groups. In the Type-I setting, it is
feasible to hash arbitrary strings into G, e.g., for the SS curve, hashing arbitrary strings to G takes
on average 36.8 ms. In the Type-III setting (e.g., over ordinary elliptic curves), it is feasible to hash
arbitrary strings into both G; and Go independently with different costs, e.g., for the BN curve,
hashing to G; takes 0.04 ms and to Gy takes 0.37 ms on average (a ratio of roughly 9 to 1 from G,
to G1). See [GPS06] for more details.

B SDL Descriptions for Section 4

We now provide examples of the input and output Scheme Description Language (SDL) for Auto-
Group+.

B.1 SDL as Input

First we will show our SDL transcription of the DBDH assumption:

name := DBDH
setting := symmetric

BEGIN :: types

a := ZR
b := ZR
c :=ZR
z = ZR
END :: types

BEGIN :: func:setup

input := None

a := random(ZR)
b := random(ZR)
¢ := random(ZR)
z := random(ZR)

12A careful reader may observe that the exponentiation time for Gr in SS1536 appears surprisingly small. We
reassure the reader that this is not a typo. With the SS1536, Gy = F,? is a lower extension of a larger field, whereas
with BN256, Gr = Fpm7 which is a higher extension of a smaller field. Thus, even though the elliptic curve points
are larger with SS1536, the field multiplication operation in G is quite efficient. This does not apply to Gi, G2 as
those are doing scalar multiplication.
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g := random(G1)
assumpKey := list{g, a, b, c, z}

output := assumpKey
END :: func:setup

BEGIN :: func:assump

input := assumpKey

assumpKey := expand{g, a, b, c, z}
A:=g " a

B:=g~

C:=g "~ c

coinflip := random(bin)

BEGIN :: if

if { coinflip == 0 }

Z :=e(g, g ~ (a*bx*c)
else

Z :=e(g, g "~z
END :: if

assumpVar := list{g, A, B, C, Z}
output := assumpVar
END :: func:assump

Then, the full SDL transcription for the symmetric BB HIBE scheme [BB04b]:

name := BBO4HIBE
setting := symmetric

BEGIN :: types

M := GT

ID1 := ZR
ID2 := ZR
END :: types

BEGIN :: func:setup
input := None

g := random(G1)
alpha := random(ZR)
gl := g ~ alpha
h1 random(G1)
h2 := random(G1)
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g2 := random(G1)
g2alpha := g2 ~ alpha

msk := list{g2alpha}

pk := list{g, gl, g2, hl, h2}
output := list{msk, pk}

END :: func:setup

BEGIN :: func:keygen

input := list{pk, msk, ID1, ID2}
pk := expand{g, gl, g2, hl, h2}
msk := expand{g2alpha}

rl := random(ZR)

r2 := random(ZR)

d1 := glalpha * (((g1~ID1)*h1)"r1) * (((gl~ID2)*h2)"r2)
d2 := g " ril

d3 := g ~ r2

sk := list{d1l, 42, 43}
output := sk
END :: func:keygen

BEGIN :: func:encrypt
input := list{pk, M, ID1, ID2}
pk := expand{g, gl, g2, hl, h2}

s := random(ZR)

Cl := (e(gl,g2)7s) * M

C2 :=g " s

C3 := ((g1~ID1) * h1)"s

C4 := ((g17ID2) * h2)"s

ct := list{C1, C2, C3, C4}
output := ct

END :: func:encrypt

BEGIN :: func:decrypt
input := list{pk, sk, ct}

pk := expand{g, gl, g2, hl, h2}
ct := expand{Cl, C2, C3, C4}
sk := expand{dl, 42, 43}
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M :=Cl * ((e(C3,d2) * e(C4,d3))/(e(C2,d1)))

output := M
END :: func:decrypt

Finally, the reduction from [BB04b] for the BB HIBE scheme:
name := BBO4

setting := symmetric
1l :=2
k :=2

BEGIN :: types

1 := Int
j := Int
k := Int

M := 1ist{GT}
ID := list{ZR}
IDstar := list{ZR}
alphai := list{ZR}
h := list{G1}
r := list{ZR}

di := list{G1}
Ci := 1list{G1}
msk := G1

END :: types

BEGIN :: func:setup
input := list{IDstar}

:= random(ZR)
= random(ZR)
:= random(ZR)
:= random(ZR)
random(G1)
= g’\a
1= g’b
= g'c

QW ™>=0Mm N o T p

coinflip := random(bin)
BEGIN :: if
if { coinflip == 0 }

Z :=e(g, g)’(a *xDb * c)
else
Z :=e(g, gz
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END :: if

gl := A
g2 := B
g3 :=C

BEGIN :: for
for{i := 1, 1}
alphai#i := random(ZR)
h#i := (gl~-IDstar#i) * (g~alphai#i)
END :: for

pk := list{g, gil, g2, h}

assumpVar := list{A, B, C, Z}

reductionParams := list{g3, alphai, IDstar}

output := list{msk, pk, reductionParams, assumpVar}
END :: func:setup

BEGIN :: func:queries

input := list{j, pk, ID, reductionParams}

pk := expand{g, gl, g2, h}

reductionParams := expand{g3, alphai, IDstar}
BEGIN :: for

for{i := 1, j}
r#i := random(ZR)
END :: for

dotProdl := init(G1)
BEGIN :: for
for{v := 1, j}
dotProdl := dotProdl * (((gl~(ID#v - IDstar#v)) * \
(g~alphai#v)) “r#v)
END :: for

dl := (g2~ ((-alphai#j) / (ID#j - IDstar#j))) * dotProdl

BEGIN :: for
for{i := 1, j}

BEGIN :: if
if {i ==3 1%}
di#j := (g2~ (-1/(ID#j - IDstar#j))) * (g r#j)
else
di#i := g r#i
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END :: if
END :: for

sk := list{d1l, di}
output := sk
END :: func:queries

BEGIN :: func:challenge

input := list{M, ID, reductionParams, assumpVar}
pk := expand{g, gl, g2, h}

assumpVar := expand{A, B, C, Z}

reductionParams := expand{g3, alphai, IDstar}
b := random(bin)

Cl := M#b * Z

C2 := g3

BEGIN :: for
for{i := 1, k}
Ci#k := g3 ~ alphai#i
END :: for

ct := list{C1, C2, Ci}
output := ct
END :: func:challenge

We provide the configuration file that embeds the metadata required by AutoGroup+ to perform
the translation:
schemeType = "PKENC"
assumption = ["DBDH"]
reduction = ["reductionBBO4HIBE"]
short = "public-keys"

masterPubVars
masterSecVars

["pk"]
["msk"]

keygenPubVar = "pk"
keygenSecVar = "sk"

ciphertextVar = "ct"
reducCiphertextVar = "ct"
reducQueriesSecVar = "4"
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B.2 Translated Scheme and Assumption SDL Descriptions

We now show the SDL outputs of AutoGroup+. The first is the SDL output of the co-DBDH
assumption:

name := DBDH
setting := asymmetric

BEGIN :: types

a := ZR
b := ZR
c = ZR
z = ZR
END :: types

BEGIN :: func:setup
input := None

a := random(ZR)

b := random(ZR)

¢ := random(ZR)

z := random(ZR)

gGl := random(G1)
gG2 := random(G2)
assumpKey := list{gGl, gG2, a, b, c, z}
output := assumpKey
END :: func:setup

BEGIN :: func:assump

input := assumpKey

assumpKey := expand{gGl, gG2, a, b, c, z}
A := (gGl~a)

BG1 := (gG1"b)

BG2 := (gG2°b)

CG1 := (gG17c)

CG2 := (gG27c)

coinflip := random(bin)

BEGIN :: if

if {coinflip == 0%}

Z := (e(gGl,gG2)"((a * b) * c))

else

Z := (e(gGl,gG2)"2)

END :: if

assumpVar := list{gGl, gG2, A, BG1, BG2, CG1, CG2, Z}
output := assumpVar

END :: func:assump
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The second SDL output is the asymmetric BB HIBE scheme [BB04b] that optimally minimizes
the public key parameters:

name := BBO4HIBE
setting := asymmetric

BEGIN :: types

M := GT

ID1 := ZR
ID2 := ZR
END :: types

BEGIN :: func:setup
input := None

gGl := random(G1)

gG2 := random(G2)

alpha := random(ZR)

gl := (gGl~alpha)

hil := random(ZR)

h1G1 := (gG1°h1)

h2 := random(ZR)

h2G1 := (gG1°h2)

g2 := random(ZR)

g2G1 := (gG1~g2)

g2G2 := (gG27g2)
g2alpha := (g2G1~alpha)
msk := list{g2alpha}
pk := list{gGl, gG2, gl, g2Gl, g2G2, hiG1l, h2G1}

output := list{msk, pk}
END :: func:setup

BEGIN :: func:keygen

input := list{pk, msk, ID1, ID2}

pk := expand{gGl, gG2, gl, g2Gl, g2G2, hiGl, h2G1}
msk := expand{g2alpha}

rl := random(ZR)

r2 := random(ZR)

dl := ((g2alpha * (((gl~ID1) * h1G1l)°r1)) * (((gl~ID2) * h2G1)"r2))
d2 := (gG27r1)

d3 := (gG27r2)

sk := list{d1, d2, d3}

output := sk
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END :: func:keygen

BEGIN :: func:encrypt
input := list{pk, M, ID1, ID2}
pk := expand{gGl, gG2, gl, g2Gl, g2G2, hiGl, h2G1}

s := random(ZR)

Cl := ((e(gl,g2G2)"s) * M)
C2 := (gG27s)

€3 := (((g1"ID1) * hi1G1)"s)
C4 := (((g1"ID2) * h2G1)~s)
ct := list{C1, C2, C3, C4}

output := ct
END :: func:encrypt

BEGIN :: func:decrypt
input := list{pk, sk, ct}

pk := expand{gGl, gG2, gl, g2G1, g2G2, hiGl, h2G1}
ct := expand{C1, C2, C3, C4}
sk := expand{dl, 42, d3}

M := (C1x((e(C3,d2) * e(C4,d3))/e(d1,C2)))

output := M
END :: func:decrypt

C Camenisch-Lysyanskaya Signature Scheme

Figure 11: Merged dependency graph that includes the Setup, KeyGen, Sign and Verify algorithms
in CL signatures. Recall that nodes P1 through P5 represent unique pairing identifiers, with a 0
index representing a left-hand pairing element and a 1 the right.
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a) Showing G; elements in the scheme b) Showing G elements in the scheme

Figure 12: The dependency graphs for the asymmetric translation of the CL signature scheme (with
PK optimization). This graph was generated by AutoGroup+.
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