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Abstract. Recently, IACR ePrint archive posted two fully homomorphic encryp-
tion schemes without bootstrapping. In this note, we show that these schemes are
trivially insecure. Furthermore, we also show that the encryption schemes of Liu
and Wang [6] in CCS 2012 and the encryption scheme of Liu, Bertino, and Xun
[5] in ASIACCS 2014 are insecure either.

1 Introduction

Though it is a very challenging problem to design fully homomorphic encryption schemes
without bootstrapping. We still see that quite a few researchers post candidate designs
frequently. This note points out that the two schemes posted to IACR ePrint archive re-
cently are trivially insecure: the scheme by Masahiro Yagisawa [7] on 2015-05-19 and
the scheme by Dongxi Liu [4] on 2015-05-17.

2 Masahiro Yagisawa [7]’s Scheme

Octonion (see, e.g., Conway and Smith [3] or Baez [1]) is the largest of the four normed
division algebra and is the only normed division algebra that is neither commutative nor
associative. Each octonion number is a vector a = [a0, · · · , a7] ∈ R8 where R is the
real number. For each octonion number a = [a0, · · · , a7], we define an associated 8× 8
matrix

Aa =



a0 a1 a2 a3 a4 a5 a6 a7
−a1 a0 a4 a7 −a2 a6 −a5 −a3
−a2 −a4 a0 a5 a1 −a3 a7 −a6
−a3 −a7 −a5 a0 a6 a2 −a4 a1
−a4 a2 −a1 −a6 a0 a7 a3 −a5
−a5 −a6 a3 −a2 −a7 a0 a1 a4
−a6 a5 −a7 a4 −a3 −a1 a0 a2
−a7 a3 a6 −a1 a5 −a4 −a2 a0


For two octonions a = [a0, · · · , a7] and b = [b0, · · · , b7], we can add them as a + b =
[a0 + b0, · · · , a7 + bt] and multiply them as ab = bAa. The norm of an octonion
a = [a0, · · · , a7] is defined as ‖a‖=

√
a20 + · · ·+ a27.

Let 1 = [1, 0, 0, 0, 0, 0, 0, 0]. Using octonions overGF (q), Yagisawa [7] introduced
the following fully homomorphic encryption scheme.



Key Setup. Let x be a variable representing octonions. Choose random invertible octo-
nions k0, · · · ,kt−1 ∈ GF (q)8. The private key is key = {k0, · · · ,kt−1}.
Encryption. For a message m ∈ GF (q)8, let the cipher text

cm(x) = O.Enc(key,m) = k0(· · · (kt−1(m(k−1t−1(· · · (k−10 x) · · ·)))) · · ·).

Decryption. Let g0(x) = k−1t−1(· · · (k−10 x) · · ·) and g1(x) = k0(· · · (kt−1x) · · ·). For
a received ciphertext cm(x), compute m = O.Dec(key,(cm(x)) = g0(cm(g1(1))).
Ciphertext addition. The addition of two ciphertexts cm0

(x) and cm1
(x) is defined as

the component wise addition cm0+m1
(x) = cm0

(x) + cm1
(x). That is, this is just the

octonion addition.
Ciphertext multiplication. The multiplication of two ciphertexts cm0

(x) and cm1
(x)

is defined as cm1m0 = cm1(cm0(x)).

It should be noted that the above scheme is not fully homomorphic over GF (q).
Indeed, it is only fully homomorphic over octonion numbers over GF (q) since the
multiplication of ciphertexts is the ciphertext of an octonion number which is a multi-
plication over the octonions. Since the multiplication in octonions is neither associative
nor commutative, the above scheme cannot be fully homomorphic scheme over GF (q)
using the above scheme. In order to achieve FHE over GF (q), Yagisawa’s [7] uses the
following message coding technique.

Let z ∈ GF (q)8 be a random octonion with ‖z‖= 0 and z0 6= 0. For a message
m ∈ GF (q), choose a random r ∈ GF (q) and encode the message m as an octonion
number m = m1 + rz ∈ GF 8. Using this encoding approach, Yagisawa showed that
his scheme is fully homomorphic over GF (q). The details could be found in [7].

It is straightforward to observe that for the above scheme with message encoding,
the message 0 is encrypted to a ciphertext c0(x) = crz(x) such that ‖crz(1)‖= 0.
In other words, we can easily distinguish ciphertexts of m and −m since ‖(cm +
c−m)(1)‖= 0.

2.1 A variant of Yagisawa’s [7] encryption scheme

Yagisawa’s [7] encryption scheme is defined in terms of a sequence of octonions. It
will be interesting to have a simplified definition of Yagisawa’s scheme in terms of
matrix operations. In the following, we use matrix operations to define a variant of
Yagisawa’s scheme. Then we show that the scheme is equivalent to Yagisawa’s scheme
when only encoded messages over GF (q) are encrypted. However, the variant scheme
is not equivalent to Yagisawa’s scheme when messages are plain octonions. Let GF (q)
be the underlying finite field that we will work with. Then the protocol works as follows:
Key Setup. Choose a random invertible 8×8 matrixK ∈ GF (q)8×8 as the private key.
Encryption. For a message m ∈ GF (q)8, the cipher text Cm = M.Enc(K,m) =
K−1AmK ∈ GF 8×8 where Am is the associated matrix for m when m is considered
as an octonion number.
Decryption. For a received ciphertext Cm, compute

m = M.Dec(K,Cm) = 1(KCmK
−1) = 1Am.



Ciphertext addition. The addition of two ciphertexts Cm0
and Cm1

is defined as the
component wise additionCm0+m1

= Cm0
+Cm1

. That is, this is just the regular matrix
addition.
Ciphertext multiplication. The multiplication of two ciphertexts Cm0

and Cm1
is de-

fined as the regular matrix multiplication

Cm0m1 = Cm1Cm0 = KAm1K
−1KAm0K

−1 = KAm1Am0K
−1.

It is straightforward that the above encryption scheme can have ciphertext addition
homomorphically for unlimited times. However, the ciphertext multiplication can only
be used for one time by the following observation. Let m0,m1,m2 be octonions such
that m0(m1m2) 6= (m0m1)m2. By definition, we have

M.Dec(K,Cm2
Cm0m1

) = M.Dec(K,K−1Am2
Am1

Am0
K)

= 1Am2
Am1

Am0

= m0(m1m2)
6= (m0m1)m2

(1)

It follows that C(m0m1)m2
6= Cm2

Cm0m1
.

In the above scheme, the ciphertext multiplication could not be used for more than
one time due to the fact that that Am0m1

6= Am0
Am1

. The scheme could be re-
vised by redefining the associated matrix (then the scheme will not be based on oc-
tonions). For example, for a plain text message m ∈ GF (q) one may define an as-

sociated matrix Am =

(
m 0
bT B

)
∈ GF (q)8×8 with uniformly at random chosen

b ∈ GF (q)7 and B ∈ GF (q)7×7. Then it is straightforward that Am0m1 6= Am0Am1

for all m0,m1 ∈ GF (q). It follows that the resulting scheme is fully homomorphic
with unlimited ciphertext additions and multiplications.

Alternatively, we may also use Yagisawa’s [7] message encoding technique to make
M.Enc fully homomorphic. That is, a message m ∈ GF (q) is mapped to an octonion
m1 + rz where z is a fixed octonion number with ‖z‖= 0 and r ∈ GF (q) is randomly
chosen. In other words, a message m ∈ GF (q) is encrypted to Cm = M.Enc(K,m) =
K−1Am1+rzK ∈ GF 8×8 where Am1+rz is the associated matrix for m1 + rz when
m1 + rz is considered as an octonion number. For a received ciphertext Cm, one can
first compute Am1+rz = M.Dec(K,Cm) = KCmK

−1. The plaintext message m can
then be recovered by finding an octonion u such that ‖u‖= 0 and 1Am1+rz = m1+u.
Ciphertext addition and multiplication are carried out in the same way by using matrix
addition and multiplication. In the following, we show that this revised scheme achieves
fully multiplication homomorphism.

For m0,m1,m2, r0, r1, r2 ∈ GF (q), it is straightforward to show that (for a proof,
see Yagisawa [7])

(m01 + r0z)(m11 + r1z) = m0m11 + r3z

for some r3 ∈ GF (q). It follows that

m0(m1m2) = (m0m1)m2 = m0m1m21 + r4z



for some r4 ∈ GF (q). In a summary, we have

M.Dec(K,Cm2Cm0m1) = M.Dec(K,K−1Am21+r2zAm11+r1zAm01+r0zK)
= 1Am21+r2zAm11+r1zAm01+r0z

= m0m1m21 + r4z
= M.Dec(K,Cm2(m0m1))

(2)

That is, for the revised encryption scheme, ciphertexts could be multiplied for unlimited
times.

3 Dongxi Liu [4]’s Scheme

Liu [4] proposed a candidate fully homomorphic encryption scheme using linear al-
gebra over GF (q). Though the design in [4] is very complicated, we give a simple
(equivalent) description of the protocol in [4]. From the simplified description, it is
straightforward that the public evaluation keys leak all of the private key.

Let l, n be given numbers with l ≤ n−2. It is recommended to use n = 5 and l = 3
in [4]. The protocol works as follows.
Key Setup.

– Choose random vectors k = [k0, · · · , kn] ∈ GF (q)n+1 and Θ = [θ0, · · · , θl−1] ∈
GF (q)l.

– For each m ∈ GF (q), let cm = ENC(k,m) = [c0, · · · , cn] ∈ GF (q)n+1 such
that m = k · cm where · is the inner product of k and cm. That is, k · cm =
c0k0 + c1k1 + · · ·+ cnkn.

– Let Φ = [ENC(k, θ0), · · · , ENC(k, θl−1), ENC(k, 1)].
– The private key is k and Θ.
– The public evaluation key is pek = {pi,j = ENC(k, kikj) : 0 ≤ i, j ≤ n}

Encryption. For a message m ∈ GF (q), choose random r0, · · · , rl ∈ GF (q) with
m = r0 ⊕ r1 ⊕ · · · ⊕ rl. The ciphertext of m is cm = (r0 · ENC(k, θ0))⊕ · · · ⊕ (rl−1 ·
ENC(k, θl−1))⊕ (rl · ENC(k, 1)).
Decryption. For a received ciphertext cm, compute m = k · cm.
Ciphertext addition. The addition of two ciphertexts cm0 and cm1 is defined as the
component wise addition cm0+m1

= cm0
+ cm1

. That is, this is just the regular com-
ponent wise vector addition.
Ciphertext multiplication. The multiplication of two ciphertexts cm0

= [c0, · · · , cn]
and cm1

= [c′0, · · · , c′n] is defined as cm0m1
=
∑n

i,j=0 cicjpi,j .
The correctness of the protocol could be easily verified (for details, it is referred to

the original paper [4]. However, the protocol cannot be secure since the private key k
could be trivially derived from the public evaluation key pek. As an example, we can
assume that pi,j = [pi,j,0, · · · , pi,j,n]. Then we have the equations

k0k0 = p0,0,0k0 + · · ·+ p0,0,nkn
· · ·
kikj = pi,j,0k0 + · · ·+ pi,j,nkn
· · ·
knkn = pn,n,0k0 + · · ·+ pnn,,nkn

(3)



Using equation (3), one can easily obtain the private key k by constructing polynomial
equations f(ki) = 0 in one variable and then using the Euclidean algorithm to compute
gcd(f(x), xq−x) (or use Berlekamp’s algorithm). For example, from the first equation,
one can obtain an expression of kn in terms of k0, · · · , kn−1. By substituting this kn
into all remaining equations, one eliminates the occurrence of kn from all remaining
equations.

4 A scheme from ASIACCS 2014

Liu, Bertino, and Xun [5] introduced a fully homomorphic encryption scheme to carry
out privacy preserving outsourced k-means clustering. In this section, we show that the
FHE scheme in [5] is insecure either. The scheme in [5] works as follows.
Key Setup. Let n ≥ 3. For i < n, choose random tuples (ki, si, ti) ∈ GF (q)3 such
that k0 · · · kn−1 6= 0, kn−1 + sn−1 + tn−1 6= 0, and there exists only one i0 such that
ti0 6= 0. The private key is key = {(ki, si, ti) : 0 ≤ i < n}.
Encryption. For a message m ∈ GF (q), choose random r0, · · · , rn−1 ∈ GF (q) and
compute the ciphertext (c0, · · · , cn−1) as follows.

– Let c0 = k0t0m+ s0rn−1 + k0(r0 − rn−1).
– For 1 ≤ i ≤ n− 1, let ci = kitiv + sirn−1 + ki(ri − ri−1)
– Let cn−1 = (kn−1 + sn−1 + tn−1)rn−1

Decryption. For a received ciphertext (c0, · · · , cn−1), compute

m =

(
n−2∑
i=0

(ci − Ssi)/ki

)
/T

where T =
∑n−2

i=0 ti and S = cn−1/(kn−1 + sn−1 + tn−1).
The above scheme is equivalent to the inner product encryption scheme. For exam-

ple, we could set

τi = 1/kiT for 0 ≤ i ≤ n− 2

τn−1 = −
n−2∑
i=0

si
kiT (kn−1 + sn−1 + tn−1)

(4)

Then the decryption circuit is just an inner product: m = c0τ0 + · · · cn−1τn−1. In other
words, the above scheme in [5] is equivalent to the following inner product encryption
scheme.
Key Setup. Let n ≥ 3. Choose a random key k = [k0, · · · , kn−1] ∈ GF (q)n.
Encryption. For a message m ∈ GF (q), choose a random ciphertext c = [c0, · · · , cn−1] ∈
GF (q)n such that m = c · k.
Decryption. For a received ciphertext [c0, · · · , cn−1], compute m = c · k.

Since inner product function is trivially polynomially learnable, Brakerski [2]’s re-
sult shows that this scheme could not be fully homomorphic and secure at the same
time.



5 A scheme from CCS 2012

Liu and Wang [6] introduced an additive homomorphic encryption scheme to design
practical encrypted database query. The scheme is very similar to the schemes in Sec-
tions 3 and 4. It could easily be converted to the equivalent inner product encryption
scheme as in Section 4. Thus the scheme could not be secure either.
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