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Abstract. Unified formula for computing elliptic curve point addition
and doubling are considered to be resistant against simple power-analysis
attack. A new elliptic curve formula known as unified binary Huff curve
in this regard has appeared into the literature in 2011. This paper is
devoted to analyzing the applicability of this elliptic curve in practice.
Our paper has two contributions. We provide an efficient implementation
of the unified Huff formula in projective coordinates on FPGA. Secondly,
we point out its side-channel vulnerability and show the results of an
actual attack. It is claimed that the formula is unified and there will
be no power consumption difference when computing point addition and
point doubling operations, observable with simple power analysis (SPA).
In this paper, we contradict their claim showing actual SPA results on
a FPGA platform and propose a modified arithmetic and its suitable
implementation technique to overcome the vulnerability.

Key words: Elliptic curves, Binary fields, Side-channel, FPGA, Karat-
suba multiplier, Power analysis, SPA.

1 Introduction

SIDE-CHANNEL ATTACKS [15] are a major threat in present day embedded
security era, irrespective of whether the underlying cryptographic algorithm is
based on public key or private key. In order to protect an elliptic curve algorithm
against simple power-analysis attacks, there are three basic classes of counter-
measures: (i) Always double-and-add, (ii) Atomic execution, and (iii) Unified
point addition. The first one is too costly as the simple double-and-add algo-
rithm executes a point addition only if the secret scalar bit (di) is one. In this
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countermeasure, a dummy point addition is executed if di = 0. However, there
is a regular version of it due to Montgomery [13]. The second one executes point
addition and point doubling by executing several atomic units of finite field
operations, where a unit is formed with four operations in sequence: addition,
multiplication, negation, and addition. The atomic execution helps to protect
against side-channel attacks with several dummy finite field operations. The
dummy operations in the first two countermeasures can however be targeted by
a C safe-error attack [21]. The unified formula is a good option to protect elliptic
curves against side-channel attacks. The development of such a formula is very
difficult in practice, and only a few are available till today.

Unified formula for computing point addition and point doubling on an el-
liptic curve was introduced in 2001 [4, 12]. Walter [20] observed a vulnerability
of Brier and Joye’s unified formula [4] with respect to the irregularity of the
implementation of finite field operations. Subsequently, unified point addition
formula in affine form [5] and respective projective form [18] were proposed. The
latter one also reinforces Walter’s [20] observations with timing analysis during
software execution of unified formula. Thereafter, unified formula on Edwards
curve was proposed in 2007 [2]. In CT-RSA 2011, unified binary Huff formula
was proposed by Devigne and Joye [8], which outperforms other unified formula.

In this paper, we demonstrate that the unified binary Huff curve is not ac-
tually secure against side-channel attacks. Even though both point operations
are executed by the same sequence of finite field operations, due to processing of
different coordinates, they demand different amounts of power. This paper pin-
points to the fact that the point doubling with unified Huff formula produces
zero output in some intermediate finite field operations, which are non-zero in
point addition. These zero (non-zero) values for point doubling (point addition)
are further used as multiplicands in the unified formula. Results of the mul-
tiplications are also zero (non-zero). The power consumption of the multiplier
circuit having zero and non-zero data are significantly different and they are vi-
sually observable through their power consumption graphs1. We show the actual
power consumption graphs of those operations on a SASEBO-G board [19] which
proves our claim and successfully demonstrates the vulnerability of the unified
huff formula against simple power analysis. Apart from the side-channel resis-
tance analysis, this paper also provides an efficient architecture and an optimal
countermeasure of binary Huff curve.

We start with a brief overview of binary Huff curve in § 2. We show the side-
channel vulnerability of the unified binary Huff curve formula in § 3. The same
section also demonstrates the actual power analysis on a SASEBO-G FPGA
board. A suitable countermeasure is proposed in § 4 and it is validated by the
actual SPA on the SASEBO-G board. The detailed architecture for implementing
elliptic curve scalar multiplication based on our proposed SPA-resistant binary
Huff curve addition formula is described in § 5. Finally, we conclude in § 6.

1 We use the terms plot, graph, and trace with same meaning which represent a 2D
plot of the variable (power consumption) with respect to time.
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2 Binary Huff Curve

In the mid-twentieth century, while studying a Diophantine problem, Huff intro-
duced a new model of elliptic curves [10]. After a long gap, the Huff model was
revisited in 2010 [14], which fully described and formulated the case of odd char-
acteristic fields and provided an outline for binary field. Thereafter, in 2011, the
formal construction of a Huff model for binary field was developed by Devigne
and Joye [8]. This construction instead of providing general point addition for-
mula takes care of side-channel attacks and provides the unified point addition
and point doubling formula in binary field. Here we provide a brief description
that may help in understanding the contributions of the current paper.

Definition 1 ([14]). A generalized binary Huff curve is the set of projective
points (X : Y : Z) ∈ P2(F2m) satisfying the equation

E/F2m
: aX(Y 2 + fY Z + Z2) = bY (X2 + fXZ + Z2), (1)

where a, b, f ∈ F∗
2m and a ̸= b.

There are three points at infinity satisfying the curve equation, namely (a :
b : 0), (1 : 0 : 0), and (0 : 1 : 0). For P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2),
we get P +Q = (X3 : Y3 : Z3) with unified point addition/doubling formula [8]:

X3 = (Z1Z2 + Y1Y2)
(
(X1Z2 +X2Z1)(Z

2
1Z

2
2 +X1X2Y1Y2)+

αX1X2Z1Z2(Z1Z2 + Y1Y2))
Y3 = (Z1Z2 +X1X2)

(
(Y1Z2 + Y2Z1)(Z

2
1Z

2
2 +X1X2Y1Y2)+

βY1Y2Z1Z2(Z1Z2 +X1X2))
Z3 = (Z1Z2 +X1X2)(Z1Z2 + Y1Y2)(Z

2
1Z

2
2 +X1X2Y1Y2),

(2)

where α = a+b
b and β = a+b

a .

The unified formula provided in Eq. (2) can be evaluated as in [8]

m1 = X1X2, m2 = Y1Y2, m3 = Z1Z2,
m4 = (X1 + Z1)(X2 + Z2) +m1 +m3, m5 = (Y1 + Z1)(Y2 + Z2) +m2 +m3,
m6 = m1m3, m7 = m2m3, m8 = m1m2 +m2

3, m9 = m6(m2 +m3)
2,

m10 = m7(m1 +m3)
2, m11 = m8(m2 +m3), m12 = m8(m1 +m3),

X3 = m4m11 + αm9, Y3 = m5m12 + βm10, Z3 = m11(m1 +m3).

This unified point addition for binary Huff curve consists of 17 field multipli-
cations. If we assume that there is only one multiplier in the datapath of the
point addition block then we can execute the above operations in 17 steps each of
which consists of one binary field multiplication. The detailed RTL description is
provided in Table 4 in the Appendix. It uses only six temporary registers. Based
on this RTL definition the double-and-add algorithm (Algorithm 1 in Appendix)
for elliptic curve point multiplication has been implemented on a SASEBO-G
FPGA and a power analysis is performed.
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3 SPA on Binary Huff Curve

Simple-power analysis or SPA on elliptic curve is based on the observations
of power consumption of the cryptoprocessor during the executions of point
addition and point doubling. When the operations of point addition and point
doubling make use of different formula, they may produce different power traces
revealing the secret value of scalar d in the computation of Q = [d]P . A potential
approach that counteracts such vulnerability tries to unify the addition formula.
Huff curves are equipped with such a unified point addition formula which results
in the SPA resistant property. However, sometimes formula based on theoretical
assumptions are vulnerable at their actual implementations. The practical results
demonstrated in this section proves that the unified binary huff curve formula [8]
is not actually secure against SPA attack.

3.1 Pinpointing the SPA Vulnerability

The authors in [8] claim that the unified formula for computing point addition
and doubling on Binary Huff curve is secure against side-channel attacks, espe-
cially against SPA. However, with a close observation of Eq. (2), we find out
that there are behavioral differences during the computations of P +Q, P ̸= Q
and P + P . Let us consider the computation of X3 = (Z1Z2 + Y1Y2)((X1Z2 +
X2Z1)(Z

2
1Z

2
2 +X1X2Y1Y2) + αX1X2Z1Z2(Z1Z2 + Y1Y2)). In this formula it is

pointed out that the value of (X1Z2 + X2Z1) for the P + P computation is
zero in F2m whereas it is in general non-zero for a P +Q, P ̸= Q computation.
This zero (non-zero) value is further multiplied with (Z2

1Z
2
2 +X1X2Y1Y2), which

produces a zero (non-zero) product for point doubling (point addition).
Similarly, in Y3 = (Z1Z2 + X1X2)((Y1Z2 + Y2Z1)(Z

2
1Z

2
2 + X1X2Y1Y2) +

βY1Y2Z1Z2(Z1Z2 + X1X2)), the value of (Y1Z2 + Y2Z1) is zero for point dou-
bling and non-zero for point addition. To perform SPA on unified binary Huff
curve, the respective formula provided in Eq. (2) has been implemented on an
FPGA device. Fig. 1 shows ModelSIM simulation results for computing Eq. (2)
as described in Table 4. It only displays respective values of the multiplicands
and multiplication results. The sign ‘0’ and ‘>’ indicate zero and non-zero values
respectively. It could be observed from the left half of the figure that the multi-
plicand a2 goes to zero twice during a point doubling, once for (X1Z2 +X2Z1)
and once for (Y1Z2 + Y2Z1). However, it never goes to zero during a point ad-
dition, which is displayed at the right half of the figure. Processing of zero and
non-zero values in the datapath consume different amounts of power which can
be observed from their respective power graphs. This can help to break the uni-
fied binary Huff curve using simple power analysis. In the following section, we
show the actual SPA results on FPGA platform.

3.2 Actual Power Analysis Using SASEBO-G Board

The Side-channel Attack Standard Evaluation Board (SASEBO-G) [19] is an
FPGA board especially designed to develop standard evaluation schemes to se-
cure cryptographic modules against physical attacks. The SASEBO-G version
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Fig. 1. Simulation of unified Huff curve point addition.

board incorporates a Xilinx FPGA consisting of two Virtex-II pro devices. We
implement the elliptic curve point multiplication (ECSM) based on the unified
binary Huff curve addition formula (Eq. (2)) on the xc2vp30-fg676-5 device of
the SASEBO-G board and perform power analysis. Fig. 2 shows a power trace
during the execution of [d]P 2 on a binary Huff curve using unified formula. The
power consumption for executing current unified Huff formula are mostly due to
the execution of 17 finite field multiplications as shown in Table 4. Therefore,
following observations can be made from this power trace.

Fig. 2. Power consumption for computing [d]P with unified Huff formula.

• The power trace during a point addition (PA) or a point doubling (PD)
operation consists of 17 peaks for executing multiplications.

• The power consumption peak at the 11-th multiplication cycle is lower than
other peaks, as during this cycle the multiplicand a1 remains unchanged
from its previous value (see Fig. 1).

• The peak at the 10-th multiplication cycle is also lower for some point addi-
tion/doubling executions. They are due to values of the second multiplicand
a2 which is zero during the processing of a point doubling operation (see
Table 4 and Fig. 1).

• The peaks at 16-th and 17-th multiplication cycles during the execution
of point doublings are also lower than that during point additions. This is
because of the zero at the second multiplicand during 16-th multiplication
(see Fig.1). The power consumption peaks are low in these two consecutive
multiplication cycles due to transitions of a2 from non-zero to zero and again
back to non-zero.

2 We use [d]P to represent elliptic curve point multiplication or ECSM where d is an
integer and P is a point on the curve
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Based on the above observations, point addition and point doubling are easily
distinguished from their power traces. Figures 3 and 4 show two compact views
of power consumptions during a [d]P execution. Through simple power analysis
the secret scalar bits are easily guessed as shown in these figures. These results
prove that the unified binary Huff curve [8] is vulnerable to SPA. We expect
that similar conclusions can be made for software implementations of unified
Huff curve on micro-controllers as our FPGA implementation also consists of
only one datapath.

Fig. 3. SPA vulnerability of unified binary Huff curve.

Fig. 4. SPA vulnerability : more compact view and leak to the key.

4 Proposed SPA Countermeasure

As pointed out in Section 3.1, the main drawback of the original unified binary
Huff formula is X1Z2+X2Z1 and Y1Z2+Y2Z1 computations. During point dou-
bling (P+P ), resultant values of these two are zero, whereas they are nonzero for
point addition (P +Q, P ̸= Q). Hence it could be implicitly inferred that elim-
ination of these two sub-operations is sufficient to overcome the vulnerabilities
to SPA.

4.1 Unified Huff Curve Arithmetic

Following is the proposed SPA resistant unified point addition technique on bi-
nary Huff curve. More specifically, we propose following arithmetic for executing
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Eq. (2) to overcome its vulnerability against SPA attack.

m1 = X1X2, m2 = Y1Y2, m3 = Z1Z2,
m4 = (X1 + Z1)(X2 + Z2), m5 = (Y1 + Z1)(Y2 + Z2),
m6 = m1m3, m7 = m2m3, m8 = m1m2 +m2

3,
m9 = m6(m2 +m3)

2, m10 = m7(m1 +m3)
2, m11 = m8(m2 +m3),

Z3 = m11(m1 +m3),
X3 = αm9 +m4m11 + Z3,
Y3 = βm10 +m5m8(m1 +m3) + Z3.

The cost of the above operations is 15M + 2D ≈ 17M , which is exactly
the same as with the original one (15M + 2D). In order to ensure the security
of the proposed unified arithmetic, it is also implemented on the same FPGA
which computes one unified point addition in 17 clock cycles. The architecture
is sketched and described in the next section.

4.2 Additional Implementation Guidelines and Security Analysis

Based on the data dependency and available resources the proposed unified arith-
metic can be implemented in several ways. Let us take a sample implementation
of this arithmetic on the same set of resources (one multiplier) as used in the
previous SPA experiment. Figures 5 and 6 show the corresponding simulation
and SPA results, which provides another strange twist! This implementation is
also vulnerable against SPA.

Fig. 5. Simulation result of an unsafe implementation of proposed arithmetic.

Fig. 6. SPA vulnerability of an unsafe implementation of proposed arithmetic.
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Let us see the cause of its vulnerability. It can be seen from the simulation
result shown in Fig. 5 that the operands at 10-th and 11-th multiplication cycles
are same for PD but one of them are different for PA. Therefore, the 11-th
multiplication for PD does not consume any power whereas it consumes power
for PA (see Fig. 6). This happens due to the following features adopted in this
implementation.

1. It schedules the multiplications m11(m1+m3) and m4m11 at 10-th and 11-th
cycles.

2. It chooses m11 as operand a for both multiplications.
3. It chooses m1 +m3 and m4 as operand b, respectively.

In case of PD the value of m4 := (X1+Z1)(X2+Z2) and the value of m1+m3 :=
X1X2+Z1Z2 are same but they are different in PA. This makes the difference in
power consumptions and makes the implementation vulnerable to SPA. This re-
sult exposes the demand of security awareness on the implementation engineers.

In order to achieve an actual secure unified Huff curve hardware we sug-
gest the implementation and scheduling of operations as shown in Table 5. We
demonstrate the results of SPA that has been performed on SASEBO-G board
on our proposed unified arithmetic and its scheduling technique. Figure 7 shows
the simulation dataflow inside the multiplier with our proposed countermeasure.
Contrary to the previous simulation result shown in Fig. 1, in this implementa-
tion, the intermediate result used as an operand in the multiplier never becomes
zero. In other words, the multiplier never produce a zero for which the power
consumption is distinguishable from other non-zero results.

Fig. 7. Simulation of the modified unified Huff curve point addition arithmetic.

The power analysis as described in Section 3.2 has been repeated for this new
implementation and the results are shown in Figures 8, 9, and 10. There are 17
peaks for computing 17 multiplications. However, no observable power consump-
tion difference has been found for computing point doubling and point addition.
These experimental results ascertain the security of the proposed countermea-
sure against SPA. Therefore, the weakness of original Unified Binary Huff curve
point addition formula is overcome by the proposed computation technique.

5 Architectural Description

Point multiplication, [d]P = P + P + · · · (d − 1 times), d ∈ Z∗ is the main
operation in elliptic curve cryptography. We develop the architecture for 256-
bit binary field and it is also scaled to 128-bit and NIST recommended 233-bit
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Fig. 8. Power consumption for computing [d]P with modified unified Huff arithmetic.

Fig. 9. SPA result of proposed unified binary Huff curve arithmetic.

Fig. 10. SPA result in compact view on proposed unified binary Huff curve arithmetic.

binary fields. For 256-bit, the binary field F2256 is defined with the irreducible
polynomial f(x) = x256 + x10 + x5 + x2 + 1.

5.1 Input/Output

In this finite field, point coordinates (X : Y : Z) and scalar d are all 256-bit long.
Hence, total input pins required will be at least 256×4 = 1024 and total number
of output pins required will be 256× 3 = 768. So, a total of 1024 + 768 = 1792
I/O pins are needed. Because of the limitations of the I/O pins on the available
FPGA, we send the input parameters through a 32-bit port on FPGA. Hence,
to input a 256-bit number, 8 clock cycles are required. Similarly, the output
is displayed on a 32-bit port and 24 clock cycles are required to display three
coordinates of the resultant point of a Q = [d]P computation. Parameters for the
next [d]P operation could be taken in parallel as the design consists of different
input and output ports.

Figure 11 depicts the top level architecture of the proposed cryptoprocessor
for unified binary huff curve. Input parameters are fed through a 32-bit port
and stored in 256-bit shift registers. There is a control bus cntrl[3 : 0] which
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Fig. 11. Architecture of the top module.

constitute the selector pins of a decoder and basically determines which of the
four input parameters will be fed to the FPGA currently. There is an act signal
which will enable the circuit to perform a scalar multiplication on the given
input scalar and the point. The integer d, and x, y, z coordinates of the input
point P are sent to the point multiplication block for computation. The result of
the block goes to a multiplexer and the output is displayed on a 32-bit output
port. The control pins of the multiplexer will select x, y and z coordinates one
by one. Each coordinate will take 8 clock cycles to be displayed, making a total
of 24 cycles. Signal go will be displayed during the display of the output and
a signal addition done signifies the completion of one point addition/doubling
operation.

5.2 Datapath for Binary Huff Curve

Figure 12 shows the architecture of the Huff curve point multiplication block
which executes left-to-right binary algorithm (Shown in Algorithm 1 in the Ap-
pendix). As the point addition and doubling are performed by unified formula,
this algorithm can defend against simple power-analysis attacks. The Q regis-
ters are initialized with input base point P 3. There is a 9-bit counter i which
counts from m− 2 down to zero. At every iteration this counter helps to select
the corresponding bit of the scalar d. There are two intermediate signals flag1
and flag2 which tell us about the on-going point operation of either addition
(P +Q) or doubling (Q+Q). If point doubling operation is going on, flag1 will
be enabled and flag2 will be disabled. If point addition operation is going on,
flag2 will be enabled and flag1 will be disabled. So, at any point of time during
the whole process, one out of these two flags will be high.

There are two sets of input points which are fed to the Point Addition Block.
One of the two inputs is Q, which is fed back from the output. Second input is
coming from a 2 : 1 multiplexer which will send P during point addition opera-
tion and Q during point doubling operation. The selector pins of the multiplexer
results from a control circuitry made of flag1, flag2 and d[i]. It should be noted
that the point addition and doubling operations are performed using the same
block implemented using Unified Addition Formula (Unif Add as described in

3 In this figure, registers and data buses Pi, Qi, 1 ≤ i ≤ 3 represent the value of
x, y, z coordinates of the points P and Q, respectively.
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Fig. 12. Architecture of Huff curve point multiplication.

Table 5). The start pin of the Point Addition Block results from a control cir-
cuitry made of flag1, flag2 and addition done signals. After the completion of
one point operation, addition done will be enabled for one clock cycle during
which the Q registers are updated by the new intermediate result coming out
from the Unified Point Addition Block. Finally, once the whole process is com-
plete (at the end of the iteration when i = 0), the done signal will be enabled
which enables the top level input-output circuitry.

Execution of SPA-Resistant Unified Point Operations. The proposed
SPA-resistant Huff curve point addition formula is executed with the help of
seven temporary registers. The detailed RTL description is provided in Table 5
in the Appendix. The number of registers used in the whole design is optimized
through careful data flow analysis of the algorithm. The life time graph of the
registers is depicted in Fig. 13. In the graph, the changes of a line style in a life-
line indicates the register is reassigned. The line beyond clock cycle 19 indicates
that the value of that respective register is used in future. It is mainly used for
Q registers, for which the resultant value of the current point addition is used
as the input for the next addition.

Fig. 13. Life time diagram of registers.
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The proposed design performs one multiplication in one clock cycle. Thus,
next multiplicands and current multiplication result are stored in the same clock
transition. The multiplicands are sent to the combinatorial circuit of a Karat-
suba Multiplier synchronously at the same clock when the result of the previous
multiplication is stored in temporary registers. Hence, 17 multiplications (Ref
Table 5) are completed in 17 clock cycles. Apart from that, one clock cycle is
needed to start the operation, one is needed to store the result of current point
addition/doubling, and one is needed to reset all the signals and flip flops. Hence,
a total of 20 clock cycles are required to perform one point addition/doubling
operation in our proposed SPA-resistant architecture.

Point Addition Block consists of a single multiplier sub-block where the input
multiplicands are fed through a multiplexer. The inputs to the multiplexer are
a bank of registers and the output signals of some combinatorial circuits which
are used to perform addition and squaring operations. The primary inputs that
represent the coordinates of two points are coming from the registers placed in
the point multiplication block (Fig. 12). Both the squaring and multiplication
operations are followed by the reduction sub-block. The selector pins of the
multiplexer result from the control circuitry of the 20-bit register flag and the
start pin. The outputs of the multiplier block after reduction are stored in one
of the seven temporary registers as defined in our RTL table (Table 5). The
coordinates of the resultant point are stored in the m-bit X3, Y3, and Z3 registers
and sent to the Point Multiplication Block with a signal addition done indicating
that a point addition/doubling operation is complete. The field multiplication
unit is based on the hybrid Karatsuba multiplier as described in [17]. For a 256-
bit field, we use simple Karatsuba decomposition and accumulation upto the
multiplicand size of 32-bit and general Karatsuba for 16-bit multiplication.

5.3 Area and Time Results.

The architecture is described in Verilog (HDL) and synthesized by Xilinx ISE
tool to generate the FPGA configuration file. The area and timing results for
three different field sizes are depicted in Table 1 and Table 2.

Table 1. Area and timing results of a Unified Huff Addition on FPGA.

Device
128− bit 233− bit 256− bit

Slice Clock Time Slice Clock Time Slice Clock Time
[MHz] [µs] [MHz] [µs] [MHz] [µs]

Virtex-2Pro 7, 270 110 0.19 16, 214 109 0.19 19, 256 88 0.24

Virtex-4 7, 627 145 0.15 16, 661 167 0.13 19, 242 122 0.17

Virtex-6 3, 027 180 0.12 8, 091 172 0.12 8, 239 152 0.14

Virtex-7 2, 363 190 0.11 6, 503 180 0.12 7, 312 164 0.13

The performance comparison with existing recent results are shown in Ta-
ble 3. Compared to the only implementation of unified binary Huff curve in [7],
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Table 2. Area and timing results of scalar multiplication on FPGA.

Device
128− bit 233− bit 256− bit

Slice Clock Time Slice Clock Time Slice Clock Time
[MHz] [µs] [MHz] [µs] [MHz] [µs]

Virtex-2Pro 8, 345 110 37 19, 043 110 67 21, 423 98 82

Virtex-4 8, 713 138 29 19, 352 134 55 21, 325 103 78

Virtex-6 3, 924 182 22 7, 150 172 43 11, 083 146 55

Virtex-7 3, 432 195 21 6, 032 183 40 9, 115 162 49

our design provides 75% performance improvement on a Virtex-4 FPGA com-
pared to the only existing binary Huff curve architecture available in the litera-
ture. It is claimed by the authors in [8] that the unified binary Huff curve formula
is faster than the unified formula on Edwards curve [2], which costs 18M+7D (or
21M+4D). This is proved by the design in [7] as well as in our design, which is
∼ 3 times faster than the implementation of unified Edwards curve [6]. Another
implementation of binary Edwards curves over F2163 using Gaussian normal basis
has been presented in [1], which computes a [d]P operation in 23.3µs.

Table 3. Performance of the proposed implementation compared to others

.

Work Platform Field Slices Clock Latency Area× Latency
[m] Count [MHz] [µs] ×[105]

Ours XC4V 140 233 19, 352 134 55 10.6

Unified Edwards [6] XC4V 140 233 21, 816 50 170 37.1

Unified Huff [7] XC4V 140 233 20, 437 81 73 14.9

In general, an n-bit point multiplication based on the proposed Unified Huff
curve arithmetic costs 25.5n M. This is not a cheap solution of side-channel
attacks compared to existing other solutions. It is little bit slower than double-
and-add always using Lopez-Dahab which costs 19n M (5M for one PD and 14M
for one PA). The same is much slower than the Montgomery ladder, based on
Lopez-Dahab fast point multiplication [16] trick which costs only 6n M. However,
it should be noted that providing side-channel security is not the main goal of
a Huff curve; rather, it provides a complete addition formula for all subgroups
on an elliptic curve − even in a subgroup that does not contain the points
at infinity. Due to this property the Huff curve is secure against exceptional
procedure attacks [11] and batch computing [3]. In this respect, the Huff curve
is one step ahead compared to its competitors Edwards [2] and Generalized
Hessian curves [9] − on both of which the point addition is complete only on
some specific subgroups.

6 Conclusion

Through close observations, we have pin-pointed a severe weakness of the uni-
fied addition formula of binary Huff curve against simple power-analysis attacks.
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The actual power analysis has been performed using SASEBO-G board. It has
been successfully demonstrated that the unified binary Huff curve is vulnerable
against SPA. A suitable countermeasure has been also proposed and its robust-
ness against SPA is demonstrated. The final design with SPA protection has
been projected as the best performing unified elliptic curve implementation.
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Appendix

Algorithm 1 : SPA-resistant elliptic curve point multiplication.

Input: P, d = 2m−1 +
∑m−2

i=0 2idi.
Output: Q = [d]P .

1: Q← P ;
2: for i from m− 2 downto 0 do;
3: Q← Unif Add(Q,Q);
4: if di = 1 then Q← Unif Add(Q,P );
5: Return Q;
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Table 4. RTL description of unified Huff formula.
PA/PD Operations RTL description
Cycles

1 m1 = x1 × x2 temp[0]← x1 × x2

2 m2 = y1 × y2 temp[1]← y1 × y2
3 m3 = z1 × z2 temp[2]← z1 × z2
4 m1 ×m2 temp[3]← temp[0]× temp[1]
5 (x1 + z1)(x2 + z2) temp[4]← (x1 ⊕ z1)× (x2 ⊕ z2)
6 m6 = m1 ×m3 temp[5]← temp[0]× temp[2]
7 m11 = m8 × (m2 +m3) temp[6]← (temp[3]⊕ temp[2]2)× (temp[1]⊕ temp[2])
8 m9 = m6 × (m2 +m3)

2 temp[5]← temp[5]× (temp[1]⊕ temp[2])2

9 α×m9 temp[5]← α× temp[5]
10 m11 ×m4 temp[4]← temp[6]× (temp[4]⊕ temp[0]⊕ temp[2])
11 Z3 = m11 × (m1 +m3) temp[6]← temp[6]× (temp[0]⊕ temp[2])
12 m7 = m2 ×m3 temp[5]← temp[1]× temp[2]
13 m10 = m7 × (m1 +m3)

2 temp[5]← temp[5]× (temp[0]⊕ temp[2])2

14 m12 = m8 × (m1 +m3) temp[4]← (temp[3]⊕ temp[2]2)× (temp[0]⊕ temp[2])
15 (y1 + z1)(y2 + z2) temp[3]← (y1 ⊕ z1)× (y2 ⊕ z2)
16 m12 ×m5 temp[4]← temp[4]× (temp[3]⊕ temp[1]⊕ temp[2])
17 β ×m10 temp[5]← β × temp[5]

Final outputs are: X3 ← temp[4]⊕ temp[5] at the end of step 10,
Z3 ← temp[6] at the end of step 11,
Y3 ← temp[4]⊕ temp[5] at the end of step 17.

Table 5. Unif Add((x1, y1, z1), (x2, y2, z2)): RTL description of proposed SPA-
resistant unified Huff curve addition arithmetic.

PA/PD Operations RTL description
Cycles

1 m1 = x1 × x2 temp[0]← x1 × x2

2 m2 = y1 × y2 temp[1]← y1 × y2
3 m3 = z1 × z2 temp[2]← z1 × z2
4 m1 ×m2 temp[3]← temp[0]× temp[1]
5 m4 = (x1 + z1)(x2 + z2) temp[4]← (x1 ⊕ z1)× (x2 ⊕ z2)
6 m6 = m1 ×m3 temp[5]← temp[0]× temp[2]
7 m11 = m8 × (m2 +m3) temp[6]← (temp[3]⊕ temp[2]2)× (temp[1]⊕ temp[2])
8 m9 = m6 × (m2 +m3)

2 temp[5]← temp[5]× (temp[1]⊕ temp[2])2

9 m11 ×m4 temp[4]← temp[6]× temp[4]
10 α×m9 temp[5]← α× temp[5]
11 Z3 = m11 × (m1 +m3) temp[6]← temp[6]× (temp[0]⊕ temp[2])
12 m7 = m2 ×m3 temp[5]← temp[1]× temp[2]
13 m5 = (y1 + z1)(y2 + z2) temp[4]← (y1 ⊕ z1)× (y2 ⊕ z2)
14 m10 = m7 × (m1 +m3)

2 temp[5]← temp[5]× (temp[0]⊕ temp[2])2

15 m5 ×m8 temp[4]← temp[4]× (temp[3]⊕ temp[2]2)
16 β ×m10 temp[5]← β × temp[5]
17 (m5m8)× (m1 +m3) temp[4]← temp[4]× (m1 ⊕m3)

Final outputs are: X3 ← temp[4]⊕ temp[5]⊕ temp[6] at clock cycle 12,
Z3 ← temp[6] at clock cycle 15,
Y3 ← temp[4]⊕ temp[5]⊕ temp[6] at clock cycle 19.


