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Abstract. Public-key cryptography based on the “ring-variant” of the
Learning with Errors (ring-LWE) problem is both efficient and believed
to remain secure in a post-quantum world. In this paper, we introduce
a carefully-optimized implementation of a ring-LWE encryption scheme
for 8-bit AVR processors like the ATxmega128. Our research contribu-
tions include several optimizations for the Number Theoretic Transform
(NTT) used for polynomial multiplication. More concretely, we describe
the Move-and-Add (MA) and the Shift-Add-Multiply-Subtract-Subtract
(SAMS2) technique to speed up the performance-critical multiplication
and modular reduction of coefficients, respectively. We take advantage
of incompletely-reduced intermediate results to minimize the total num-
ber of reduction operations and use a special coefficient-storage method
to decrease the RAM footprint of NTT multiplications. In addition, we
propose a byte-wise scanning strategy to improve the performance of a
discrete Gaussian sampler based on the Knuth-Yao random walk algo-
rithm. For medium-term security, our ring-LWE implementation needs
590 k, 672 k, and 276 k clock cycles for key-generation, encryption, and
decryption, respectively. On the other hand, for long-term security, the
execution time of key-generation, encryption, and decryption amount to
2.2 M, 2.6 M, and 686 k cycles, respectively. These results set new speed
records for ring-LWE encryption on an 8-bit processor and outperform
related RSA and ECC implementations by an order of magnitude.

Keywords: Ring learning with errors (Ring-LWE), public-key encryp-
tion, number-theoretic transform, discrete Gaussian sampling

1 Introduction

The vast majority of today’s widely-used public-key cryptosystems is based on
integer factorization and discrete logarithm problems, which are believed to be
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intractable with current computing technology. However, these hard problems
can be solved by using Shor’s algorithm [31] (or a variant of it) on a quantum
computer. Lattice-based cryptography is often considered a premier candidate
for realizing post-quantum cryptosystems [27]. Its security relies on worst-case
computational assumptions in lattices that will remain hard even for quantum
computers. In the recent past, a large body of research has been devoted to the
efficient implementation of lattice-based cryptosystems, whereby resource-con-
strained environments received particular attention (see e.g. [5, 9, 21]). This is
much owed to the fact that the Internet is currently in the midst of a transition
from a network connecting commodity computers (i.e. PCs and notebooks) to
a network of smart objects (“things”). Even today, there are significantly more
non-traditional computing devices connected to the Internet than conventional
computers [13]. Among the smart devices that are populating the Internet are
various kinds of sensors, actuators, meters, consumer electronics, medical mon-
itors, household appliances, vehicles, and even items of clothing. Many of these
devices are very restricted in terms of computing power, memory capacity, and
energy supply. For example, a typical wireless sensor node, like the widely-used
MICAz mote, features an 8-bit AVR ATmega processor clocked at 8 MHz and
a few kB of RAM. However, in order to enable such devices to communicate in
a secure way, they need to be capable of executing public-key cryptography as
otherwise end-to-end authentication and end-to-end key exchange would not be
possible. Implementing public-key algorithms on an 8-bit processor poses quite
a challenge, not only for RSA and ECC, but also post-quantum techniques like
lattice-based cryptography. This raises the question of how well the “cryptosys-
tems of the future” are suited for the “Internet of the future,” i.e. the so-called
“Internet of Things (IoT),” and one aspect of this question is the performance
of lattice-based cryptosystems on 8-bit platforms such as AVR [2].

The introduction of the Learning With Errors (LWE) problem [27] and its
ring variant (i.e. ring-LWE) [20] opened up a way to build efficient lattice-based
public-key cryptosystems. The first practical evaluations of LWE and ring-LWE
encryption were presented by Göttert et al. at CHES 2012 [14]. According to
their results, the ring-LWE encryption scheme is at least four times faster and
requires less memory than the encryption scheme based on the standard LWE
problem. A large variety of subsequent hardware and software implementations
of ring-LWE-based public-key encryption or digital signature schemes improved
performance and memory footprint [21, 9, 5, 6, 25]. Oder et al. [21] introduced
an efficient implementation of Bimodal Lattice Signature Schemes (BLISS) on
a 32-bit ARM Cortex-M4F processor; the most optimized variant of their soft-
ware needs 6 M cycles for signing, 1 M cycles for verification, and 368 M cycles
for key generation, respectively, at a medium-term security level. Recently, de
Clercq et al. [9] described a ring-LWE encryption scheme on exactly the same
ARM platform and reported an execution time of 121 k cycles per encryption
and 43.3 k cycles per decryption for medium-term security, which increases to
261 k cycles (encryption) and roughly 96.5 k cycles (decryption) when long-term
security is desired. The first implementation of a lattice-based cryptosystem on
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an 8-bit processor was published by Boorghany et al. in 2014 [5, 6]. They eval-
uated four lattice-based authentication protocols on both an 8-bit AVR and a
32-bit ARM processor. On the 8-bit platform (i.e. AVR), their implementation
of the Fast Fourier Transform (FFT) needs 755 k and 2.2 M cycles for medium
and long-term security, respectively. Thanks to the efficiency of the polynomial
multiplication and the Gaussian sampler function, their LWE-based encryption
scheme achieves an execution time of 2.8 M cycles for key generation, 3 M cycles
for encryption, as well as 1.4 M cycles for decryption, all at a medium-term se-
curity level. Very recently, Pöppelmann et al. [25] compared implementations
of ring-LWE encryption and the Bimodal Lattice Signature Scheme (BLISS) on
an 8-bit ATxmega128 processor. For medium-term security, they reported 1.3 M
cycles for ring-LWE encryption and 381 k cycles for decryption, respectively.

1.1 Research Contributions

This paper continues the line of research on the efficient implementation of the
ring-LWE encryption scheme on 8-bit AVR processors. Our core contributions
are several optimizations to reduce the execution time and RAM requirements
of ring-LWE encryption, decryption, and key generation. More specifically, the
contributions of this paper can be summarized as follows.

1. The efficiency of coefficient modular multiplication is crucial for high-speed
NTT operations. We present the Move-and-Add (MA) method to perform
the coefficient multiplication and the Shift-Add-Multiply-Subtract-Subtract
(SAMS2) technique to accelerate the reduction operation. The former aims
at reducing the number of add instructions by rescheduling the order of the
byte multiplications, whereas the latter replaces expensive MUL instructions
by cheaper shifts and additions.

2. In the NTT computations, the vast majority of execution time is spent on
performing modular reduction since it is the most frequent operation in the
innermost loop. We exploit the idea of incomplete modular arithmetic (see
e.g. [32]), which means we allow (i.e. tolerate) incompletely reduced inter-
mediate results for the coefficients and perform the reduction operation in a
“lazy” fashion. Our experimental results show that this approach decreases
the overall number of modular reductions by 6% on average.

3. The intermediate coefficients during the computation of an NTT require a
considerable amount of RAM. We use a special coefficient-storage method
that enables us to make full use of the allocated space. For example, when
the coefficients are 13 bits long, we keep 16 coefficients in 26 bytes, and save
in this way up to 19% RAM compared to the straightforward approach.

4. To increase efficiency of our discrete Gaussian sampler based on the Knuth-
Yao random walk algorithm [16], we propose a byte-scanning technique to
minimize execution time.

On basis of these optimizations, we present a total of four implementations
of a ring-LWE encryption scheme for the 8-bit AVR platform (e.g. AT(x)mega
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microcontrollers); two at the medium-term security level and two for long-term
security. For each of these two security levels, we developed both a High-Speed
(HS) and a Memory-Efficient (ME) variant. For medium-term security, the HS
implementation requires roughly 590 k, 672 k, and 276 k clock cycles to perform
a key-generation, encryption, and decryption, respectively. Alternatively, at the
long-term security level, the speed-optimized key-generation, encryption, and
decryption take 2.2 M, 2.6 M, and 686 k clock cycles, respectively. Both our HS
and ME implementation significantly improve the speed records for ring-LWE
encryption on an 8-bit AVR processor. Furthermore, it should be noted that all
optimizations described in this paper can also be used to speed up LWE-based
signature schemes (e.g. [23]) on the AVR platform.

1.2 Paper Outline

The rest of this paper is organized as follows. In the next section, we recap the
concepts of ring-LWE encryption schemes, including the NTT and Knuth-Yao
sampler. In Section 3, we focus on certain optimization techniques for NTT on
8-bit AVR processors. In particular, we present several optimizations to reduce
the execution time and memory consumption of NTT. In Section 4, we propose
optimizations for the Knuth-Yao sampler. Then, in Section 5, we summarize all
implementation results we obtained and compare them with some state-of-the-
art implementations of public-key cryptosystems, in particular LWE, RSA, and
ECC, on the same platform. Finally, we draw conclusions in Section 6.

2 Background

2.1 The Ring-LWE Encryption Scheme

The encryption schemes used in this paper are based on the ring version of the
Learning With Errors (i.e. ring-LWE) problem. The more general form of this
problem, i.e. the LWE problem, is parameterized by a dimension n ≥ 1, a mod-
ulus q, and an error distribution. This error distribution is generally taken as a
discrete Gaussian distribution Xσ with standard deviation σ and mean 0 so as
to achieve the best entropy/standard deviation ratio [10]. In the literature, the
LWE problem is, in general, defined as follows: Two polynomials a and s are
chosen uniformly from Znq . The first polynomial is a global polynomial, whereas
the second polynomial must be kept as a secret. The LWE distribution As,X is
defined over Znq ×Zq and comprises the elements (a, t) where t = 〈a, s〉+ e mod
q ∈ Zq for some error polynomial e sampled from the error distribution Xσ. In
the search version of the LWE problem, an attacker is provided with a polyno-
mial number of (a, t) pairs sampled from As,X and his task is to try to find the
secret polynomial s. Similarly, in the decision version of the LWE problem, the
attacker attempts to distinguish between a polynomial number of samples from
As,X and the same number of samples from Znq × Zq.

In 2010, Lyubashevsky et al. [20] proposed an encryption scheme based on
a more practical algebraic variant of the LWE problem defined over polynomial
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rings Rq = Zq[x]/〈f〉 with an irreducible polynomial f(x) and a modulus q. As
the name suggests, in the the ring-LWE problem, the elements a, s, and t are
polynomials in the ring Rq. Lyubashevsky et al.’s ring-LWE encryption scheme
was later optimized by Roy et al. [28] with the aim of reducing the cost of the
polynomial arithmetic. In their scheme, the polynomial arithmetic carried out
during a decryption operation requires only one Number Theoretic Transform
(NTT) operation. Besides this computational optimization, Roy et al.’s scheme
performs sampling from the discrete Gaussian distribution using a Knuth-Yao
sampler. In the remainder of this section, we will first describe the major steps
of Roy et al.’s version of the encryption scheme and thereafter we will recap the
mathematical concepts of the NTT and the Knuth-Yao sampling.

2.2 Key Generation, Encryption, and Decryption

In the following, we describe the steps used in the encryption scheme proposed
by Roy et al. [28]. We denote the NTT of a polynomial a by ã.

– Key generation stage Gen(ã): Two error polynomials r1, r2 ∈ Rq are sam-
pled from the discrete Gaussian distribution Xσ by applying the Knuth-Yao
sampler twice:

r̃1 = NTT(r1), r̃2 = NTT(r2)

and then an operation p̃ = r̃1 − ã · r̃2 ∈ Rq is performed. The public key is
the polynomial pair (ã, p̃) and the private key is the polynomial r̃2.

– Encryption stage Enc(ã, p̃, M): The input message M ∈ {0, 1}n is a bin-
ary vector of n bits. This message is first encoded into a polynomial in the
ring Rq by multiplying the bits of the message M by q/2. Thereafter, three
error polynomials e1, e2, e3 ∈ Rq are sampled from Xσ. The ciphertext can

be obtained as a set of two polynomials (C̃1, C̃2):

(C̃1, C̃2) = (ã · ẽ1 + ẽ2, p̃ · ẽ1 + NTT(e3 +M ′))

– Decryption stage Dec(C̃1, C̃2, r̃2): One inverse NTT has to be performed
to recover M ′:

M ′ = INTT(r̃2 · C̃1 + C̃2)

and then a decoder is used to recover the original message M from M ′.

2.3 Number Theoretic Transform

Our implementation adopts the Number Theoretic Transform (NTT) [7] to per-
form the required polynomial multiplications. An NTT can be seen as a variant
of the Fast Fourier Transform (FFT) that operates in a finite ring Zq. Instead
of using complex roots of unity, an NTT evaluates a polynomial multiplication
a(x) =

∑n−1
i=0 aix

i ∈ Zq in the n-th roots of unity ωin for i = 0, . . . , n− 1, where
ωn denotes a primitive n-th root of unity. Algorithm 1 shows the iterative form
of the NTT algorithm, which is taken from Cormen et al. [7].
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Algorithm 1. Iterative Number Theoretic Transform

Input: Polynomial a(x) ∈ Zq[x] of degree n− 1, primitive n-th root of unity ω ∈ Zq

Output: Polynomial a(x) = NTT(a) ∈ Zq[x]
1: a← BitReverse(a)
2: for i from 2 by 2i to n do
3: ωi ← ω

n/i
n , ω ← 1

4: for j from 0 by 1 to i/2− 1 do
5: for k from 0 by i to n− 1 do
6: U ← a[k + j]
7: V ← ω · a[k + j + i/2]
8: a[k + j]← U + V
9: a[k + j + i/2]← U − V

10: end for
11: ω ← ω · ωi

12: end for
13: end for
14: return a

As can be seen from Algorithm 1, an iterative NTT consists of three nested
loops. The outermost loop (i-loop, line 2 to 13) starts with i = 2 and increases
i by doubling it in each iteration. When i = n, the loop terminates, and so the
overall number of iterations is only log2(n). In each iteration, the value of the

so-called twiddle factor ωi is computed via an exponentiation ωi = ω
n/i
n , while

the value of ω is initialized with 1. Compared to the i-loop, the j-loop (i.e. line
4 to 12) executes more iterations, whereby the actual number of iterations can
be seen as a sum of a geometric progression for 2i with i starting from 0 and
having a maximum value of log2(n− 1). Thus, the j-loop is iterated n− 1 times
and, in each iteration, the twiddle factor ω is updated by performing a coeffi-
cient modular multiplication (line 11). Apparently, the innermost loop (i.e. the
k-loop, line 5 to 10) consumes the majority of the total execution time of the
NTT algorithm since it is iterated roughly n

2 · log2(n) times. In each iteration
of the innermost loop, the two coefficients a[i+ j] and a[i+ j + i/2] are loaded
from memory into registers, and then a[i+ j + i/2] is multiplied by the twiddle
factor ω. Thereafter, the values of a[k + j] and a[k + j + i/2] are updated and
stored in memory.

2.4 Gaussian Sampler

The ring-LWE cryptosystem needs samples from a discrete Gaussian distribu-
tion to provide the error polynomials during the key generation and encryption
operations. There are several approaches for sampling from a discrete Gaussian
distribution, among which we chose the algorithm of Knuth and Yao [16]. This
algorithm stores the probabilities of the sample points and performs a random
walk by following a binary tree, known as the Discrete Distribution Generating
(DDG) tree [16, 29, 12]. Such a DDG tree efficiently counts the visited non-zero
nodes to find the sample based on probability.
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Algorithm 2. Low-level implementation of Knuth-Yao sampling [29]

Input: Probability matrix Pmat , random number r, modulus q
Output: Sample value s
1: d← 0
2: for col from 0 by 1 to MAXCOL do
3: d← 2d + (r&1)
4: r ← r � 1
5: for row from MAXROW by −1 to 0 do
6: d← d− Pmat [row ][col ]
7: if d = −1 then
8: if (r&1) = 1 then
9: return q − row

10: else
11: return row
12: end if
13: end if
14: end for
15: end for
16: return 0

A low-level implementation of the Knuth-Yao random walk along the DDG
tree was described by Roy et al. [29] and is shown in Algorithm 2. The random
walk reads the probability bits of the sample points from a matrix, called the
probability matrix Pmat . The i-th row of Pmat is the probability of the sample
point |i|. The algorithm uses two loops with counters col and row to read the
bits from the columns and rows of Pmat , respectively. The two loop boundaries
MAXCOL and MAXROW represent the overall number of columns and rows
of Pmat . Before starting the random walk, a counter d has to be initialized to
zero. Whenever a new column of Pmat is to be read, the counter d is updated
using a random bit r. During the random walk, the visited column of Pmat is
scanned bit-by-bit, and each non-zero bit in the column decrements the value
of d. When d becomes negative for the first time, the random walk stops and
the value of the row counter is taken as the magnitude of the sample. Now, an-
other random bit is generated to determine the sign of the sample. We refer to
[29] for a more-detailed description. Faster versions of the Knuth-Yao random
walk algorithm using small lookup tables were presented in [28, 9].

2.5 Parameter Selection

Our implementation of ring-LWE encryption adopts the parameter set (n, q, σ)
with (256, 7681, 11.31/

√
2π) and (512, 12289, 12.18/

√
2π) to match the common

128 and 256-bit security levels, respectively. The discrete Gaussian sampler is
limited to 12σ to have a high-precision statistical difference from the theoreti-
cal distribution, which is less than 2−90. These parameter sets were also used
by most of the previous hardware (e.g. [14, 28]) and software implementations
(e.g. [5, 6, 9]), which facilitates a comparison with these works.
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3 Optimization Techniques for NTT Computation

3.1 Look-Up Table for Twiddle Factors

In each iteration of the j-loop of Algorithm 1, a new twiddle factor ω is com-
puted through a modular multiplication (line 11). The total number of times a
new ω is obtained in an NTT operation amounts to n − 1. A straightforward
computation of ω on-the-fly involves two memory accesses (to load ω and ωi)
and a modular multiplication. Hence, in an NTT computation, a considerable
portion of the execution time is spent with calculating the twiddle factors. On
the other hand, storing all intermediate twiddle factors ω and ωi in memory is
also problematic due to the fact that a standard 8-bit AVR processor features
only a few kB of RAM.

Both the computation of the (n/i)-th power of ωn in the i-loop (line 3) and
the modular multiplication ω · ωi in the j-loop (line 11) can be considered as
fixed costs. Based on this observation, our solution is to store all the twiddle
factors ω in ROM (resp. flash), very similar to the approach used in [24] for a
hardware implementation. More concretely, we pre-compute the twiddle factors
“off-line” and store them in a look-up table in ROM or flash so that we need to
transfer only the twiddle factor that is required for the current iteration of the
j-loop from ROM to RAM. In this way, only two bytes in RAM are needed.

3.2 Algorithmic Optimizations

The parameter sets of our ring-LWE encryption scheme given in the previous
section use a modulus q that is prime and satisfies q ≡ 1 mod 2n [28]. In such a
setting, a polynomial multiplication can be carried out efficiently with only n-
point NTTs (resp. INTT) due to special technique known as negative wrapped
convolution, which has used before in a number of hardware implementations
[23, 28]. We remark that, for a more generic implementation, such restrictions
on the parameter set may not be applicable. Our choice to use such restricted
parameter sets is mainly driven by the fact that our target platform, an 8-bit
AVR processor, is severely limited in resources, and performing 2n-point NTTs
(resp. a 2n-point INTT) during a polynomial multiplication would increase the
execution time and RAM requirements. Besides the application of the negative
wrapped convolution, we adopt some other optimization techniques that were
firstly proposed for hardware designs, but are suitable to improve the execution
time of a software implementation too. These optimizations include the inter-
changing of the j and k-loops in the NTT algorithm [3], and the merging of the
scaling operation by n−1 with the chain of multiplications performed during the
post-processing operation in the inverse NTT [28].

3.3 Fast Coefficient Multiplication

During an NTT computation, n
2 · log2(n) coefficient multiplications are carried

out in the nested loops. Therefore, an efficient implementation of the coefficient
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aLaH

bLbH

aL × bL

aH × bH

aH × bL

aL × bH

r0r1r2r3

Fig. 1. The Move-and-Add (MA) coefficient multiplication

multiplication operation is essential to achieve fast execution time. Due to the
parameter sets we use, the coefficients are 13 or 14 bits long, and, thus, can be
stored in two 8-bit registers. Inspired by the hybrid method for multi-precision
multiplication [15], we propose a “Move-and-Add” (MA) technique to perform
the coefficient multiplications. The MA multiplication technique, illustrated in
Fig. 1, aims at minimizing the total number of adc instructions. First, the two
coefficients a and b are loaded from RAM and stored in two registers. We then
multiply the lower byte of a (i.e. aL) by the lower byte of b (i.e. bL) and move
the product to two result registers r0 and r1 with help of the movw instruction
[2]. Next, we form the product aH · bH and move the result to registers r2 and
r3. Thereafter, we multiply byte aH by byte bL, add the resulting 16-bit prod-
uct aL · bH to the register pair r1, r2, and propagate a potential carry from the
last addition to r3. Finally, we perform the byte multiplication of aL by bH in
the same way as before, i.e. the product is added to the registers r1, r2 and the
carry bit is propagated into r3. In summary, the execution of our MA method
for fast coefficient multiplication involves four mul, two movw, and a total of six
add or adc instructions.

3.4 Fast Reduction of Coefficient-Products

In an NTT computation, the majority of execution time is spent on performing
modular reduction of coefficient products since this operation is costly and has
to be carried out in the innermost k-loop. Thus, an efficient reduction operation
is a perquisite for a high-speed implementation of the NTT algorithm.

We propose a special Shift-Add-Multiply-Subtract-Subtract (SAMS2) tech-
nique to perform the reduction operation modulo q = 7681 and q = 12289. The
main idea is as follows. Let z be a product of two coefficients, i.e. z = a · b. To
obtain z mod q, we estimate the quotient t = z/q, and then subtract t · q from
z, i.e. we compute z − t · q. This result may not be fully reduced, which means
it can be necessary to do a correction, i.e. to do a few final subtractions. Since
213 ≡ 29 − 1 mod 7681, it is not difficult to see that t can be approximated via
(z � 13) + (z � 17) + (z � 21). Consequently, the modular reduction involves
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(s1, s0)

(t1, t 0)

u0

(s1, s0) + (t1, t 0) + u0

0x1e

0x1e ×  [(s1, s0) + (t1, t 0) + u0]

r 0r1r2r3

(r3, r2, r1) » 1

(s1, s0, sx) » 4

1
2

3

Fig. 2. The first three steps of the SAMS2 method for reduction modulo 7681. 1©:
shifting; 2©: addition; 3©: multiplication

four different basic operations, namely, Shifting → Addition → Multiplication
→ Subtraction → Subtraction (SAMS2). As illustrated in Fig. 2, we keep the
product z in the four 8-bit registers r3, r2, r1, and r0, all of which are marked
by different colors. A fully colored register means that all its bits are occupied
(e.g. r0–r2), whereas white squares indicate that the corresponding bits of the
register are empty (e.g. r3). The reduction modulo 7681 is done as follows:

1. Shifting: We first shift the three bytes in the registers (r3, r2, r1) one bit to
the right and store the result in the registers (s1, s0, sx), whereby only the
former two are shown in Fig. 2. Then, we right-shift (s1, s0, sx) by four bits
and write the result (which consists of only two bytes) to the two registers
(t1, t0). The content of register u0 is the same as that of t1.

2. Addition: We compute the sum of (s1, s0), (t1, t0), and u0. Apparently, this
sum is always less than 16 bits long and can be stored in two registers.

3. Multiplication: Now, we multiply the sum from Step 2 by the constant 0x1e
(i.e. the upper byte of 7681), which is a (16× 8)-bit multiplication.

4. Subtraction: In this step, we subtract both the sum obtained in Step 2 and
the product computed in Step 3 from z. The product from Step 3 has to be
aligned as shown in Fig. 2, i.e. it must be left-shifted by eight bits.

5. Subtraction. The result from Step 4 may be larger than q = 7681; thus, we
need to do a correction by subtracting the modulus q at most twice.

Besides achieving fast execution time, the SAMS2 method is also economic
in register usage; it occupies only 14 out of the 32 available registers so that no
push/pop instructions are required at the beginning/end of a function call. The
SAMS2 technique can be easily adapted for the modulus q = 12289.

3.5 Minimizing the Number of Reduction Operations

Apart from the coefficient multiplications, addition and subtraction operations
are also executed in the innermost NTT loop. In general, a coefficient addition
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Fig. 3. Refined coefficient storage method to reduce the RAM footprint for q = 7681.
Each row consists of two bytes, whereby each square represents a single bit.

r = a + b mod q is carried out via a “conventional” integer addition of the two
operands, followed by a conditional subtraction of the modulus q if the sum is
not smaller than q to get a final result in the range of [0, q − 1]. A subtraction
of coefficients can be performed in a similar fashion.

Inspired by the concept of “incomplete” modular arithmetic, as explained in
e.g. [32], our implementation does not make an exact comparison between the
sum s = a + b and q, but rather compares s with 2m where m = dlog2(q)e, the
bit-length of q. Taking q = 7681 as an example, the incomplete addition works
as follows. We first perform a normal coefficient addition and then compare the
higher byte of s with 25. If this byte is greater than or equal to 25 (which also
means r ≥ 213), then a subtraction of q needs to be performed. However, if the
operands a and b are incompletely reduced (i.e. in the range [0, 213 − 1]), up to
two subtractions of q may be necessary [17]. Our implementation accepts two
operands that are at most 13 bits long, but not necessarily smaller than q, and
returns a result r for which the same holds. In the last iteration of the outer-
most loop of the NTT (i.e. when i = 256 in our case), a final correction process
is performed to bring the result back into the range [0, q − 1]. This incomplete
reduction technique can be used for coefficient addition, subtraction, as well as
multiplication. Our practical results show that this approach allows one to save
roughly 6% of the reduction operations, thereby speeding up the NTT.

3.6 Reducing the RAM Consumption

The NTT computation requires to store the coefficients of intermediate results
in RAM, which is a precious resource on our target platform. This can pose a
problem since the number of coefficients is very large and each coefficient needs
two bytes. More specifically, when taking q = 7681 for dimension n = 256 as an
example, each coefficient has a length of 13 bits (i.e. two bytes) and, hence, the
intermediate result occupies a total of 512 bytes in RAM. In order to reduce the
RAM footprint, we propose a special coefficient storage method (illustrated in
Fig. 3) and refined memory-access technique.
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Since the three most significant bits are empty when storing a 13-bit coeffi-
cient in two bytes, it is possible to accommodate 16 coefficients in 26 bytes in
RAM. Each of the rows in Fig. 3 represents two bytes and each square marks
a single bit. The first 13 coefficients (i.e. from a0 to a12) are stored in the rows
in a straightforward way. Instead of allocating additional memory space for the
14th, 15th, and 16th coefficient, we make full use of the empty bits in the rows
to store them. More precisely, we divide the 14th coefficient (i.e. a13 in Fig. 3)
into two parts; the first part contains the lower 12 bits of a13 and gets placed in
the empty space of the rows a0, a1, a2, and a3, while the second part, i.e. the
most significant bit of a13, is stored in the 14th bit of the 13th row. We do the
same with the coefficients a14 and a15, which are marked by different colors in
Fig. 3. Due to this special storage method, the loading of the coefficients from
RAM to registers needs some “post processing.” The coefficients a0 to a12 can
be obtained via an AND operation with 0x1fff, while a13, a14, and a15 require
to perform several loads and then an “assembling” of the bits to get the actual
coefficient. Thanks to this coefficient-storage method, we are able to reduce the
RAM requirements by 18.75% for q = 7681. A similar approach can be applied
to the modulus q = 12289.

4 Optimization of the Knuth-Yao Sampler

The Knuth-Yao algorithm [16] requires a probability matrix Pmat that contains
the probabilities of sampling a random number at a discrete position from the
Gaussian distribution. Our Knuth-Yao implementation for AVR mainly adopts
the optimizations in [9]; in addition, we propose a byte-wise scanning method to
further reduce the execution time.

Probability Matrix with Low Memory Footprint. To ensure a precision
of 2−90 for dimension n = 256, the Knuth-Yao algorithm is suggested to have
a probability matrix Pmat of 55 rows and 109 columns [9]. On our AVR pro-
cessor, we stored each 55-bit column in seven words, where each word is 8 bits
long. In this case, only one bit is wasted per column and the probability matrix
just occupies 6,104 bytes in total4.

Byte-Wise Scanning. The bit-scanning operation as specified in Algorithm 2
(line 6) requires to check each bit and decreases the distance (d) whenever the
bit is set. Instead of doing this scanning operation at the bit level, we perform
it in a byte-wise fashion. As indicated in Algorithm 3 (line 17 to 18), the byte-
wise method only requires eight additions, one subtraction and one conditional
branch statement, which means it saves seven branches at the (slight) expense
of one subtraction.

4 The ROM footprint of the probability matrix can be further reduced to 4352 bytes
by eliminating consecutive zero bits. In order to make a balance between execution
time and ROM consumption, we decided to use the original variant in our work.
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Algorithm 3. Knuth-Yao sampling with byte-wise scanning

Input: Probability matrix Pmat , random number r, modulus q
Output: Sample value s
1: index ← r&255
2: r ← r � 8
3: s← LUT1[index ]
4: if MSB(s) = 0 then
5: if (r&1) = 1 then
6: return q − s
7: else
8: return s
9: end if

10: end if
11: d← s&7
12: for col from 8 by 1 to MAXCOL do
13: d← 2d + (r&1)
14: r ← r � 1
15: for row from MAXROW by −8 to 0 do
16: if (Pmat [row ][col ] ‖Pmat [row − 1][col ] ‖ . . . ‖Pmat [row − 7][col ]) > 0 then
17: sum =

∑row−7
i=row (Pmat [i][col ])

18: d← d− sum
19: if d < 0 then
20: if d = −1 then
21: for j from row − 7 by 1 to row do
22: if Pmat [j][col ] = 1 then
23: if (r&1) = 1 then
24: return q − j
25: else
26: return j
27: end if
28: end if
29: end for
30: else
31: for j from row − 7 by 1 to row do
32: d← d + Pmat [j][col ]
33: if d = −1 then
34: if (r&1) = 1 then
35: return q − j
36: else
37: return j
38: end if
39: end if
40: end for
41: end if
42: end if
43: end if
44: end for
45: end for
46: return 0



14 Z. Liu et al

Efficient Skipping of All-Zero Bytes. Another issue related to the proba-
bility matrix is the occurrence of all-zero bytes. In order to efficiently skip the
scanning operations for such bytes, we compare the eight concatenated bits in
line 16 of Algorithm 3 with 0. Since these eight bits fit into one byte, a simple
byte-comparison allows us to determine whether the bits are 0 or not. In this
way, we can save a number of scanning operations and, thereby, speed up the
whole sampling process.

Look-Up Table in DDG Tree. We applied the Look-Up Table (LUT)-based
approach proposed in [9] to our byte-wise scanning implementation (shown in
line 1 to 10 of Algorithm 3). At first, we do the sampling with an 8-bit random
number as index to the LUT in the first eight levels for a Gaussian distribution
with σ = 11.31/

√
2π. If the most significant bit of the look-up result is cleared

then the algorithm completed the look-up operation successfully. Otherwise, the
most significant bit of the look-up result is set, which means a look-up failure
has occurred and we proceed with the next level of the sampling. Similarly, a
second LUT is used for level 9 to 13 in the same Gaussian distribution.

4.1 Pseudo-Random Number Generation Using AES Accelerator

Our implementation adopts the PRNG algorithm suggested in [26], which runs
the AES block cipher in counter mode, i.e. it encrypts successive values of an
incrementing counter. The Atmel ATxmega128A1 microcontroller features an
AES crypto-accelerator that allows one to perform encryptions with reasonable
computational overhead (375 clock cycles) and small memory footprint for the
AES trigger program. This is a significant improvement compared to software
implementations of the AES, which require (at least) 1993 cycles per block and
occupy some 2 kB program memory on an ATmega128 [22]. Another attractive
feature of the ATxmega’s built-in AES crypto-accelerator is that it can operate
independently of the processor, which allows one to “hide” the latencies due to
AES encryption [30]. We exploit this feature in our Knuth-Yao sampler imple-
mentation, i.e. we trigger the next AES operation immediately after getting the
result of the current one and then proceed with other tasks. Unfortunately, the
AES accelerator of the ATxmega128A1 can only support 128-bit keys, which is
not sufficient for long-term security. Therefore, we decided to use the software
AES from the AVR Crypto Lib [8] for the long-term security level; it requires
3521 clock cycles to encrypt a block under a 256-bit key.

5 Performance Evaluation and Comparison

5.1 Experimental Platform

Our prototyping platform is an Atmel Xplained evaluation board that contains
an ATxmega128A1 processor. This processor can be clocked with a maximum
frequency of 32 MHz and features 128 kB flashable program memory as well as
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8 kB SRAM. It is popular 8-bit processor with an AES crypto-accelerator and
can be used in a wide range of applications. Our ring-LWE software is written in
a mix of ANSI C and Assembly language. More precisely, while most functions
of our ring-LWE encryption scheme are written in ANSI C, we implemented all
modular arithmetic operations for the NTT in Assembly language to reduce the
execution time. We compiled our software with Atmel Studio 6.2 and applied
the speed optimization option O3. In order to obtain accurate timings, we ran
each operation at least 1000 times and calculated the average cycle count.

5.2 Experimental Results

Table 1 specifies the execution time of the main components (i.e. the NTT, the
Knuth-Yao sampler, key-generation, encryption, and decryption) of our ring-
LWE encryption schemes for both medium-term and long-term security. As was
mentioned earlier in this paper, we implemented two versions of the arithmetic
operations for each security level, one that is optimized for speed and a second
aiming at low memory footprint (i.e. memory efficiency). The two high-speed
(HS) implementations make full use of the optimization techniques described in
Sect. 3 (except Subsect. 3.6) and Sect. 4, whereby all data is kept in RAM. On
the other hand, the memory-efficient (ME) implementations use the optimized
coefficient storage method and memory access scheme from Subsect. 3.6 for all
basic operations and store the pre-computed look-up tables in flash ROM.

Table 1. Execution time (in clock cycles) of the major components of our ring-LWE
encryption scheme

Implementation NTT KY Key-Gen Enc Dec

HS-256 193,731 26,763 589,900 671,628 275,646

ME-256 322,288 39,027 1,310,616 1,532,823 673,489

HS-512 441,572 255,218 2,165,239 2,617,459 686,367

ME-512 917,866 300,780 3,738,052 4,270,671 1,444,786

As shown in Table 1, the NTT operation requires only 194 k clock cycles in
the case of the HS-256 implementation, but the execution time increases quite
sharply to 442 k cycles for the HS-512 variant. The Knuth-Yao sampler for the
HS-256 implementation takes an average of about 27 k cycles, while more than
255 k clock cycles are needed for HS-512. The former increase can be explained
by the fact that the number of coefficients for HS-512 is doubled compared to
HS-256 and the modular reduction operation for q = 12889 is more costly than
for q = 7681. On the other hand, the pseudo-random number generation at the
medium-term security level can take advantage of the AES accelerator, whereas
for long-term security, the required 256-bit AES operations need to be carried
out in software. It is also interesting to compare the execution time of the HS
and ME variants at the same security level. Taking HS-256 as an example, the
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key generation, encryption, and decryption need about 590 k, 672 k, and 276 k
cycles, respectively, which is more than twice as fast as the memory-optimized
variant ME-256. Apparently, this is primarily because of the more costly access
to the coefficients, which slows down all basic operations. More specifically, the
coefficient addition, subtraction, as well as multiplication up to the NTT, the
Knuth-Yao sampler and each component consume more execution time to load
the coefficients from memory and write them back to memory.

Table 2. RAM and ROM requirements (in bytes) of key generation, encryption, and
decryption

Implementation Key-Gen Enc Dec Total

HS-256: RAM/ROM 1,585/8,884 2,609/8,812 1,585/6,026 2,609/13,604

ME-256: RAM/ROM 1,297/9,260 2,129/8,536 1,297/6,016 2,129/13,756

HS-512: RAM/ROM 3,121/12,074 6,193/13,486 3,121/8,512 6,193/18,894

ME-512: RAM/ROM 2,737/12,106 4,529/12,166 2,737/8,614 4,529/18,010

Table 2 shows the RAM and ROM requirements of key-generation, encryp-
tion, and decryption. In the case of HS-256, the full ring-LWE implementation
requires some 2.6 kB RAM and 13.6 kB ROM, while the ME-256 variant needs
roughly 2.1 kB RAM and 13.7 kB ROM. Due to the special coefficient-storage
method described in Subsect. 3.6, the memory-optimized implementations save
roughly 19% (for medium-term security) and 21% (long-term security) in RAM
requirements while consuming approximately the same amount of ROM as the
HS implementations.

5.3 Comparison with Related Work

Table 3 compares software implementations of lattice-based cryptosystems on
several different processors. For the 8-bit AVR platform, the implementations in
[5, 6, 25] and our software use the same parameter sets as mentioned before in
Subsect. 2.5. Compared to the recent work in [25], our HS-256 version requires
only 672 k and 276 k cycles for encryption and decryption, which is roughly 2.0
and 1.4 times faster, respectively. This progress is mainly due to a combination
of algorithmic optimizations and the proposed low-level techniques to speed up
the NTT multiplication and the Gaussian sampling operation.

Table 4 compares the results of our ring-LWE encryption scheme with some
classical public-key encryption algorithms, in particular recent RSA and ECC
implementations for the 8-bit AVR platform. The to-date fastest RSA software
for an AVR microcontroller was reported in [18]; it achieves an execution time
of approximately 76.6 M clock cycles for decryption at the 80-bit security level
(i.e. 1024-bit modulus)5. For comparison, our HS-256 implementation requires

5 To the best of our knowledge, no RSA implementation providing 128-bit security on
an 8-bit processors exists. Thus, we use the 80-bit security level for comparison.
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Table 3. Performance comparison of software implementations of lattice-based cryp-
tosystems on different processors

Implementation NTT/FFT Sampling Key-Gen Enc Dec

Implementations on high-performance processors, e.g. Core 2 Duo:

Göttert [14] (256) n/a n/a 9,300,000 4,560,000 1,710,000

Göttert [14] (512) n/a n/a 13,590,000 9,180,000 3,540,000

Implementations on 32-bit ARM processors, e.g. Cortex-M4F:

de Clercq [9] (256) 31,583 7,296 117,009 121,166 43,324

de Clercq [9] (512) 71,090 14,592 252,002 261,939 96,520

Oder [21] (512) 122,619 935,936 n/a n/a n/a

Implementations on 8-bit AVR processors, e.g. ATxmega64, ATxmega128:

Boorghany [6] (256) 1,216,000 n/a n/a 5,024,000 2,464,000

Boorghany [5] (256) 754,668 n/a 2,770,592 3,042,675 1,368,969

Pöppelmann [25] (256) 334,646 n/a n/a 1,314,977 381,254

This work (HS-256) 193,731 26,763 589,900 671,628 275,646

Boorghany [5] (512) 2,207,787 617,600 n/a n/a n/a

Pöppelmann [25] (512) 855,595 n/a n/a 3,279,142 1,019,350

This work (HS-512) 441,572 255,218 2,165,239 2,617,459 686,367

only 276 k cycles for decryption, which is more than 278 times faster despite a
much higher (i.e. 128-bit) security level. There exist quite a few ECC software
implementations for 8-bit AVR processors. Recently, Düll et al. [11] managed to
achieve an execution time of 13.9 M clock cycles (HS version) and 14,1 M cycles
(ME version) for a variable-base scalar multiplication on Curve25519 [4]. The
widely-used Elliptic Curve Integrated Encryption Scheme (ECIES) is based on
scalar multiplications; the encryption involves two scalar multiplications (one
with a fixed base point and the other with a random point), while a decryption
operation requires a scalar multiplication with a random point. The HS version
of our ring-LWE encryption scheme beats any of the ECC implementations in
[11, 19, 1] by at least one order of magnitude. Our results also show that ring-
LWE encryption is superior to traditional public-key schemes when high speed
on resource-constrained devices is desired.

6 Conclusions

This paper presented several optimizations to efficiently implement a ring-LWE
encryption scheme on the 8-bit AVR platform. In particular, we proposed three
optimizations to accelerate the execution time and a special coefficient-storage
technique along with a refined access strategy to reduce the RAM requirements
of NTT-based polynomial multiplication. A combination of these optimizations
yields a very efficient NTT computation, which is twice as fast as the previous
best implementation in the literature. We also reported the results we obtained
for a performance-oriented and a memory-efficient implementation at both the
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Table 4. Comparison of Ring-LWE encryption schemes with RSA and ECC on 8-bit
AVR processors (RAM and ROM in bytes, Enc and Dec in clock cycles)

Implementation Scheme RAM ROM Enc Dec

Gura et al. [15] RSA-1024 n/a n/a 3,440,000 87,920,000

Liu et al. [18] RSA-1024 n/a n/a n/a 75,680,000

Düll et al. [11] (ME) ECC-255 510 9,912 28,293,688 14,146,844

Düll et al. [11] (HS) ECC-255 494 17,710 27,800,794 13,900,397

Liu et al. [19] ECC-256 556 14,700 30,539,566 21,118,778

Aranha et al. [1] ECC-233 3,700 38,600 11,796,480 5,898,240

This work (HS) LWE-256 2,609 13,604 671,628 275,646

This work (ME) LWE-256 2,129 13,756 1,532,823 673,489

medium-term and long-term security level, respectively. In all four settings, the
results we achieved set new speed records for a ring-LWE encryption scheme on
an 8-bit AVR processor. Finally, a comparison of our work with RSA and ECC
implementations confirms that ring-LWE encryption schemes are a good choice
for high-speed public-key cryptography on resource-constrained devices.
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