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Abstract. Gu map-1 is a modified version of GGH map. It uses same
ideal lattices for constructing the trapdoors, while the novelty is that no
encodings of zero are given. In this short paper we show that Gu map-1
cannot be used for the instance of witness encryption (WE) based on the
hardness of 3-exact cover problem. That is, if Gu map-1 is used for such
instance, we can break it by soving a combined 3-exact cover problem.
The reason is just that no encodings of zero are given.
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1 Introduction: Background and Our Comment

Multilinear map is a novel primitive. It is the solution of a long-standing open
problem [1], and has many novel cryptographic applications, such as multi-party
key exchange (MPKE) [2], witness encryption (WE) [3–9], obfuscation [7–10],
and so on. It also has several advantages in traditional cryptographic area [3],
such as IBE, ABE, broadcasting Encryption, and so on. The first and the major
candidate of multilinear map is GGH map [2, 11]. We presented efficient attack
on GGH map for given encodings of zero [12], therefore we broke GGH multi-
party key exchange (MPKE) and GGH instance of witness encryption (WE)
based on the hardness of 3-exact cover problem. Gu map-1 [13] is a modified
version of GGH map. It uses same ideal lattices for constructing the trapdoors,
while the novelty is that no encodings of zero are given. This novelty makes it
successfully form MPKE scheme, and avoid our attack.

In this short paper we show that Gu map-1 cannot be used for the instance of
witness encryption (WE) based on the hardness of 3-exact cover problem. That
is, if Gu map-1 is used for such instance, we can break it by solving a combined
3-exact cover problem. The reason is just that no encodings of zero are given. In
other words, the reason is that there is no randomizer. The instance of WE based
on the hardness of 3-exact cover problem is a strong application of multilinear
map, and it has strong requirement.

⋆ The work was supported in part by Natural Science Foundation of China under
Grant 60833008
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2 Gu Map-1

2.1 Setting Parameters

We define the integers by Z. We specify that n-dimensional vectors of Zn are row
vectors. We consider the 2n’th cyclotomic polynomial ring R = Z[X]/(Xn + 1),
and identify an element u ∈ R with the coefficient vector of the degree-(n − 1)
integer polynomial that represents u. In this way, R is identified with the integer
lattice Zn. We also consider the ring Rq = R/qR = Zq[X]/(Xn + 1) for a (large
enough) integer q. Obviously, addition in these rings is done component-wise
in their coefficients, and multiplication is polynomial multiplication modulo the

ring polynomial Xn+1. For u ∈ R, we denote Rot(u) =

 u0 u1 ··· un−1

−un−1 u0 ··· un−2

...
...

. . .
...

−u1 −u2 ··· u0

 ∈
Zn×n.

Because Gu map-1 scheme uses the GGH construction [2, 11] as the basic
component, parameter setting is set as that of GGH to conveniently describe
and compare. Let λ be the security parameter, K the multilinearity level, n the
dimension of elements of R. Concrete parameters are set as σ =

√
λn, σ′ = λn1.5,

σ∗ = 2λ, q ≥ 28KλnO(K), n ≥ Õ(Kλ2), τ = O(n2).

2.2 Instance Generation

(1) Choose a prime q ≥ 28KλnO(K).

(2) Choose an element g ← DZn,σ in R so that ∥g−1∥ ≤ n2. In other words, g is
“very small”.

(3) Choose elements ai, ei ← DZn,σ, bi ← DZn,
√
q, i = 1, · · · , τ in R. In other

words, ai, ei are “very small”, while bi is “somewhat small”.

(4) Choose a random element z ∈ Rq. In other words, z ∈ Rq is never small.

(5) Choose two matrices T, S ← DZn×n,σ. In other words, T and S are “very
small”.

(6) Set Yi =
[
TRot

(
aig+ei

z

)
T−1

]
q
, Pzt,i =

[
TRot

( zK(big+ei)
g

)
S
]
q
, i = 1, · · · , τ .

(7) Output the public parameters {q, {Yi, Pzt,i}, i = 1, · · · , τ}.
(8) Generating level-1 encodings. A user generates his secret d ← DZn,σ∗ in

R, then publishes U =
[∑τ

i=1 diYi

]
q
=

[
TRot

(∑τ
i=1 di(aig+ei)

z

)
T−1

]
q
. U is

level-1 encoding of the secret d.

(9) Generating level-K decoding factors. After the user generating his secret d,

he secretly computes V =
[∑τ

i=1 diPzt,i

]
q
=

[
TRot

( zK ∑τ
i=1 di(big+ei)

g

)
S
]
q
.

V is level-K decoding factor of the secret d.

2.3 An Application: Multi-party Key Exchange (MPKE)

Suppose thatK+1 users want to generate a common shared key by public discus-
sion. To do so, each user k generates his secret dk ← DZτ ,σ∗ in R, publishes level-

1 encoding Uk =
[∑τ

i=1 dk,iYi

]
q
=

[
TRot

(∑τ
i=1 dk,i(aig+ei)

z

)
T−1

]
q
, and secretly



A Comment on Gu Map-1 3

computes level-K decoding factor Vk =
[∑τ

i=1 dk,iPzt,i

]
q
=

[
TRot

( zK ∑τ
i=1 dk,i(big+ei)

g

)
S
]
q
,

k = 1, · · · ,K + 1. Then each user k can compute common shared key, which is

high-order bits of
[
Vk

∏
j ̸=k Uj

]
q
.

3 Another Application: the Instance of Witness
Encryption (WE) Based on the Hardness of 3-Exact
Cover Problem

3.1 3-Exact Cover Problem

Let K be a multiple of 3. A subset of {1, · · · ,K} including 3 elements is called a
piece. K/3 pieces without intersection are called a 3-exact cover of {1, · · · ,K}.
3-exact cover problem is, for given O(K2) pieces, to find a 3-exact cover of
{1, · · · ,K}.

3.2 Gu Instance of WE Based on the Hardness of 3-Exact Cover
Problem

LetK be a multiple of 3. The public key includes the public parameters {q, {Yi, Pzt,i},
i = 1, · · · , τ} and a group of O(K2) pieces, while the secret key is EC, a 3-exact
cover of {1, · · · ,K} hidden into this group.

Encryption

(1) The encrypter generates the dk ← DZτ ,σ∗ in R. Then he computes level-

1 encoding of dk: Uk

[∑τ
i=1 dk,iYi

]
q
=

[
TRot

(∑τ
i=1 dk,i(aig+ei)

z

)
T−1

]
q
, k =

1, · · · ,K +1. Then he can compute encryption key, which is high-order bits

of
[∏K

k=1 UkPzt,1

]
q
.

(2) The encrypter uses this encryption key and any encryption algorithm, to
encrypt his plaintext M into ciphertext C.

(3) The encrypter hides encryption key into pieces. For each piece {i1, i2, i3}, he
computes level-3 encoding of {di1 , di2 , di3}, which we denote U{i1,i2,i3}.

(4) The encrypter publishes all level-3 encodings. Therefore the final ciphertext
is C and all U{i1,i2,i3}.

Decryption

The decrypter is anyone who knows the hidden 3-exact cover of {1, · · · ,K}, EC.
On receiving C and all U{i1,i2,i3}, he computes

[∏
{i1,i2,i3}∈EC U{i1,i2,i3}Pzt,1

]
q
.

Then encryption key is its high-order bits, and he can decrypt C into the plain-
text M .
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3.3 A Note

For GGH map, U{i1,i2,i3} =
[
Ui1Ui2Ui3+e{i1,i2,i3}

]
q
, where e{i1,i2,i3} is a radom-

izer, which is an encoding of zero. However, for Gu map-1 we cannot obtain such

radomizer, so that we can only have U{i1,i2,i3} =
[
Ui1Ui2Ui3

]
q
.

4 Breaking the Instance by Solving a Combined 3-Exact
Cover Problem

Suppose {i1, i2, i3} is not from the group of O(K2) public pieces. If {i1, i2, i3} =
{j1, j2, j3}∪{k1, k2, k3}−{l1, l2, l3}, where {j1, j2, j3}, {k1, k2, k3} and {l1, l2, l3}
are from the group of O(K2) public pieces, we call {i1, i2, i3} a combined piece. In

this case we can compute U{i1,i2,i3} =
[
(Uj1Uj2Uj3)(Uk1Uk2Uk3)(Ul1Ul2Ul3)

−1
]
q
.

If {i1, i2, i3} = {j1, j2, j3}∪{k1, k2, k3}−{l1, l2, l3} where {j1, j2, j3}, {k1, k2, k3}
and {l1, l2, l3} are combined pieces, we call {i1, i2, i3} a second order combined
pieces. In this case we can also compute U{i1,i2,i3}. According such procedure,
we can compute U{i1,i2,i3} for any subset {i1, i2, i3}. We can randomly construct
a “3-exact cover”, EC′, which is composed of pieces and combined pieces and
second order combined pieces an so on. So that encryption key is high order bits

of
[∏

{i1,i2,i3}∈EC U{i1,i2,i3}Pzt,1

]
q
.

5 Our Comment

It may be argued that Gu map-1 uses hidden randomizers. But we hope that,
for 1 ≤ l ≤ K, a level-l encoding of {d1, · · · , dl} is the sum of a randomizer and
the product of level-1 encodings of d1, · · · , dl. This is a necessary condition of
several important applications of multilinear map. However Gu map-1 does not
satisfy this condition. Besides, Gu map-2 [14] does not either.
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