
A Framework for Identity-Based Encryption with
Almost Tight Security

Nuttapong Attrapadung∗1, Goichiro Hanaoka†1, and Shota Yamada‡1

1National Institute of Advanced Industrial Science and Technology (AIST).

June 9, 2015

Abstract

We show a framework for constructing identity-based encryption (IBE) schemes that are (almost)
tightly secure in the multi-challenge and multi-instance setting. In particular, we formalize a new notion
called broadcast encoding, analogously to encoding notions by Attrapadung (Eurocrypt ’14) and Wee
(TCC ’14). We then show that it can be converted into such an IBE. By instantiating the framework using
several encoding schemes (new or known ones), we obtain the following:

• We obtain (almost) tightly secure IBE in the multi-challenge, multi-instance setting, both in com-
posite and prime-order groups. The latter resolves the open problem posed by Hofheinz et al (PKC
’15).

• We obtain the first (almost) tightly secure IBE with sub-linear size public parameters (master public
keys). In particular, we can set the size of the public parameters to constant at the cost of longer
ciphertexts. This gives a partial solution to the open problem posed by Chen and Wee (Crypto ’13).

By applying (a variant of) the Canetti-Halevi-Katz transformation to our schemes, we obtain several CCA-
secure PKE schemes with tight security in the multi-challenge, multi-instance setting. One of our schemes
achieves very small ciphertext overhead, consisting of less than 12 group elements. This significantly
improves the state-of-the-art construction by Libert et al. (in ePrint Archive) which requires 47 group
elements. Furthermore, by modifying one of our IBE schemes obtained above, we can make it anonymous.
This gives the first anonymous IBE whose security is almost tightly shown in the multi-challenge setting.

Keywords. Tight security reduction, identity-based encryption, multi-challenge security, chosen cipher-
text security.

1 Introduction
1.1 Backgrounds

In the context of provable security, we reduce the security of a given scheme to the hardness of a computational
problem, in order to gain confidence in the security of the scheme. Namely, we assume an adversary A who
breaks the scheme and then show another adversary B who solves the (assumed) hard problem usingA. Such
a reduction should be as tight as possible, in the sense that B’s success probability is as large as A. In this
paper, we mostly focus on the tight security reduction in identity-based encryption (IBE) [52].
∗n.attrapadung@aist.go.jp
†hanaoka-goichiro@aist.go.jp
‡yamada-shota@aist.go.jp

IBE is an advanced form of public key encryption in which one can encrypt a message for a user identity,
rather than a public key. The first fully secure (or often called, adaptively secure) construction in the standard
model was given in [10]. Later, further developments were made [53, 31, 7, 54]. All the above mentioned
papers only deal with the single-challenge, single-instance case. Since it is known that the security in the
(much more realistic) multi-challenge and multi-instance setting can be reduced to the security in the single-
challenge and single-instance setting [6], these schemes are secure in the former setting in asymptotic sense.
However, this reduction incurs O(µQc) security loss, where Qc is the number of challenge queries made by
the adversary and µ is the number of instances. Since all the above schemes already loose at least O(Qk)
security in the reductions, whereQk is the number of key extraction queries made byA, theses schemes loose
at least O(µQcQk) security in total.

Recently and somewhat surprisingly, Chen and Wee [18, 20] showed the first IBE scheme (CW scheme)
whose reduction cost is independent ofQk, resolving an important open question posed in [53]. Subsequently,
Blazy et al. [8] were able to obtain anonymous IBE and hierarchical IBE with the same security guarantee.
The drawback of these schemes is its large public parameters (master public keys): It is proportional to
the security parameter and thus rather large. Note that they only consider the single-challenge and single-
instance setting. Very recently, further important development was made by Hofheinz, Koch, and Striecks
[33] who extended the proof technique of Chen and Wee in a novel way and proposed the first IBE scheme
(HKS scheme) whose reduction cost is independent from all of µ, Qc, and Qk. However, they only give a
construction in composite-order groups and explicitly mention that the construction in prime-order groups
remains open. We focus on the following two important open problems in this paper:

• Can we construct a fully, (almost) tightly secure IBE scheme in the multi-challenge and
multi-instance setting from a static assumption in the prime-order groups?

• Can we construct a fully, (almost) tightly secure IBE scheme from a static assumption with
constant-size public parameters even in the single-challenge and single-instance setting?

1.2 Our Results

New Tightly-Secure IBE Schemes. In this paper, to tackle the above problems, we revisit the proof technique
in [18] and [33] and propose a framework for constructing almost tightly secure IBE. The almost tight security
means that the reduction cost is independent from µ, Qc, and Qk, and is a small polynomial in the security
parameter. In particular, we formalize the notion of broadcast encoding analogously to Attrapadung [4] and
Wee [55]. Then we show that it can be converted into fully, (almost) tightly secure IBE scheme, in the
multi-challenge and multi-instance setting. We propose such conversions both in prime-order and composite-
order groups. Furthermore, we propose two broadcast encoding schemes satisfying our requirement. By
instantiating our generic conversion with these schemes, we obtain several new IBE schemes. In particular,

• We obtain the first IBE scheme in prime-order groups with almost tight security in the multi-challenge
and multi-instance setting. The security of our scheme can be shown under the decisional linear (DLIN)
assumption. This resolves the first question above.

• We obtain the first IBE scheme with almost tight security in the multi-challenge and multi-instance
setting and with sub-linear public parameter-size (but at the cost of larger ciphertext-size). An IBE
scheme with almost tight security and sub-linear public parameter size is not known, even in the single-
challenge setting. This partially answers the second question above.

Application to Chosen-Ciphertext Secure Public Key Encryption. By applying a variant of Canetti-
Halevi-Katz transformation to the new IBE schemes, we obtain several new chosen-ciphertext (CCA) secure
public key encryption (PKE) schemes. The conversion is tightness-preserving, namely, if the original IBE

2

is tightly secure in the multi-challenge and multi-instance setting, the resulting PKE scheme is also tightly
secure in the same setting. One of our schemes achieves very compact ciphertext size. The ciphertext over-
head of the scheme only consists of 10 group elements and 2 elements in Zp. This is much shorter than the
state-of-the-art construction of PKE scheme with the same security guarantee [36]: their scheme requires 47
group elements.
Extension to Anonymous IBE. Furthermore, by modifying one of the new IBE schemes obtained above, we
obtain the first anonymous IBE scheme with (almost) tight security reduction in the multi-challenge settings
for the first time. The security proof is done by carefully combining information-theoretic argument due to
Chen et al. [17] and a computational argument.

See Table 1 for overview of our schemes.

Table 1: Comparison of Almost Tight IBE from Static Assumptions

Schemes |pp|+ |mpk| |CT| |skID| Anon? Multi- Underlying Security
challenge? group Assumption

CW13 [18] O(κ) O(1) O(1) No No Composite SGD, CW
HKS15 [33] O(κ) O(1) O(1) No Yes Composite SGD, HKS
Ours: Φcomp

cc O(κ) O(1) O(1) No Yes Composite SGD, Problem 5
Ours: Φcomp

slp O(κ1−c) O(κc) O(κc) No Yes Composite SGD, Problem 13, 14

CW13 [18]† O(κ) O(1) O(1) No No Prime DLIN
BKP14 [8]∗† O(κ) O(1) O(1) Yes No Prime DLIN
Ours: Φprime

cc O(κ) O(1) O(1) No Yes Prime DLIN
Ours: Φprime

slp O(κ1−c) O(κc) O(κc) No Yes Prime DLIN
Ours: Φanon O(κ) O(1) O(1) Yes Yes Prime DLIN

We compare IBE schemes focusing tight security reduction from static assumptions in the standard model. |pp| + |mpk|,
|CT|, and |skID| show the size of the master public keys and public parameters, ciphertexts, and private keys, respectively. To
measure the efficiency, we count the number of group elements. In the table, κ denotes the security parameter. “Anon” shows
whether the scheme is anonymous. “Multi-Challenge?” asks whether (almost) tight security reduction in the multi-challenge
setting is shown. “SGD” stands for sub-group decision assumptions. “CW” and “HKS” denote specific assumption used in the
corresponding paper. For Φcomp

slp and Φprime
slp , we can assign any 0 ≤ c ≤ 1.

∗ This is the only scheme that can be generalized to HIBE.
† These schemes can be generalized to be secure under the k-linear assumption (k-LIN) [30, 51] for any k ∈ N. In such

a case, |pp| + |mpk|, |CT|, and |skID| are changed to be O(k2κ), O(k), and O(k), respectively. Note that the DLIN
assumption corresponds to the 2-LIN assumption.

1.3 Our Techniques

Difficulties. To solve the first question above, natural starting point would be trying to apply the frameworks
for composite-order-to-prime-order-conversion dedicated to identity/attribute-based encryption [37, 19, 3, 17,
2] to the HKS scheme [33]. However, security proofs for CW and HKS schemes significantly deviate from
the most standard form of dual system encryption methodology [40, 42, 55, 4], only for which the above
mentioned frameworks can be applied. Another approach is to try to convert specific assumptions they use
into prime-order. In fact, Chen and Wee [18] were able to accomplish such a conversion for their scheme.
However, their technique is non-generic and therefore it is highly unclear whether the same argument is
possible for the assumptions that HKS use.

Next, we explain the difficulty of the second question. The reason why all IBE schemes featuring (al-
most) tight security reduction in previous works [18, 8, 33] require large public parameters is that they use
(randomized version of) Naor-Reingold PRF [43] in their construction. Note that the Naor-Reingold PRF
requires seed length which is linear in the input size, which in turn implies very long public parameters in the
IBE schemes. A natural approach to improve the efficiency would be, as noted by Chen and Wee [18, 20], to

3

reduce the seed length of the Naor-Reingold PRF. However, this is a long-standing open problem and turns
out to be quite difficult.

Our Strategy. In this paper, we introduce new proof techniques for IBE schemes (with almost tight security)
that rely only on the subgroup decision assumptions ∗. This allows us to use frameworks for composite-order-
to-prime-order conversions in the literature [25, 47, 37, 24, 28, 3, 17, 2] (to name only a few) which converts
subgroup decision assumption into a static assumption in prime-order groups, such as the DLIN assumption.
Therefore, using these techniques, we are able to convert a variant of HKS scheme into prime-order. This
answers the first question above. Note that in the security proof of HKS (and CW), they rely on some specific
assumptions in composite-order groups in addition to subgroup decision assumptions. Because of these, it is
unclear how to convert HKS scheme into prime-order.

As for the second question, we view Chen and Wee’s scheme as being constructed from, somewhat sur-
prisingly, broadcast encryption mechanism, instead of (Naor-Reingold) PRF, and hence can avoid the above
difficulty regarding PRF. More precisely, we show that the task of constructing almost tightly secure IBE
scheme is essentially reduced to a construction of broadcast encryption, and based on this idea, we are able to
obtain the first IBE scheme with sub-linear size public parameters and almost tight security. In the following,
we explain our technique.

Detailed Overview of Our Technique. Let us start from the following variant of the Chen and Wee’s IBE
scheme. Let the identity space of the scheme be {0, 1}`. For i ∈ {1, 2, 3}, let gi be the generator of a subgroup
of order pi of G, which is bilinear groups of composite order N = p1p2p3. Let also h be a generator of G.
The master public key, a ciphertext, and a private key for an identity ID are in the following form:

mpk =
(
g1, g

w1,0

1 , g
w1,1

1 , . . . , g
w`,0
1 , g

w`,1
1 , e(g1, h)α

)
,

CTID =

(
gs1, g

s
∑
i∈[1,`] wi,IDi

1 , e(g1, h)sα ·M
)
, skID =

(
hα · g

r
∑
i∈[1,`] wi,IDi

1 , g−r1

)
where IDi is the i-th bit of ID and M is the message.† Now we are going to show the security. We only
consider the single-challenge and single-instance case here for simplicity. In the security proof, at first, the
challenge ciphertext is changed to the following form using a subgroup decision assumption:(

gs1 · gŝ2, g
s
∑
i∈[1,`] wi,IDi

1 · g
ŝ
∑
i∈[1,`] wi,IDi

2 , e(gs1 · gŝ2, hα) ·M
)
.

Then, we consider ` hybrid games. In Gamei, all private keys are in the following form:(
hα · gR̂i(ID|i)

2 · g
r
∑
i∈[1,`] wi,IDi

1 , g−r1

)
where ID|i is the length i prefix of the identity ID and R̂i : {0, 1}i → N is a random function. Intuitively,
through these hybrid games, the randomizing part of the key (highlighted in the box) are gradually randomized
and made dependent on more and more bits of each identity. Finally, in Game`, we can argue that any
adversary cannot obtain the information on the message M, because these randomizing parts prevent it.

A crucial part of the security proof is to establish the indistinguishability between Gamei?−1 and Gamei?

for all i? ∈ [1, `]. For the target identity ID? (recall that we are considering the single-challenge and single-
instance case for now), we assume that b? := ID?

i? is known to the reduction algorithm in advance, since it can

∗In fact, we also require the decisional bilinear Diffie-Hellman (DBDH) assumption on the composite-order groups (Problem 5)
in addition to the subgroup decision assumptions. However, the assumption does not use the power of composite-order groups. In
other words, it does not imply the factoring assumption. Therefore, it is ready to be converted into prime-order.
†In the actual scheme, skID is randomized by elements of Gp3 , but we do not care this point in this overview.

4

be guessed with probability 1/2. At the core of the proof for this is an indistinguishability of the following
distributions:

Given
(
gs1 · gŝ2, g

s
∑
i∈[1,`] wi,ID?i

1 · g
ŝ
∑
i∈[1,`] wi,ID?i

2

)
,(

g
r
∑
i∈[1,`] wi,IDi

1 , g−r1

)
c
≈
(
gα̂2 · g

r
∑
i∈[1,`] wi,IDi

1 , g−r1

)
(1)

for all ID such that IDi? 6= b?, where α̂ $← ZN . Indistinguishability of Gamei?−1 and Gamei? is reduced to
Equation (1). The reduction algorithm can create the challenge ciphertext using the first term in Equation (1).
It can also set private key ashα · g

R̂i?−1(ID|i?−1)
2 · gr

∑
i∈S wi,IDi

1 , g−r1 if IDi? = b?

hα · gR̂i?−1(ID|i?−1)
2 · gα̂2 · g

r
∑
i∈S wi,IDi

1 , g−r1 if IDi? 6= b?

where α̂ = 0 or α̂ $← ZN . It is clear that the game corresponds to Gamei?−1 if α̂ = 0. On the other hand, if
α̂

$← ZN , it corresponds to Gamei? with

R̂i?(ID|i?) =

{
R̂i?−1(ID|i?−1) if IDi? = b?

R̂i?−1(ID|i?−1) + α̂ if IDi? 6= b?
.

If α̂ is freshly chosen for every distinct ID|i? , the simulation is perfect. Therefore, our task of the security
proof is reduced to establish Equation (1). To understand better, we decompose the private key in Equation
(1) and restate it again in a slightly stronger form:

Given
(
gs1 · gŝ2, g

s
∑
i∈[1,`] wi,ID?i

1 · g
ŝ
∑
i∈[1,`] wi,ID?i

2

)
,(

g
rwi?,1−b?
1 , g−r1 , {grwj,b1 }(j,b)6=(i?,1−b?)

)
c
≈
(
gα̂2 · g

rwi?,1−b?
1 , g−r1 , {grwj,b1 }(j,b)6=(i?,1−b?)

)
.

Let us consider a bijection map f : {(i, b)}i∈[1,`],b∈{0,1} → [1, 2`] and replace (i, b) with f((i, b)). We can
further restate the requirement as:

Given
(
gs1 · gŝ2, g

s
∑
j∈S? wj

1 · gŝ
∑
j∈S? wj

2

)
,(

g
rwτ?
1 , g−r1 , {grwj1 }j 6=τ?

) c
≈
(
gα̂2 · g

rwτ?
1 , g−r1 , {grwj1 }j 6=τ?

)
(2)

where S? = {f(i, ID?
i)}i∈[`], τ? = f((i?, 1 − b?)), and thus τ? 6∈ S?. We call the terms in the second line

above as the challenge terms. (It should not be confused with challenge ciphertext.) At this point, we can now
see a similarity to broadcast encryption. We consider the following broadcast encryption which captures the
essence of the above requirement. Let the set of user index be [1, 2`].

mpk = (g1, g
w1
1 , . . . , gw2`

1 , e(g1, h)α),

CTS = (gs1, g
s
∑
j∈S wj

1 , e(g1, h)sα ·M), skτ = (hαgrwτ1 , g−r1 , {grwj1 }j∈[2`]\{τ})

where CTS is a ciphertext for a set S ⊆ [2`] and skτ is a private key for a user index τ ∈ [2`]. This is in fact
a variant of the broadcast encryption by Gentry and Waters [27]! Indeed, Equation (2) can be interpreted as
a security condition for this broadcast encryption scheme (in the sense of encoding analogous to [55, 4]). It
says that given semi-functional ciphertext for a set S?, a normal private key for τ? 6∈ S? is indistinguishable

5

from a semi-functional private key for τ?. At this point, we are able to understand the core technique in Chen
and Wee in terms of broadcast encryption scheme.

However, we have not finished yet. In order to make the proof go through, we argue that an adversary
cannot distinguish challenge terms in Equation (2), even if these are given to the adversary unbounded many
times with freshly chosen randomness α̂, r. Such an indistinguishability can be shown by a standard tech-
nique [38, 55, 4] if the challenge term is given to the adversary only once. This can be accomplished by the
combination of subgroup decision assumption and the parameter-hiding argument. In parameter-hiding argu-
ment, a value which is information-theoretically hidden is used to make normal private key semi-functional
[40, 38, 55, 4]. At the first glance, this argument does not seem to be extended to the case where many chal-
lenge terms are given to the adversary, since entropy of hidden parameters (in this case, w1, . . . , w2` mod p2)
is limited. However, we have to simulate unbounded number of challenge terms. Chen and Wee [18] resolve
this problem by using computational argument instead of information-theoretic argument as above. Namely,
they assume a variant of the DDH assumption on Gp2

‡ and embed the problem instance into the above chal-
lenge terms. Indistinguishability of multiple challenge terms are tightly reduced to the assumption, using the
random self-reducibility of the assumption. On the other hand, our technique for boosting to multi-challenge
is much simpler. Our key observation is that the challenge term in Equation (2) can be easily randomized by
picking a $← ZN and computing((

gα̂2 · g
rwτ?
1

)a
,
(
g−r1

)a
, {
(
g
rwj
1

)a}j 6=τ?) =
(
gα̂
′

2 · g
r′wτ?
1 , g−r

′

1 , {gr
′wj

1 }j 6=τ?
)
, (3)

where r′ = ar and α̂′ = aα̂. It is easy to see that r′ mod p1 is uniformly random and independent from
anything. We can also see that α̂′ mod p2 = 0 if α̂ = 0 and α̂′ mod p2 is uniformly random if α̂ 6= 0
mod p2. By this argument, we can see that indistinguishability of the single-challenge-term case implies that
for the multi-challenge-term case. Based on all the above discussion, we are able to show the security for the
above scheme only using the subgroup decision assumption.

Overview of Our Framework. We refine the idea above and combine it with the technique by HKS to
propose our framework for constructing IBE schemes that are (almost) tightly secure in the multi-challenge
and multi-instance setting, in both composite and prime-order groups. We first define a broadcast encoding,
which is an abstraction of broadcast encryption. The syntax of it is a special case of “pair encoding” in [4]
(also similar to “predicate encoding” in [55]). Then, we define perfect master-key hiding (PMH) security and
computational-master-key hiding (CMH) security for it. These security notions are also similar to those of
[55, 4]. The former is statistical requirement for the encoding, and the latter is computational requirement.
We can easily show that the former implies the latter. Then, we also introduce intermediate notion multi-
master-key hiding (MMH) security for the encoding. This is more complex notion compared to the PMH and
CMH-security, but implied by these, thanks to our boosting technique above. Then, we show that broadcast
encoding satisfying the MMH security requirement can be converted into IBE scheme. All these reductions
are (almost) tightness-preserving, namely, if the original broadcast encoding is tightly PMH/CMH secure,
the resulting IBE scheme is also tightly secure in the multi-challenge and multi-instance setting. Finally, we
provide broadcast encoding schemes that satisfy our requirement. One is implicit in Gentry-Waters broadcast
encryption scheme [27] and the other is completely new. By instantiating our general framework with the
latter construction, we obtain IBE scheme with almost tight security and with sub-linear master public key
size.
‡Of course, in symmetric bilinear groups, the DDH assumption does not hold. They considered a DDH assumption on Gp2 where

each term is perturbed by a random element in Gp3 , which prevents trivial attack against the assumption.

6

1.4 Related Works

Related Works on IBE. The first realizations of IBE in the random oracle model were given in [12, 50, 22].
Later, realization in the standard model [15, 9] were given. In the random oracle model, it is possible to
obtain efficient and tightly secure IBE scheme [5]. Gentry [26] proposed a tightly secure anonymous IBE
scheme under a non-static, parametrized assumption. Chen and Wee proposed the first almost tightly secure
IBE scheme under static and simple assumptions [18, 20]. Attrapadung [4] proposed an IBE scheme whose
security loss only depends on the number of key queries before the challenge phase. Jutla and Roy [34]
constructed very efficient IBE scheme from the SXDH assumption, based on a technique related to NIZK.
Blazy, Kiltz, and Pan [8] further generalized the idea and show that a message authentication code with a
certain specific algebraic structure implies (H)IBE. They further obtained almost tightly secure anonymous
IBE and (non-anonymous) HIBE via the framework. Note that all above mentioned schemes only focus on
the single-challenge setting.

Related Works on the Multi-Challenge CCA-Secure PKE. Bellare, Boldyreva, and Micali [6] gave a tight
reduction for the Cramer-Shoup encryption [23] in the multi-instance (multi-user) and the single-challenge
setting. They posed an important open question of whether it is possible to construct tightly CCA-secure
PKE scheme in the multi-instance and the multi-challenge setting. The first PKE scheme satisfying the re-
quirement was proposed by Hofheinz and Jager [32]. Their scheme requires hundreds of group elements in
the ciphertexts. Subsequently, Abe et al. [1] reduced the size by improving the efficiency of the underlying
one-time signature. Libert et al. [35] greatly reduced the ciphertext and made it constant-size for the first
time. The ciphertext overhead of their scheme consist of 68 group elements. Very recently, Libert et al. [36]
further reduced it to 47 group elements. Concurrently and independently to us, Hofheinz [29] proposes the
first PKE scheme with the same security guarantee and fully compact parameters, which means all parameters
are constant-size. While the ciphertext-size (which consists of 60 group elements) is longer than construction
in [36], it achieves much shorter public parameters. We note that while the technique is very powerful, it is
unclear how to extend the technique to the IBE setting.

2 Preliminaries

Notation. Vectors will be treated as either row or column vector matrices. When unspecified, we shall let
it be a row vector. We denote by ei the i-th unit (row) vector: its i-th component is one, all others are zero.
0 denotes the zero vector or zero matrix. For an integer n ∈ N and a field F, GLn(F) denotes the set of all
invertible matrix in Fn×n. For a multiplicative group G, we denote by G∗ a set of all generators in G. We
also denote by [a, b] a set {a, . . . , b} for any integer a and b and [n] = [1, n] for any n ∈ N. We denote by
u

$← U the fact that u is picked uniformly at random from a finite set U .

2.1 Identity-based Encryption

In this section, we define the syntax and security of IBE (in the multi-challenge, multi-instance setting).

Syntax. An IBE scheme with identity space ID and message spaceM consists of the following algorithms:

Par(1κ)→ (pp, sp): The parameter sampling algorithm takes as input a security parameter 1κ and outputs a
public parameter pp and a secret parameter sp.

Gen(pp, sp)→ (mpk,msk): The key generation algorithm takes pp and sp as input and outputs a master
public key mpk and master secret key msk.

Ext(msk,mpk, ID)→ skID: The user private key extraction algorithm takes as input the master secret key
msk, the master public key mpk, and an identity ID ∈ ID. It outputs a private key skID.

7

Enc(mpk, ID,M)→ CT: The encryption algorithm takes as input a master public key mpk, an identity ID,
and a message M ∈M. It will output a ciphertext CT.

Dec(skID,CT)→ M: The decryption algorithm takes as input a private key skID and a ciphertext CT. It
outputs a message M or ⊥ which indicates that the ciphertext is not in a valid form.

We require correctness of decryption: that is, for all κ, all pp and sp produced by Par(1κ), all (mpk,msk)
produced by Gen(pp, sp), all ID ∈ ID, all M ∈M, all CT returned by Enc(mpk, ID,M), and all skID returned
by Ext(msk,mpk, ID), Dec(skID,CT) = M holds.

In our constructions, we will set identity space ID = {0, 1}` for some ` ∈ N. Note that the restriction
on the identity space can be easily removed by applying a collision resistant hash function CRH : {0, 1}∗ →
{0, 1}` to an identity. Typically, we would set ` = Θ(κ) to avoid the birthday attack.

Security Model. We now define (µ,Qc, Qk)-security for an IBE Φ = (Par,Gen,Ext,Enc,Dec). This secu-
rity notion is defined by the following game between a challenger and an attacker A.

Setup. The challenger runs (pp, sp)
$← Par(1κ) and (mpk(j),msk(j))

$← Gen(pp, sp) for j ∈ [µ]. The chal-
lenger also picks random coin coin $← {0, 1}whose value is fixed throughout the game. Then, (pp, {mpk(j)}j∈[µ])
is given to A.
In the following, A adaptively makes the following two types of queries in an arbitrary order.
−Key Extraction Query. The adversary A submits (Extraction, j ∈ [µ], ID ∈ ID) to the challenger.

Then, the challenge runs sk
(j)
ID

$← Ext(msk(j),mpk(j), ID) and returns sk
(j)
ID to A.

−Challenge Query. The adversary A submits (Challenge, j ∈ [µ], ID ∈ ID,M0,M1 ∈ M) to the
challenger. Then, the challenger runs CT

$← Enc(mpk(j), ID,Mcoin) and returns CT to A.
Guess. At last, A outputs a guess coin′ for coin. The advantage of an attacker A in the game is defined as
AdvIBE

A,Φ,(µ,Qc,Qk)(κ) = |Pr[coin′ = coin]− 1
2 |.

We say that the adversary A is valid if and only if A never queries (Extraction, j, ID) such that it has
already queried (Challenge, j, ID,M0,M1) for the same (j, ID) (and vice versa); A has made at most Qc
challenge queries; and A has made at most Qk key extraction queries.

Definition 1. We say that IBE Φ is secure if AdvIBE
A,Φ,(µ,Qc,Qk)(κ) is negligible for any polynomially bounded

µ, Qc, Qk, and any valid PPT adversary A.

Anonymity. We also consider anonymity for the IBE scheme. To define (µ,Qc, Qk)-anonymity for an IBE
scheme, we change the form of challenge queries in the above game as follows.
−Challenge Query. The adversary A submits (Challenge, j ∈ [µ], ID0, ID1 ∈ ID,M0,M1 ∈ M) to the

challenger. Then, the challenger runs CT
$← Enc(mpk(j), IDcoin,Mcoin) and returns CT to A.

We say that the adversaryA is valid ifA never queries (Extraction, j, ID) such that it has already queried
(Challenge, j, ID0, ID1,M0,M1) for the same j and ID ∈ {ID0, ID1} (and vice versa);A has made at most
Qc challenge queries; and A has made at most Qk key extraction queries. We define the advantage of A in
this modified game as AdvAIBE

A,Φ,(µ,Qc,Qk)(κ) := |Pr[coin′ = coin]− 1
2 |.

Definition 2. We say that IBE Φ is anonymous if AdvAIBE
A,Φ,(µ,Qc,Qk)(κ) is negligible for any polynomially

bounded µ, Qc, Qk, and any valid PPT adversary A.

2.2 Composite-Order Bilinear Groups

We will use bilinear group (G,GT) of composite order N = p1p2p3p4, where p1, p2, p3, p4 are four distinct
prime numbers, with efficiently computable and non-degenerate bilinear map e(·) : G × G → GT . For each
d|N , G has unique subgroup of order d denoted by Gd. We let gi be a generator of Gpi . For our purpose,
we define a (composite order) bilinear group generator Gcomp that takes as input a security parameter 1κ and

8

outputs (N,G,GT , g1, g2, g3, g4, e(·)). Any h ∈ G can be expressed as h = ga11 ga22 ga33 ga44 , where ai is
uniquely determined modulo pi. We call gaii the Gpi component of h. We have that e(ga, hb) = e(g, h)ab for
any g, h ∈ G, a, b ∈ Z, e(g, h) 6= 1GT for g, h 6= 1G, and e(g, h) = 1GT for g ∈ Gpi and h ∈ Gpj with i 6= j.

Let (N,G,GT , g1, g2, g3, g4, e(·)) $← Gcomp(1κ) and g $← G∗. We define advantage function AdvPxx
A (κ)

for Problem xx for any adversary A as

AdvPxx
A (κ) = |Pr[A(g1, g4, g,D, T0)→ 1]− Pr[A(g1, g4, g,D, T1)→ 1]|.

In each problem, D, T0, and T1 are defined as follows. In the following, for i, j ∈ [1, 4], gij is chosen as
gij

$← G∗pipj .

Problem 1. D = ∅, T0
$← G∗p1 , and T1

$← G∗p1p2 .

Problem 2. D = (g12, g3, g24), T0
$← G∗p1p4 , and T1

$← G∗p1p2p4 .

Problem 3. D = (g13, g2, g34), T0
$← G∗p1p4 , and T1

$← G∗p1p3p4 .

Problem 4. D = (g12, g23), T0
$← G∗p1p2 , and T1

$← G∗p1p3 .

Problem 5. D = (g2, g3, g
x
2 , g

y
2 , g

z
2), T0 = e(g2, g2)xyz , and T1 = e(g2, g2)xyz+γ , where x, y, z $← ZN and

γ
$← Z∗N .

Problem 1 2, 3, and 4 are called sub-group decision problems. Problem 5 is called the decisional bilinear
Diffie-Hellman problem.

Matrix-in-the-Exponent. Given any vector w = (w1, . . . , wn) ∈ ZnN and a group element g, we write
gw ∈ Gn to denote (gw1 , . . . , gwn) ∈ Gn: we define gA for a matrix A in a similar way. gA · gB de-
notes componentwise product: gA · gB = gA+B. Note that given gA and a matrix B of “exponents”, one
can efficiently compute gBA and gAB = (gA)B. Furthermore, if there is an efficiently computable map
e : G × G → GT , then given gA and gB, one can efficiently compute e(g, g)A

>B via (e(g, g)A
>B)i,j =∏

k e(g
Ak,i , gBk,j) where Ai,j and Bi,j denotes the (i, j)-th coefficient of A and B respectively. We will use

e(gA, gB) = e(g, g)A
>B to denote this operation.

3 Broadcast Encoding: Definitions and Reductions

In this section, we define the syntax and the security notions for broadcast encoding. The syntax of our
definition corresponds to a special case of “pair encoding” defined in [4] and is also similar to “predicate
encoding” in [55]. As for the security requirement for the encoding, ours are slightly different from both. We
define several flavours of the security requirement: perfect master-key hiding security (PMH), computational-
master-key hiding (CMH) security, and the multi-master-key hiding (MMH) security. The last one is useful,
since we can obtain IBE scheme from broadcast encoding scheme satisfying the security notion, as we will
show in Section 4. However, MMH security is defined by relatively complex game and may not be easy to
show. Later in this section, we will show that MMH security can be tightly reduced to much simpler CMH
and PMH security. The reduction is based on very simple but powerful randomness amplification argument
(Lemma 2).

9

3.1 Broadcast Encoding: Syntax

The broadcast encoding Π consists of the following four deterministic algorithms.

Param(n,N)→ d1 : It takes as input an integer n and N and outputs d1 ∈ N which specifies the number of
common variables in CEnc and KEnc. For the default notation, w = (w1, . . . , wd1) denotes the list of
common variables.

KEnc(τ,N)→ (k, d′2) : It takes as input τ ∈ [n], N ∈ N, and outputs a vector of polynomials k =
(k1, . . . , kd2) with coefficients in ZN , and d′2 ∈ N that specifies the number of its own variables. We as-
sume that d2 and d′2 only depend on n and do not depend on τ without loss of generality. We require that
each polynomials k is a linear combination of monomials α, rj , wkrj where α, r1, . . . , rd′2 , w1, . . . , wd1
are variables. More precisely, it outputs {bι}ι∈[d2], {bι,j}(ι,j)∈[d2]×[d′2], and {bι,j,k}(ι,j,k)∈[d2]×[d′2]×[d1]

in ZN such that

kι

(
α, r1, . . . , rd′2 , w1, . . . , wd1

)
= bια+

(∑
j∈[d′2]

bι,jrj

)
+
(∑

(j,k)∈[d′2]×[d1]

bι,j,kwkrj

)
for ι ∈ [d2].

CEnc(S,N)→ (c, d′3) : It takes as input S ⊆ [n], N ∈ N, and outputs a vector of polynomials c =
(c1, . . . , cd3) with coefficients in ZN , and d′3 ∈ N that specifies the number of its own variables. We
require that polynomials c in variables s0, s1, . . . , sd′3 , w1, . . . , wd1 has the following form:

There exist (efficiently computable) set of coefficients {aι,j}(ι,j)∈[d3]×[0,d′3] and {aι,j,k}(ι,j,k)∈[d3]×[0,d′3]×[d1]

in ZN such that

cι

(
s0, s1, . . . , sd′3 , w1, . . . , wd1

)
=
(∑
j∈[0,d′3]

aι,jsj

)
+
(∑

(j,k)∈[0,d′3]×[d1]

aι,j,kwksj

)
for ι ∈ [d3]. We also require that c1 = s0.

Pair(τ, S,N)→ E : It takes as input τ ∈ [n], S ⊆ [n], andN ∈ N and outputs a matrix E = (Ei,j)i∈[d2],j∈[d3] ∈
Zd2×d3N .

Correctness. The correctness requirement is as follows.

• We require that for any n, N , d1 ← Param(n,N), k ← KEnc(τ,N), c ← CEnc(S,N), and E ←
Pair(τ, S,N), we have that

kEc> = αs0 whenever τ ∈ S.

The equation holds symbolically, or equivalently, as polynomials in variables α, r1, . . . , rd′2 , s0, s1,
· · · , sd′3 , w1, . . . , wd1 .

• For p that divides N , if we let KEnc(τ,N) → (k, d′2) and KEnc(τ, p) → (k′, d′′2), then it holds that
d′2 = d′′2 and k mod p = k′. The requirement for CEnc is similar.

Note that since kEc> =
∑

(i,j)∈[d2]×[d3]Ei,jkicj , the first requirement amounts to check if there is a
linear combination of kicj terms summed up to αs0. In the descriptions of proposed broadcast encoding
schemes, which will appear later in this paper, we will not explicitly write down E. Instead, we will check
this condition.

10

3.2 Broadcast Encoding: Security

Here, we define two flavours of security notions for broadcast encoding: perfect security and computational
security. As we will see, the former implies the latter. In what follows, we denote w = (w1, . . . , wd1),
r = (r1, . . . , rd′2), and s = (s0, s1, . . . , sd′3).

(Perfect Security.) The pair encoding scheme Π = (Param,KEnc,CEnc,Pair) is Q-perfectly master-key
hiding (Q-PMH) if the following holds. For any n ∈ N, prime p ∈ N, τ ∈ [n], and S1, . . . , SQ ⊂ [n] such
that τ 6∈ Sj for all j ∈ [Q], let Param(n, p) → d1, (kτ , d

′
2) ← KEnc(τ, p), and (cSj , d

′
3,j) ← CEnc(Sj , p)

for j ∈ [Q], then the following two distributions are identical:{
{ cSj (sj ,w)}j∈[Q], kτ (0, r,w)

}
and

{
{ cSj (sj ,w)}j∈[Q], kτ (α, r,w)

}
(4)

where w
$← Zd1p , α $← Zp, r

$← (Z∗p)d
′
2 , sj

$← Zd
′
3+1
p for j ∈ [Q].

(Computational Security on Gp2). We define Q-computational-master-key hiding (Q-CMH §) security on
Gp2 for a broadcast encoding Π = (Param,KEnc,CEnc,Pair) by the following game. At the beginning of
the game, an (stateful) adversary A is given (1κ, n) and chooses τ? ∈ [n]. Then, parameters are chosen as
(N,G,GT , g1, g2, g3, g4, e(·)) $← Gcomp(1κ), Param(n,N) → d1, and ŵ

$← Zd1N . The advantage of A is
defined as

AdvCMH
A,Π,Q,Gp2

(κ) = |Pr[A(1κ, n)→ τ?, A(g1, g2, g3, g4)
OCMH,C
τ?,ŵ

(·),OCMH,K
τ?,ŵ,0

(·) → 1]−

Pr[A(1κ, n)→ τ?, A(g1, g2, g3, g4)
OCMH,C
τ?,ŵ

(·),OCMH,K
τ?,ŵ,1

(·) → 1]|.

In the above, OCMH,K
τ?,ŵ,b (·) for b ∈ {0, 1} are called only once while OCMH,C

τ?,ŵ (·) can be called at most Q times.
These oracles can be called in any order.

• OCMH,C
τ?,ŵ (·) takes S ⊂ [n] such that τ? 6∈ S as input. It then runs CEnc(S,N) → (c, d′3), picks

ŝ = (ŝ0, ŝ1, . . . , ŝd′3)
$← Zd

′
3+1
N , and returns gc(ŝ,ŵ)

2 . We note that ŝ is freshly chosen every time the
oracle is called.

• OCMH,K
τ?,ŵ,b (·) ignores its input. When it is called, it first runs KEnc(τ?, N) → (k, d′2) and picks r̂ =

(r̂1, . . . , r̂d′2)
$← Zd

′
2
N and α̂ $← ZN . Then it returns

g
k(b·α̂,r̂,ŵ)
2 =

{
g
k(0,r̂,ŵ)
2 if b = 0

g
k(α̂,r̂,ŵ)
2 if b = 1.

We say that the broadcast encoding is Q-CMH secure on Gp2 if AdvCMH
A,Π,Q,Gp2

(κ) is negligible for all PPT
adversary A.

(Computational Security on Gp3). We define AdvCMH
A,Π,Q,Gp3

(κ) and Q-CMH security on Gp3 via similar

game. The difference from the above game is that gc(ŝ,ŵ)
2 and gk(b·α̂,r̂,ŵ)

2 above are replaced with gc(ŝ,ŵ)
3 and

g
k(b·α̂,r̂,ŵ)
3 respectively.

COMPARISON WITH DEFINITION IN [4]. By setting Q = 1, the Q-PMH and the Q-CMH security defined as
above almost correspond to the perfect security and the co-selective security defined in [4] respectively. We

§ Here, we use CMH to stand for “computational-master-key hiding” (for broadcast encoding), while in [4], CMH refers to “co-
selective master-key hiding” (for pair encoding). We hope that this should not be confusing, since our notion of 1-CMH security is in
fact almost the same as the notion of co-selective master-key hiding security (for broadcast predicate) anyway.

11

need to deal with the case of Q� 1 in order to handle the multi-challenge setting. Another difference is that
we use groups with the order being a product of four primes, while they deal with a product of three primes.

We have the following lemma which indicates that Q-PMH security unconditionally implies Q-CMH
security on both of Gp2 and Gp3 . The proof appears in Appendix A.

Lemma 1. Assume that a broadcast encoding Π satisfies Q-PMH security for some Q ∈ N. Then it follows
that AdvCMH

A,Π,Q,Gpi
(κ) ≤ d′2/pi for i ∈ {2, 3}.

3.3 Multi-Master-Key Hiding Security in Composite Order Groups

Here, we define multi-master-key hiding security for a broadcast encoding, which is more complex security
notion compared to the CMH security. A broadcast encoding scheme that satisfies the security notion can be
converted into an IBE scheme as we will show in Section 4.

Multi-Master-Key Hiding Security (on Gp2). We define (Qc, Qk)-multi-master-key hiding ((Qc, Qk)-
MMH) security on Gp2 for a broadcast encoding Π = (Param,KEnc,CEnc,Pair). The security is defined
by the following game. At the beginning of the game, A is given (1κ, n) and chooses τ? ∈ [n]. Then, pa-
rameters are chosen as (N,G,GT , g1, g2, g3, g4, e(·)) $← Gcomp(1κ), g24

$← G∗p2p4 , d1 ← Param(n,N), and

w
$← Zd1N . The advantage of A is defined as

AdvMMH
A,Π,(Qc,Qk),Gp2

(κ) = |Pr[A(1κ, n)→ τ?, A(g1, g
w
1 , g

w
3 , g24, g3, g4)

OMMH,C
τ?,w

(·),OMMH,K
τ?,w,0

(·) → 1]−

Pr[A(1κ, n)→ τ?, A(g1, g
w
1 , g

w
3 , g24, g3, g4)

OMMH,C
τ?,w

(·),OMMH,K
τ?,w,1

(·) → 1]|.

In the above, OMMH,C
τ?,w (·) and OMMH,K

τ?,w,b (·) for b ∈ {0, 1} can be called at most Qc times and Qk times,
respectively. They can be called in any order.

• OMMH,C
τ?,w (·) takes S ⊂ [n] such that τ? 6∈ S as input. It then runs CEnc(S,N) → (c, d′3), picks

s
$← Zd

′
3+1
N and ŝ

$← Zd
′
3+1
N and returns gc(s,w)

1 · gc(ŝ,w)
2 .

• OMMH,K
τ?,w,b (·) ignores its input. When it is called, it first runs KEnc(τ?, N) → (k, d′2), picks α̂ $← ZN ,

r
$← Zd

′
2
N , δ $← Zd2N . Then it returns

g
k(0,r,w)
1 · gk(b·α̂,0,0)

2 · gδ4 =

{
g
k(0,r,w)
1 · gδ4 if b = 0

g
k(0,r,w)
1 · gk(α̂,0,0)

2 · gδ4 if b = 1.

In the above, r, α̂, and δ as well as s and ŝ are all freshly chosen every time the corresponding oracle
is called. We say that the broadcast encoding is (Qc, Qk)-MMH secure on Gp2 if AdvMMH

A,Π,(Qc,Qk),Gp2
(κ) is

negligible for all PPT adversary A.

Multi-Master-Key Hiding Security (on Gp3). We define (Qc, Qk)-MMH security on Gp3 and AdvMMH
A,Π,(Qc,Qk),Gp3

(κ)
similarly to the above. The difference is the following.

• The input to A is replaced with (g1, g
w
1 , g

w
2 , g34, g2, g4).

• gc(s,w)
1 · gc(ŝ,w)

2 in the above is replaced with gc(s,w)
1 · gc(ŝ,w)

3 .

• gk(0,r,w)
1 · gk(b·α̂,0,0)

2 · gδ4 is replaced with gk(0,r,w)
1 · gk(b·α̂,0,0)

3 · gδ4 .

12

3.4 Reduction from MMH security to CMH security

We then prove that the (Qc, Qk)-MMH security for a broadcast encoding on Gp2 (resp. Gp3) can be tightly
reduced to its Qc-CMH security on Gp2(resp. Gp3) and the hardness of the Problem 2 (resp. 3).

Theorem 1. For any i ∈ {2, 3}, broadcast encoding Π, and adversary A, there exist adversaries B1 and B2

such that

AdvMMH
A,Π,(Qc,Qk),Gpi

(κ) ≤ AdvCMH
B1,Π,Qc,Gpi

(κ) + 2AdvPxx
B2 +

1

pi

and max{Time(B1),Time(B2)} ≈ Time(A) + (Qk + Qc) · poly(κ, n) where poly(κ, n) is independent of
Time(A). In the above, Pxx = P2 if i = 2 and Pxx = P3 if i = 3.

Proof. By the symmetry between the case of i = 2 and i = 3, it suffices to show the theorem for the case
of i = 2. Here, we introduce Lemma 2 and 3. The former indicates that (Qc, Qk)-MMH security can be
tightly reduced to (Qc, 1)-MMH security. The latter shows (Qc, 1)-MMH security can be tightly reduced to
the hardness of the Problem 2 and Qc-CMH security. Combining these lemmas, the theorem follows. ut

Lemma 2. For any broadcast encoding Π and adversary A, there exists another adversary B such that

AdvMMH
A,Π,(Qc,Qk),Gp2

(κ) ≤ AdvMMH
B,Π,(Qc,1),Gp2

(κ) +
1

p2

and Time(B) ≈ Time(A) +Qk · poly(κ, n) where poly(κ, n) is independent of Time(A).

Proof. We construct B against (Qc, 1)-MMH security of the broadcast encoding from A against (Qc, Qk)-
MMH security of the same encoding. At the beginning of the game,A(1κ, n) submits its target index τ? ∈ [n].
B then submits the same index and is given (g1, g

w
1 , g

w
3 , g24, g3, g4). Then, B simply pass it toA. B also calls

OMMH,K
τ?,w,b (·) to obtain gk(0,r,w)

1 ·gk(b·α̂,0,0)
2 ·gδ4 . In the following, we assume that α̂ 6= 0 mod p2. This happens

with probability at least 1− 1/p2. When A calls OMMH,C
τ?,w (·) on input S, B calls the same oracle on the same

input and passes what is given from the oracle to A. When A calls OMMH,K
τ?,w,b (·), B picks random a

$← ZN ,

r′
$← Zd

′
2
N , and δ′

$← Zd2N , computes(
g
k(0,r,w)
1 · gk(b·α̂,0,0)

2 · gδ4
)a
· gk(0,r′,w)

1 · gδ
′

4 = g
k(0,ar+r′,w)
1 · gk(b·aα̂,0,0)

2 · gaδ+δ′

4 ,

and returns it to A. Finally, B outputs A’s output as its guess. It is easy to see that the simulation by B is
perfect. In particular, B has made only single call to OMMH,K

τ?,w,b (·). Therefore, the lemma follows. ut

Lemma 3. For any broadcast encoding Π and adversary A, there exist adversaries B1 and B2 such that

AdvMMH
A,Π,(Qc,1),Gp2

(κ) ≤ AdvCMH
B1,Π,Qc,Gp2

(κ) + 2AdvP2
B2

and max{Time(B1),Time(B2)} ≈ Time(A) +Qcpoly(κ, n) where poly(κ, n) is independent of Time(A).

Proof. We prove the lemma via the following sequence of games. We consider following games for b ∈
{0, 1}. We write Eventxx to denote the probability that A outputs 1 in Gamexx.

Game0,b : This is the (Qc, 1)-MMH security game with oracles OMMH,C
τ?,w (·) and OMMH,K

τ?,w,b (·).

Game1,b: In this game, we changeOMMH,K
τ?,w,b (·) as follows: When it is called,OMMH,K

τ?,w,b (·) runs KEnc(τ?, N)→

k, picks α̂ $← ZN , r, r̂
$← Zd

′
2
N , and δ

$← Zd2N , and returns gk(0,r,w)
1 · gk(bα̂,r̂,w)

2 · gδ4 instead of

g
k(0,r,w)
1 · gk(bα̂,0,0)

2 · gδ4 .

13

We have that

AdvMMH
A,Π,(Qc,1),Gp2

(κ) = |Pr[Event0,0]− Pr[Event0,1]|

≤ |Pr[Event1,0]− Pr[Event1,1]|+
∑

b∈{0,1}

|Pr[Event0,b]− Pr[Event1,b]|.

Therefore, we complete the proof of the lemma by showing the following claims. ut

Claim 1. (Game0,b to Game1,b). For any b ∈ {0, 1} and adversary A, there exists an adversary B1 such that
|Pr[Event0,b]− Pr[Event1,b]| ≤ AdvP2

B1(κ) and Time(B1) ≈ Time(A) +Qc · poly(κ, n) where poly(κ, n) is
independent of Time(A).

Proof. We construct B1 that attacks Problem 2 fromA. Given the problem instance (g1, g3, g4, g12, g24, g, T)

where T $← G∗p1p4 or T $← G∗p1p2p4 , B1 simulates (Qc, 1)-MMH security game for A as follows.

Setup of Parameters. Given τ? from A, B1 picks w
$← Zd1N and gives (g1, g

w
1 , g

w
3 , g24, g3, g4) to A.

Simulating OMMH,C
τ?,w (·). Given S, B1 runs CEnc(S,N)→ (c, d′3) and picks s′ = (s′0, s

′
1, . . . , s

′
d′3

)
$← Zd

′
3+1
N .

Then it returns gc(s′,w)
12 to A. Let g12 be g12 = ga11 · g

a2
2 (where a1 ∈ Z∗p1 and a2 ∈ Z∗p2). Then we have

g
c(s′,w)
12 = g

c(a1s′,w)
1 · gc(a2s′,w)

1 . This implicitly set s = a1s
′ mod p1 and ŝ = a2s

′ mod p2. Since (s
mod p1, ŝ mod p2) in Game0,b and Game1,b as well as (a1s

′ mod p1, a2s
′ mod p2) in the simulation are

uniformly distributed over Zp1 × Zp2 due to the Chinese Remainder Theorem, B1 correctly simulates the
oracle.
Simulating OMMH,K

τ?,w,b (·). When it is called, B1 runs KEnc(τ?, N) → k, picks α̂′ $← ZN , r′
$← Zd

′
2
N , and

δ′
$← Zd2N . Then it returns Tk(0,r′,w) · gk(b·α̂′,0,0)

24 · gδ′4 to A.
We claim thatB1 simulates Game0,b if T $← G∗p1p4 and Game1,b if T $← G∗p1p2p4 . Let T be T = gt11 ·g

t2
2 ·g

t4
4

and g24 be g24 = gu22 gu44 . Then we have

Tk(0,r′,w) · gk(b·α̂′,0,0)
24 · gδ

′

4 = g
k(0,t1r′,w)
1 · gk(b·u2α̂′,t2r′,w)

2 · gδ
′+k(bu4α̂′,t4r′,w)

4 . (5)

At first, we observe that the Gp4 component of the Equation (5) is uniformly random over Gd2
p4 regardless of

T
$← G∗p1p4 or T $← G∗p1p2p4 , as desired.

If T $← G∗p1p4 , we have t2 = 0 and therefore Gp2 component of the Equation (5) is gk(b·u2α̂′,0,w)
2 =

g
k(b·u2α̂′,0,0)
2 . In this case, B1 implicitly sets r = t1r

′ mod p1, α̂ = u2α̂
′ mod p2. It can be seen that

t1r
′ mod p1 and u2α̂

′ mod p2 are uniformly distributed over Zd
′
2
p1 and Zp2 respectively. Therefore, B1 has

correctly simulates OMMH,K
τ?,w,b (·) in Game0,b.

In the case of T $← G∗p1p2p4 , B1 implicitly sets r = t1r
′ mod p1, r̂ = t2r

′ mod p2, and α̂ = u2α̂
′

mod p2. Due to the Chinese Remainder Theorem, (r mod p1, r̂ mod p2) in Game1,b as well as (t1r
′

mod p1, t2r
′ mod p2) in the simulation are uniformly distributed over Zp1 × Zp2 . Furthermore, α̂ = u2α̂

′

mod p2 is also uniformly random over Zp2 . Therefore, B1 correctly simulates OMMH,K
τ?,w,b (·) in Game1,b.

Guess. Finally, B1 outputs A’s output as its guess. As we have seen, the game corresponds to Game0,b if
T

$← G∗p1p4 and Game1,b if T $← G∗p1p2p4 . Thus, we may conclude that |Pr(Event0,b) − Pr(Event1,b)| ≤
AdvP2

B1(κ). ut

Claim 2. (Game1,0 to Game1,1). For any adversaryA, there exists an adversary B2 such that |Pr[Event1,0]−
Pr[Event1,1]| ≤ AdvCMH

B2,Π,Qc,Gp2
(κ) and Time(B2) ≈ Time(A) + Qc · poly(κ, n) where poly(κ, n) is inde-

pendent of Time(A).

14

Proof. We construct B2 against Qc-CMH security of the broadcast encoding from A.
Setup of Parameters. At the beginning of the game, A(1κ, n) submits index τ? ∈ [n]. B2 submits the same
index and is given (g1, g2, g3, g4). Then, B2 picks w̄

$← Zd1N and implicitly sets w = w̄ mod p1, w = w̄

mod p3, and w = ŵ mod p2 where ŵ
$← Zd1N is chosen by the game (and is not explicitly known to B2).

By the Chinese Remainder Theorem, w is uniformly distributed over Zd1N . B2 also picks a $← Z∗N and gives
(g1, g

w
1 = gw̄1 , g

w
3 = gw̄3 , g24 = (g2g4)a, g3, g4) to A.

Simulating OMMH,C
τ?,w (·). Given S from A, B2 calls its oracle OCMH,C

τ?,ŵ (·) on input S to obtain gc(ŝ,ŵ)
2 . Then, it

picks s
$← Zd

′
3+1
N and computes gc(s,w̄)

1 . Finally, it returns gc(s,w)
1 · gc(ŝ,w)

2 = g
c(s,w̄)
1 · gc(ŝ,ŵ)

2 to A.

Simulating OMMH,K
τ?,w,b (·). When it is called, B2 calls its oracle OCMH,K

τ?,ŵ,b (·) to obtain gk(bα̂,r̂,ŵ)
2 . Then, it picks

r
$← Zd

′
2
N , δ $← Zd2N , computes gk(0,r,w̄)

1 , and gives gk(0,r,w)
1 · gk(bα̂,r̂,w)

2 · gδ4 = g
k(0,r,w̄)
1 · gk(bα̂,r̂,ŵ)

2 · gδ4 to A.
Guess. Finally, B2 outputsA’s output as its guess. It is easy to see that the view ofA corresponds to Game1,0

if b = 0 (i.e., B2 is equipped with the oracle OCMH,K
τ?,ŵ,0 (·)) and Game1,1 if b = 1 (i.e., B2 is equipped with the

oracle OCMH,K
τ?,ŵ,1 (·)). Thus, we may conclude that |Pr[Event1,0]− Pr[Event1,1]| ≤ AdvCMH

B2,Π,Qc,Gp2
(κ). ut

4 Almost Tight IBE from Broadcast Encoding in Composite-Order Groups

In this section, we show a generic conversion from a broadcast encoding scheme to an IBE scheme. An
important property of the resulting IBE scheme is that (µ,Qc, Qk)-security of the scheme can be almost
tightly reduced to theQc-CMH security of the underlying broadcast encoding scheme (and Problem 1, 2, 3, 4,
and 5). In particular, the reduction only incurs small polynomial security loss, which is independent of µ and
Qk. Therefore, if the underlying broadcast encoding scheme is tightly Qc-CMH secure, which is the case for
all of our constructions, the resulting IBE scheme obtained by the conversion is almost tightly secure. Note
that in the following construction, we have sp = ⊥. This mean that the key generation algorithm Par does not
output any secret parameter. This property will be needed to convert our IBE scheme into CCA secure PKE
scheme in Section 8.
Construction. Here, we construct an IBE scheme Φcomp from a broadcast encoding Π = (Param,KEnc,CEnc,
Pair). Let the identity space of the scheme be ID = {0, 1}` and the message space beM = {0, 1}m. We

also letH be a family of pairwise independent hash functions H : GT →M. We assume that
√

2m

p2
= 2−Ω(κ)

so that the left-over hash lemma can be applied in the security proof.

Par(1κ) : It first runs (N,G,GT , g1, g2, g3, g4, e(·)) $← Gcomp(1κ) and Param(2`,N) → d1. Then it picks
w

$← Zd1N , a $← Z∗N , H
$← H and sets h := (g1g2g3g4)a. Finally, it outputs pp = (g1, g

w
1 , g4, h,H) and

sp = ⊥.

Gen(pp, sp) : It picks α $← ZN and outputs mpk = (pp, e(g1, h)α) and msk = α.

Ext(msk,mpk, ID) : It first sets S = {2i − IDi|i ∈ [`]} where IDi ∈ {0, 1} is the i-th bit of ID ∈ {0, 1}`.
Then it runs KEnc(j,N) →

(
kj , d

′
2

)
and picks rj

$← Zd
′
2
N and δj

$← Zd2N for all j ∈ S. It also

picks random {αj ∈ ZN}j∈S subject to constraint that α =
∑

j∈S αj . Then, it computes gkj(0,rj ,w)
1 ,

Pair(j, S,N)→ Ej , and

skj = hkj(αj0,0) · gkj(0,rj ,w)
1 · gδj4 (6)

for all j ∈ S. Note that gkj(0,rj ,w)
1 can be computed from gw1 and rj = (rj,1, . . . , rj,d′2) efficiently

because kj(0, rj ,w) contains only linear combinations of monomials rj,i, rj,iwj′ . Finally, it outputs
private key skID =

∏
j∈S(skj)

Ej .

15

Enc(mpk, ID,M) : It first sets S = {2i − IDi|i ∈ [`]}. Then it runs CEnc(S,N) → (c, d′3), picks s =

(s0, s1, . . . , sd′3)
$← Zd

′
3+1
N , and computes gc(s,w)

1 . Note that gc(s,w)
1 can be computed from gw1 and s

efficiently because c(s,w) contains only linear combinations of monomials si, siwj . Finally, it outputs

CT =
(
C1 = g

c(s,w)
1 , C2 = H

(
e(g1, h)s0α

)
⊕M

)
. (7)

Here, ⊕ denotes bitwise exclusive OR of two bit strings.

Dec(skID,CT) : It parses CT → (C1, C2) and computes e(sk>ID, C
>
1) = e(g1, h)s0α. Then, it recovers the

message by M = C2 ⊕ H(e(g1, h)s0α).

CORRECTNESS. We show the correctness of the scheme. It suffices to show the following.

e(sk>ID, C
>
1) = e

(
(
∏
j∈S

(skj)
Ej)>, g

c(s,w)>

1

)
=

∏
j∈S

e
((
hkj(αj0,0) · gkj(0,rj ,w)

1 · gδj4

)>
, g

Ejc(s,w)>

1

)
=

∏
j∈S

e
((
g
kj(aαj ,rj ,w)
1 · (g2g3g4)k(aαj ,0,0) · gδj4

)>
, g

Ejc(s,w)>

1

)
=

∏
j∈S

e(g1, g1)kj(aαj ,rj ,w)Ejc(s,w)>

=
∏
j∈S

e(g1, g1)s0aαj =
∏
j∈S

e(g1, h)s0αj = e(g1, h)s0α.

The fifth equation above follows from the correctness of the broadcast encoding.

REMARK. It would be more intuitive to set skID as {skj}j∈S instead of defined as above. In such a case, the
decryption algorithm first computes e((sk

Ej
j)>, C>1) = e(g1, g1)k(aαj ,rj ,w)>Ejc(s,w) = e(g1, h)s0αj . Then

it computes
∏
j∈S e(g1, h)s0αj = e(g1, h)s0α and recovers the message. Since the same S and {Ej}j∈S are

always used in the algorithm, it can be accelerated by pre-computing
∏
j∈S sk

Ej
j . In our scheme described

above, we use this value as a private key. This optimization not only accelerate the decryption algorithm, but
also makes the private key shorter.

Security. The following theorem indicates that the security of the IBE is (almost) tightly reduced to the
MMH security of the underlying broadcast encoding on Gp2 and Gp3 and Problem 1, 4, and 5. Combining the
theorem with Theorem 1, the security of the scheme can be almost tightly reduced to the Qc-CMH security of
the underlying encoding (and Problem 1, 2, 3, 4, and 5). The reduction only incurs O(`) security loss. The
proof will appear in Appendix B.

Theorem 2. For any adversary A, there exist adversaries Bi for i ∈ [1, 5] such that

AdvIBE
A,Φcomp,(µ,Qc,Qk)(κ) ≤ AdvP1

B1(κ) + AdvP5
B2(κ) +Qc · 2−Ω(κ)

+`
(

2AdvP4
B3(κ) + AdvMMH

B4,Π,(Qc,Qk),Gp2
(κ) + AdvMMH

B5,Π,(Qc,Qk),Gp3
(κ)
)

and max{Time(Bi)|i ∈ [1, 5]} ≈ Time(A) + (µ+Qc +Qk) · poly(κ, `) where poly(κ, `) is independent of
Time(A).

16

5 Framework for Constructions in Prime-Order Groups

In Section 3 and 4, we show our framework to construct almost tightly secure IBE in composite-order groups.
Since we carefully constructed the framework so that we only use the subgroup decision assumptions and
the DBDH assumption in the security proof, we can apply recent composite-order-to-prime-order conversion
techniques in the literature [19, 3, 17, 2] to the framework. We choose to use [3], but other choices might
be possible. In this section, we show our framework for constructing almost tightly secure IBE in prime-
order groups. Our framework is almost parallel to that in composite-order groups. Namely, we define CMH
security and MMH security in prime-order groups. Then, we show reduction between them. Finally, we show
a generic construction of IBE scheme from broadcast encoding and show that the scheme is (almost) tightly
secure if the underlying encoding is tightly CMH secure.

In the following, we will use asymmetric bilinear group (G1,G2,GT) of prime order p with efficiently
computable and non-degenerate bilinear map e(·) : G1×G2 → GT . For our purpose, we define a prime-order
bilinear group generator Gprime that takes as input a security parameter 1κ and outputs (p,G1,G2,GT , g, h, e(·))
where g and h are random generator of G1 and G2, respectively. Let π1 : Z4×4

p → Z4×2
p , π2 : Z4×4

p → Z4×1
p ,

and π3 : Z4×4
p → Z4×1

p be the projection maps that map a 4 × 4 matrix to the leftmost 2 columns, the third
column, and the fourth column, respectively.

Intuition. In prime-order groups, we work with 4×4 matrix. The first two dimensions serve as “normal space”
(corresponding to Gp1), while the third and the fourth dimension serve as double “semi-functional spaces”
(corresponding to Gp2 and Gp3). There is no corresponding dimension to Gp4 . While the use of 4×4 matrices
is similar to Chen and Wee [18, 20]¶, conceptually, our techniques are quite different from theirs. They use
the first two dimensions as a normal space and the last two dimensions as single semi-functional space. In
contrast, we introduce additional semi-functional space to be able to prove the multi-challenge security rather
than single-challenge security. Furthermore, due to our new proof technique, these semi-functional spaces are
smaller compared to those of [18, 20].

5.1 Decisional Linear Assumption and Intermediate Problems

Here, we introduce the decisional linear problem (DLIN). Then, we introduce Problem 7, 8, 9, 10, 11, and 12.
As we show in Appendix C.1, all of them are reduced to DLIN. These problems are used to prove the security
of our proposed schemes in prime-order groups. The reason why we introduce these intermediate problems
is to make security proof of our constructions clearer and modular.

We define the decisional-linear problem (DLIN) as follows.

Problem 6. (DLIN Problem.) Let (p,G1,G2,GT , g, h, e(·)) $← Gprime(1
κ). We define advantage function for

any adversary A as

AdvDLIN
A (κ) = |Pr[A

(
g, ga1 , ga2 , ga3 , ga1s1 , ga2s2 , h, ha1 , ha2 , ha3 , ha1s1 , ha2s2 , T0

)
→ 1]−

Pr[A
(
g, ga1 , ga2 , ga3 , ga1s1 , ga2s2 , h, ha1 , ha2 , ha3 , ha1s1 , ha2s2 , T1

)
→ 1]|

where a1, a2, a3, γ
$← Z∗p, s1, s2

$← Zp, T0 = ga3(s1+s2), and T1 = ga3(s1+s2)+γ . We say that the DLIN

assumption holds if AdvDLIN
A (κ) is negligible for any PPT adversary A.

We can also define a slight variant of the above problem where T0 and T1 are set as T0 = ha3(s1+s2)

and T1 = ha3(s1+s2)+γ . We abuse notation and denote the advantage function for A for the variant also as
AdvDLIN

A (κ). Note that we can define several weaker variants of the above assumption. For example, one can

¶They showed a construction that is secure under the k-LIN assumption for any k, using 2k × 2k matrices. When k = 2, the
scheme is secure under the DLIN assumption.

17

remove ha1s1 and ha2s2 from the input to A. Such a variant is a weaker assumption than the above one. We
define the strongest form of the assumption for the sake of simplicity. However, none of our reductions in this
paper needs all terms in the problem instance.

REMARKS. Typically, we sample a1, a2, a3, s1, s2, γ
$← Zp; this only yields a 4/p negligible difference in

the advantage.

Intermediate Problems. In the following, we introduce intermediate problems. As we show in Appendix
C.1, the hardness of these problems can be tightly reduced to the DLIN assumption. We also show that these
problems have random self-reducibility in Appendix C.2.

Let (p,G1,G2,GT , g, h, e(·)) $← Gprime(1
κ) and B

$← GL4(Zp). Also let D ∈ Z4×4
p be a random full

rank diagonal matrix for which the entries (3, 3) and (4, 4) are 1. Then, Z ∈ Z4×4
p is defined as Z = B−>D.

We define advantage function AdvPxx
A (κ) for Problem xx for any adversary A as

AdvPxx
A (κ) = |Pr[A(g, h,D, T0)→ 1]− Pr[A(g, h,D, T1)→ 1]|.

In each problem, D, T0, and T1 are defined as follows.

Problem 7. D = (gB, hπ1(Z)), T0 = g
B

(
t
0
0

)
, and T1 = g

B

(
t
t̂
0

)
where t

$← Z2×1
p and t̂ $← Z∗p.

Problem 8. D = (gπ1(B), gπ3(B), g
B

(
t
t̂
0

)
, hZ), T0 = h

Z

(
u
0
0

)
, and T1 = h

Z

(
u
û
0

)
where t,u

$← Z2×1
p and

t̂, û
$← Z∗p.

Problem 9. D = (gB, hπ1(Z), hθ1,1 f̂+θ2,1 f̃ , hθ1,2 f̂+θ2,2 f̃), T0 = g
B

(
t
t̂
0

)
, and T1 = g

B

(
t
t̂
t̃

)
where t

$← Z2×1
p ,

t̂, t̃
$← Z∗p, Θ =

(
θ1,1 θ1,2
θ2,1 θ2,2

)
$← GL2(Zp), f̂ = Ze>3 , and f̃ = Ze>4 .

Problem 10. D = (gB, hπ1(Z), hθ1,1 f̂+θ2,1 f̃ , hθ1,2 f̂+θ2,2 f̃), T0 = g
B

(
t
t̂
0

)
, and T1 = g

B

(
t
0
t̃

)
where t

$← Z2×1
p ,

t̂, t̃
$← Z∗p, Θ =

(
θ1,1 θ1,2
θ2,1 θ2,2

)
$← GL2(Zp), f̂ = Ze>3 , and f̃ = Ze>4 .

Problem 11. D = (gx, gy, hz), T0 = e(g, h)xyz , and T1 = e(g, h)xyz+γ where x, y, z $← Zp and γ $← Z∗p.

Problem 12. D = ∅, T0 = gX0 , and T1 = gX1 where X0
$← Rk2(Z6×6

p) and X1
$← Rk6(Z6×6

p). Here, we
denote by Rki(Za×bp) the set of all a× b matrices over Zp with rank i.

Note that quite similar problems to Problem 7 and 8 are introduced in [18, 19]. The problem 9 and 10
seem to be new. Roughly speaking, Problem 7, 8, 9, and 10 are analogue of sub-group decision assumption
in composite-order groups. The problem 11 is called the decisional bilinear Diffie-Hellman problem in the
literature. Problem 12 is the Matrix DLIN assumption, which is introduced in [44].

5.2 Computational-Master-Key Hiding Security on Prime Order Groups

Here, we defineQ-computational-master-key hiding (Q-CMH) security on (G1,G2) for a broadcast encoding
Π = (Param,KEnc,CEnc,Pair). The definition is quite similar to that on composite-order groups. Consider
the following game:

18

At the beginning of the game, an (stateful) adversary A is given (1κ, n) and chooses τ? ∈ [n]. Then,
parameters are chosen as (p,G1,G2,GT , g, h, e(·)) $← Gprime(1

κ), d1 ← Param(n, p), and ŵ
$← Zd1p . The

advantage of A is defined as

AdvCMH
A,Π,Q,(G1,G2)(κ) = |Pr[A(1κ, n)→ τ?, A(g, h)

OCMH,C
τ?,ŵ

(·),OCMH,K
τ?,ŵ,0

(·) → 1]−

Pr[A(1κ, n)→ τ?, A(g, h)
OCMH,C
τ?,ŵ

(·),OCMH,K
τ?,ŵ,1

(·) → 1]|.

In the above, OCMH,K
τ?,ŵ,b (·) for b ∈ {0, 1} are called only once while OCMH,C

τ?,ŵ (·) can be called at most Q times.
These oracles can be called in any order.

• OCMH,C
τ?,ŵ (·) takes S ⊂ [n] such that τ? 6∈ S as input. It then runs CEnc(S, p) → (c, d′3), picks ŝ

$←
Zd
′
3+1
p , and returns gc(ŝ,ŵ).

• OCMH,K
τ?,ŵ,b (·) ignores its input. When it is called, it first runs KEnc(τ?, p) → (k, d′2) and picks r̂

$← Zd
′
2
p

and α̂ $← Zp. Then it returns hk(b·α̂,r̂,ŵ) =

{
hk(0,r̂,ŵ) if b = 0

hk(α̂,r̂,ŵ) if b = 1.

We say that the broadcast encoding is Q-CMH secure on (G1,G2) if AdvCMH
A,Π,Q,(G1,G2)(κ) is negligible for all

PPT adversary A. As in composite-order groups, Q-PMH security unconditionally implies Q-CMH security.
The proof of the lemma appears in Appendix D.1.

Lemma 4. Assume that a broadcast encoding Π satisfies Q-PMH security for some Q ∈ N. Then it follows
that AdvCMH

A,Π,Q,(G1,G2)(κ) ≤ d′2/p.

5.3 Preparation

Here, we introduce notation needed to define multi-master-key hiding (MMH) security in prime-order groups.
Here, we assign each variables in polynomials k and c vectors or matrices, rather than scalar values (as in the
definition of the CMH security). Let p be a prime number. We assign each variable wi a matrix Wi ∈ Z4×4

p

for i ∈ [d1], variable α a column vector α ∈ Z4×1
p , variable ri a vector xi ∈ Z4×1

p for i ∈ [d′2], and variable
si a vector yi ∈ Z4×1

p for i ∈ [0, d′3]. The evaluation of polynomials kZ and cB, which are indexed by an
invertible matrix B ∈ Z4×4

p and Z ∈ Z4×4
p , are defined as follows. In the following, we denote

W = (W1, . . . ,Wd1) ∈ (Z4×4
p)d1 , X =

(
x1, . . . ,xd′2

)
∈ Z4×d′2

p

Y =
(
y0,y1, . . . ,yd′3

)
∈ Z4×(d′3+1)

p , Z = (B−1)> ·D.

where D ∈ Z4×4
p is a full-rank diagonal matrix with the entries (3, 3) and (4, 4) being 1. Let k = (k1, . . . , kd2)

be a vector of polynomials in variables α, r1, . . . , rd′2 , w1, . . . , wd1 with coefficients in Zp such that

kι

(
α, r1, . . . , rd′2 , w1, . . . , wd1

)
= bια+

(∑
j∈[d′2]

bι,jrj

)
+
(∑

(j,k)∈[d′2]×[d1]

bι,j,kwkrj

)
for ι ∈ [d2]. We define kZ(α,X,W) ∈ Z4×d2

p as kZ(α,X,W) =kZ,ι(α,X,W) = bια +
(∑
j∈[d′2]

bι,jZxj

)
+
(∑

(j,k)∈[d′2]×[d1]

bι,j,kW
>
k Zxj

)
∈ Z4×1

p

ι∈[d2]

.

19

Let c = (c1, . . . , cd3) be a vector of polynomials in variables s0, s1, . . . , sd′3 , w1, . . . , wd1 with coefficients in
Zp such that

cι

(
s0, s1, . . . , sd′3 , w1, . . . , wd1

)
=
(∑
j∈[0,d′3]

aι,jsj

)
+
(∑

(j,k)∈[0,d′3]×[d1]

aι,j,kwksj

)

for ι ∈ [d3]. We define cB(Y,W) ∈ Z4×d3
p as cB(Y,W) =cB,ι(Y,W) =

(∑
j∈[0,d′3]

aι,jByj

)
+
(∑

(j,k)∈[0,d′3]×[d1]

aι,j,kWkByj

)
∈ Z4×1

p

ι∈[d3]

.

Restriction on the Encoding. In our framework for prime-order constructions, we define and require regular-
ity of encoding similarly to [3], which is needed to prove the security of our IBE obtained from the broadcast
encoding. Note that all of broadcast encoding schemes that appear in this paper satisfy the requirement.
Compared to the definition in [3], our definition is less general, but simpler and sufficient for our purpose.

Definition 3 (Regularity.). We call a broadcast encoding regular if the following hold:

1. For ι ∈ [1, d2], ι′ ∈ [1, d3] such that there is j ∈ [1, d′2], k ∈ [1, d1], j′ ∈ [0, d′3], k′ ∈ [1, d1] where
bι,j,k 6= 0 and aι′,j′,k′ 6= 0, we require that Eι,ι′ = 0.

2. For all j ∈ [1, d′2], there is i ∈ [d2] such that ki = rj . Similarly, for all j′ ∈ [0, d′3], there is i′ ∈ [d3] such
that ci′ = sj′ .

Correctness of Encoding. Let τ ∈ [n] and S ⊆ [n] be an index and a set such that τ ∈ S. Let also
KEnc(τ, p)→

(
k, d′2

)
, CEnc(S, p)→ (c, d′3), and Pair(τ, S, p)→ E = (Eη,ι)(η,ι)∈[d2]×[d3] ∈ Zd2×d3p . Then,

by the correctness of the broadcast encoding, we have
∑

(η,ι)∈[d2]×[d3]Eη,ιkηcι = αs0 (the equation holds
symbolically). From this, we have the following. (Note that the claim is shown similarly to Claim 15 in [3].)
The proof will appear in Appendix D.2.

Lemma 5. We have
∑

(η,ι)∈[d2]×[d3]Eη,ι · kZ,η(α,X,W)>cB,ι(Y,W) = α>By0.

5.4 Multi-Master-Key Hiding Security in Prime-Order Groups

Here, we define multi-master-key hiding (MMH) security and its variant. The former and the latter are equiv-
alent, but it is convenient to define both. Then, we show that the CMH security implies MMH security,
similarly to the case of composite-order groups.

MMH Security in Prime-Order Groups. We define (Qc, Qk)-multi-master-key hiding (MMH) security of
a broadcast encoding Π = (Param,KEnc,CEnc,Pair) (in prime-order groups) by the following game:

At the beginning of the game, A is given (1κ, n) and chooses τ? ∈ [n]. Then, parameters are chosen
as (p,G1,G2,GT , g, h, e(·)) $← Gprime(1

κ), d1 ← Param(n, p), B
$← GL4(Zp), W = (W1, . . . ,Wd1)

$←
(Z4×4

p)d1 . A random full-rank diagonal matrix D ∈ Z4×4
p with the entries (3, 3) and (4, 4) being 1, is also

chosen. The matrix Z ∈ Z4×4
p is set as Z := (B−1)>D. The advantage of A is defined as

AdvMMH
A,Π,(Qc,Qk),(G1,G2)(κ) = |Pr[A(1κ, n)→ τ?, A(params)

OMMH,C
τ?,B,W(·), OMMH,K

τ?,Z,W,0(·) → 1]

−Pr[A(1κ, n)→ τ?, A(params)
OMMH,C
τ?,B,W(·), OMMH,K

τ?,Z,W,1(·) → 1]|

20

where

params =

(
g, gπ1(B), gπ3(B), gπ1(W1B), . . . , gπ1(Wd1

B), gπ3(W1B), . . . , gπ3(Wd1
B)

h, hZ, hπ1(W>
1 Z), . . . , h

π1(W>
d1

Z)
, hπ3(W>

1 Z), . . . , h
π3(W>

d1
Z)

)
.

In the above, OMMH,C
τ?,B,W(·) is called at most Qc times, while OMMH,K

τ?,Z,W,b(·) for b ∈ {0, 1} are called at most
Qk times. These oracles can be called in any order.

• OMMH,C
τ?,B,W(·) takes S ⊆ [n]\{τ?} as input. It then picks s0, s1, . . . , sd′3

$← Z2×1
p , ŝ0, ŝ1, . . . , ŝd′3

$← Zp,

and runs CEnc(S, p)→ (c, d′3). Then it sets S ∈ Z4×(d′3+1)
p and Ŝ ∈ Z4×(d′3+1)

p as

S =

((s0
0
0

)
,
(s1

0
0

)
, · · · ,

(
sd′3
0
0

))
and Ŝ =

((
0
ŝ0
0

)
,
(

0
ŝ1
0

)
, · · · ,

(
0
ŝd′3
0

))
(8)

and returns gcB(S+Ŝ,W).

• OMMH,K
τ?,Z,W,b(·) ignores its input. When it is called, it first runs KEnc(τ?, p) → (k, d′2), picks α̂ $← Zp,

r1, . . . , rd′2
$← Z2×1

p , and sets R =

((r1
0
0

)
, · · · ,

(
rd′2
0
0

))
∈ Z4×d′2

p . Finally, it returns

hkZ(b·α̂f̂ ,R,W) =

{
hkZ(0,R,W) if b = 0

hkZ(α̂·f̂ ,R,W) if b = 1

where f̂ = π2(Z) = Z · e>3 .

In the above, we note that S and Ŝ as well as R and α̂ are freshly chosen every time the corresponding oracle is
called. We say that the broadcast encoding is (Qc, Qk)-MMH secure on (G1,G2) if AdvMMH

A,Π,(Qc,Qk),(G1,G2)(κ)
is negligible for all PPT adversary A.

A Variant of MMH-Security. It is convenient to consider a variant of the (Qc, Qk)-MMH security, that we
call (Qc, Qk)-MMH’ security. (Qc, Qk)-MMH’ security is defined by a game that is the same as (Qc, Qk)-
MMH security game above except that

• params is replaced with

params =

(
g, gπ1(B), gπ2(B), gπ1(W1B), . . . , gπ1(Wd1

B), gπ2(W1B), . . . , gπ2(Wd1
B)

h, hZ, hπ1(W>
1 Z), . . . , h

π1(W>
d1

Z)
, hπ2(W>

1 Z), . . . , h
π2(W>

d1
Z)

)
.

• OMMH′,C
τ?,B,W (·) returns gcB(S+S̃,W) where S =

((s0
0
0

)
,
(s1

0
0

)
, · · · ,

(
sd′3
0
0

))
∈ Z4×(d′3+1)

p , S̃ =
((

0
0
s̃0

)
,(

0
0
s̃1

)
, · · · ,

(
0
0
s̃d′3

))
∈ Z4×(d′3+1)

p , s0, s1, . . . , sd′3
$← Z2×1

p , and s̃0, s̃1, . . . , s̃d′3
$← Zp.

• OMMH′,K
τ?,Z,W,b(·) returns hkZ(b·α̃f̃ ,R,W) where α̃ $← Zp, r1, . . . , rd′2

$← Z2×1
p , R =

((r1
0
0

)
, · · · ,

(
rd′2
0
0

))
∈

Z4×d′2
p , and f̃ = π3(Z) = Ze>4 .

We define the advantage of the adversary in this modified game as AdvMMH′

A,Π,(Qc,Qk),(G1,G2)(κ). If we
exchange the third and the fourth column of B and Z, (Qc, Qk)-MMH’ security game defined as above
corresponds to (Qc, Qk)-MMH security game. Therefore, the following lemma immediately follows.

21

Lemma 6. For any broadcast encoding Π and adversary A, there exists another adversary B such that
AdvMMH′

A,Π,(Qc,Qk),(G1,G2)(κ) = AdvMMH
B,Π,(Qc,Qk),(G1,G2)(κ) and Time(B) ≈ Time(A).

CMH Security Implies MMH Security. Similarly to the case in composite-order groups, we have that CMH
security tightly implies MMH security (assuming the hardness of the Problem 8). More formally, we have the
following theorem:

Theorem 3. For any broadcast encoding Π and adversary A, there exist adversaries B1 and B2 such that

AdvMMH
A,Π,(Qc,Qk),(G1,G2)(κ) ≤ AdvCMH

B1,Π,Qc,(G1,G2)(κ) + 2AdvP8
B2 +

1

p

and max{Time(B1),Time(B2)} ≈ Time(A) + (Qk + Qc) · poly(κ, n) where poly(κ, n) is independent of
Time(A).

The proof of the theorem is almost parallel to that of Theorem 1 and appears in Appendix D.3.

5.5 Almost Tightly Secure IBE from Broadcast Encoding in Prime Order Groups

Here, we construct an IBE scheme Φprime from broadcast encoding scheme Π = (Param,KEnc,CEnc,Pair).
Let the identity space of Φprime be ID = {0, 1}` and the message spaceM beM = GT . We will not use
pairwise independent hash function differently from our construction in composite-order groups. We note that
similarly to our construction in composite-order groups, we have sp = ⊥ in the following.

Par(1κ, `) : It first runs (p,G1,G2,GT , g, h, e(·)) $← Gprime(1
κ) and Param(2`, p) → d1. Then it picks

B
$← GL4(Zp), W = (W1, . . . ,Wd1)

$← (Z4×4
p)d1 and a random full-rank diagonal matrix D ∈ Z4×4

p

with the entries (3, 3) and (4, 4) being 1. Finally, it sets Z = B−>D and outputs

pp =

(
g, gπ1(B), gπ1(W1B), . . . , gπ1(Wd1

B)

h, hπ1(Z), hπ1(W>
1 Z), . . . , h

π1(W>
d1

Z)

)
and sp = ⊥.

In the following, we will omit subscript B and Z from cB(S,W) and kZ(α,R,W) and just denote
c(S,W) and k(α,R,W) for ease of notation. B and Z are fixed in the following and clear from the context.

Gen(pp) : It picks α $← Z4×1
p and outputs mpk = (pp, e(g, h)α

>π1(B)) and msk = α.

Ext(msk,mpk, ID) : It first sets S = {2i−IDi|i ∈ [`]}where IDi ∈ {0, 1} is the i-th bit of ID ∈ {0, 1}`. Then

it runs KEnc(j, p)→
(
kj , d

′
2

)
, picks rj,1, . . . , rj,d′2

$← Z2×1
p , and sets Rj =

((rj,1
0
0

)
, · · · ,

(
rj,d′2

0
0

))
∈

Z4×d′2
p for all j ∈ S. It also picks random {αj ∈ Z4×1

p }j∈S subject to constraint that α =
∑

j∈S αj .
Then, it computes Pair(j, S, p)→ Ej = (Ej,η,ι)(η,ι)∈[d2]×[d3] and

skj = hkj(αj ,Rj ,W) = {skj,η = hkj,η(αj ,Rj ,W)}η∈[d2] (9)

for all j ∈ S. Note that hkj(αj ,Rj ,W) can be computed from αj , hπ1(Z), and {gπ1(W>
i Z)}i∈[d1] ef-

ficiently because kj(αj ,Rj ,W) = {kj,ι(αj ,Rj ,W)}ι∈[d2] contains only linear combination of αj ,

Z
(ri

0
0

)
= π1(Z)ri, and W>

i Z
(rj′

0
0

)
= π1(W>

i Z)rj′ . Finally, it outputs private key

skID =

 ∏
j∈S,η∈[d2]

sk
Ej,η,ι
j,η

ι∈[d3]

. (10)

22

Enc(mpk, ID,M) : It first sets S = {2i−IDi|i ∈ [`]}. Then it runs CEnc(S, p)→ (c, d′3), picks s0, s1, . . . , sd′3
$← Z2×1

p , and sets S =

((s0
0
0

)
,
(s1

0
0

)
, · · · ,

(
sd′3
0
0

))
∈ Z4×(d′3+1)

p . Then it returns

CT =
(
C1 = gc(S,W), C2 = e(g, h)α

>π1(B)s0 ·M
)
.

Note that gc(S,W) can be computed from gπ1(B) and {gπ1(WiB)}i∈[d1] efficiently because c(S,W) con-

tains only linear combinations of B
(si

0
0

)
= π1(B)si and WiB

(sj
0
0

)
= π1(WiB)sj . C2 can be

computed from e(g, h)α
>π1(B).

Dec(skID,CT) : Let CT be CT = (C1, C2). From C1 = gc(S,W) = {gcι(S,W)}ι∈[d3], it computes

∏
ι∈[d3]

e

gcι(S,W),
∏

j∈S,η∈[d2]

sk
Eη,ι
j,η

 = e(g, h)α
>π1(B)s0 (11)

and recovers the message by C2/e(g, h)α
>π1(B)s0 = M.

CORRECTNESS. We show the correctness of the scheme. It suffices to show Equation (11).

∏
ι∈[d3]

e

gcι(S,W),
∏

j∈S,η∈[d2]

sk
Eη,ι
j,η

 =
∏

ι∈[d3],j∈S,η∈[d2]

e(g, h)Eη,ιcι(S,W)>kj,η(αj ,Rj ,W)

=
∏
j∈S

e(g, h)
∑
ι∈[d3],η∈[d2]

Eη,ιkj,η(αj ,Rj ,W)>cι(S,W)

=
∏
j∈S

e(g, h)
α>j B

(s0
0
0

)
= e(g, h)α

>π1(B)s0

The third equation above follows from the correctness of the underlying broadcast encoding.

Security. The following theorem indicates that the security of the IBE is (almost) tightly reduced to the MMH
security of the underlying broadcast encoding on (G1,G2) and Problem 7, 10, and 11. Combining the theorem
with Theorem 3, 7, 8, 10, and 11, the security of the scheme can be almost tightly reduced to the Qc-CMH
security of the underlying encoding and the DLIN assumption. The reduction only incurs O(`) security loss.
The proof will appear in Appendix D.4.

Theorem 4. For any adversary A, there exist adversaries B1, B2, B3, and B4 such that

AdvIBE
A,Φprime,(µ,Qc,Qk)(κ) ≤ AdvP7

B1(κ) + AdvP11
B2 (κ) + 2`

(
AdvP10

B3 (κ) + AdvMMH
B4,Π,(Qc,Qk),(G1,G2)(κ)

)
and max{Time(Bi)|i ∈ [1, 4]} ≈ Time(A) + (µ+Qc +Qk) · poly(κ, `) where poly(κ, `) is independent of
Time(A).

6 Construction of Broadcast Encoding Schemes

In this section, we show two broadcast encoding schemes Πcc and Πslp. As we will see, we can tightly prove
the Qc-CMH security for these schemes for any Qc. Therefore, by applying the conversion in Section 4
and 5, we obtain IBE schemes with almost tight security in the multi-challenge and multi-instance setting

23

both in prime and composite-order groups. An IBE obtained from Πcc achieves constant-size ciphertexts,
but at the cost of requiring public parameters with the number of group elements being linear in the security
parameter. Our second broadcast encoding scheme Πslp partially compensate for this. By appropriately setting
parameters, we can realize trade-off between size of ciphertexts and public parameters. For example, from the
encoding, we obtain the first almost tightly secure IBE with all communication cost (the size of pp and CT)
being O(

√
κ). Such a scheme is not known even in the single-challenge setting [18, 8]. While the structure

of Πcc is implicit in [27], Πslp is new. The construction of Πslp is inspired by recent works on unbounded
attribute-based encryption schemes [41, 48, 49]. However, the security proof for the encoding is completely
different.

6.1 Broadcast Encoding with Constant-Size Ciphertexts

At first, we show the following broadcast encoding scheme that we call Πcc. The scheme has the same
structure as the broadcast encryption scheme proposed by Gentry and Waters [27]. For Πcc, we can prove
Q-PMH security for any Q. By Lemma 1, we have that Q-CMH security of Πcc on Gp2 and Gp3 can be
tightly proven unconditionally. Similar implication holds in prime-order groups. See Lemma 4.

Param(n,N)→ d1 : It outputs d1 = n.

KEnc(τ,N)→ (k, d′2) : It outputs k = (α + rwτ , rw1, . . . , rwτ−1, r, rwτ+1, . . . , rwn) and d′2 = 1 where
r = r.

CEnc(S,N)→ (c, d′3) : Let S ⊆ [n]. It outputs c = (s,
∑

j∈S swj) and d′3 = 0 where s = s.

CORRECTNESS. Let τ ∈ S. Then, we have

s ·

(α+ rwτ) +

 ∑
j∈S\{τ}

rwj

−
∑
j∈S

swj

 · r = sα. (12)

Lemma 7. Πcc defined above is Q-PMH secure for any Q ∈ N.

Proof. Let τ 6∈ ∪j∈[Q]Sj . It is clear that information on wτ is not leaked given {cSj (sj ,w)}j∈[Q]. Thus, α is
information-theoretically hidden from kτ (α, r,w), because α is masked by rwτ which is uniformly random
over Zp. Thus, the lemma follows. ut

6.2 Encoding with Sub-linear Parameters

We propose the following broadcast encoding scheme that we call Πslp. We can realize trade-off between
sizes of parameters by setting n1. For the encoding scheme, we are not able to show the Q-PMH security.
Instead, we show the Q-CMH security.

Param(n,N)→ d1 : It outputs d1 = 2n1 + 3. We let n2 = dn/n1e. For ease of the notation, we will denote
w = (u1, . . . , un1 , v, u

′
1, . . . , u

′
n1
, v′, w) in the following.

KEnc(τ,N)→ (k, d′2) : It computes unique τ1 ∈ [n1] and τ2 ∈ [n2] such that τ = τ1 + (τ2 − 1) · n1. Then
it sets d′2 = 1 and r = r and outputs

k =
(
α+ rw, r, r(v + τ2uτ1), {rui}i∈[n1]\{τ1}, r(v

′ + τ2u
′
τ1), {ru′i}i∈[n1]\{τ1}

)
.

24

CEnc(S,N)→ (c, d′3) : It first defines S̃j and Sj for j ∈ [n2] as

S̃j = S ∩ [(j − 1)n1 + 1, jn1], Sj = {j′ − (j − 1)n1 | j′ ∈ S̃j}, (13)

sets s = (s0, t1, . . . , tn2 , t
′
1, . . . , t

′
n2

) and d′3 = 2n2 + 1, and outputs

c =

s0,

 s0w + ti
(
v + i

∑
j∈Si

uj
)

+ t′i
(
v′ + i

∑
j∈Si

u′j
)
, ti, t′i

i∈[n2]

CORRECTNESS. Let τ ∈ S and τ1, τ2 be defined as above. Then, we have τ1 ∈ Sτ2 and

s0 · (α+ rw)−

s0w + tτ2

v + τ2

∑
j∈Sτ2

uj

+ t′τ2

v′ + τ2

∑
j∈Sτ2

u′j

 · r
+ tτ2 ·

r(v + τ2uτ1) + τ2 ·

 ∑
j∈Sτ2\{τ1}

ruj

+ t′τ2 ·

r(v′ + τ2u
′
τ1) + τ2 ·

 ∑
j∈Sτ2\{τ1}

ru′j

= s0α.

In Appendix E, we prove the Q-CMH security of Πslp on (G1,G2) under the DLIN assumption. The Q-CMH
security on Gp2 and Gp3 also can be shown assuming the DLIN assumption on the corresponding group.

6.3 Implications

For Πxx, we call an IBE scheme obtained by applying the conversion in Section 4 to Πxx Φcomp
xx . Similarly,

we call a scheme obtained by the conversion in Section 5.5 Φprime
xx . The concrete descriptions of the obtained

schemes appear in Appendix H. Φprime
cc and Φprime

slp are the first IBE schemes that are (almost) tightly secure
in the multi-challenge and multi-instance setting, from a static assumption in prime-order groups (the DLIN
assumption). Φcomp

cc and Φprime
cc achieve constant-size ciphertext, meaning the number of group elements in

ciphertexts is constant. The drawback of the schemes is their long public parameters. In Φcomp
slp and Φprime

slp , we
can trade-off the size of ciphertexts and public parameters. For example, by setting n1 =

√
n, we obtain the

first almost tightly secure IBE scheme such that all communication cost (the size of the public parameters, the
master public keys, and the ciphertexts) is sub-linear in the security parameter. Such a scheme is not known
in the literature, even in the single-challenge and single-instance setting. Also see Table 1 in Section 1 for the
overview of the obtained schemes.

7 Anonymous IBE with Tight Security Reduction.

All our IBE schemes obtained so far is not anonymous. In these schemes, one can efficiently check that a
ciphertext is in a specific form using pairing computation, which leads to an attack against anonymity. In
this section, we show that Φprime

cc can be modified to be anonymous, by removing all group elements in G2

from the public parameter pp and put these in sp instead. We call the resulting scheme Φanon. This is the
first IBE scheme whose anonymity is (almost) tightly proven in the multi-challenge. While our technique for
making the scheme anonymous is similar to that in [17], the security proof for our scheme requires some new
ideas. This is because [17] only deals with the single-challenge setting whereas we prove tight security in the
multi-challenge setting. The security proof requires new combination of information-theoretic argument (as
in [17]) and computational argument.
Construction. Let the identity space of the scheme be {0, 1}` and the message space be GT . We note that
we have sp 6= ⊥ in the following, differently from other constructions in this paper.

25

Par(1κ, `) : It first runs (p,G1,G2,GT , g, h, e(·)) $← Gprime(1
κ). Then it picks B

$← GL4(Zp), W1, . . . ,W2`
$← Z4×4

p and a random full-rank diagonal matrix D ∈ Z4×4
p with the entries (3, 3) and (4, 4) be-

ing 1. Finally, it sets Z = B−>D and returns pp = (g, gπ1(B), gπ1(W1B), . . . , gπ1(W2`B)) and
sp = (h, hπ1(Z), hπ1(W>

1 Z), . . . , gπ1(W>
2`Z)).

Gen(pp, sp) : It picks α $← Z4×1
p and outputs mpk = (pp, e(g, h)α

>π1(B)) and msk = (α, sp).

Ext(msk,mpk, ID) : It first sets S = {2i − IDi|i ∈ [`]} where IDi ∈ {0, 1} is the i-th bit of ID ∈ {0, 1}`.
Then it picks random r

$← Z2×1
p and returns skID = (K1 = hα+

∑
i∈S π1(W>

i Z)r, K2 = h−π1(Z)r).

Enc(mpk, ID,M) : It first sets S = {2i − IDi|i ∈ [`]}. Then it picks random s
$← Z2×1

p and returns CT =

(C1 = gπ1(B)s, C2 = g
∑
i∈S π1(WiB)s, C3 = e(g, h)α

>π1(B)s ·M).

Dec(skID,CT) : It parses the ciphertext CT as CT → (C1, C2, C3), and computes e(C1,K1)e(C2,K2) =

e(g, h)α
>π1(B)s. Then, it recovers the message by C3/e(g, h)α

>π1(B)s = M.

Remark. We have to ensure that the key extraction algorithm Ext always use the same randomness r for the
same identity, in order to (tightly) prove the security of the scheme. This can be easily accomplished, for
example, using PRF [26]. For the sake of simplicity, we do not incorporate this change into the description
of our scheme. Instead, in the security proof, we assume that the adversary A makes at most single key
extraction query for the same identity.

Security. The following theorem establishes the security of Φanon in the single-instance case. The proof
appears in Appendix F. While we think that it is not hard to extend the result to the multi-instance setting, we
do not treat it in this paper.

Theorem 5. For any adversary A, there exists an adversary B such that

AdvAIBE
A,Φanon,(1,Qc,Qk)(κ) ≤ (8`+ 7)AdvDLIN

B (κ) + (12`+ 1)/p

and Time(B) ≈ Time(A) + (Qc +Qk) · poly(κ, `) where poly(κ, `) is independent of Time(A).

8 Application to CCA Secure Public Key Encryption

Here, we discuss that our IBE schemes with almost tight security reduction in the multi-instance and multi-
challenge setting yield almost tightly CCA secure PKE in the same setting via simple modification of Canetti-
Halevi-Katz (CHK) transformation [16]. The difference from the ordinary CHK transformation is that we use
(tightly secure) Q-fold one-time signature introduced and constructed in [32]. Another difference is that we
need a restriction on the original IBE scheme. That is, we require that the key generation algorithm Gen of the
IBE scheme does not output any secret parameter. Namely, sp = ⊥. Roughly speaking, this is needed since
the syntax of the PKE does not allow key generation algorithm to take any secret parameter. Note that this
condition is satisfied by all of our constructions except for that in Section 7. See Appendix G for the details
about the conversion.

By applying the above conversion to Φprime
slp and Φprime

cc , we obtain new PKE schemes that we call Ψprime
slp

and Ψprime
cc . The former allows flexible trade-off between the size of public parameters and ciphertexts. The

latter achieves significantly short ciphertext-size: The ciphertext overhead of our scheme only consists of 10
group elements and 2 elements in Zp. This significantly improves previous results [32, 1, 35, 36, 29] on PKE
scheme with the same security guarantee in terms of the ciphertext-size. Note that state-of-the-art construction
by [36] and [29] require 47 and 59 group elements of ciphertext overhead, respectively. Namely, ciphertext

26

overhead of our scheme is (at least) 74% shorter, compared to theirs. On the other hand, the size of public
parameter of the scheme in [29] is much shorter than ours (and those of [35, 36]). The former only requires
17 group elements, but the latter requires many more.

The reason why we can achieve very short ciphertext size is that our strategy to obtain PKE scheme is
quite different from other works. Roughly speaking, all of the previous constructions [32, 1, 35, 36, 29] follow
the template established by Hofheinz and Jager [32]. They first construct (almost) tightly-secure signature.
Then, they use the signature to construct (almost) tightly-secure unbounded simulation sound (quasi-adaptive)
NIZK. Finally, they follow the Naor-Yung paradigm [45] and convert the CPA-secure PKE with tight security
reduction [11] into CCA-secure one using the NIZK. On the other hand, our construction is much more
direct and simpler. Our conversion only requires very small amount of overhead in public parameters and
ciphertexts.

References
[1] M. Abe, B. David, M. Kohlweiss, R. Nishimaki, M. Ohkubo. Tagged One-Time Signatures: Tight Security and Optimal Tag

Size. In PKC, pp. 312–331, 2013.

[2] S. Agrawal and M. Chase. A study of Pair Encodings: Predicate Encryption in prime order groups. IACR Cryptology ePrint
Archive, Report 2015/390.

[3] N. Attrapadung. Dual System Encryption Framework in Prime-Order Groups. IACR Cryptology ePrint Archive, Report
2015/390.

[4] N. Attrapadung. Dual system encryption via doubly selective security: Framework, fully secure functional encryption for
regular languages, and more. In EUROCRYPT, pp. 557–577, 2014.

[5] N. Attrapadung, J. Furukawa, T. Gomi, G. Hanaoka, H. Imai, and R. Zhang. Efficient identity-based encryption with tight
security reduction. In CANS, pp. 19–36, 2006.

[6] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting: security proofs and improvements. In
EUROCRYPT, pp. 259-274, 2000.

[7] M. Bellare and T. Ristenpart. Simulation without the artificial abort: Simplified proof and improved concrete security for
waters’ IBE scheme. In EUROCRYPT, pp. 407–424, 2009.

[8] O. Blazy, E. Kiltz, and J. Pan. (hierarchical) identity-based encryption from affine message authentication. In CRYPTO, pp.
408–425, 2014.

[9] D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption without random oracles. In EUROCRYPT, pp.
223–238, 2004.

[10] D. Boneh and X. Boyen. Secure identity based encryption without random oracles. In CRYPTO, pp. 443–459, 2004.

[11] D. Boneh, X. Boyen, and H. Shacham. Short Group Signatures. In CRYPTO, pp. 41-55, 2004.

[12] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In CRYPTO, pp. 213–229, 2001.

[13] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with short ciphertexts and private keys. In
CRYPTO, pp. 258–275, 2005.

[14] X. Boyen, B. Waters: Anonymous Hierarchical Identity-Based Encryption (Without Random Oracles). In CRYPTO, pp. 290-
307, 2006.

[15] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In EUROCRYPT, pp. 255–271, 2003.

[16] R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from Identity-Based Encryption. In EUROCRYPT, pp. 207–222,
2004.

[17] J. Chen, R. Gay, and H. Wee. Improved Dual System ABE in Prime-Order Groups via Predicate Encodings. EUROCRYPT (2)
pp. 595–624, 2015.

[18] J. Chen and H. Wee. Fully, (almost) tightly secure IBE from standard assumptions. IACR Cryptology ePrint Archive, Report
2013/803.

[19] J. Chen and H. Wee. Dual system groups and its applications - compact HIBE and more. IACR Cryptology ePrint Archive,
Report 2014/265.

[20] J. Chen and H. Wee. Fully, (Almost) Tightly Secure IBE and Dual System Groups. CRYPTO, pp. 435–460, 2013. A merge of
two papers [18, 19].

27

[21] J. Chen and H. Wee. Semi-adaptive attribute-based encryption and improved delegation for boolean formula. In SCN, pp.
277–297, 2014.

[22] C. Cocks. An identity based encryption scheme based on quadratic residues. In IMA Int. Conf., pp. 360–363, 2001.

[23] R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack.
In CRYPTO, pp. 13-25, 1998.

[24] A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. L. Villar. An Algebraic Framework for Diffie-Hellman Assumptions. In
CRYPTO, pp. 479–499, 2013.

[25] D. M. Freeman. Converting pairing-based Cryptosystems from Composite-Order Groups to Prime-Order Groups. In EURO-
CRYPT, pp. 44–61, 2010.

[26] C. Gentry. Practical identity-based encryption without random oracles. In EUROCRYPT, pp. 445–464, 2006.

[27] C. Gentry and B. Waters. Adaptive security in broadcast encryption systems (with short ciphertexts). In EUROCRYPT, pp.
171–188, 2009.

[28] G. Herold, J. Hesse, D. Hofheinz, C. Rfols, A. Rupp. Polynomial spaces: A new framework for composite-to-prime-order
transformations. In CRYPTO, pp. 261–279, 2014.

[29] Dennis Hofheinz. Algebraic partitioning: fully compact and (almost) tightly secure cryptography. IACR Cryptology ePrint
Archive, Report 2015/499.

[30] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encapsulation. In CRYPTO, pp. 553–571, 2007.

[31] Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applications. In CRYPTO, pp. 21–38, 2008.

[32] Dennis Hofheinz, Tibor Jager: Tightly Secure Signatures and Public-Key Encryption. In CRYPTO, pp. 590-607, 2012.

[33] D. Hofheinz, J. Koch, and C. Striecks. Identity-based encryption with (almost) tight security in the multi-instance, multi-
ciphertext setting. In PKC, pp. 799–822, 2015.

[34] C. S. Jutla, A. Roy: Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces. In ASIACRYPT (1) pp. 1–20, 2013.

[35] B. Libert, M. Joye, M. Yung, and T. Peters. Concise Multi-challenge CCA-Secure Encryption and Signatures with Almost Tight
Security. In ASIACRYPT (2) pp. 1-21, 2014.

[36] B. Libert, M. Joye, M. Yung, and T. Peters. Compactly Hiding Linear Spans: Tightly Secure Constant-Size Simulation-Sound
QA-NIZK Proofs and Applications. IACR Cryptology ePrint Archive, Report 2015/242.

[37] A. B. Lewko. Tools for simulating features of composite order bilinear groups in the prime order setting. In EUROCRYPT, pp.
318–335, 2012.

[38] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure functional encryption: Attribute-based encryp-
tion and (hierarchical) inner product encryption. In EUROCRYPT, pp. 62–91, 2010.

[39] A. B. Lewko and B. Waters. Efficient pseudorandom functions from the decisional linear assumption and weaker variants. In
ACM-CCS, pp. 112–120, 2009.

[40] A. B. Lewko and B. Waters. New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In TCC,
pp. 455–479, 2010.

[41] A. B. Lewko and B. Waters. Unbounded HIBE and attribute-based encryption. In EUROCRYPT, pp. 547–567, 2011.

[42] A. B. Lewko and B. Waters. New proof methods for attribute-based encryption: Achieving full security through selective
techniques. In CRYPTO, pp. 180–198, 2012.

[43] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions. J. ACM, Vol. 51, No. 2, pp.
231–262, 2004.

[44] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO, pp. 18–35, 2009.

[45] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In STOC, pp. 427-437,
1990.

[46] R. Nishimaki. How to Watermark Cryptographic Functions. In EUROCRYPT, pp. 111–125, 2013.

[47] T. Okamoto and K. Takashima. Fully secure functional encryption with general relations from the decisional linear assumption.
In CRYPTO, pp. 191–208, 2010.

[48] T. Okamoto and K. Takashima. Fully secure unbounded inner-product and attribute-based encryption. In ASIACRYPT, pp.
349–366, 2012.

[49] Y. Rouselakis and B. Waters. Practical constructions and new proof methods for large universe attribute-based encryption. In
ACM-CCS, pp. 463–474, 2013.

28

[50] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing over elliptic curve. In The 2001 Symposium on
Cryptography and Information Security, 2001. (in Japanese).

[51] H. Shacham. A Cramer-Shoup encryption scheme from the linear assumption and from progressively weaker linear variants,
IACR Cryptology ePrint Archive, Report 2007/074.

[52] A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pp. 47–53, 1984.

[53] B. Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT, pp. 114–127, 2005.

[54] B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In CRYPTO, pp. 619–636,
2009.

[55] H. Wee. Dual system encryption via predicate encodings. In TCC, pp. 616–637, 2014.

A Proof of Lemma 1

Proof. It suffices to show the lemma for the case of i = 2. By the Q-PMH security, for all τ? and S1, . . . , SQ
such that τ? 6∈ ∪j∈[Q]Sj , we have that two distributions ({cSj (sj ,w)}j∈[Q],kτ?(0, r,w)) and ({cSj (sj ,w)}j∈[Q],
kτ?(α, r,w)) are the same, where (kτ? , d

′
2)← KEnc(τ, p2), and (cSj , d

′
3,j)← CEnc(Sj , p2) for j ∈ [Q]. By

a standard argument (e.g., complexity leveraging [55]), this means that the two distributions are the same even
if a distinguisher adaptively chooses each Sj depending on {cSj′ (sj′ ,w)}j′∈[j−1] and kτ?(bα, r,w) (where
b = 0 or b = 1). By the correctness of the encoding (second condition), advantage of any adversary in Q-
CMH security game would be 0, if r was chosen random subject to constraint that (r mod p2) ∈ (Z∗p2)d

′
2 . In

the actual Q-CMH security game, r is chosen as r
$← Zd

′
2
N . This may alter the advantage at most d′2/p2. ut

B Security Proof for Our Scheme in Section 4

For the sake of simplicity, we first consider the case of µ = 1 (i.e., the single instance case). Namely, we first
show the following theorem. Later in this section, we explain how to modify our proof for the single-instance
case to deal with the multi-instance case.

Theorem 6. For any adversary A, there exist adversaries B1, B2, B3, B4, and B5 such that

AdvIBE
A,Φ,(1,Qc,Qk)(κ) ≤ AdvP1

B1(κ) + AdvP5
B2(κ) +Qc · 2−Ω(κ)

+`
(

2AdvP4
B3(κ) + AdvMMH

B4,Π,(Qc,Qk),Gp2
(κ) + AdvMMH

B5,Π,(Qc,Qk),Gp3
(κ)
)

and max{Time(Bi)|i ∈ [1, 5]} ≈ Time(A) + (Qc + Qk) · poly(κ, `) where poly(κ, `) is independent of
Time(A).

Proof. The overall structure of the proof is similar to [33].

Semi-functional Ciphertexts and Private Keys. We define several types of ciphertexts and private keys
that are used in the security proof. In the following, we will pick random functions R̂i : {0, 1}i → ZN and
R̃i : {0, 1}i → ZN (via lazy sampling) for i = 0, . . . , `. Here, we use {0, 1}0 to denote the singleton set
containing just the empty string ε. For an identity ID ∈ {0, 1}`, ID|i denotes the first i bits of ID, that is,
length i prefix of ID.

29

- Semi-functional ciphertexts. We consider Type 1, Type (2, i), and Type (3, i) of semi-functional cipher-
texts for i ∈ [0, `]. The form of semi-functional ciphertext are as follows.

CT =

(
g
c(s,w)
1 · gc(ŝ,w)

2 , H

(
e
(
gs01 · g

ŝ0
2 , hα

))
⊕Mcoin

)
Type 1(

g
c(s,w)
1 · gc(ŝ,w)

2 , H

(
e
(
gs01 · g

ŝ0
2 , hα · gR̂i(ID|i)

2

))
⊕Mcoin

)
Type (2, i)(

g
c(s,w)
1 · gc(s̃,w)

3 , H

(
e
(
gs01 · g

s̃0
3 , hα · gR̃i(ID|i)

3

))
⊕Mcoin

)
Type (3, i)

where ŝ = (ŝ0, ŝ1, . . . ŝd′3)>
$← Zd

′
3+1
N and s̃ = (s̃0, s̃1, . . . , s̃d′3)>

$← Zd
′
3+1
N .

- Random ciphertexts. We consider Type 1 and Type 2 of random ciphertexts. The form of ciphertexts are
as follows.

CT =

(
g
c(s,w)
1 · gc(ŝ,w)

2 , H
(
e(g1, h)s0α · e(g2, g2)z

)
⊕Mcoin

)
Type 1(

g
c(s,w)
1 · gc(ŝ,w)

2 , Mrand

)
Type 2

where z $← ZN and Mrand
$← {0, 1}m.

- Semi-functional Private Keys. We consider Type (1, i) for i ∈ [0, `] and Type (2, i) for i ∈ [` − 1] of
semi-functional private keys. To create a semi-functional private key, we replace skj in Equation (6)
with

skj = hkj(αj ,0,0) · gkj(0,rj ,w)
1 · gkj(γ̂j ,0,0)

2 · gkj(γ̃j ,0,0)
3 · gδj4 (14)

where {γ̂j ∈ ZN}j∈S and {γ̃j ∈ ZN}j∈S are random numbers subject to constraint that

∑
j∈S

γ̂j =

{
R̂i(ID|i) Type (1, i)

R̂i+1(ID|i+1) Type (2, i)
,

∑
j∈S

γ̃j = R̃i(ID|i) Type (1, i) and (2, i).

Then the semi-functional private key is created as skID =
∏
j∈S(skj)

Ej .
Sequence of Games. Next, we define a sequence of games to establish the security of the IBE scheme. We
write Advxx(κ) to denote the advantage of A in Gamexx.

Game0 : This is the real security game.

Game1: In this game, all challenge ciphertexts created by the challenger are changed to be Type 1.

Game2,i,1 (for i ∈ [1, `+ 1]): In this game, all challenge ciphertexts are of Type (2, i− 1) whereas all private
keys created by the challenger are Type (1, i− 1).

Game2,i,2 (for i ∈ [1, `]): This game is the same as Game2,i,1 except that challenge ciphertexts for identities
ID such that IDi = 0 are changed to be Type (3, i− 1) where IDi is the i-th bit of ID.

Game2,i,3 (for i ∈ [1, `]): This game is the same as Game2,i,2 except that challenge ciphertexts for identity ID
such that IDi = 1 are changed to be Type (2, i) and all private keys are changed to be Type (2, i− 1).

Game2,i,4 (for i ∈ [1, `]): This game is the same as Game2,i,3 except that challenge ciphertexts for identity
ID such that IDi = 0 are changed to be Type (3, i) and all private keys are changed to be Type (1, i).

30

Game3: This game is the same as Game2,`+1,1 except that all ciphertexts are changed to be random ciphertexts
of Type 1.

Game4: This game is the same as Game3 except that all ciphertexts are changed to be random ciphertexts of
Type 2.

Observe that we have Adv4(κ) = 0 since the view of A is independent from the value of coin in Game4. We
have that

AdvIBE
A,Φcomp,(1,Qc,Qk)(κ) = Pr[Adv0]

≤ |Pr[Adv0]− Pr[Adv1]|+ |Pr[Adv1]− Pr[Adv2,1,1]|
+

∑
i∈[`],j∈[1,3]

|Pr[Adv2,i,j]− Pr[Adv2,i,j+1]|+
∑
i∈[`]

|Pr[Adv2,i,4]− Pr[Adv2,i+1,1]|

+ |Pr[Adv2,`+1,1]− Pr[Adv3]|+ |Pr[Adv3]− Pr[Adv4]|

Therefore, we complete the proof by showing lemma 8, 9, 10, 11, 12, 13, 15, and 16 in the following. ut

Lemma 8. (Game0 to Game1). For any adversary A, there exists an adversary B1 such that |Adv0(κ) −
Adv1(κ)| ≤ AdvP1

B1(κ) and Time(B1) ≈ Time(A) + (Qc +Qk) · poly(κ, `) where poly(κ, `) is independent
of Time(A).

Proof. We construct an adversary B1 who attacks Problem 1 from an adversary A who distinguishes the
games. We note that these games only differ in the creation of challenge ciphertexts. B1 simulates the
challenger for A as follows.
Setup. At the outset of the game, B1 is given the problem instance of the assumption (g1, g4, g, T) where
either T $← G∗p1 or T $← G∗p1p2 . Then, it runs Param(2`,N) → d1, picks w

$← Zd1N , α $← ZN , H
$← H,

sets h := g, and returns the public parameter pp = (g1, g
w
1 , g4, h,H) and the master public key mpk =

(pp, e(g1, h)α) to A. B1 also sets msk = α and flips a coin coin $← {0, 1}.
Key Extraction Queries. When the adversaryA submits (Extraction, 1, ID) to the challenger, B1 simply
runs Ext(msk,mpk, ID)→ skID and returns skID to A.
Challenge Queries. When the adversary A submits (Challenge, 1, ID,M0,M1) to the challenger, B1 sets
S = {2i − IDi|i ∈ [`]} and runs CEnc(S,N) → (c, d′3). Then it picks s′ = (s′0, s

′
1, . . . , s

′
d′3

)
$← Zd

′
3+1
N

and returns CT =
(
T c(s′,w),H

(
e(T s

′
0 , hα)

)
⊕Mcoin

)
to A. We claim that it is properly distributed normal

ciphertext or semi-functional ciphertext of Type 1.
Let T be T = gt11 · g

t2
2 . Then we have

CT =
(
g
c(t1s′,w)
1 · gc(t2s′,w)

2 , H
(
e(g

t1s′0
1 · gt2s

′
0

2 , hα)
)
⊕Mcoin

)
.

If T $← G∗p1 , we have that t1
$← Z∗N and t2 = 0. In this case, B1 implicitly sets s = t1s

′ mod p1.

Since t1s′ mod p1 is uniformly distributed over Zd
′
3+1
p1 and e(gt1s

′
0

1 · gt2s
′
0

2 , hα) = e(g1, h)t1s
′
0α holds, B1

has correctly simulated the challenge ciphertext in Game0. On the other hand, if T $← G∗p1p2 , then we

have t1, t2
$← Z∗N . In this case, B1 implicitly sets s = t1s

′ mod p1 and ŝ = t2s
′ mod p2. Both of (s

mod p1, ŝ mod p2) in Game1 and (t1s
′ mod p1, t2s

′ mod p2) in the simulation are uniformly distributed
over Zp1 × Zp2 due to the Chinese Remainder Theorem. Therefore, B1 correctly simulates Game1.
Guess. When A outputs coin′, B1 outputs 1 if coin′ = coin and 0 otherwise.

B1 has properly simulated Game0 if T $← G∗p1 and Game1 if T $← G∗p1p2 . Hence, we may conclude that
|Adv0(κ)− Adv1(κ)| ≤ AdvP1

B1(κ). ut

31

Lemma 9. (Game1 to Game2,1,1). For any adversary A, we have Adv1(κ) = Adv2,1,1(κ).

Proof. This is purely a conceptual change and thus A’s advantage is not altered. To see this, let us consider a
modified version of Game1 in which we first choose α′, γ̂, γ̃ $← ZN and then set (unique) α ∈ ZN such that
hα = hα

′ · gγ̂2 · g
γ̃
3 . Since α is still uniformly distributed over ZN due to the Chinese Remainder Theorem,

the view of the adversary in the modified game is the same as Game1. Furthermore, we claim that the view
of the adversary in the modified game is also the same as Game2,1,1. This can be seen by regarding α′ in
the modified game as α in Game2,1,1, γ̂ as R̂0(ID|0), and γ̃ as R̃0(ID|0). We check this. At first, it is easy to
see that the distribution of the private keys in the modified game is the same as that of Game2,1,1. As for the
master public key and the challenge ciphertexts, we have e(g1, h

α) = e(g1, h
α′ · gγ̂2 · g

γ̃
3) = e(g1, h

α′) and
e(gs01 · g

ŝ0
2 , h

α) = e(gs01 · g
ŝ0
2 , h

α′ · gγ̂2 · g
γ̃
3) = e(gs01 · g

ŝ0
2 , h

α′ · gγ̂2). These indicate that the view of A in the
modified game is also the same as Game2,1,1. Thus, the lemma follows. ut

Lemma 10. (Game2,i?,1 to Game2,i?,2). For any i? ∈ [1, `] and adversary A, there exists an adversary B2

such that |Adv2,i?,1(κ) − Adv2,i?,2(κ)| ≤ AdvP4
B2(κ) and Time(B2) ≈ Time(A) + (Qc + Qk) · poly(κ, `)

where poly(κ, `) is independent of Time(A).

Proof. We construct an adversary B2 who attacks Problem 4 from an adversary A who distinguishes the
games. We note that these games only differ in the creation of challenge ciphertexts for identity ID such that
IDi? = 0. B2 simulates the challenger for A as follows.
Setup. At the outset of the game, B2 is given the problem instance of the assumption (g1, g4, g12, g23, g, T)

where either T $← G∗p1p2 or T $← G∗p1p3 . Then, it runs Param(2`,N) → d1, picks w
$← Zd1N , α $← ZN ,

H
$← H, sets h := g, and returns the public parameter pp = (g1, g

w
1 , g4, h,H) and the master public key

mpk = (pp, e(g1, h)α) to A. B2 also sets msk = α and flips a coin coin $← {0, 1}.
Simulating Random Function. Throughout the game, B2 simulates a random function Ri?−1(·) : {0, 1}i?−1 →
ZN via lazy sampling. Let g23 be g23 = gu22 gu33 . B2 will implicitly sets

R̂i?−1(ID|i?−1) = u2Ri?−1(ID|i?−1) mod p2 and

R̃i?−1(ID|i?−1) = u3Ri?−1(ID|i?−1) mod p3

in the following. By the Chinese Remainder Theorem, we have that
(
u2Ri?−1(ID|i?−1) mod p2, u3Ri?−1(ID|i?−1)

mod p3

)
in the simulation as well as

(
R̂i?−1(ID|i?−1) mod p2, R̃i?−1(ID|i?−1) mod p3

)
in Game2,i?,1 and

Game2,i?,2 are uniformly distributed over Zp2×Zp3 for all distinct ID|i?−1. Therefore, simulation of R̂i?−1(·)
and R̃i?−1(·) byB2 is perfect. (Note that the value of R̂i?−1(IDi?−1) mod p1p3p4 and R̃i?−1(IDi?−1) mod p1p2p4

are not specified. This is not a problem, because these values are information-theoretically hidden from the
view of A in both of Game2,i?,1 and Game2,i?,2.)
Key Extraction Queries. When the adversaryA submits (Extraction, 1, ID) to the challenger, B2 creates
{skj}j∈S as Equation (6). This is possible since B2 has msk = α. Then, B2 calls the random function Ri?−1(·)
on input ID|i?−1 to obtain γ = Ri?−1(ID|i?−1) ∈ ZN and picks random {γj}j∈S subject to constraint that∑

j∈S γj = γ. Then, B2 computes sk′j = skj · g
kj(γj ,0,0)
23 and returns the private key skID =

∏
j∈S(sk′j)

Ej

to A. We claim that B2 correctly simulates semi-functional private key of Type (1, i? − 1). We have that
sk′j = skj · g

kj(u2γj ,0,0)
2 · gkj(u3γj ,0,0)

3 . Here, B2 implicitly sets γ̂j = u2γj and γ̃j = u2γj for j ∈ S. Since
{γ̂j mod p2}j∈S and {γ̃j mod p3}j∈S are uniformly distributed subject to constraint that∑

j∈S
γ̂j = R̂i?−1(IDi?−1) mod p2 and

∑
j∈S

γ̃j = R̃i?−1(IDi?−1) mod p3,

B2’s simulation is perfect.

32

Challenge Queries. When the adversary A submits (Challenge, 1, ID,M0,M1) to the challenger, B2 sets
S = {2i− IDi|i ∈ [`]} and runs CEnc(S,N)→ (c, d′3). Then, it proceeds as follows. There are two cases.
− If IDi? = 1, B2 picks s′ = (s′0, s

′
1, . . . , s

′
d′3

)
$← Zd

′
3+1
N and returns

CT =
(
g
c(s′,w)
12 , H

(
e(g

s′0
12, h

α · gRi?−1(ID|i?−1)
23)

)
⊕Mcoin

)
to A. We claim that this is properly distributed semi-functional ciphertext of Type (2, i? − 1). Let g12 be
g12 = gt11 g

t2
2 . We have gc(s′,w)

12 = g
c(t1s′,w)
1 · gc(t2s′,w)

2 and

e(g
s′0
12, h

α · gRi?−1(ID|i?−1)
23) = e

(
g
s′0t1
1 · gs

′
0t2

2 , hα · gu2Ri?−1(ID|i?−1)
2 · gu3Ri?−1(ID|i?−1)

3

)
= e

(
g
s′0t1
1 · gs

′
0t2

2 , hα · gu2Ri?−1(ID|i?−1)
2

)
= e
(
g
s′0t1
1 · gs

′
0t2

2 , hα · gR̂i?−1(ID|i?−1)
2).

Here, B2 implicitly sets s = t1s
′ mod p1 and ŝ = t2s

′ mod p2. By the Chinese Remainder Theorem,
one can see that it is properly distributed semi-functional ciphertext of Type (2, i? − 1).

− If IDi? = 0, B2 picks s′ = (s′0, s
′
1, . . . , s

′
d′3

)
$← Zd

′
3+1
N and returns

CT =
(
T c(s′,w), H

(
e(T s

′
0 , hα · gRi?−1(ID|i?−1)

23)
)
⊕Mcoin

)
toA. By a similar argument to the above case, it is not hard to see that the ciphertext is properly distributed
semi-functional ciphertext of Type (2, i?−1) if T $← G∗p1p2 and semi-functional ciphertext of Type (3, i?−
1) if T $← G∗p1p3 .

Guess. When A outputs coin′, B2 outputs 1 if coin′ = coin and 0 otherwise.

B2 has properly simulated Game2,i?,1 if T $← G∗p1p2 and Game2,i?,2 if T $← G∗p1p3 . Hence, we may conclude
that |Adv2,i?,1(κ)− Adv2,i?,2(κ)| ≤ AdvP4

B2(κ).
ut

Lemma 11. (Game2,i?,2 to Game2,i?,3). For any i? ∈ [1, `] and adversaryA, there exists an adversaryB3 such
that |Adv2,i?,2(κ)−Adv2,i?,3(κ)| ≤ AdvMMH

B3,Π,(Qc,Qk),Gp2
(κ) and Time(B3) ≈ Time(A)+(Qc+Qk)·poly(κ, `)

where poly(κ, `) is independent of Time(A).

Proof. We construct an adversary B3 who breaks the (Qc, Qk)-MMH security of the underlying broadcast
encoding on Gp2 from an adversary A who distinguishes Game2,i?,2 and Game2,i?,3 for some i? ∈ [1, `]. We
note that these games differ in the creation of ciphertexts for ID such that IDi? = 1 and all private keys. In
this proof, we first describe B3 and then analyse the view of A in the simulation.

Setup. At the outset of the game, B3 submits τ? = 2i? as its target and is given (g1, g
w
1 , g

w
3 , g24, g3, g4).

It first picks a $← Z∗N and sets h := (g1g24g3)a. It then picks H
$← H, α $← ZN and returns the public

parameter pp = (g1, g
w
1 , g4, h,H) and the master public key mpk = (pp, e(g1, h)α). B3 keeps α, g3, gw3 , and

g24 privately. B3 also flips a random coin coin $← {0, 1}.
Programming Random Functions. Throughout the game, B3 simulates a random functions Ri?−1(·) :
{0, 1}i?−1 → ZN and R̃i?−1(·) : {0, 1}i?−1 → ZN via lazy sampling. B3 also maintains a list List of length
i? prefixes of identities for which key extraction query was made. The list is set as List = ∅ at the beginning
of the game.

Key Extraction Queries. When the adversary A submits (Extraction, 1, ID) to the challenger, B3 first
sets S = {2i − IDi|i ∈ [`]} and runs KEnc(j,N) → (kj , d

′
2) for all j ∈ S. It then calls random functions

Ri?−1(·) and R̃i?−1(·) on input ID|i?−1 to obtain γ = Ri?−1(ID|i?−1) and γ̃ = R̃i?−1(ID|i?−1). Then, it picks

33

r′j
$← Zd

′
2
N , δ′j

$← Zd2N for all j ∈ S. It also picks random {αj ∈ ZN}j∈S , {γj ∈ ZN}j∈S , and {γ̃j ∈ ZN}j∈S
subject to constraint that

∑
j∈S αj = α,

∑
j∈S γj = γ, and

∑
j∈S γ̃j = γ̃. Next, B3 computes {skj}j∈S as

follows. There are three cases to consider:

− In case of IDi? = 1 (or, equivalently, if τ? 6∈ S), it sets skj = hkj(αj ,0,0) ·g
kj(0,r

′
j ,w)

1 ·gkj(γj ,0,0)
24 ·gkj(γ̃j ,0,0)

3 ·
g
δ′j
4 for all j ∈ S. Let g24 be g24 = gu22 gu44 . Then, we have that

skj = hkj(αj ,0,0) · g
kj(0,r

′
j ,w)

1 · gkj(u2γj ,0,0)
2 · gkj(γ̃j ,0,0)

3 · gδ
′
j+kj(u4γj ,0,0)

4 (15)

Here, B3 implicitly sets γ̂j = u2γj for j ∈ S. {γ̂j}j∈S are random subject to constraint that
∑

j∈S γ̂j =
u2 · Ri?−1(ID|i?−1).

− In case of IDi? = 0 (or, equivalently, if τ? ∈ S) and ID|i? 6∈ List, B3 first calls OMMH,K
τ?,w,b (·) to obtain

g
kτ? (0,r,w)
1 · gkτ? (b·α̂,0,0)

2 · gδ4 where r, α̂, and δ are randomness chosen by the oracle. Then, B3 sets skj as
Equation (15) for j ∈ S\{τ?} and

skτ? =
(
g
kτ? (0,r,w)
1 · gkτ? (b·α̂,0,0)

2 · gδ4
)
·
(
hkτ? (ατ? ,0,0) · gkτ? (0,r′

τ?
,w)

1 · gkτ? (γτ? ,0,0)
24 · gkτ? (γ̃τ? ,0,0)

3 · gδ
′
τ?

4

)
= hkτ? (ατ? ,0,0) · gkτ? (0,r+r′

τ?
,w)

1 · gkτ? (b·α̂+u2γτ? ,0,0)
2 · gkτ? (γ̃τ? ,0,0)

3 · gδ+δ′τ?+kτ? (u4γτ? ,0,0)
4

for j = τ?. Here, B3 implicitly sets γ̂j = u2γj for j ∈ S\{τ?} and γ̂τ? = u2γτ? + b · α̂. Therefore,
{γ̂j}j∈S are random subject to constraint that

∑
j∈S γ̂j = u2 · Ri?−1(ID|i?−1) + b · α̂. Finally, B3 updates

the list as List← List ∪ {ID|i?}.

− In case of IDi? = 0 and ID|i? ∈ List, A must have made a key query for ID′ such that ID′|i? = ID|i? .
Since ID′i? = IDi? = 0, B3 must have called OMMH,K

τ?,w,b (·) to deal with the first such key extraction query

made byA. Let gkτ? (0,r,w)
1 · gkτ? (b·α̂,0,0)

2 · gδ4 be the answer to the oracle call. In this case, B3 does not call
OMMH,K
τ?,w,b (·) and computes {skj}j∈S in the same way as the above case using gkτ? (0,r,w)

1 · gkτ? (b·α̂,0,0)
2 · gδ4 .

As the above case, {γ̂j}j∈S are random subject to constraint that
∑

j∈S γ̂j = u2 · Ri?−1(ID|i?−1) + b · α̂.

Finally, B3 computes Pair(j, S,N)→ Ej for all j ∈ S and returns skID =
∏
j∈S(skj)

Ej to A.

Challenge Queries. When the adversary A submits (Challenge, 1, ID,M0,M1) to the challenger, B3 sets
S = {2i− IDi|i ∈ [`]} and runs CEnc(S,N)→ (c, d′3). Then, B3 proceeds as follows. There are two cases.

− If IDi? = 1 (or, equivalently, if τ? 6∈ S), it submits S to its oracle OMMH,C
τ?,w (·) to obtain gc(s,w)

1 · gc(ŝ,w)
2 .

Then it returns

CT =
(
g
c(s,w)
1 · gc(ŝ,w)

2 ,H
(
e(gs01 · g

ŝ0
2 , h

α · gRi?−1(ID|i?−1)
24)

)
⊕Mcoin

)
to A. Recall that gs01 · g

ŝ0
2 is the first coefficient of the vector gc(s,w)

1 · gc(ŝ,w)
2 (by the restriction we posed

on the broadcast encoding scheme). We have that

e(gs01 · g
ŝ0
2 , h

α · gRi?−1(ID|i?−1)
24) = e(gs01 · g

ŝ0
2 , h

α · gu2Ri?−1(ID|i?−1)
2 · gu4Ri?−1(ID|i?−1)

4)

= e(gs01 · g
ŝ0
2 , h

α · gu2Ri?−1(ID|i?−1)
2).

Then, the ciphertext returned to A is in the form of

CT =
(
g
c(s,w)
1 · gc(ŝ,w)

2 , H
(
e(gs01 · g

ŝ0
2 , h

α · gu2Ri?−1(ID|i?−1)
2)

)
⊕Mcoin

)
.

34

− If IDi? = 0 (or, equivalently, if τ? ∈ S), it first computes CEnc(S,N)→ (c, d′3), picks s = (s0, s1, . . . , sd′3),

s̃ = (s̃0, s̃1, . . . , s̃d′3)
$← Zd

′
3+1
N and computes gc(s,w)

1 and g
c(s̃,w)
3 from gw1 and gw3 . Then it returns

CT = (g
c(s,w)
1 · gc(s̃,w)

3 ,H
(
e(gs01 · g

s̃0
3 , h

α · gR̃i?−1(ID|i?−1)
3)

)
⊕Mcoin) to A.

Guess. When A outputs coin′, B2 outputs 1 if coin′ = coin and 0 otherwise.

Analysis. We claim that A’s view corresponds to that of Game2,i?,2 if b = 0 (i.e., B3 is equipped with
oracle OMMH,K

τ?,w,0 (·)) and Game2,i?,3 if b = 1 (B3 is equipped with OMMH,K
τ?,w,1 (·)). In the case of b = 0, it

is easily seen that B3 simulates Game2,i?,2 with R̂i?−1(·) : {0, 1}i?−1 → ZN such that R̂i?−1(ID|i?−1) =

u2 · Ri?−1(ID|i?−1). Since Ri?−1(·) is a random function, R̂i?−1(·) is also a random function. Thus B3

correctly simulates Game2,i?,2. On the other hand, in the case of b = 1, one can see that B3 simulates
Game2,i?,3 with R̂i?(·) : {0, 1}i? → ZN such that

R̂i?(ID|i?) =

{
u2 · Ri?−1(ID|i?−1) if IDi? = 1

u2 · Ri?−1(ID|i?−1) + α̂ if IDi? = 0

where α̂ is freshly chosen for every distinct ID|i? . Since Ri?−1(·) is a random function, R̂i?(·) defined above is
also a random function. Therefore, B3’s simulation is perfect. Hence, we may conclude that |Adv2,i?,2(κ) −
Adv2,i?,3(κ)| ≤ AdvMMH

B3,Π,(Qc,Qk),Gp2
(κ). ut

Lemma 12. (Game2,i?,3 to Game2,i?,4). For any i? ∈ [1, `] and adversaryA, there exists an adversaryB4 such
that |Adv2,i?,3(κ)−Adv2,i?,4(κ)| ≤ AdvMMH

B4,Π,(Qc,Qk),Gp3
(κ) and Time(B4) ≈ Time(A)+(Qc+Qk)·poly(κ, `)

where poly(κ, `) is independent of Time(A).

Proof. We construct an adversary B4 that breaks (Qc, Qk)-MMH security of the encoding on Gp3 (instead of
Gp2) from an adversaryA who distinguishes the games. The lemma can be shown analogously to Lemma 11.
We only highlight the main difference.

• B4 sets τ? = 2i? − 1 instead of τ? = 2i?.

• B4 simulates R̂i?(·) and Ri?−1(·) throughout the game and use these functions to create challenge ci-
phertexts and private keys. It will simulate Game2,i?,3 with R̃i?−1(ID|i?−1) = u3 · Ri?−1(ID|i?−1) or
Game2,i?,4 with

R̃i?(ID|i?) =

{
u3 · Ri?−1(ID|i?−1) if IDi? = 0

u3 · Ri?−1(ID|i?−1) + α̃ if IDi? = 1

where u3 ∈ Z∗N is defined as a number satisfying g34 = gu33 · g
u4
4 for some u4 ∈ Z∗N and α̃ is the

randomness chosen by OMMH,K
τ?,w,1 (·). α̃ is freshly chosen for every distinct ID|i? .

• B4 computes the challenge ciphertext by itself if IDi? = 1. Otherwise, it makes oracle call toOMMH,C
τ?,w (·)

and creates the ciphertext using the answer from the oracle.

• B4 maintains a List of length i? prefixes of identities for which key extraction query was made. For key
extraction query made byA, B4 generates private key by itself if IDi? = 0. If IDi? = 1 and ID|i? 6∈ List,
it callsOMMH,K

τ?,w,b (·) and creates the private key using the answer. Otherwise,Amust have queried private

key for ID′ such that ID′|i? = ID|i? . B4 must have called OMMH,K
τ?,w,b (·) to deal with the first such key

extraction query made by A. B4 creates the private key using the answer to the query.

35

ut

Lemma 13. (Game2,i?,4 to Game2,i?+1,1). For any i? ∈ [1, `] and adversary A, there exists an adversary B5

such that |Adv2,i?,4(κ) − Adv2,i?+1,1(κ)| ≤ AdvP4
B5(κ) and Time(B5) ≈ Time(A) + (Qc + Qk) · poly(κ, `)

where poly(κ, `) is independent of Time(A).

Proof. The proof is the same as that of Lemma 10 except that we replace Ri?−1, R′i?−1, R̂i?−1, and R̃i?−1 with
Ri? , R′i? , R̂i? , and R̃i? . ut

The following lemma shows random self-reducibility of the Problem 5. The lemma is needed to prove
Lemma 15 in the following.

Lemma 14. (Random Self-Reducibility of Problem 5 [43].) There exists an efficient algorithm that on input

(g2, g
x
2 , g

y
2 , g

z
2 , e(g2, g2)xyz+γ) outputs (gx̂2 , e(g2, g2)x̂yz+γ̂) where

{
γ̂

$← ZN if γ 6= 0 mod p2

γ̂ = 0 if γ = 0 mod p2

and x̂ $←

ZN .

Proof. The algorithm picks a, b $← ZN and implicitly sets x̂ = ax + b and γ̂ = aγ. It is easy to see that x̂
mod p2 is uniformly random over Zp2 and γ̂ = 0 mod p2 in the case of γ = 0 mod p2. It can also be seen
that (x̂, γ̂) mod p2 is uniformly random over Z2

p2 in the case of γ 6= 0 mod p2. Furthermore, the algorithm
can efficiently compute gx̂2 = (gx2)agb2 and e(g2, g2)x̂yz+γ̂ =

(
e(g2, g2)xyz+γ

)a
e(gy2 , g

z
2)b. ut

Lemma 15. (Game2,`+1,1 to Game3). For any adversaryA, there exists an adversaryB6 such that |Adv2,`+1,1(κ)−
Adv3(κ)| ≤ AdvP5

B6(κ) and Time(B6) ≈ Time(A) + (Qc +Qk) · poly(κ, `) where poly(κ, `) is independent
of Time(A).

Proof. We construct an adversary B6 who attacks Problem 5 from an adversary A who distinguishes the
games.
GeneratingQc tuples. At the outset of the game, B6 is given the problem instance (g1, g2, g3, g4, g, g

x
2 , g

y
2 , g

z
2 ,

e(g2, g2)xyz+γ) where either γ = 0 or γ $← Z∗N . B6 proceeds as follows.

Setup. It runs Param(2`,N) → d1, picks w
$← Zd1N , α $← ZN , H

$← H, sets h := g, and returns the
public parameter pp = (g1, g

w
1 , g4, h,H) and the master public key mpk = (pp, e(g1, h)α) to A. B6 also sets

msk = α and flips a coin coin $← {0, 1}.
Programming Random Functions. Throughout the game, B6 simulates random functions R`(·) : {0, 1}` →
ZN and R̃`(·) : {0, 1}` → ZN via lazy sampling. In the following, B6 will implicitly set R̂`(·) : {0, 1}` → ZN
as

R̂`(ID) =

{
R`(ID) if (Extraction, 1, ID) is queried
R`(ID) + yz if (Challenge, 1, ID,M0,M) is queried for some M0, M1.

Since (Extraction, 1, ID) and (Challenge, 1, ID,M0,M1) are never queried for the same ID (by the
restriction posed on the adversary), R̂`(·) above is well-defined. Furthermore, since R`(·) is a random function,
R̂`(·) is also a random function.
Key Extraction Queries. When the adversary A submits (Extraction, 1, ID) to the challenger, B6 pro-
ceeds as follows. B6 first sets S = {2i− IDi|i ∈ [`]} and picks rj

$← Zd
′
2
N for j ∈ S. Then, B6 calls R`(·) and

R̃`(·) to obtain γ̂ = R̂`(ID) = R`(ID) and γ̃ = R̃`(ID). It then picks random {αj ∈ ZN}j∈S , {γ̂j ∈ ZN}j∈S ,
and {γ̃j ∈ ZN}j∈S subject to the constraint that

∑
j∈S αj = α,

∑
j∈S γ̂j = γ̂, and

∑
j∈S γ̃j = γ̃. Then, B6

creates {skj}j∈S as Equation (14) using the values. Finally, B6 computes Pair(j, S,N) → Ej for all j ∈ S
and returns the private key skID =

∏
j∈S(skj)

Ej to A.

36

Challenge Queries. When the adversary A submits a challenge query (Challenge, 1, ID,M0,M1) to the
challenger, B6 proceeds as follows. B6 first sets S = {2i − IDi|i ∈ [`]} and computes CEnc(S,N) →
(c, d′3). Then, it picks s

$← Zd
′
3+1
N , ŝ1, . . . , ŝd′3

$← ZN . It also runs the algorithm in Lemma 14 on input

(g2, g
x
2 , g

y
2 , g

z
2 , e(g2, g2)xyz+γ) to obtain (gx̂2 , e(g2, g2)x̂yz+γ̂) where γ̂ $← ZN if γ 6= 0 mod p2 and γ̂ = 0

if γ = 0. It then implicitly sets ŝ0 := x̂ and ŝ = (ŝ0, . . . , ŝd′3). Next, it computes gc(s,w)
1 and gc(ŝ,w)

2 . The
latter is efficiently computable because B6 knows gŝ2 and w, and, c(ŝ,w) contains only linear combinations
of monomials ŝi, ŝiwj . It also calls R`(·) on input ID and computes T = e(gs01 , h

α) · e(gx̂2 , hα · g
R`(ID)
2) ·

e(g2, g2)x̂yz+γ̂ . Finally, it returns CT =
(
g
c(s,w)
1 · gc(ŝ,w)

2 ,H(T)⊕Mcoin

)
to A. We have that

T = e(gs01 , h
α) · e(gx̂2 , hα · g

R`(ID)
2) · e(g2, g2)x̂yz+γ̂

= e(gs01 , h
α) · e(gx̂2 , hα · g

R`(ID)+yz
2) · e(g2, g2)γ̂

= e(gs01 · g
ŝ0
2 , h

α · gR̂`(ID)
2) · e(g2, g2)γ̂ .

Therefore, it can be seen that the challenge ciphertext is properly distributed semi-functional ciphertext of
Type (2, `) if γ = 0 and random ciphertext of Type 1 if γ 6= 0 mod p2.
Guess. When A outputs coin′, B2 outputs 1 if coin′ = coin and 0 otherwise.

B6 has properly simulated Game2,`+1,1 if γ = 0 and Game3 if γ $← Z∗N . Hence, we may conclude that
|Adv2,`+1,1(κ)− Adv3(κ)| ≤ AdvP5

B1(κ). ut

Lemma 16. (Game3 to Game4). For any adversary A, we have |Adv3(κ)− Adv4(κ)| ≤ Qc · 2−Ω(κ).

Proof. These games only differ in the creation of the challenge ciphertexts. For each challenge ciphertext, we
claim that

(H,H(e(g1, h)s0α · e(g2, g2)z)) and (H,Mrand) (16)

are 2−Ω(κ) close even if we fix s0 and α. This follows from the left-over hash lemma since e(g2, g2)z is
distributed uniformly randomly (and independently from the view of A) over the subgroup of GT with order
p2 and has at least log p2 bit of min-entropy. By replacing H(e(g1, h)s0α · e(g2, g2)z) in each challenge
ciphertext with a random string one by one, we have that |Adv3(κ)− Adv4(κ)| ≤ Qc · 2−Ω(κ). ut

Extension to the Multi-Instance Case. So far, we have considered single instance case (µ = 1). We explain
how to extend our proof for the single-instance case to deal with multi-instance case (µ� 1).

(Proof Sketch of Theorem 2.) The main difference from the single instance case is that we have to simulate
different random functions for each index of the instance. Namely, we simulate random functions R̂

(j)
i (·) :

{0, 1}i → ZN and R̃
(j)
i (·) : {0, 1}i → ZN for i ∈ [0, `] and each index j ∈ [µ]. Then, we consider

Game0 to Game4 exactly the same as the single instance case above except that semi-functional ciphertexts
and semi-functional private keys for j-th instance are computed using R̂

(j)
i (·) and R̃

(j)
i (·). We have to bound

the difference of the advantage of A between the games as in the proof of Theorem 6. Only slightly subtle
parts in the proof are to bound the difference of the advantage in Game2,i?,2 and Game2,i?,3, Game2,i?,3 and
Game2,i?,4, and Game3 and Game4.

We first bound the difference between Game2,i?,2 and Game2,i?,3. To do so, we assume an adversary A
that distinguishes these games and construct an adversary B against the Qc-CMH security of the underlying
broadcast encoding on Gp2 . We sketch the reduction.

• B selects τ? = 2i? as its target.

37

• Simulation of the challenge ciphertexts is analogous to Lemma 11. Namely, for a query (Challenge, j,
ID,M0,M1) from A, it creates the challenge ciphertext by itself if IDi? = 0. Otherwise, it makes an
oracle call to OMMH,C

τ?,w (·) and creates the ciphertext using the answer from the oracle.

• To answer key extraction queries from A, B maintains a list List of (j, ID|i?) such that A has made a
query of the form (Extraction, j, ID) throughout the game. WhenAmakes a query (Extraction,
j, ID), B proceeds as follows. If IDi? = 1, it creates the private key by itself. If IDi? = 0 and
(j, ID|i?) 6∈ List, it makes a query to OMMH,K

τ?,w,b (·) and creates the private key using the answer. Oth-
erwise, A must have made a query of the form (Extraction, j, ID′) such that ID′|i? = ID|i? . B4

must have called OMMH,K
τ?,w,b (·) to deal with the first such key extraction query made by A. B4 creates the

private key using the answer to the query.

This completes the description of the reduction.
The difference of the advantage ofA in Game2,i?,3 and Game2,i?,4 can be bounded similarly to the above.

The difference of the advantage in Game2,`+1,1 and Game3 can be bounded similarly to Lemma 15. Here, we
simulate R̃

(j)
` (·) : {0, 1}` → ZN for j ∈ [µ] as

R̂
(j)
` (ID) =

{
R

(j)
` (ID) if (Extraction, j, ID) is queried

R
(j)
` (ID) + yz if (Challenge, j, ID,M0,M) is queried for some M0, M1

where R
(j)
` (·) : {0, 1}` → ZN is a random function whose value is known to the simulator.

C Random Self-Rducibility of the Intermediate Problems and Reductions
from the DLIN Assumption

C.1 Reductions from DLIN

Following theorems show that the hardness of Problem 7, 8, 9, 10, 11, and 12 can be tightly reduced to the
DLIN assumption.

Theorem 7. For any adversary A, there exists an adversary B such that AdvP7
A (κ) ≤ AdvDLIN

B (κ) and
Time(B) ≈ Time(A) + poly(κ) where poly(κ) is independent of Time(A).

Proof. Here, B and Z are 4-by-4 matrices. A similar lemma is already shown for 3-by-3 matrices in [18]. It
is straightforward to extend the result, but we include the proof for completeness. Given the problem instance
(g, h, ga1 , ga2 , ga3 , ga1s1 , ga2s2 , T = ga3(s1+s2)+γ) where γ = 0 or γ $← Z∗p, B proceeds as follows. (B
disregards other terms in the problem instance.)

Programming B, Z. B picks z̃1, z̃2
$← Z∗p and defines A, A∗, and D as

A =

a1

a2

a3 a3 1
1

 ∈ Z4×4
p , A∗ =

a−1

1 −a−1
1 a3

a−1
2 −a−1

2 a3

1
1

 ∈ Z4×4
p ,

and D =

a1z̃1

a2z̃2

1
1

 . (17)

38

It is easy to check that A∗ = A−>. Next, B samples B′
$← GL4(Zp) and implicitly sets B = B′A. Then,

we have Z = B−>D = B′−>A−>D = B′−>(A∗D). It is clear that B and Z are properly distributed.
Programming t and t̂. B implicitly sets t = (s1, s2)> and t̂ = γ.
Simulating Input to A. In the following, we check that B can efficiently compute all input to A. At first, B
can efficiently compute gB = gB

′A since it knows gA and B′. It can also compute hπ1(Z) = hB
′−>·π1(A∗D)

since it knows all entries of B′−> and hπ1(A∗D). Furthermore, it can efficiently compute g
B

(
t
t̂
0

)
= g

B′A

(
t
t̂
0

)
from B′ and

g
A

(
t
t̂
0

)
=

ga1s1

ga2s2

T
1G1

 .

Therefore, B can simulate all input to A.
Output. Finally, B inputs all terms computed above to A and outputs the same bit as A.

As we can see, B properly simulates the problem instance of Problem 7 to A. Therefore, we have that
AdvP7

A (κ) ≤ AdvDLIN
B (κ). ut

Theorem 8. For any adversary A, there exists an adversary B such that AdvP8
A (κ) ≤ AdvDLIN

B (κ) and
Time(B) ≈ Time(A) + poly(κ) where poly(κ) is independent of Time(A).

Proof. Here, B and Z are 4-by-4 matrices. A similar lemma is already shown for 3-by-3 matrices in [18]. It
is straightforward to extend the result, but we include the proof for completeness. Given the problem instance
(g, h, ha1 , ha2 , ha3 , ha1s1 , ha2s2 , T = ha3(s1+s2)+γ) where γ = 0 or γ $← Z∗p, it proceeds as follows. (B
disregards other terms in the problem instance.)

Programming B, Z. B picks z̃1, z̃2
$← Z∗p and defines A, A∗, and D as Equation (17). Next, B samples

B′
$← GL4(Zp) and implicitly sets B = B′A∗D. We have

Z = B−>D = B′
−>

(A∗)−>D−>D = B′
−>

A.

It can be seen that B and Z are properly distributed.
Programming u and û. B implicitly sets u = (s1, s2)> and û = γ.

Programming t and t̂. B picks random v
$← Z3×1

p and implicitly sets
(
t
t̂

)
= E−1v, where E ∈ Z3×3

p is the
upper left 3× 3 submatrix of A∗D.
Simulating Input to A. In the following, we check that B can efficiently compute all input to A. At first,
B can efficiently compute hZ since it knows hA and B′. It can also compute gπ1(B) = hB

′·π1(A∗D) and

gπ3(B) = hB
′·π3(A∗D) since it knows all entries of B′, hπ1(A∗D), and hπ3(A∗D). It can compute g

B

(
t
t̂
0

)
=

g
B′A∗D

(
t
t̂
0

)
= gB

′(v0) because it knows all entries of B′ and v. Furthermore, we have h
A

(
u
û
0

)
=

ha1s1

ha2s2

T
1G2

 .

Thus B can efficiently compute all entries of h
Z

(
u
û
0

)
= h

B′−>A

(
u
û
0

)
from B′ and h

A

(
u
û
0

)
. Therefore, B can

simulate all input to A.
Output. Finally, B inputs all terms computed above to A and outputs the same bit as A.

As we can see, B properly simulates the problem instance of Problem 8 to A. Therefore, we have that
AdvP8

A (κ) ≤ AdvDLIN
B (κ). ut

39

Theorem 9. For any adversary A, there exists an adversary B such that AdvP9
A (κ) ≤ AdvDLIN

B (κ) + 1/p and
Time(B) ≈ Time(A) + poly(κ) where poly(κ) is independent of Time(A).

Proof. At first, B is given the problem instance of the DLIN assumption (g, ga1 , ga2 , ga3 , ga1s1 , ga2s2 , h, ha1 ,

ha2 , ha3 , T = ga3(s1+s2)+γ) where either γ $← Z∗p or γ = 0 and proceeds as follows. (B disregards other
terms in the problem instance.)

Programming t, t̂, and t̃. B picks ξ, ζ $← Zp and implicitly sets t = (s1, s2)>, t̂ = ξ − a3s1, and t̃ = γ.
We have that t̂ 6= 0 with probability at least 1 − 1/p. Conditioned on the event, (t, t̂, t̃) is distributed as
(t

$← Z2×1
p , t̂

$← Z∗p, t̃ = 0) if γ = 0 and (t
$← Z2×1

p , t̂
$← Z∗p, t̃

$← Z∗p) if γ $← Z∗p.
Programming B, Z. B defines A and A∗ as

A =

a1

a2

a3 1
a3 a3 1

 ∈ Z4×4
p and A∗ =

a−1

1 −a−1
1 a3 −a−1

1 a3

a−1
2 −a−1

2 a3

1
1

 ∈ Z4×4
p .

It is easy to check that A∗ = A−>. It also picks z̃1, z̃2
$← Z∗p and implicitly defines

D =

a1z̃1

a2z̃2

1
1

 ∈ Z4×4
p .

It follows immediately that

g
A

(
t
t̂
t̃

)
=

ga1s1

ga2s2

gξ

T

 ∈ Z4
p, A∗D =

z̃1 −a−1

1 a3 −a−1
1 a3

z̃2 −a−1
2 a3

1
1

 ∈ Z4×4
p ,

A∗D

0
0
a1

0

 =

−a3

0
a1

0

 , and A∗D

0
0
−a2

a2

 =

0
−a3

−a2

a2

 .

Next, B samples B′
$← GL4(Zp) and implicitly sets

B = B′A, and Z = B−>D = B′
−>

A−>D = B′
−>

(A∗D).

It is clear that B and Z are properly distributed.
Simulating Input to A. In the following, we check that B can efficiently compute all input to A. At first, B
can efficiently compute gB since it knows gA and B′. It can also compute hπ1(Z) = hB

′−>·π1(A∗D) since it

knows all entries of B′−> and hπ1(A∗D). Furthermore, B can compute g
B

(
t
t̂
t̃

)
since it knows g

A

(
t
t̂
t̃

)
and B′.

It can also compute ha1 f̂ = hB
′−>(a1A∗De>3) and h−a2 f̂+a2 f̃ = hB

′−>(A∗D(−a2e>3 +a2e>4)) since it knows all
entries of ha1A

∗De>3 , h(A∗D(−a2e>3 +a2e>4)), and B′−>. B then picks
(
φ1,1 φ1,2
φ2,1 φ2,2

)
$← GL4(Zp) and implicitly

sets Θ =
(
θ1,1 θ1,2
θ2,1 θ2,2

)
=
(
a1 −a2
0 a2

)
·
(
φ1,1 φ1,2
φ2,1 φ2,2

)
. It is easy to see that Θ is properly distributed and B can

efficiently compute hθ1,j f̂+θ2,j f̃ =
(
ha1 f̂

)φ1,j · (h−a2 f̂+a2 f̃)φ2,j for j ∈ {1, 2}.

40

Output. Finally, B inputs all terms computed above to A and outputs the same bit as A.
As we have seen, B properly simulates the problem instance of Problem 9 to A, except for probability

1/p. Therefore, we have that AdvP9
A (κ) ≤ AdvDLIN

B (κ) + 1/p. ut

Theorem 10. For any adversary A, there exists an adversary B such that AdvP10
A (κ) ≤ 2AdvDLIN

B (κ) + 2/p
and Time(B) ≈ Time(A) + poly(κ) where poly(κ) is independent of Time(A).

Proof. The theorem can be shown by applying Theorem 9 twice. We first replace the challenge term T0 =

g
B

(
t
t̂
0

)
in the problem instance of Problem 10 with g

B

(
t
t̂
t̃

)
where t

$← Z2×1
p , t̂, t̃ $← Z∗p. By Theorem 9,

there exists an adversary B such that Time(B) ≈ Time(A) + poly(κ) and the change of the probability that
the adversaryA outputs 1 is bounded by AdvDLIN

B (κ) + 1/p. Then, we further replace the challenge term with

T1 = g
B

(
t
0
t̃

)
. By the symmetry of the third and the fourth column of B, we can apply Theorem 9 again. The

change of the probability that A outputs 1 is bounded by AdvDLIN
B (κ) + 1/p. ut

The following theorems are already shown by previous works [14, 44, 46]. Note that these theorems are
shown in symmetric pairing groups or groups even without pairing, which are different situations than ours.
However, their proofs trivially work also in our setting.

Theorem 11. (Theorem 2.13 in [46]. See also [14].) For any adversary A, there exists an adversary B
such that AdvP11

A (κ) ≤ AdvDLIN
B (κ) and Time(B) ≈ Time(A) + poly(κ) where poly(κ) is independent of

Time(A).

Theorem 12. (Lemma A.1 in [44].) For any adversaryA, there exists an adversary B such that AdvP12
A (κ) ≤

4AdvDLIN
B (κ) and Time(B) ≈ Time(A) + poly(κ) where poly(κ) is independent of Time(A).

C.2 Random Self-Reducibility of the Intermediate Problems

Here, we show that Problem 7, 8, 9, 10, and 11 have random self-reducibility. The following theorem is a
slight extension of Lemma 1 in [24].

Lemma 17. (Random Self-Reducibility of Problem 7, 8, 9, and 10.) There exists an efficient algorithm that

on input (gπ1(B), g
B

(
t
t̂
t̃

)
) outputs g

B

(s
ŝ
s̃

)
where

s
$← Z2×1

p , ŝ
$← Zp, s̃ = 0 if (t̂ 6= 0, t̃ = 0)

s
$← Z2×1

p , ŝ = 0, s̃
$← Zp if (t̂ = 0, t̃ 6= 0)

s
$← Z2×1

p , ŝ = 0, s̃ = 0 if (t̂ = 0, t̃ = 0).

Similarly, there exists an efficient algorithm that on input (gπ1(B), gπ2(B), g
B

(
t
t̂
t̃

)
) outputs g

B

(s
ŝ
s̃

)
where{

s
$← Z2×1

p , ŝ
$← Zp, s̃ = 0 if t̃ = 0

s
$← Z2×1

p , ŝ
$← Zp, s̃

$← Zp if t̃ 6= 0.

Proof. At first, we show the former part of the lemma. The algorithm proceeds as follows. It picks a $← Zp
and s′

$← Z2×1
p and implicitly sets s = s′ + a · t, ŝ = a · t̂, and s̃ = a · t̃. It can be seen that s is uniformly

distributed over Z2×1
p and the value of a is information-theoretically hidden only given s. It is clear that

41

(ŝ
$← Zp, s̃ = 0) if (t̂ 6= 0, t̃ = 0), (ŝ = 0, s̃

$← Zp) if (t̂ = 0, t̃ 6= 0), and (ŝ = 0, s̃ = 0) if (t̂ = 0, t̃ = 0).

The algorithm can compute g
B

(s
ŝ
s̃

)
as

g
B

(s
ŝ
s̃

)
=
(
g
B

(
t
t̂
t̃

))a
· g

B

(
s′
0
0

)
=
(
g
B

(
t
t̂
t̃

))a
· gπ1(B)s′ .

We then show the latter part of the lemma. The algorithm picks ŝ′, a $← Zp, s′
$← Z2×1

p and implicitly
sets s = s′ + a · t, ŝ = a · t̂ + ŝ′, and s̃ = a · t̃. It can be seen that s and ŝ are uniformly random over Z2×1

p

and Zp respectively. Furthermore, it can be seen that s̃ = 0 if t̃ = 0 and s̃ $← Zp if t̃ 6= 0. The algorithm can

compute g
B

(s
ŝ
s̃

)
as

g
B

(s
ŝ
s̃

)
=
(
g
B

(
t
t̂
t̃

))a
· g

B

(
s′
0
0

)
· g

B

(
0
ŝ′
0

)
=
(
g
B

(
t
t̂
t̃

))a
· gπ1(B)s′ · (gπ2(B))ŝ

′
.

ut

Lemma 18. (Random Self-Reducibility of Problem 11 [43].) There exists an efficient algorithm that on input
(g, gx, gy, hz, e(g, h)xyz+γ) outputs (gx̂, e(g, h)x̂yz+γ̂) where{

x̂
$← Zp, γ̂

$← Zp if γ 6= 0

x̂
$← Zp, γ̂ = 0 if γ = 0.

Proof. The lemma can be shown analogously to Lemma 14 and thus we omit here. ut

D Omitted Proofs from Section 5

D.1 Proof of Lemma 4

Proof. By the Q-PMH security, for all τ? and S1, . . . , SQ such that τ? ∈ ∪j∈[Q]Sj , we have that two dis-
tributions in Equation (4) are the same. By a standard argument (e.g., complexity leveraging [55]), this
means that the two distributions are the same even if a distinguisher adaptively chooses each Sj depending
on {cSj′ (sj′ ,w)}j′∈[j−1] and kτ (bα, r,w) (where b = 0 or b = 1). Therefore, advantage of any adversary in

Q-CMH security game would be 0, if r was chosen as r
$← (Z∗p)d

′
2 as in the Q-PMH-security game. In the

actual Q-CMH security game, r is chosen as r
$← Zd

′
2
p . This may alter the advantage at most d′2/p. ut

D.2 Proof of Lemma 5

Proof. (sketch.) All monomial terms appear in
∑

(η,ι)∈[d2]×[d3]Eη,ιkηcι are

αsj′ , rj · sj′ , α · (wk′sj′)
rj · (sj′wk) = (wkrj) · sj′

for j ∈ [d′2], k ∈ [d1], j′ ∈ [0, d′3], k′ ∈ [d1]. Coefficients of all terms except for s0α summed up
to 0, because of the correctness of the encoding. We note that the terms of the form wk′wksj′rj do not

42

appear because of the regularity of the encoding (the first condition). If we expand
∑

(η,ι)∈[d2]×[d3]Eη,ι ·
kZ,η(α,X,W)>cB,ι(Y,W), terms corresponding to above monomials appear:

α>Byj′ , (Zxj)
>Byj′ , α> ·Wk′Byj′

(Zxj)
> ·WkByj′ = x>j Z>WkByj′ =

(
W>

k Zxj
)> ·Byj′ .

The coefficients of all terms other than α>By0 are summed up to 0 because of the correctness of the encoding.
ut

D.3 Proof of Theorem 3

Proof. Here, we prove Theorem 3. We introduce Lemma 19 and 20. The former indicates that (Qc, Qk)-
MMH security can be tightly reduced to (Qc, 1)-MMH security. The latter shows (Qc, 1)-MMH security can
be tightly reduced to the hardness of the Problem 8 and Qc-CMH security. Combining these lemmas, the
theorem follows. ut

Lemma 19. For any broadcast encoding Π and adversary A, there exists another adversary B such that

AdvMMH
A,Π,(Qc,Qk),(G1,G2)(κ) ≤ AdvMMH

B,Π,(Qc,1),(G1,G2)(κ) +
1

p

and Time(B) ≈ Time(A) +Qk · poly(κ, n) where poly(κ, n) is independent of Time(A).

Proof. We construct B against (Qc, 1)-MMH security of the broadcast encoding from A against (Qc, Qk)-
MMH security of the same encoding. At the beginning of the game,A(1κ, n) submits its target index τ? ∈ [n].
B then submits the same index and is given the parameter params =

(
g, gπ1(B), gπ3(B), {gπ1(WiB)}i∈[d1],

{gπ3(WiB)}i∈[d1], h, h
Z, {hπ1(W>

i Z)}i∈[d1], {hπ3(W>
i Z)}i∈[d1]

)
. Then, B simply pass it to A. B also calls

OMMH,K
τ?,Z,W,b(·) to obtain hkZ(b·α̂f̂ ,R,W). In the following, we assume that α̂ 6= 0. This happens with probability

at least 1 − 1/p. When A calls OMMH,C
τ?,B,W(·) on input S, B calls the same oracle on the same input and

passes what is given from the oracle to A. When A calls OMMH,K
τ?,Z,W,b(·), B picks (freshly random) a $← Zp,

r′1, . . . , r
′
d′2

$← Z2×1
p and sets R′ =

((
r′1
0
0

)
, · · · ,

(
r′
d′2
0
0

))
∈ Z4×d′2

p . Then it computes

(
hkZ(b·α̂f̂ ,R,W)

)a
· hkZ(0,R′,W) = hkZ(b·aα̂f̂ ,aR+R′,W)

and returns it to A. It is easy to see that aR + R′ is uniformly random subject to constraint that the last two
rows are all zero vectors. Furthermore, since the value of a is information-theoretically hidden only given
aR + R′, aα̂ is uniformly and independently random over Zp. Finally, B outputs A’s output as its guess. It
is easy to see that the simulation by B is perfect. In particular, B has made only single call to OMMH,K

τ?,Z,W,b(·).
Therefore, the lemma follows. ut

Lemma 20. For any broadcast encoding Π and adversary A, there exist adversaries B1 and B2 such that

AdvMMH
A,Π,(Qc,1),(G1,G2)(κ) ≤ AdvCMH

B1,Π,Qc,(G1,G2)(κ) + 2AdvP8
B2

and max{Time(B1),Time(B2)} ≈ Time(A) +Qcpoly(κ, n) where poly(κ, n) is independent of Time(A).

Proof. We prove the lemma via the following sequence of games, which are defined for b ∈ {0, 1}. We write
Eventxx to denote the probability that A outputs 1 in Gamexx.

43

Game0,b : This is the (Qc, 1)-MMH security game with oracles OMMH,C
τ?,B,W(·) and OMMH,K

τ?,Z,W,b(·).

Game1,b: In this game, we changeOMMH,K
τ?,Z,W,b(·) as follows: When it is called,OMMH,K

τ?,Z,W,b(·) runs KEnc(τ?, p)→
k, picks α̂ $← Zp, r1, . . . , rd′2

$← Z2×1
p , r̂1, . . . , r̂d′2

$← Zp, and returns

hkZ(b·α̂f̂ ,R+R̂,W) (18)

instead of hkZ(b·α̂f̂ ,R,W). Here, R ∈ Z4×d′2
p and R̂ ∈ Z4×d′2

p are defined as

R =

((r1
0
0

)
, · · · ,

(
rd′2
0
0

))
and R̂ =

((
0
r̂1
0

)
, · · · ,

(
0
r̂d′2
0

))
. (19)

Game2,b: This game is the same as Game1,b except that we change how to choose W. Here, we first pick
W′ = (W′

1, . . . ,W
′
d1

)
$← (Z4×4

p)d1 and ŵ1, . . . , ŵd1
$← Zp and set

Wi = W′
i + ŵi ·BVB−1 (20)

for i ∈ [d1]. In the above, V = e>3 · e3 ∈ Z4×4
p , namely, V is the zero matrix with the (3, 3) entry is

replaced with 1.

Game3,b: This game is the same as Game2,b, except that we change params as

params =

(
g, gπ1(B), gπ3(B), gπ1(W′

1B), . . . , g
π1(W′

d1
B)
, gπ3(W′

1B), . . . , g
π3(W′

d1
B)
,

h, hZ, hπ1(W′
1
>Z), . . . , h

π1(W′
d1

>Z)
, hπ3(W′

1
>Z), . . . , h

π3(W′
d1

>Z)

)
.

Namely, we set up params using W′ instead of W. We remark that oraclesOMMH,C
τ?,B,W(·) andOMMH,K

τ?,Z,W,b(·)
are unchanged from the previous game.

We have that

AdvMMH
A,Π,(Qc,1),(G1,G2)(κ) = |Pr[Event0,0]− Pr[Event0,1]|

≤ |Pr[Event3,0]− Pr[Event3,1]|+
∑

b∈{0,1},i∈{0,1,2}

|Pr[Eventi,b]− Pr[Eventi+1,b]|.

Therefore, we complete the proof by showing the following sequence of claims. ut

Claim 3. (Game0,b to Game1,b). For any b ∈ {0, 1} and adversary A, there exists an adversary B1 such that
|Pr[Event0,b]− Pr[Event1,b]| ≤ AdvP8

B1(κ) and Time(B1) ≈ Time(A) +Qc · poly(κ, n) where poly(κ, n) is
independent of Time(A).

Proof. We constructB1 that attacks Problem 8 fromA. Given the problem instance (g, h, gπ1(B), gπ3(B), g
B

(
t
t̂
0

)
,

hZ, T = h
Z

(
u
û
0

)
) where û $← Z∗p or û = 0, B1 simulates (Qc, 1)-MMH security game for A as follows.

Setup of Parameters. Given τ? ∈ [n] from A, B1 picks W1, . . . ,Wd1
$← Z4×4

p and computes gπ1(WjB) =

gWjπ1(B) and hπ1(W>
j Z) for j ∈ [d1] from gπ1(B) and hZ. Then it gives params =

(
g, gπ1(B), gπ3(B),

{gπ1(WiB)}i∈[d1], {gπ3(WiB)}i∈[d1], h, h
Z, {hπ1(W>

i Z)}i∈[d1], {hπ3(W>
i Z)}i∈[d1]

)
to A.

44

Simulating OMMH,C
τ?,B,W(·). Given S ⊂ [n], B1 first runs CEnc(S, p) → (c, d′3). Then it runs the algorithm in

Lemma 17 on input (gπ1(B), g
B

(
t
t̂
0

)
) to obtain g

B

(si
ŝi
0

)
for i ∈ [0, d′3] where si

$← Z2×1
p , ŝi

$← Zp (Recall

that t̂ 6= 0). Finally, it computes gc(S+Ŝ,W) and returns it to A, where S and Ŝ are defined as Equation (8).

Note that it can be efficiently computable from {g
B

(si
ŝi
0

)
}i∈[0,d′3] and {Wj}j∈[d1] since c(S + Ŝ,W) only

contains linear combination of B
(si
ŝi
0

)
and WiB

(sj
ŝj
0

)
.

Simulating OMMH,K
τ?,Z,W,b(·). When it is called, B1 first runs KEnc(τ?, p) → k and picks α̂ $← Zp. Then, it

runs the algorithm in Lemma 17 on input (hπ1(Z), h
Z

(
u
û
0

)
) to obtain h

Z

(ri
r̂i
0

)
for i ∈ [1, d′2] where (ri

$←
Z2×1
p , r̂i

$← Zp) if û 6= 0 and (ri
$← Z2×1

p , r̂i = 0) if û = 0. Finally, it computes hkZ(b·α̂f̂ ,R+R̂,W) and
returns it toA. Here, R and R̂ are defined as Equation (19). Note that it is efficiently computable from α̂ ,hZ,

{h
Z

(ri
r̂i
0

)
}i∈[d′2], and {Wj}j∈[d1] since kZ(b · α̂f̂ ,R + R̂,W) only contains linear combination of Z

(ri
r̂i
0

)
,

W>
j Z
(ri
r̂i
0

)
, and α̂f̂ = α̂Ze>3 .

Guess. Finally, B1 outputs A’s output as its guess. It can be seen that the game corresponds to Game0,b if
û = 0 and Game1,b if û $← Z∗p. Thus, we may conclude that |Pr(Event0,b)−Pr(Event1,b)| ≤ AdvP8

B1(κ). ut

Claim 4. (Game1,b to Game2,b). For any adversary A, we have Pr[Event1,b] = Pr[Event2,b]|.

Proof. Since each Wi is uniformly random over Z4×4
p in both games, the change from Game1,b to Game2,b

is only conceptual. Therefore, the claim follows. ut

Claim 5. (Game2,b to Game3,b). For any adversary A, we have Pr[Event2,b] = Pr[Event3,b]|.

Proof. We claim that this change is only conceptual. To see this, it suffices to observe that

πi(WjB) = πi(W
′
jB + ŵjBV) = πi(W

′
jB) + ŵjB · πi(V) = πi(W

′
jB)

πi(W
>
j Z) = πi(W

′
j
>

Z + ŵjB
−>V>B>Z) = πi(W

′
j
>

Z + ŵjB
−>VB>B−>D)

= πi(W
′
j
>

Z) + ŵjB
−>πi(V

>D) = πi(W
′
j
>

Z)

hold for i ∈ {1, 3}, j ∈ [d1]. In the above, we use the fact that πi(V) and πi(V>D) are zero matrices for
i ∈ {1, 3}. This follows because D is a diagonal matrix and V = e>3 · e3. ut

Claim 6. (Game3,0 to Game3,1). For any adversaryA, there exists an adversary B2 such that |Pr[Event3,0]−
Pr[Event3,1]| ≤ AdvCMH

B2,Π,Qc,(G1,G2)(κ) and Time(B2) ≈ Time(A) + Qc · poly(κ, n) where poly(κ, n) is
independent of Time(A).

Proof. Before going into the proof, we need some definitions and preparations.
Preparations. Let ŵ = (ŵ1, . . . , ŵd1) and S and Ŝ be as in Equation (8). Then, for S ⊂ [n] and
CEnc(S, p)→ (c, d′3), we have that

cB(S + Ŝ,W) =

(∑
j∈[0,d′3]

aι,jB

(
sj
ŝj
0

))
+
(∑

(j,k)∈[0,d′3]×[d1]

aι,j,k(W
′
k + ŵk ·BVB−1)B

(
sj
ŝj
0

))
ι∈[d3]

=

(∑
j∈[0,d′3]

aι,jB

(
sj
ŝj
0

))
+
(∑

(j,k)∈[0,d′3]×[d1]

aι,j,k

(
W′

kB

(
sj
ŝj
0

)
+ B

(0
ŵk ŝj

0

)))
ι∈[d3]

45

= cB(S,W′) + c′B(Ŝ,W′, ŵ)

where c′B(Ŝ,W′, ŵ) is defined as

c′B(Ŝ,W′, ŵ) =

(∑
j∈[0,d′3]

aι,jB
(0
ŝj
0

))
+
(∑

(j,k)∈[0,d′3]×[d1]

aι,j,k

(
W′

kB
(0
ŝj
0

)
+ B

(0
ŵk ŝj

0

)))
ι∈[d3]

=

B
(0
cι(ŝ,ŵ)

0

)
+

∑
(j,k)∈[0,d′3]×[d1]

aι,j,kW
′
kB
(0
ŝj
0

)
ι∈[d3]

.

In the above, ŝ = (ŝ0, ŝ1, . . . , ŝd′3). We observe that gc
′
B(Ŝ,W′,ŵ) can be efficiently computed given B, W′,

and gc(ŝ,ŵ), since gc(ŝ,ŵ) contains the terms (gŝ0 , . . . , g
ŝd′3) because of the regularity of the encoding (the

second condition).
Let β ∈ Zp and R and R̂ be as in Equation (19). Then, for τ ∈ [n] and KEnc(τ, p) → (k, d′2), we have

that

kZ(α + β f̂ ,R + R̂,W)

=

bι(α + β f̂) +
(∑
i∈[d′2]

bι,iZ
(ri
r̂i
0

))
+
(∑

(i,j)∈[d′2]×[d1]

bι,i,j(W
′
j + ŵj ·BVB−1)>Z

(ri
r̂i
0

))
ι∈[d2]

=

bι(α + β f̂) +
(∑
i∈[d′2]

bι,iZ
(ri
r̂i
0

))
+
(∑

(i,j)∈[d′2]×[d1]

bι,i,j

(
W′

j
>

Z
(ri
r̂i
0

)
+ ŵj · Z

(
0
r̂i
0

)))
ι∈[d2]

= kZ(α,R,W′) + k′Z(β f̂ , R̂,W′, ŵ).

In the third line above, we used the fact that (BVB−1)>Z = B−>V>D = B−>V = B−>DV = ZV.
Here, k′Z(β f̂ , R̂,W′, ŵ) is defined as

k′Z(β f̂ , R̂,W′, ŵ)

=

bι · Z(0
β
0

)
+
(∑
i∈[d′2]

bι,iZ
(

0
r̂i
0

))
+
(∑

(i,j)∈[d′2]×[d1]

bι,i,j

(
W′

j
>

Z
(

0
r̂i
0

)
+ ŵj · Z

(
0
r̂i
0

)))
ι∈[d2]

=

Z
(0
kι(β,r̂,ŵ)

0

)
+

∑
(i,j)∈[d′2]×[d1]

bι,i,jW
′
j
>

Z
(

0
r̂i
0

)
ι∈[d2]

.

In the above, r̂ = (r̂1, . . . , r̂d′2). Similarly to the case of gc
′
B(Ŝ,W′,ŵ), we can efficiently compute hk

′
Z(βf̂ ,R̂,W′,ŵ)

given Z, W′, and hk(βf̂ ,r̂,ŵ) since hk(βf̂ ,r̂,ŵ) contains the terms (hr̂1 , . . . , h
r̂d′2) because of the regularity of

the encoding (the second condition).

Reduction. Having finished the preparation, we now construct an adversary B2 against Qc-CMH security of
the broadcast encoding from an adversary A who distinguishes Game3,0 from Game3,1.
Setup of Parameters. Given τ? from A, B2 submits the same index. Then, B2 is given (g, h). It then picks
B

$← GL4(Zp), W′ = (W′
1, . . . ,W

′
d1

)
$← (Z4×4

p)d1 , and a random full-rank diagonal matrix D ∈ Z4×4
p

with the entries (3, 3) and (4, 4) being 1. Then, it sets Z = B−>D. Finally, it computes and gives params =

46

(
g, gπ1(B), gπ3(B), {gπ1(W′

iB)}i∈[d1], {gπ3(W′
iB)}i∈[d1], h, h

Z, {hπ1(W′
i
>Z)}i∈[d1], {hπ3(W′

i
>Z)}i∈[d1]

)
toA. In

the following, B2 implicitly sets Wi = W′
i + ŵiBVB−1 for i ∈ [d1] and W = (W1, . . . ,Wd1) where ŵi is

chosen by the game and is not (explicitly) known to B2.

Simulating OMMH,C
τ?,B,W(·). When A calls OMMH,C

τ?,B,W(·) on input S ⊂ [n], B2 submits the same S to its ora-

cle OCMH,C
τ?,ŵ (·) to obtain gc(ŝ,ŵ), where c ← CEnc(S, p) and ŝ = (ŝ0, . . . , ŝd′3)

$← Zd
′
3+1
p . B2 then picks

s0, . . . , sd′3
$← Z2×1

p and computes gcB(S,W′) and gc
′
B(Ŝ,W′,ŵ). The latter can be efficiently computed from B,

W′, and gc(ŝ,ŵ). Finally, it computes gcB(S+Ŝ,W) = gcB(S,W′) · gc′B(Ŝ,W′,ŵ) and returns it to A.

Simulating OMMH,K
τ?,Z,W,b(·). When A calls OMMH,K

τ?,Z,W,b(·), B2 calls its oracle OCMH,K
τ?,ŵ,b (·) to obtain hk(b·α̂f̂ ,r̂,ŵ),

where k ← KEnc(τ, p) and r̂ = (r̂1, . . . , r̂d′2)
$← Zd

′
2
p . B2 then picks r1, . . . , rd′2

$← Z2×1
p and computes

hkZ(0,R,W′) and hk
′
Z(b·α̂f̂ ,R̂,W′,ŵ). The latter can be efficiently computed from Z, W′, and hk(b·α̂f̂ ,r̂,ŵ). Finally,

it computes hkZ(b·α̂f̂ ,R+R̂,W) = hkZ(0,R,W′) · hk′Z(b·α̂f̂ ,R̂,W′,ŵ) and returns it to A.

Guess. Finally, B2 outputs A’s output as its guess. It can be seen that the game corresponds to Game3,0 if
b = 0 (i.e., if B2 is equipped with the oracle OCMH,K

τ?,ŵ,0 (·)) and Game3,1 if b = 1(i.e., if B2 is equipped with the

oracle OCMH,K
τ?,ŵ,1 (·)). Thus, we may conclude that |Pr[Event3,0]− Pr[Event3,1]| ≤ AdvCMH

B2,Π,Qc,(G1,G2)(κ). ut

D.4 Security Proof for Our Scheme in Section 5.5

For the sake of simplicity, we first show the following theorem that establishes the security of the scheme
for the case of µ = 1 (i.e., the single instance case). Later, we explain how to modify our proof for the
single-instance case to deal with the multi-instance case.

Theorem 13. For any adversary A, there exist adversaries B1, B2, B3, and B4 such that

AdvIBE
A,Φprime,(1,Qc,Qk)(κ) ≤ AdvP7

B1(κ) + AdvP11
B2 (κ) + 2`

(
AdvP10

B3 (κ) + AdvMMH
B4,Π,(Qc,Qk),(G1,G2)(κ)

)
and max{Time(Bi)|i ∈ [1, 4]} ≈ Time(A) + (Qc + Qk) · poly(κ, `) where poly(κ, `) is independent of
Time(A).

Proof. (of Theorem 13.) The proof of the theorem is almost parallel to that of Theorem 6.

Semi-functional Ciphertexts and Private Keys. We define several types of ciphertexts and private keys
that are used in the security proof. In the following, we will pick random functions R̂i : {0, 1}i → Zp and
R̃i : {0, 1}i → Zp (via lazy sampling) for i = 0, . . . , `. Here, we use {0, 1}0 to denote the singleton set
containing just the empty string ε. For an identity ID ∈ {0, 1}`, ID|i denotes the first i bits of ID, that is,
length i prefix of ID.
- Semi-functional ciphertexts. We consider Type 1, Type (2, i), Type (3, i), and Type 4 of semi-functional

ciphertexts for i ∈ [0, `]. The form of semi-functional ciphertext are as follows.

CT =

(
gc(S+Ŝ,W), e

(
g
B

(s0
ŝ0
0

)
, hα

)
·Mcoin

)
Type 1 (21)(

gc(S+Ŝ,W), e
(
g
B

(s0
ŝ0
0

)
, hα+R̂i(ID|i)·f̂

)
·Mcoin

)
Type (2, i) (22)(

gc(S+S̃,W), e
(
g
B

(s0
0
s̃0

)
, hα+R̃i(ID|i)·f̃

)
·Mcoin

)
Type (3, i) . (23)

47

In the above,

S =

((s0
0
0

)
,
(s1

0
0

)
, · · · ,

(
sd′3
0
0

))
, Ŝ =

((
0
ŝ0
0

)
,
(

0
ŝ1
0

)
, · · · ,

(
0
ŝd′3
0

))
,

S̃ =

((
0
0
s̃0

)
,
(

0
0
s̃1

)
, · · · ,

(
0
0
s̃d′3

))
, f̂ = Ze>3 , f̃ = Ze>4 (24)

where s0, s1, . . . , sd′3
$← Z2×1

p and ŝ0, ŝ1, . . . , ŝd′3 , s̃0, s̃1, . . . , s̃d′3
$← Zp.

- Random ciphertexts. We also consider random ciphertexts. The form of ciphertexts are as follows.

CT =
(
gc(S+Ŝ,W), Mrand

)
(25)

where Mrand
$← GT and S and Ŝ are defined as above.

- Semi-functional Private Keys. We consider Type (1, i) for i ∈ [0, `] and Type (2, i) for i ∈ [0, ` − 1] of
semi-functional private keys. To create a semi-functional private key, we replace skj in Equation (9)
with

skj = hkj(αj+γ̂j f̂+γ̃j f̃ ,Rj ,W) = {skj,η = hkj,η(αj+γ̂j f̂+γ̃j f̃ ,Rj ,W)}η∈[d2] (26)

where {γ̂j ∈ Zp}j∈S and {γ̃j ∈ Zp}j∈S are random numbers subject to constraint that

∑
j∈S

γ̂j =

{
R̂i(ID|i) Type (1, i)

R̂i+1(ID|i+1) Type (2, i)
,

∑
j∈S

γ̃j = R̃i(ID|i) Type (1, i) and (2, i).

Then the semi-functional private key is created as Equation (10).

Sequence of Games. Next, we define a sequence of games to establish the security of the IBE scheme. We
write Advxx(κ) to denote the advantage of A in Gamexx.

Game0 : This is the real security game.

Game1: In this game, all challenge ciphertexts are changed to be Type 1.

Game2,i,1 (for i ∈ [1, `+ 1]): In this game, all challenge ciphertexts are of Type (2, i− 1) whereas all private
keys created by the challenger are Type (1, i− 1).

Game2,i,2 (for i ∈ [1, `]): This game is the same as Game2,i,1 except that challenge ciphertexts for identities
ID such that IDi = 0 are changed to be Type (3, i− 1) where IDi is the i-th bit of ID.

Game2,i,3 (for i ∈ [1, `]): This game is the same as Game2,i,2 except that challenge ciphertexts for identity ID
such that IDi = 1 are changed to be Type (2, i) and all private keys are changed to be Type (2, i− 1).

Game2,i,4 (for i ∈ [1, `]): This game is the same as Game2,i,3 except that challenge ciphertexts for identity
ID such that IDi = 0 are changed to be Type (3, i) and all private keys are changed to be Type (1, i).

Game3: This game is the same as Game2,`+1,1 except that all ciphertexts are changed to be random cipher-
texts.

Observe that we have Adv3(κ) = 0 since the view of A is independent from the value of coin in Game3.
We have that

AdvIBE
A,Φprime,(1,Qc,Qk)(κ) = Pr[Adv0]

48

≤ |Pr[Adv0]− Pr[Adv1]|+ |Pr[Adv1]− Pr[Adv2,1,1]|
+

∑
i∈[`],j∈[1,3]

|Pr[Adv2,i,j]− Pr[Adv2,i,j+1]|+
∑
i∈[`]

|Pr[Adv2,i,4]− Pr[Adv2,i+1,1]|

+ |Pr[Adv2,`+1,1]− Pr[Adv3]|+ Pr[Adv3]

Therefore, we complete the proof by showing Lemma 21, 22, 23, 24, 25, 26, and 27. ut

Lemma 21. (Game0 to Game1). For any adversary A, there exists an adversary B1 such that |Adv0(κ) −
Adv1(κ)| ≤ AdvP7

B1(κ) and Time(B1) ≈ Time(A) + (Qc +Qk) · poly(κ, `) where poly(κ, `) is independent
of Time(A).

Proof. We construct B1 that attacks Problem 7 from an adversary A who distinguishes the games. We note
that these games only differ in the creation of challenge ciphertexts. B1 simulates the challenger for A as
follows.

Setup. At the outset of the game, B1 is given the problem instance of the assumption (g, h, gB, hπ1(Z), g
B

(
t
t̂
0

)
)

where either t̂ = 0 or t̂ $← Z∗p. Then, it runs Param(2`, p) → d1, picks W1, . . . ,Wd1
$← Z4×4

p and

α
$← Z4×1

p . It also computes gπ1(WjB) and hπ1(W>
j Z) = hW

>
j π1(Z) for j ∈ [d1]. Note that the latter can

be efficiently computed from hπ1(Z). Finally, it returns the public parameter pp = (g, gπ1(B), gπ1(W1B), . . . ,

gπ1(Wd1
B), h, hπ1(Z), hπ1(W>

1 Z), . . . , h
π1(W>

d1
Z)

) and the master public key mpk = (pp, e(g, h)α
>π1(B)) to

A. B1 also sets msk = α and flips a coin coin $← {0, 1}.
Key Extraction Queries. When the adversaryA submits (Extraction, 1, ID) to the challenger, B1 simply
runs Ext(msk,mpk, ID)→ skID and returns skID to A.

Challenge Queries. When the adversary A submits (Challenge, 1, ID,M0,M1) to the challenger, B1 first
sets S = {2i − IDi|i ∈ [`]} and runs CEnc(S, p) → (c, d′3). Then it runs the algorithm in Lemma 17

on input (gπ1(B), g
B

(
t
t̂
0

)
) to obtain g

B

(si
ŝi
0

)
for i ∈ [0, d′3] where (si

$← Z2×1
p , ŝi

$← Zp) if t̂ 6= 0 and

(si
$← Z2×1

p , ŝi = 0) if t̂ = 0. Finally, it computes
(
gc(S+Ŝ,W), e

(
g
B

(s0
ŝ0
0

)
, hα

)
· Mcoin

)
and returns

it to A, where S and Ŝ are defined as Equation (24). Note that gc(S+Ŝ,W) can be efficiently computable

from {g
B

(si
ŝi
0

)
}i∈[0,d′3] and {Wj}j∈[d1] since c(S + Ŝ,W) only contains linear combination of B

(si
ŝi
0

)
and

WiB
(sj
ŝj
0

)
.

We claim that it is properly distributed normal ciphertext if t̂ = 0 and semi-functional ciphertext of Type 1

if t̂ $← Z∗p. The latter is trivial. To see the former, it suffices to notice that e
(
g
B

(s0
ŝ0
0

)
, hα

)
= e(g, h)α

>π1(B)s0

holds (since ŝ0 = 0).

Guess. When A outputs coin′, B1 outputs 1 if coin′ = coin and 0 otherwise.

B1 has properly simulated Game0 if t̂ = 0 and Game1 if t̂ $← Z∗p. Hence, we may conclude that |Adv0(κ) −
Adv1(κ)| ≤ AdvP7

B1(κ). ut

Lemma 22. (Game1 to Game2,1,1). For any adversary A, we have Adv1(κ) = Adv2,1,1(κ).

Proof. This is purely a conceptual change and thus A’s advantage is not altered. To see this, let us consider
a modified version of Game1 in which we first choose α′

$← Z4×1
p , γ̂, γ̃

$← Zp and then set α ∈ Z4×1
p as

α = α′+ γ̂ f̂ + γ̃ f̃ . Since α is still uniformly distributed over Z4×1
p , the view of the adversary in the modified

49

game is the same as Game1. Furthermore, we claim that the view of the adversary in the modified game is
also the same as Game2,1,1. This can be seen by regarding α′ in the modified game as α in Game2,1,1, γ̂ as
R̂0(ID|0), and γ̃ as R̃0(ID|0). It is easy to see that the distribution of the private keys in the modified game is
the same as that of Game2,1,1. As for the master public key and the challenge ciphertexts, we have

e(g, h)α
>π1(B) = e(g, h)(α′+γ̂·f̂+γ̃·f̃)>·π1(B) = e(g, h)α

′>π1(B)

and

e
(
g
B

(s0
ŝ0
0

)
, hα

)
= e(g, h)(π1(B)s0+ŝ0·π2(B))>(α′+γ̂·f̂+γ̃·f̃)

= e(g, h)(π1(B)s0+ŝ0·π2(B))>(α′+γ̂·f̂)

= e
(
g
B

(s0
ŝ0
0

)
, hα

′+γ̂·f̂).
In the above, we use the fact that π1(B)>f̂ = π1(B)>f̃ = 0 and π2(B)>f̃ = 0. These indicate that the view
of A in the modified game is also the same as Game2,1,1. Thus, the lemma follows. ut

Lemma 23. (Game2,i?,1 to Game2,i?,2). For any i? ∈ [1, `] and adversary A, there exists an adversary B2

such that |Adv2,i?,1(κ) − Adv2,i?,2(κ)| ≤ AdvP10
B2 (κ) and Time(B2) ≈ Time(A) + (Qc + Qk) · poly(κ, `)

where poly(κ, `) is independent of Time(A).

Proof. We construct B2 that attacks Problem 10 from an adversary A who distinguishes the games. We note
that these games only differ in the creation of challenge ciphertexts. B2 simulates the challenger for A as
follows.
Setup. At the outset of the game, B2 is given the problem instance of the assumption (gB, hπ1(Z), hθ1,1 f̂+θ2,1 f̃ ,

hθ1,2 f̂+θ2,2 f̃ , g
B

(
t
t̂
t̃

)
) where either (t̂

$← Z∗p, t̃ = 0) or (t̂ = 0, t̃
$← Z∗p). Then, it runs Param(2`, p) → d1,

picks W1, . . . ,Wd1
$← Z4×4

p and α
$← Z4×1

p . It also computes gπ1(WjB) and hπ1(W>
j Z) = hW

>
j π1(Z) for

j ∈ [d1]. Note that the latter can be efficiently computed from hπ1(Z). Finally, it returns the public parameter
pp = (g, gπ1(B), gπ1(W1B), . . . , gπ1(Wd1

B), h, hπ1(Z), hπ1(W>
1 Z), . . . , h

π1(W>
d1

Z)
) and the master public key

mpk = (pp, e(g, h)α
>π1(B)) to A. B1 also sets msk = α and flips a coin coin $← {0, 1}.

Programming Random Functions. Throughout the game, B2 simulates random functions Ri?−1(·) : {0, 1}i?−1 →
Zp and R′i?−1(·) : {0, 1}i?−1 → Zp via lazy sampling. In the following, B2 will implicitly sets the functions
R̂i?−1(·) : {0, 1}i?−1 → Zp and R̃i?−1(·) : {0, 1}i?−1 → Zp as(

R̂i?−1(ID|i?−1)

R̃i?−1(ID|i?−1)

)
=

(
θ1,1 θ1,2

θ2,1 θ2,2

)(
Ri?−1(ID|i?−1)
R′i?−1(ID|i?−1)

)
. (27)

Since Ri?−1(·) and R′i?−1(·) are random functions and
(
θ1,1 θ1,2
θ2,1 θ2,2

)
is an invertible matrix, R̂i?−1(·) and

R̃i?−1(·) defined as above are random functions as well.
Key Extraction Queries. When the adversary A submits (Extraction, 1, ID) to the challenger, B2

first sets S = {2i − IDi|i ∈ [`]}, runs KEnc(j, p) → (kj , d
′
2), picks rj,1, . . . , rj,d′2

$← Z2×1
p , and sets

Rj =

((rj,1
0
0

)
, · · · ,

(rj,d′2
0
0

))
∈ Z4×d′2

p for all j ∈ S. It also chooses random {αj ∈ Z4×1
p }j∈S such

that
∑

j∈S αj = α. Then, B2 calls the random functions Ri?−1(·) and R′i?−1(·) on input ID|i?−1 to ob-
tain γ = Ri?−1(ID|i?−1) ∈ Zp and γ′ = R′i?−1(ID|i?−1) ∈ Zp. It also picks random {γj ∈ Zp}j∈S and

50

{γ′j ∈ Zp}j∈S subject to constraint that
∑

j∈S γj = γ and
∑

j∈S γ
′
j = γ′. Then it implicitly sets γ̂j and γ̃j as

γ̂j = θ1,1γj + θ1,2γ
′
j and γ̃j = θ2,1γj + θ2,2γ

′
j and computes(

hθ1,1 f̂+θ2,1 f̃
)γj
·
(
hθ1,2 f̂+θ2,2 f̃

)γ′j
= hγ̂j f̂+γ̃j f̃

for j ∈ S. Then, it computes

skj := hkj(αj ,Rj ,W) · hkj(γ̂j f̂+γ̃j f̃ ,0,W) = hkj(αj+γ̂j f̂+γ̃j f̃j ,Rj ,W)

for all j ∈ S. Finally, it computes skID as Equation (10) and returns it to A. We can see that {γ̂j}j∈S
and {γ̃j}j∈S are uniformly random subject to constraint that

∑
j∈S γ̂j = R̂i?−1(ID|i?−1) and

∑
j∈S γ̃j =

R̃i?−1(ID|i?−1). Therefore, B2 perfectly simulates a semi-functional private key of Type (1, i? − 1).
Challenge Queries. When the adversary A submits (Challenge, 1, ID,M0,M1) to the challenger, B2

first sets S = {2i − IDi|i ∈ [`]} and runs CEnc(S, p) → (c, d′3). It also calls Ri?−1(·) and R′i?−1(·) on

input IDi?−1. It can efficiently compute hR̂i?−1(IDi?−1)f̂+R̃i?−1(IDi?−1)f̃ as hR̂i?−1(IDi?−1)f̂+R̃i?−1(IDi?−1)f̃ =(
hθ1,1 f̂+θ2,1 f̃

)Ri?−1(IDi?−1) ·
(
hθ1,2 f̂+θ2,2 f̃

)R′
i?−1

(IDi?−1). Then, it proceeds as follows. There are two cases.

− If IDi? = 0, it runs the algorithm in Lemma 17 on input (gπ1(B), g
B

(
t
t̂
t̃

)
) to obtain g

B

(si
ŝi
s̃i

)
for i ∈ [0, d′3]

where (si
$← Z2×1

p , ŝi
$← Zp, s̃i = 0) if (t̂ 6= 0, t̃ = 0) and (si

$← Z2×1
p , ŝi = 0, s̃i

$← Zp) if (t̂ = 0, t̃ 6= 0).

Finally, it computes
(
gc(S+Ŝ+S̃,W), e

(
g
B

(s0
ŝ0
s̃0

)
, hα+R̂i?−1(IDi?−1)f̂+R̃i?−1(IDi?−1)f̃

)
·Mcoin

)
and returns it to

A, where S, Ŝ, and S̃ are defined as Equation (24). Note that gc(S+Ŝ+S̃,W) can be efficiently computable

from {g
B

(si
ŝi
s̃i

)
}i∈[0,d′3] and {Wj}j∈[d1] since c(S+ Ŝ+ S̃,W) only contains linear combination of B

(si
ŝi
s̃i

)
and WiB

(sj
ŝj
s̃j

)
. Furthermore, we have that

e
(
g
B

(s0
ŝ0
0

)
, hα · hR̂i?−1(IDi?−1)f̂+R̃i?−1(IDi?−1)f̃

)
= e

(
g
B

(s0
ŝ0
0

)
, hα+R̂i?−1(IDi?−1)f̂

)
and

e
(
g
B

(s0
0
s̃0

)
, hα · hR̂i?−1(IDi?−1)f̂+R̃i?−1(IDi?−1)f̃

)
= e

(
g
B

(s0
0
s̃0

)
, hα+R̂i?−1(IDi?−1)f̂

)
,

because eiB
>f̂ = 0 for i 6= 3 and eiB

>f̃ = 0 for i 6= 4. Therefore, the ciphertext returned to A is
properly distributed semi-functional ciphertext of Type (2, i? − 1) if (t̂

$← Z∗p, t̃ = 0) and Type (3, i? − 1)

if (t̂ = 0, t̃
$← Z∗p).

− If IDi? = 1, it picks s0, s1, . . . , sd′3
$← Z2×1

p , ŝ0, ŝ1, . . . , ŝd′3
$← Zp, computes

(
gc(S+Ŝ,W), e

(
g
B

(s0
ŝ0
0

)
, hα ·

hR̂i?−1(IDi?−1)f̂+R̃i?−1(IDi?−1)f̃
)
·Mcoin

)
, and returns it toA. Note that B2 can efficiently compute gc(S+Ŝ,W)

from gB, {si, ŝi}i∈[0,d′3], and {Wj}j∈[d1]. It is easy to see that B2 properly simulates semi-functional
ciphertext of Type (2, i? − 1).

Guess. When A outputs coin′, B2 outputs 1 if coin′ = coin and 0 otherwise.

B2 has properly simulated Game2,i?,1 if (t̂
$← Z∗p, t̃ = 0) and Game2,i?,2 if (t̂ = 0, t̃

$← Z∗p). Hence, we may
conclude that |Adv2,i?,2(κ)− Adv2,i?,3(κ)| ≤ AdvP10

B2 (κ). ut

Lemma 24. (Game2,i?,2 to Game2,i?,3). For any i? ∈ [1, `] and adversary A, there exists an adversary B3

such that |Adv2,i?,2(κ)−Adv2,i?,3(κ)| ≤ AdvMMH
B3,Π,(Qc,Qk),G1,G2

(κ) and Time(B3) ≈ Time(A) + (Qc+Qk) ·
poly(κ, `) where poly(κ, `) is independent of Time(A).

51

Proof. We construct an adversary B3 who breaks the (Qc, Qk)-MMH security of the underlying broadcast
encoding from an adversary A who distinguishes Game2,i?,2 and Game2,i?,3. We note that these games differ
in the creation of ciphertexts for ID such that IDi? = 1 and all private keys. In this proof, we first describe B3

and then analyse the view of A in the simulation.

Setup. At the outset of the game, B3 submits τ? = 2i? as its target and is given params =
(
g, gπ1(B), gπ3(B),

{gπ1(WiB)}i∈[d1], {gπ3(WiB)}i∈[d1], h, h
Z, {hπ1(W>

i Z)}i∈[d1], {hπ3(W>
i Z)}i∈[d1]

)
. It then picks α

$← Z4×1
p

and returns the public parameter pp = (g, gπ1(B), {gπ1(WiB)}i∈[d1], h, h
π1(Z), {hπ1(W>

i Z)}i∈[d1]) and the
master public key mpk = (pp, e(g, h)α

>π1(B)). B3 keeps α and params privately.

Programming Random Functions. Throughout the game, B3 simulates random functions Ri?−1(·) : {0, 1}i?−1

→ Zp and R̃i?−1(·) : {0, 1}i?−1 → Zp via lazy sampling. B3 also maintains a list List of length i? prefixes of
identities for which a key extraction query was made. The list is set as List = ∅ at the beginning of the game.
B3 also flips a random coin coin $← {0, 1}.
Key Extraction Queries. When the adversary A submits (Extraction, 1, ID) to the challenger, B3 first
sets S = {2i − IDi|i ∈ [`]} and runs KEnc(j, p) → (kj , d

′
2) for all j ∈ S. It then calls random functions

Ri?−1(·) and R̃i?−1(·) on input ID|i?−1 to obtain γ = Ri?−1(ID|i?−1) and γ̃ = R̃i?−1(ID|i?−1). Then, it

picks r′j,1, . . . , r
′
j,d′2

$← Z2×1
p and sets R′j =

((
r′j,1
0
0

)
, · · · ,

(
r′
j,d′2
0
0

))
for all j ∈ S. It also picks random

{αj ∈ Z4×1
p }j∈S , {γj ∈ Zp}j∈S , and {γ̃j ∈ Zp}j∈S subject to constraint that

∑
j∈S αj = α,

∑
j∈S γj = γ,

and
∑

j∈S γ̃j = γ̃. Then, it computes hkj(αj ,R
′
j ,W), hkj(γj f̂+γ̃j f̃ ,0,0), and

hkj(αj ,R
′
j ,W) · hkj(γj f̂+γ̃j f̃ ,0,0) = hkj(αj+γj f̂+γ̃j f̃ ,R

′
j ,W)

for all j ∈ S. Note that these values can be efficiently computed from γj , γ̃j , αj , R′j , and hZ. Then, B3 sets
{skj}j∈S as follows. There are three cases to consider:

− In case of IDi? = 1 (or, equivalently, if τ? 6∈ S), it sets

skj = hkj(αj+γj f̂+γ̃j f̃ ,R
′
j ,W)

for all j ∈ S. Here, B3 sets γ̂j = γj for j ∈ S. Thus, {γ̂j}j∈S are random subject to constraint that∑
j∈S γ̂j = Ri?−1(ID|i?−1).

− In case of IDi? = 0 (or, equivalently, if τ? ∈ S) and ID|i? 6∈ List, B3 first calls OMMH,K
τ?,Z,W,b(·) to obtain

hkτ? (b·α̂f̂ ,R,W) where R and α̂ are randomness chosen by the oracle. Then, B3 computes

hkτ? (ατ?+γτ? f̂+γ̃τ? f̃ , R
′
τ?
,W) · hkτ? (b·α̂f̂ ,R,W) = hkτ? (ατ?+(γτ?+b·α̂)f̂+γ̃τ? f̃ , R+R′

τ?
,W).

and sets

skj =

{
hkj(αj+γj f̂+γ̃j f̃ , R

′
j ,W) If j 6= τ?

hkτ? (ατ?+(γτ?+b·α̂)f̂+γ̃τ? f̃ , R+R′
τ?
,W) If j = τ?

(28)

for j ∈ S. Here, B3 implicitly sets γ̂j = γj for j ∈ S\{τ?} and γ̂τ? = γτ? + b · α̂. Therefore, {γ̂j}j∈S
are random subject to constraint that

∑
j∈S γ̂j = Ri?−1(ID|i?−1) + b · α̂. Finally, B3 updates the list as

List← List ∪ {ID|i?}.

52

− In case of IDi? = 0 and ID|i? ∈ List,Amust have made a key query for ID′ such that ID′|i? = ID|i? . Since
ID′i? = IDi? = 0, B3 must have called OMMH,K

τ?,Z,W,b(·) to deal with the first such key extraction query made

by A. Let hkτ? (b·α̂f̂ ,R,W) be the answer to the oracle call. In this case, B3 does not call OMMH,K
τ?,Z,W,b(·) and

computes {skj}j∈S as Equation (28) using hkτ? (b·α̂f̂ ,R,W). As the above case, {γ̂j}j∈S are random subject
to constraint that

∑
j∈S γ̂j = Ri?−1(ID|i?−1) + b · α̂.

Finally, B3 computes skID as Equation (10) and returns it to A.

Challenge Queries. When the adversary A submits (Challenge, 1, ID,M0,M1) to the challenger, B3 sets
S = {2i− IDi|i ∈ [`]} and runs CEnc(S, p)→ (c, d′3). Then, B3 proceeds as follows. There are two cases.

− If IDi? = 1 (or, equivalently, if τ? 6∈ S), it submits S to its oracle OMMH,C
τ?,B,W(·) to obtain gc(S+Ŝ,W). It then

calls Ri?−1(·) on input ID|i?−1 and returns CT = (gc(S+Ŝ,W), e
(
g
B

(s0
ŝ0
0

)
, hα+Ri?−1(ID|i?−1)·f̂) ·Mcoin) to

A. The latter part of CT can be efficiently computable because g
B

(s0
ŝ0
0

)
is included in gcB(S+Ŝ,W) (by the

regularity of the broadcast encoding scheme) and B3 knows α and hZ.

− If IDi? = 0 (or, equivalently, if τ? ∈ S), it picks s0, s1, . . . , sd′3
$← Z2×1

p , s̃0, s̃1, . . . , s̃d′3
$← Zp and

computes

g
B

(si
0
s̃i

)
= gπ1(B)si · gs̃i·π3(B) and g

WjB

(si
0
s̃i

)
= gπ1(WjB)si · gs̃i·π3(WjB)

for i ∈ [0, d′3] and j ∈ [d1]. Finally, it computes CT =
(
gc(S+S̃,W), e

(
g
B

(s0
0
s̃0

)
, hα+R̃i?−1(ID|i?−1)·f̃) ·

Mcoin
)

and returns it to A. Note that B3 can efficiently compute gc(S+S̃,W) because c(S + S̃,W) only

contains linear combination of B
(si

0
s̃i

)
and WiB

(sj
0
s̃j

)
.

Guess. When A outputs coin′, B3 outputs 1 if coin′ = coin and 0 otherwise.
Analysis. We claim that A’s view corresponds to that of Game2,i?,2 if b = 0 (i.e., B3 is equipped with oracle
OMMH,K
τ?,Z,W,0(·)) and Game2,i?,3 if b = 1 (B3 is equipped with OMMH,K

τ?,Z,W,1(·)). In the case of b = 0, it is easily

seen that B3 simulates Game2,i?,2 with R̂i?−1(·) : {0, 1}i?−1 → Zp being R̂i?−1(ID|i?−1) = Ri?−1(ID|i?−1).
Therefore B3 correctly simulates Game2,i?,2. On the other hand, in the case of b = 1, one can see that B3

simulates Game2,i?,3 with R̂i?(·) : {0, 1}i? → Zp being

R̂i?(ID|i?) =

{
Ri?−1(ID|i?−1) if IDi? = 1

Ri?−1(ID|i?−1) + α̂ if IDi? = 0

where α̂ is freshly chosen for every distinct ID|i? . Since Ri?−1(·) is a random function, R̂i?(·) defined above
is also a random function. Therefore, B3 correctly simulates Game2,i?,3 in this case. Hence, we may conclude
that |Adv2,i?,2(κ)− Adv2,i?,3(κ)| ≤ AdvMMH

B3,Π,(Qc,Qk),(G1,G2)(κ). ut

Lemma 25. (Game2,i?,3 to Game2,i?,4). For any i? ∈ [1, `] and adversary A, there exists an adversary B4

such that |Adv2,i?,3(κ) − Adv2,i?,4(κ)| ≤ AdvMMH′

B4,Π,(Qc,Qk),(G1,G2)(κ) and Time(B4) ≈ Time(A) + (Qc +
Qk) · poly(κ, `) where poly(κ, `) is independent of Time(A).

Proof. We construct an adversary B4 that breaks (Qc, Qk)-MMH’ security of the encoding from an adversary
A who distinguishes the games. The lemma can be shown analogously to Lemma 24. We only highlight the
main difference.

53

• B4 sets τ? = 2i? − 1 instead of τ? = 2i?.

• B4 simulates R̂i?(·) and Ri?−1(·) throughout the game and use these functions to create challenge
ciphertexts and private keys. It will simulate Game2,i?,3 with R̃i?−1(ID|i?−1) = Ri?−1(ID|i?−1) or
Game2,i?,4 with

R̃i?(ID|i?) =

{
Ri?−1(ID|i?−1) if IDi? = 0

Ri?−1(ID|i?−1) + α̃ if IDi? = 1

where α̃ is the randomness chosen by OMMH′,K
τ?,Z,W,1(·). α̃ is freshly chosen for every distinct ID|i? .

• B4 computes the challenge ciphertext by itself if IDi? = 1. Otherwise, it makes oracle call toOMMH′,C
τ?,B,W (·)

and creates the ciphertext using the answer from the oracle.

• B4 maintains a List of length i? prefixes of identities for which key extraction was made. For key
extraction query made byA, B4 generates private key by itself if IDi? = 0. If IDi? = 1 and ID|i? 6∈ List,
it calls OMMH′,K

τ?,Z,W,b(·) and creates the private key using the answer. Otherwise, A must have queried

private key for ID′ such that ID′|i? = ID|i? . B4 must have called OMMH′,K
τ?,Z,W,b(·) to deal with the first such

key extraction query made by A. B4 creates the private key using the answer to the query.
ut

Lemma 26. (Game2,i?,4 to Game2,i?+1,1). For any i? ∈ [1, `] and adversary A, there exists an adversary B5

such that |Adv2,i?,4(κ)− Adv2,i?+1,1(κ)| ≤ AdvP10
B5 (κ) and Time(B5) ≈ Time(A) + (Qc +Qk) · poly(κ, `)

where poly(κ, `) is independent of Time(A).

Proof. The proof is the same as that of Lemma 23 except that we replace Ri?−1, R′i?−1, R̂i?−1, and R̃i?−1 with
Ri? , R′i? , R̂i? , and R̃i? . ut

Lemma 27. (Game2,`+1,1 to Game3). For any adversaryA, there exists an adversaryB6 such that |Adv2,`+1,1(κ)−
Adv3(κ)| ≤ AdvP11

B6 (κ) and Time(B6) ≈ Time(A) + (Qc +Qk) · poly(κ, `) where poly(κ, `) is independent
of Time(A).

Proof. We construct an adversary B6 who attacks Problem 11 from an adversary A who distinguishes the
games. B6 is given the problem instance (g, h, gx, gy, hz, e(g, h)xyz+γ) where either γ = 0 or γ $← Z∗p and
proceeds as follows.

Setup. B6 runs Param(2`, p) → d1 and picks B
$← GL4(Zp), W = (W1, . . . ,Wd1)

$← (Z4×4
p)d1 and a

random full-rank diagonal matrix D ∈ Z4×4
p with the entries (3, 3) and (4, 4) being 1. Finally, it sets Z =

B−>D and returns the public parameter pp = (g, gπ1(B), gπ1(W1B), . . . , gπ1(Wd1
B), h, hπ1(Z), hπ1(W>

1 Z),

. . . , h
π1(W>

d1
Z)

) and the master public key mpk = (pp, e(g, h)α
>π1(B)) to A. B6 also flips a coin coin $←

{0, 1}.
Programming Random Functions. Throughout the game, B6 simulates random functions R`(·) : {0, 1}` →
Zp and R̃`(·) : {0, 1}` → Zp via lazy sampling. In the following, B6 will implicitly set R̂`(·) : {0, 1}` → Zp
as

R̂`(ID) =

{
R`(ID) if (Extraction, 1, ID) is queried
R`(ID) + yz if (Challenge, 1, ID,M0,M) is queried for some M0, M1.

Since (Extraction, 1, ID) and (Challenge, 1, ID,M0,M1) are never queried for the same ID (by the
restriction posed on the adversary), R̂`(·) is well-defined. Furthermore, since R`(·) is a random function,
R̂`(·) is also a random function.

54

Key Extraction Queries. When the adversary A submits (Extraction, 1, ID) to the challenger, B6 calls
R`(·) and R̃`(·) on input ID to obtain γ̂ = R̂`(ID) = R`(ID) and γ̃ = R̃`(ID). Then it sets S = {2i −
IDi|i ∈ [`]} where IDi ∈ {0, 1} is the i-th bit of ID ∈ {0, 1}`. Then it runs KEnc(j, p) →

(
kj , d

′
2

)
, picks

rj,1, . . . , rj,d′2
$← Z2×1

p , and sets Rj =

((rj,1
0
0

)
, · · · ,

(
rj,d′2

0
0

))
∈ Z4×d′2

p for all j ∈ S. It also picks random

{αj}j∈S , {γ̂j}j∈S , and {γ̃j}j∈S subject to constraints that
∑

j∈S αj = α,
∑

j∈S γ̂j = γ̂, and
∑

j∈S γ̃j = γ̃.

Next, it computes kj(αj + γ̂j f̂ + γ̃j f̃ ,Rj ,W) and sets skj = hkj(αj+γ̂j f̂+γ̃j f̃ ,Rj ,W) for all j ∈ S. Finally, B6

computes skID from skj as Equation (10) and returns it to A.

Challenge Queries. When the adversary A makes challenge query (Challenge, 1, ID,M0,M1), B6 pro-
ceeds as follows. B6 first sets S = {2i − IDi|i ∈ [`]} and computes CEnc(S, p) → (c, d′3). Then, it picks
s0, s1, . . . , sd′3

$← Z2×1
p , ŝ1, . . . , ŝd′3

$← Zp and runs the algorithm in Lemma 18 on input (g, h, gx, gy, hz,

e(g, h)xyz+γ) to obtain (gx̂, e(g, h)x̂yz+γ̂) where γ̂ $← Zp if γ 6= 0 and γ̂ = 0 if γ = 0. Then, it implicitly
sets ŝ0 = x̂ and computes

g
B

(s0
ŝ0
0

)
= gπ1(B)s0 · (gx̂)π2(B)

and g
B

(si
ŝi
0

)
for i ∈ [1, d′3]. Then, it computes gc(S+Ŝ,W) from {g

B

(si
ŝi
0

)
}i∈[0,d′3] and W, where S and Ŝ are

defined as Equation (24). Finally, it returns the challenge ciphertext

CT =
(
gc(S+Ŝ,W), e(g

B

(s0
ŝ0
0

)
, hα) · e(gx̂, hR`(ID)) · e(g, h)x̂yz+γ̂ ·Mcoin

)
to A. We have that

e(g
B

(s0
ŝ0
0

)
, hα) · e(gx̂, hR`(ID)) · e(g, h)x̂yz+γ̂ = e(g

B

(s0
ŝ0
0

)
, hα) · e(g, h)ŝ0R̂`(ID) · e(g, h)γ̂

= e(g
B

(s0
ŝ0
0

)
, hα) · e(g

B

(s0
ŝ0
0

)
, hR̂`(ID)Ze>3) · e(g, h)γ̂

= e(g
B

(s0
ŝ0
0

)
, hα+R̂`(ID)f̂) · e(g, h)γ̂

where we use the fact B>Ze>3 = De>3 = e>3 in the second line. It can be seen that the challenge ciphertext is
a properly distributed semi-functional ciphertext of Type (2, `) if γ̂ = 0 and a random ciphertext if γ̂ $← Zp.
Guess. When A outputs coin′, B6 outputs 1 if coin′ = coin and 0 otherwise.

B6 has properly simulated Game2,`+1 if γ = 0 and Game3 if γ $← Z∗p. Hence, we may conclude that
|Adv2,`+1(κ)− Adv3(κ)| ≤ AdvP11

B6 (κ). ut

Extension to the Multi-Instance Case. As in the case of the constructions in composite order groups, we
can easily extend the above proof to the case of the multi-instance case.

(Proof Sketch of Theorem 4.) To prove Theorem 4, we have to change the proof of Theorem 13 so that we
simulate R̂

(j)
i (·) : {0, 1}i → Zp and R̃

(j)
i (·) : {0, 1}i → Zp for i ∈ [0, `] and each j ∈ [µ]. Then, we

consider Game0 to Game3 exactly the same as the single instance case except that semi-functional ciphertexts
and semi-functional private keys for j-th instance are computed using R̂

(j)
i (·) and R̃

(j)
i (·). The difference of

advantage of A between them can be bounded accordingly. This can be done almost parallel to the case of
composite-order groups and thus we omit the details. See the proof sketch of Theorem 2.

55

E CMH-Security of Πslp

Here, we discuss the Q-CMH security of Πslp. We first prove the following theorem that indicates that Πslp

is Q-CMH secure on prime-order groups (G1 and G2) assuming the DLIN assumption. Then, we discuss the
security of Πslp on composite-order groups.

Theorem 14. For anyQc and any adversaryA, there exists an adversaryB such that AdvCMH
A,Πslp,Qc,(G1,G2)(κ) ≤

AdvDLIN
B (κ) and Time(B) ≈ Time(A) +Qc · poly(κ, n) where poly(κ, n) is independent of Time(A).

Proof. We construct B that attacks the DLIN problem fromA that violates theQc-CMH security of the above
broadcast encoding. Given the problem instance (g, ga1 , ga2 , ha3 , ga1c1 , ga2c2 , T = ha3(c1+c2)+γ) where γ =

0 or γ $← Z∗p, B proceeds as follows. (B disregards other terms in the problem instance.)
Setup of Parameters. At the beginning of the game,A outputs its target τ? ∈ [n]. Let τ? = τ?1 +(τ?2 −1) ·n1

where τ?1 ∈ [n1] and τ?2 ∈ [n2]. B first picks θ1, . . . , θn1 , θ
′
1, . . . , θ

′
n1
, φ, φ′

$← Zp. Then it implicitly sets
ŵ = (û1, . . . , ûn1 , v̂, û

′
1, . . . , û

′
n1
, v̂′, ŵ) as

ûi :=

{
θi if i ∈ [n1]\{τ?1 }
θτ?1 + c1 if i = τ?1

, v̂ := −τ?2 c1 + φ, ŵ := c1 + c2

û′i :=

{
θ′i if i ∈ [n1]\{τ?1 }
θ′τ?1

+ c2 if i = τ?1
, v̂′ := −τ?2 c2 + φ′.

We can see that ŵ is correctly distributed.
Simulating OCMH,C

τ?,ŵ (·). Given S such that τ? 6∈ S, B first defines Sj for j ∈ [n2] as Equation (13) and picks

ŝ0, ξ1, . . . , ξn2 , ξ
′
1, . . . , ξ

′
n2

$← Zp. It then implicitly sets t̂i and t̂′i as

t̂i := a1ξi + ŝ0/νi, t̂′i := a2ξ
′
i + ŝ0/νi, where νi :=

{
τ?2 if τ?1 6∈ Si
τ?2 − i if τ?1 ∈ Si.

for i ∈ [n2]. Note that τ?1 6∈ Sτ?2 , since τ? 6∈ S. Furthermore, we also have |τ?2 − i| < n2 < p and
1 ≤ τ?2 ≤ n2 < p for all i ∈ [n2]. Thus, for all i ∈ [n2], νi defined as above are non zero. Therefore, t̂i and t̂′i
are well-defined for all i ∈ [n2].

It can be seen that we have

ŝ0ŵ + t̂i
(
v̂ + i

∑
j∈Si

ûj
)

+ t̂′i
(
v̂′ + i

∑
j∈Si

û′j
)

= ŝ0(c1 + c2) + (a1ξi + ŝ0/νi) · (φ+ i
∑
j∈Si

θj − νic1) + (a2ξ
′
i + ŝ0/νi) · (φ′ + i

∑
j∈Si

θ′j − νic2)

= ��
�ŝ0c1 +HHHŝ0c2 +

(
ξi(φ+ i

∑
j∈Si

θj)
)
a1 − (ξiνi)a1c1 +

(
ŝ0(φ+ i

∑
j∈Si

θj)/νi
)
−���ŝ0c1

+
(
ξ′i(φ

′ + i
∑
j∈Si

θ′j)
)
a2 − (ξ′iνi)a2c2 +

(
ŝ0(φ′ + i

∑
j∈Si

θ′j)/νi
)
−HHHŝ0c2

= Φi,0 + Φi,1a1 + Φi,2a1c1 + Φi,3a2 + Φi,4a2c2

where Φi,0 = ŝ0(φ + φ′ + i
∑

j∈Si(θj + θ′j))/νi, Φi,1 = ξi(φ + i
∑

j∈Si θj), Φi,2 = −ξiνi, Φi,3 = ξ′i(φ
′ +

i
∑

j∈Si θ
′
j), and Φi,4 = −ξ′iνi in the above. B can efficiently compute

g
ŝ0ŵ+t̂i

(
v̂+i

∑
j∈Si

ûj

)
+t̂′i

(
v̂′+i

∑
j∈Si

û′j

)
= gΦi,0 · (ga1)Φi,1 · (ga1c1)Φi,2 · (ga2)Φi,3 · (ga2c2)Φi,4 ,

56

gt̂i = (ga1)ξi · gŝ0/νi , and gt̂
′
i = (ga2)ξ

′
i · gŝ0/νi

for i ∈ [n2], since {Φi,j}i∈[n2],j∈[5] is known to B. It computes gc(ŝ,w) as above and returns it to A.

Simulating OCMH,K
τ?,ŵ,b (·). When A calls the oracle, B implicitly sets r̂ = a3 and α̂ = γ and returns

hk(α̂,r̂,ŵ) =

(
hr̂ŵ+α̂ = T, h

r̂(v̂+τ?2 ûτ?1
)

= (ha3)
φ+τ?2 θτ?1 , {hr̂ûi = (ha3)θi}i∈[n1]\{τ?1 },

hr̂ = ha3 , h
r̂(v̂′+τ?2 û

′
τ?1

)
= (ha3)

φ′+τ?2 θ
′
τ?1 , {hr̂û′i = (ha3)θ

′
i}i∈[n1]\{τ?1 }

)

to A. It can be seen that B simulates OCMH,K
τ?,ŵ,0 (·) if α̂ = γ = 0 and OCMH,K

τ?,ŵ,1 (·) if α̂ = γ
$← Z∗p.

Guess. Finally, B outputsA’s output as its guess. As we have seen, the game corresponds to the case of b = 1

if γ $← Z∗p and b = 0 if γ = 0. Thus, we may conclude that AdvCMH
B,Πslp,Qc,(G1,G2)(κ) ≤ AdvDLIN

B (κ). ut

We then introduce two problems in order to discuss the Q-CMH security of Πslp on composite-order
groups. We define advantage function AdvPxx

A (κ) for Problem xx for any adversary A as follows. Let
(N,G,GT , g1, g2, g3, g4, e(·)) $← Gcomp(1κ) in the following.

Problem 13. (DLIN Problem on Gp2 .) We define advantage function for any adversary A as

AdvP13
A,Gp2

(κ) = |Pr[A
(
g1, g2, g3, g4, g

a1
2 , ga22 , ga32 , ga1s12 , ga2s22 , T0

)
→ 1]−

Pr[A
(
g1, g2, g3, g4, g

a1
2 , ga22 , ga32 , ga1s12 , ga2s22 , T1

)
→ 1]|

where a1, a2, a3, γ
$← Z∗N , s1, s2

$← ZN , T0 = g
a3(s1+s2)
2 , and T1 = g

a3(s1+s2)+γ
2 .

Problem 14. (DLIN Problem on Gp3 .) We define advantage function for any adversary A as

AdvP14
A,Gp3

(κ) = |Pr[A
(
g1, g2, g3, g4, g

a1
3 , ga23 , ga33 , ga1s13 , ga2s23 , T0

)
→ 1]−

Pr[A
(
g1, g2, g3, g4, g

a1
3 , ga23 , ga33 , ga1s13 , ga2s23 , T1

)
→ 1]|

where a1, a2, a3, γ
$← Z∗N , s1, s2

$← ZN , T0 = g
a3(s1+s2)
3 , and T1 = g

a3(s1+s2)+γ
3 .

By replacing g and h with g2 (resp. g3) in the proof of Theorem 14, we immediately obtain the security
theorem for the Q-CMH security of Πslp on Gp2 (resp. Gp3) as follows;

Theorem 15. For i ∈ {2, 3}, anyQc, and any adversaryA, there exists an adversaryB such that AdvCMH
A,Πslp,Qc,Gpi

(κ)

≤ AdvPxx
B (κ) and Time(B) ≈ Time(A) + Qc · poly(κ, n) where poly(κ, n) is independent of Time(A). In

the above, Pxx = P13 if i = 2 and Pxx = P14 if i = 3.

F Proof of Theorem 5

Proof. We assume that the adversary A makes at most single key extraction query for the same ID in the
security game. This restriction can be easily removed by using a PRF. See remark in Section 7.

Sequence of Games. We define a sequence of games to establish the security of the IBE scheme. We
write Advxx(κ) to denote the advantage of A in Gamexx. In the following, we will pick random functions
R̂` : {0, 1}` → Zp and R̃` : {0, 1}` → Zp (via lazy sampling).

Game0 : This is the real security game for anonymous IBE.

57

Game1: In this game, all challenge ciphertexts are changed to a ciphertext for a random message. Namely,
when the adversary submits (Challenge, 1, (ID0, ID1), (M0,M1)) to the challenger,

CT =

(
C1 = g

B

(
s
ŝ
0

)
, C2 = g

∑
i∈Scoin

WiB

(
s
ŝ
0

)
, C3 = Mrand

)
(29)

is returned. Here, s
$← Z2×1

p , ŝ $← Zp, and Mrand
$← GT . Scoin ⊂ [2`] in the above is defined as

Scoin = {2i− IDcoin,i|i ∈ [`]} where IDcoin,i is the i-th bit of IDcoin. Note that while the distribution of
the ciphertext is independent from Mcoin, it still depends on IDcoin in this game.

Furthermore, for key extraction query (Extraction, 1, ID) made by A, the challenger returns

skID =

(
K1 = h

α+
∑
i∈S W>

i Z

(
r
0
0

)
+R̂`(ID)f̂+R̃`(ID)f̃

, K2 = g
−Z
(
r
0
0

))
(30)

where r
$← Z2×1

p , f̂ = Ze>3 , f̃ = Ze>4 , and S = {2i − IDi|i ∈ [`]}. Namely, the challenger returns
semi-functional key of Type (1, `) (in terminology of the proof of Theorem 13).

Game2: In this game, the challenge ciphertexts are further modified as

CT =

(
C1 = g

B

(s
ŝ
s̃

)
, C2 = g

∑
i∈Scoin

WiB

(s
ŝ
s̃

)
, C3 = Mrand

)
(31)

where s
$← Z2×1

p , ŝ, s̃ $← Zp, and Mrand
$← GT .

Game3: This game is the same as Game2 except that we change how to choose W1, . . . ,W2`. Here, we first
pick W′

1,W
′
2, . . . ,W

′
2`

$← Z4×4
p and A

$← Z4×2
p . We denote the i-th column of A as ai ∈ Z4×1

p for
i ∈ {1, 2}. Then, we set another matrix A′ ∈ Z4×4

p so that π1(A′) = 0, π2(A′) = a1, and π3(A) = a2.
W1, . . . ,W2` are set as

W1 = W′
1 + BA′B−1, W2 = W′

2 + BA′B−1, and Wi = W′
i for i ∈ [3, 2`].

Game4: In this game, public parameter pp and all private keys are computed using W′
1, . . . ,W

′
2` instead of

W1, . . . ,W2`. (The challenge ciphertexts are unchanged.) Namely, pp is set as pp = (g, gπ1(B), gπ1(W′
1B),

. . . , gπ1(W′
2`B)) and all private keys are created as

skID =

(
K1 = h

α+
∑
i∈S W′

i
>Z

(
r
0
0

)
+R̂`(ID)f̂+R̃`(ID)f̃

, K2 = g
−Z
(
r
0
0

))
. (32)

Game5: In this game, we change all challenge ciphertexts to be uniformly random group elements. Namely,
the challenger gives CT = (C1, C2, C3) such thatC1, C2

$← Z4×1
p andC3

$← GT toAwhenA requests
a challenge ciphertext.

Observe that we have Adv5(κ) = 0 since the view of A is independent from the value of coin in Game5. We
have that

AdvAIBE
A,Φanon,(1,Qc,Qk)(κ) = Pr[Adv0] ≤

∑
i∈[0,4]

|Pr[Advi]− Pr[Advi+1]|+ Pr[Adv5].

Therefore, we complete the proof by showing Lemma 28, 29, 30, 31, and 32 in the following. ut

58

Lemma 28. (Game0 to Game1). For any adversary A, there exists an adversary B1 such that |Adv0(κ) −
Adv1(κ)| ≤ (8`+2)AdvDLIN

B1 (κ)+12`/p and Time(B1) ≈ Time(A)+(Qc+Qk)·poly(κ, `) where poly(κ, `)
is independent of Time(A).

Proof. This can be shown by repeating the proof of Theorem 13 for the case of the underlying broadcast
encoding is Πcc. There are only two differences. The first one is that the simulator does not give sp =
(h, hπ1(Z), hπ1(W>

1 Z), . . . , gπ1(W>
2`Z)) to A. The second one is that the adversary submits two identities in

the challenge query. The proof of the Theorem 13 can easily be modified accordingly. ut

Lemma 29. (Game1 to Game2). For any adversary A, there exists an adversary B2 such that |Adv1(κ) −
Adv2(κ)| ≤ AdvP9

B2(κ) and Time(B2) ≈ Time(A) + (Qc +Qk) · poly(κ, `) where poly(κ, `) is independent
of Time(A).

Proof. We construct an adversary B2 who attacks the Problem 9 from an adversary A who distinguishes the
games. The proof of the lemma is similar to that of Lemma 23.

Setup of Parameters. At the beginning of the game, B2 is given the problem instance (g, h, gB, hπ1(Z),

hZ(θ1,1 f̂+θ2,1 f̃), hZ(θ1,2 f̂+θ2,2 f̃), g
B

(
t
t̂
t̃

)
) where t̃ = 0 or t̃ $← Zp. It first picks W1, . . . ,W2`

$← Z4×4
p and

α
$← Z4×1

p . Then, it computes the public parameter pp = (g, gπ1(B), gπ1(W1B), . . . , gπ1(W2`B)) and the

master public key mpk = e(g, h)α
>π1(B) and returns it to A. B2 also flips a coin coin $← {0, 1}.

Simulating Random Functions. Throughout the game, B2 simulates random functions R`(·) : {0, 1}` → Zp
and R′`(·) : {0, 1}` → Zp via lazy sampling. It implicitly sets R̂`(ID) and R̃`(ID) as Equation (27). Since
R`(·) and R′`(·) are random functions, R̂`(·) and R̃`(·) are random functions as well.

Challenge Queries. When the adversary A makes challenge query (Challenge, 1, ID0, ID1,M0,M1), B2

proceeds as follows. B2 first sets Scoin = {2i− IDcoin,i|i ∈ [`]} where IDcoin,i is the i-th bit of IDcoin. Then, it

runs the algorithm in Lemma 17 on input (gπ1(B), gπ3(B), g
B

(
t
t̂
t̃

)
) to obtain g

B

(s
ŝ
s̃

)
where (s

$← Z2×1
p , ŝ

$←
Zp, s̃ = 0) if t̃ = 0 and (s

$← Z2×1
p , ŝ

$← Z∗p, s̃
$← Zp) if t̃ 6= 0. Then it picks Mrand

$← GT and returns the

challenge ciphertext CT =
(
C1 = g

B

(s
ŝ
s̃

)
, C2 = g

∑
i∈Scoin

WiB

(s
ŝ
s̃

)
, C3 = Mrand,

)
to A.

Key Extraction Queries. When the adversary A submits (Extraction, 1, ID) to the challenger, B3 first
sets S = {2i − IDi|i ∈ [`]} and r

$← Z2×1
p . Then it computes hR̂`(ID`)f̂+R̃`(ID`)f̃ =

(
hθ1,1 f̂+θ2,1 f̃

)R`(ID`) ·(
hθ1,2 f̂+θ2,2 f̃

)R′`(ID`). Finally, it computes the private key as

skID =
(
K1 = hα+

∑
i∈S W>

i π1(Z)r+R̂`(ID)f̂+R̃`(ID)f̃ , K2 = g−π1(Z)r
)

and returns it to A.

Guess. When A outputs coin′, B2 outputs 1 if coin′ = coin and 0 otherwise.

B2 has properly simulated Game1 if t̃ = 0 and Game2 if t̃ $← Z∗p. Hence, we may conclude that |Adv1(κ)−
Adv2(κ)| ≤ AdvP9

B2(κ). ut

Lemma 30. (Game2 to Game3). For any adversary A, we have Adv2 = Adv3.

Proof. Since each Wi is uniformly random over Z4×4
p in both games, the change from Game2 to Game3 is

only conceptual. Therefore, the lemma follows. ut

Lemma 31. (Game3 to Game4). For any adversary A, we have Adv3 = Adv4.

59

Proof. We claim that the change from Game3 to Game4 is conceptual. At first, we have that

π1(WiB) = π1(W′
iB) + π1(BA′) = π1(W′

iB) + B · π1(A′) = π1(W′
iB)

for i ∈ {1, 2} and Wi = W′
i for i ∈ [3, 2`]. Therefore, pp is not altered by this change.

The private keys returned to A in Game3 are in the form of skID = (K1,K2) where K2 = h−π1(Z)r and
K1 = hα+

∑
i∈S π1(W>

i Z)r+R̂`(ID)f̂+R̃`(ID)f̃ . We have that

K1 = h
α+
∑
i∈S W>

i Z

(
r
0
0

)
+R̂`(ID)f̂+R̃`(ID)f̃

= h
α+((

∑
i∈S W′

i)+BA′B−1)>Z

(
r
0
0

)
+R̂`(ID)f̂+R̃`(ID)f̃

= h
α+
∑
i∈S W′>

i Z

(
r
0
0

)
+(R̂`(ID)+π2(A′)>π1(D)r)f̂+(R̃`(ID)+π3(A′)>π1(D)r)f̃

= h
α+
∑
i∈S W′>

i Z

(
r
0
0

)
+R̂′`(ID)f̂+R̃′`(ID)f̃

.

In the second line above, we used the fact that
(
(1 ∈ S) ∧ (2 6∈ S)

)
∨
(
(1 6∈ S) ∧ (2 ∈ S)

)
. In the third line

above, we used the fact that

(BA′B−1)>Z
(

r
0
0

)
= B−>A′

>
D
(

r
0
0

)
= B−>

(
0

π2(A′)>π1(D)r

π3(A′)>π1(D)r

)
= Z

(
0

π2(A′)>π1(D)r

π3(A′)>π1(D)r

)
.

In the fourth line, we defined two functions R̂′`(·) : {0, 1}` → Zp and R̃′`(·) : {0, 1}` → Zp as

R̂′`(ID) = R̂`(ID) + π2(A′)>π1(D)r and

R̃′`(ID) = R̃`(ID) + π3(A′)>π1(D)r.

These functions are well-defined (throughout the game), because A makes key extraction query for the same
ID at most once. Furthermore, these functions are random functions because R̂`(·) and R̃`(·) are so. One can
observe that the distribution of private keys is also the same as that in Game4. The lemma follows readily. ut

Lemma 32. (Game4 to Game5). For any adversary A, there exists an adversary B3 such that |Adv4(κ) −
Adv5(κ)| ≤ AdvP12

B3 (κ) + 1/p and Time(B3) ≈ Time(A) + (Qc + Qk) · poly(κ, `) where poly(κ, `) is
independent of Time(A).

Proof. We show an adversary B3 that attacks the Problem 12 from A who distinguishes the games. Given
the problem instance (g, h, gX) where either X

$← Rk2(Z6×6
p) or X

$← Rk6(Z6×6
p), it proceeds as follows.

Let the upper two rows of X be U ∈ Z2×6
p and lower four rows be L ∈ Z4×6

p . We assume that U is full-

rank. This happens with probability at least 1 − 1/p regardless of X
$← Rk2(Z6×6

p) or X
$← Rk6(Z6×6

p). If

X
$← Rk2(Z6×6

p), we have that there exists a random matrix A ∈ Z4×2
p such that L = AU.

Setup. At the outset of the game, B3 picks B
$← GL4(Zp), W′

1, . . . ,W
′
2`

$← Z4×4
p , α $← Z4×1

p and a random
full-rank diagonal matrix D ∈ Z4×4

p with the entries (3, 3) and (4, 4) being 1. It then sets Z = B−>D and
returns pp = (g, gπ1(B), gπ1(W′

1B), . . . , gπ1(W′
2`B)) and mpk = e(g, h)α

>π1(B) to A.

Simulating Random Functions. Throughout the game, B3 simulates random functions R̂`(·) : {0, 1}` → Zp
and R̃`(·) : {0, 1}` → Zp via lazy sampling.

Key Extraction Queries. When A submits (Extraction, 1, ID) to the challenger, B3 picks r
$← Z2×1

p ,
computes skID as Equation (32) and returns it to A. Note that skID can be efficiently computed using α,
{W′

i}i∈[2`], and Z.

60

Challenge Queries. When A submits (Challenge, 1, ID0, ID1,M0,M1) to the challenger, B3 picks s
$←

Z2×1
p , v

$← Z6×1
p , and Mrand

$← GT and computes gUv and gLv. Then it returns

CT =
(
C1 = gB(s

Uv), C2 = g
∑
i∈Scoin

W′
iB(s

Uv) · gBLv, C3 = Mrand

)
toAwhere Scoin = {2i−IDcoin,i|i ∈ [`]}. Note that gB(s

Uv), g
∑
i∈Scoin

W′
iB(s

Uv), and gBLv can be efficiently
computed from gUv, gLv, B, s, and {W′

i}i∈[2`]. We claim that it is properly distributed ciphertext in Game4

or Game5, depending on whether X
$← Rk2(Z6×6

p) or X
$← Rk6(Z6×6

p).

In the case of X
$← Rk2(Z6×6

p), B3 implicitly sets
(
ŝ
s̃

)
:= Uv. Since U is a full-rank matrix,

(
ŝ
s̃

)
is

uniformly random over Z2×1
p . We also have that Lv = AUv = A

(
ŝ
s̃

)
. Thus, it holds that C1 = g

B

(s
ŝ
s̃

)
and

C2 = g

∑
i∈Scoin

W′
iB

(s
ŝ
s̃

)
· gBA

(
ŝ
s̃

)
= g

((
∑
i∈Scoin

W′
iB)+BA′)

(s
ŝ
s̃

)
= g

∑
i∈Scoin

WiB

(s
ŝ
s̃

)
.

Here, B3 implicitly sets Wi = W′
i + BA′B−1 for i ∈ [1, 2] and Wi = W′

i for i ∈ [3, 2`] where A′ ∈ Z4×4
p

is defined so that π1(A′) = 0 and the right half of A′ corresponds to A. Therefore, in this case, B3 simulates
the ciphertext in Game4. (Note that A′ is fixed throughout the game.)

On the other hand, if X
$← Rk6(Z6×6

p), (Uv,Lv) is uniformly random over Z2×1
p × Z4×1

p . Since B is
full-rank, it can be seen that (C1, C2) is also uniformly random over Z4×1

p ×Z4×1
p . Therefore, the distribution

of challenge ciphertexts is the same as that of Game5.
Guess. Finally, B3 outputs A’s output as its guess.

As we have seen, the game corresponds to the case of Game4 if X
$← Rk2(Z6×6

p) and Game5 if X
$←

Rk6(Z6×6
p). Thus, we may conclude that |Adv4(κ)− Adv5(κ)| ≤ AdvP12

B3 (κ). ut

G Omitted Details from Section 8

G.1 Definitions

Q-fold One-Time Signature. We defineQ-fold one-time signature scheme introduced in [32], which consists
of the following five algorithms Σ = (Σ.Par,Σ.Gen,Σ.Sign,Σ.Verify). The parameter generation algorithm
Σ.Par takes 1κ as input and outputs a public parameter ppΣ. The key generation algorithm Σ.Gen takes ppΣ

as input and outputs a verification key vk and a signing key sigk. The signing algorithm Σ.Sign takes sigk and
a message M as input and outputs a signature σ on M. The verification algorithm Σ.Verify takes a verification
key vk, a message M, and a (purported) signature σ and outputs 1, which indicates that the signature is valid,
or 0.
Security. We now define the security for a Q-fold OTS scheme Σ = (Σ.Par,Σ.Gen,Σ.Sign,Σ.Verify) by the
following game between a challenger and an attacker A.

Setup. The challenger runs ppΣ
$← Σ.Par(1κ) and (vkj , sigkj)

$← Σ.Gen(ppΣ) for j ∈ [Q]. Then,
(ppΣ, {vkj}j∈[Q]) is given to A.
Signing Queries. In the game, A adaptively makes signing queries at most Q times. When A submits
(Sign, j ∈ [Q],M), the challenger runs σ $← Σ.Sign(sigkj ,M) to obtain the signature σ and returns it to A.
A may request (up to) one signature for each j ∈ [Q].
Forgery. At last,A outputs a forgery (j? ∈ [Q],M?, σ?). We say thatAwins the game if Σ.Verify(vkj? ,M

?, σ?) =
1 and one of the following conditions holds.
• A have never made a signing query for j?.

61

• A made a signing query for j?. Let the query be (Sign, j?,M) and the response to it by the challenger
be σ. Then, (M, σ) 6= (M?, σ?).

We define the advantage of the adversary A AdvOTS
A,Σ,Q(κ) as the probability that A wins in the above game.

Definition 4. We say that a Q-fold OTS scheme Σ is secure if AdvOTS
A,Σ,Q(κ) is negligible for any polynomially

bounded Q and any PPT adversary A.

CONCRETE CONSTRUCTION. Hofheinz and Jager [32] gave a concrete construction of tightly secure Q-
fold one-time signature. In their scheme, the public parameter (ppΣ) consists of two group elements and
description of a collision resistant hash function. vk consists of two group elements and σ consists of two
elements in Zp. The scheme can be used to sign any bit strings. The security of the scheme is reduced to the
discrete logarithm problem in the underlying group of the scheme. The corresponding reduction looses only
a factor of 2, which is independent of Q.

Public Key Encryption. A public key encryption scheme consists of the following five algorithms Ψ =
(Ψ.Par,Ψ.Gen,Ψ.Enc,Ψ.Dec). The parameter generation algorithm Ψ.Par takes 1κ as input and outputs a
public parameter pp. The key generation algorithm Ψ.Gen takes pp as input and outputs a encryption key ek
and a decryption key dk. The encryption algorithm Ψ.Enc takes ek and a message M and outputs a ciphertext
CT. The decryption algorithm takes dk and a ciphertext CT and outputs a message M or ⊥ which indicates
that the ciphertext is not in a valid form. We require the usual correctness properties.

Security. We now define (µ,Qc, Qk)-security for a PKE scheme Ψ = (Ψ.Par,Ψ.Gen,Ψ.Enc,Ψ.Dec) by the
following game between a challenger and an attacker A.

Setup. The challenger runs pp
$← Ψ.Par(1κ) and (ek(j), dk(j))

$← Ψ.Gen(pp) for j ∈ [µ]. The challenger
also picks random coin coin $← {0, 1} whose value is fixed throughout the game. Then, (pp, {ek(j)}j∈[µ]) is
given to A.

In the following, A adaptively makes the following two types of queries in an arbitrary order.

−Decryption Queries. The adversary A submits (Decryption, j ∈ [µ],CT) to the challenger. Then, the
challenger runs Ψ.Dec(dk(j),CT)→ M/⊥ and returns the result to A.

−Challenge Queries. The adversary A submits (Challenge, j ∈ [µ],M0,M1 ∈ M) to the challenger.
Then, the challenger runs CT

$← Ψ.Enc(ek(j),Mcoin) and returns CT to A.

Guess. At last,A outputs a guess coin′ for coin. The advantage of an attackerA is defined as AdvPKE
A,Ψ,(µ,Qc,Qk)(κ) =

|Pr[coin′ = coin]− 1
2 |.

We say that the adversary A is valid if and only if A never queries (Decryption, j,CT) such that CT
was obtained as an answer to the query (Challenge, j,M0,M1) for the same j and some M0,M1 ∈ M; A
has made at most Qc challenge queries; and A has made at most Qk key extraction queries.

Definition 5. We say that a PKE scheme Ψ is secure if AdvPKE
A,Ψ,(µ,Qc,Qk)(κ) is negligible for any polynomially

bounded µ, Qc, Qk, and any valid PPT adversary A.

G.2 CCA Secure PKE from IBE

Here, we show a generic construction of CCA-secure PKE from an IBE scheme and a Q-fold OTS scheme.
We require that in the original IBE scheme, the key generation algorithm does not output any secret parameter.
Namely, we require that sp = ⊥. This requirement is satisfied in all of our IBE schemes except for that in
Section 7. If the original IBE and Q-fold OTS scheme are tightly secure, the resulting PKE is tightly secure
as well. We construct PKE scheme Ψ from an IBE scheme Φ = (Φ.Par,Φ.Gen,Φ.Ext,Φ.Enc,Φ.Dec) and a
Q-fold OTS scheme Σ = (Σ.Par,Σ.Gen,Σ.Sign,Σ.Verify) as follows. Without loss of generality, we assume
that identity space of Φ contains all possible vk output by Σ.Gen.

62

Ψ.Par(1κ) : It runs Σ.Par(1κ)→ ppΣ and Φ.Par(1κ)→ (ppΦ, sp = ⊥). Then, it outputs ppΨ = (ppΦ, ppΣ).

Ψ.Gen(ppΨ) It parses ppΨ → (ppΦ, ppΣ) and runs Φ.Gen(ppΦ, sp = ⊥) → (mpk,msk). Then, it outputs
the encryption key ek = (ppΦ, ppΣ,mpk) and the decryption key dk = (mpk,msk).

Ψ.Enc(ek,M) It first parses ek→ (ppΦ, ppΣ,mpk). Then, it runs Σ.Gen(ppΣ)→ (vk, sigk), Φ.Enc(mpk, vk,
M)→ CTΦ, and Φ.Sign(sigk,CTΦ)→ σ. Finally, it outputs CTΨ = (vk,CTΦ, σ).

Ψ.Dec(dk,CTΨ) It first parses the ciphertext as CTΨ → (vk,CTΦ, σ). Any ciphertext not satisfying this
format is rejected (i.e., the decryption algorithm outputs ⊥). Then, it checks whether σ is a valid
signature on CTΦ by running Σ.Verify(vk,CTΦ, σ). If it is 0, the decryption algorithm outputs ⊥.
Otherwise, it runs Φ.Ext(msk,mpk, vk)→ skvk and outputs Φ.Dec(skvk,CTΦ)→ M or ⊥.

Theorem 16. For any valid adversary A against the above PKE scheme, there exist adversaries B1 and B2

such that AdvPKE
A,Ψ,(µ,Qc,Qk)(κ) ≤ AdvIBE

B1,Φ,(µ,Qc,Qk)(κ) + AdvOTS
B2,Σ,Qc(κ) and max{Time(B1),Time(B2)} ≈

Time(A) + (µ+Qk +Qc) · poly(κ) where poly(κ) is independent of Time(A).

Proof. We prove the theorem by the following sequence of the games. We write Advxx(κ) to denote the
advantage of A in Gamexx.

Game0 : This is the real security game.

Game1 : In this game, the challenger runs Σ.Par(1κ)→ ppΣ and (vki, sigki)
$← Σ.Gen(ppΣ) for i ∈ [Qc] at

the outset of the game and use (vki, sigki) to create the i-th challenge ciphertext.

Game2 : In this game, the challenger stops the experiment and forces A to output a random bit if A submits
(Decryption, j′,CT′Ψ = (vk′,CT′Φ, σ

′)) that satisfies Σ.Verify(vk′,CT′Φ, σ
′) = 1 and one of the

following conditions:

(Case A) There exists i? ∈ [Qc] such that vk′ = vki? andA has not made the i?-th challenge query yet.

(Case B) There exists i? ∈ [Qc] such that vk′ = vki? and A’s i?-th challenge query is in the form of
(Challenge, j′,M0,M1) for the same j′.

Since the change from Game0 to Game1 is only conceptual, we have Adv0(κ) = Adv1(κ). Therefore, we
have AdvPKE

A,Ψ,(µ,Qc,Qk)(κ) = Adv0(κ) ≤ |Adv1(κ)− Adv2(κ)|+ Adv2(κ) and it suffices to show Lemma 33
and 34 in the following. ut

Lemma 33. (Game1 to Game2). For any adversary A, there exists an adversary B1 such that |Adv1(κ) −
Adv2(κ)| ≤ AdvOTS

B1,Σ,Qc(κ) and Time(B1) ≈ Qc · poly(κ) + Time(A) where poly(κ) is independent of
Time(A).

Proof. The Game2 differs from Game1 only if A makes a decryption query of the specific form defined as
above (Case A and B). We let the probability of this event in Game1 be ε. We construct an adversary B1

against the Qc-fold OTS scheme whose advantage is ε from A.

Setup. At the outset of the game, B1 is given (ppΣ, {vki}i∈[Qc]). Then, it runs Φ.Par(1κ) → ppΦ and
Φ.Gen(ppΦ) → (mpk(j),msk(j)) for j ∈ [µ] and returns ppΨ = (ppΦ, ppΣ) and {ek(j) = (ppΦ, ppΣ,

mpk(j))}j∈[µ] to A. It also picks coin $← {0, 1}.
Challenge Queries. For the i-th challenge query (Challenge, j,M0,M1) made by A, B1 proceeds as
follows. It first runs Φ.Enc(mpk(j), vki,Mcoin) → CTΦ and then submits (Sign, i,CTΦ) to its challenger.
Then, Σ.Sign(sigki,CTΦ)→ σ is returned to B3. Finally, B3 returns CTΨ = (vki,CTΦ, σ) to A.

63

Decryption Queries. When A makes query (Decryption, j′,CT′Ψ = (vk′,CT′Φ, σ
′)), B1 proceeds as

follows. If Σ.Verify(vk′,CT′Φ, σ
′) = 0, it returns ⊥ to A. If not, B1 searches for i? such that vk′ = vki? . If

there is such i?, B1 checks whether (Case A) or (Case B) holds. If it holds, B1 stops the game and outputs
(i?,CT′Φ, σ

′) as its forgery. Otherwise, it answers the decryption query using {dk(j) = (mpk(j),msk(j))}j∈[µ].
Analysis. Let (i?,CT′Φ, σ

′) be the output of B1. If (Case A) holds, B1 has not made signing query for
i?. Therefore, B1 wins the game in this case. We then consider (Case B). Let the i?-th challenge query
be (Challenge, j′,M0,M1) and answer to the query be CT′′Ψ = (vki? ,CT′′Φ, σ

′′). Note that B1 has made
a signing query (Sign, i?,CT′′Φ) to obtain σ′′. Since A is a valid adversary, we have that (j′,CT′Ψ) 6=
(j′,CT′′Ψ). In particular, we have (CT′Φ, σ

′) 6= (CT′′Φ, σ
′′). Therefore, B1 wins the game also in this case. ut

Lemma 34. For any adversary A, there exists an adversary B2 such that Adv2(κ) ≤ AdvIBE
B2,Φ,(µ,Qc,Qk)(κ)

and Time(B2) ≈ (Qc +Qk) · poly(κ) + Time(A) where poly(κ) is independent of Time(A).

Proof. We construct an adversary B2 against (µ,Qc, Qk)-security of the IBE scheme from A. B2 simulates
Game2 for A as follows.
Setup. At the outset of the game, B2 is given ppΦ and {mpk(j)}j∈[µ]. Then, it runs Σ.Par(1κ) → ppΣ

and returns ppΨ = (ppΦ, ppΣ) and {ek(j) = (ppΦ, ppΣ,mpk(j))}j∈[µ] to A. B2 also picks (vki, sigki)
$←

Σ.Gen(ppΣ) for i ∈ [Qc].
Challenge Queries. When the adversaryAmakes the i-th challenge query (Challenge, j,M0,M1), B2 first
requests (Challenge, j, vki,M0,M1) for its challenger and receives Φ.Enc(mpk(j), vki,Mcoin) → CTΦ.
Then, B2 runs Σ.Sign(sigk,CTΦ)→ σ and returns the challenge ciphertext (vk,CTΦ, σ) to A.
Decryption Queries. When A makes query (Decryption, j,CT′Ψ = (vk′,CT′Φ, σ

′)), B2 first checks the
validity of σ′ by Σ.Verify(vk′,CT′Φ, σ

′). If it is 0, it returns ⊥. Otherwise, B2 checks whether (j′,CT′Ψ =
(vk′,CT′Φ, σ

′)) satisfies (Case A) or (Case B) condition. If it satisfies, B2 aborts and outputs a random bit.
Otherwise, B2 makes key extraction query (Extraction, j′, vk′) to its challenger to obtain sk

(j′)
vk′

and returns

Φ.Dec(CT′Φ, sk
(j′)
vk′

)→ M/⊥.
Output. Finally, B2 outputs the same bit as A as its guess.
Analysis. It is clear that we have Adv2(κ) ≤ AdvIBE

B2,Φ,(µ,Qc,Qk)(κ). Here, we check that B2 is a valid
adversary. At first, we check that B2 never makes any prohibited key extraction query. For a decryption
query (Decryption, j′,CT′Ψ = (vk′,CT′Φ, σ

′)) that satisfies neither (Case A) nor (Case B) condition, we
have that vk′ 6∈ {vki}i∈[Qc], or, for all i? ∈ [Qc] such that vki? = vk′, we have that the i?-th challenge
query made by A is (Challenge, j′′,M′′0,M

′′
1) for some j′′ 6= j′. In any case, B2 is allowed to make key

extraction query of the form (Extraction, j′, vk′). Next, we check that B2 never makes any prohibited
challenge query. Let us assume that B2 makes the i-th challenge query (Challenge, j, vki,M0,M1) for
some j, M0, and M1. Then, since B2 has not aborted until then, A has not made any decryption query that
satisfies (Case A). Therefore, for all key extraction query (Extraction, j′, vk′) made by B2 until then, we
have that vk′ 6= vki. ut

H Concrete Descriptions of Our Schemes

Here, we show concrete description of our proposed schemes. In all of the following schemes, we let the
identity space be {0, 1}`.

H.1 Description of IBE Scheme Φcomp
cc

Let the message space beM = {0, 1}m. We also let H be a family of pairwise independent hash functions

H : GT →M. We assume that
√
|M|
p2

= 2−Ω(κ).

64

Par(1κ) : It first runs (N,G,GT , g1, g2, g3, g4, e(·)) $← Gcomp(1κ) and picks w = (w1 . . . , w2`)
$← Z2`

N ,
a

$← Z∗N , H
$← H. Then it sets h := (g1g2g3g4)a and outputs pp = (g1, g

w
1 , g4, h,H) and sp = ⊥.

Gen(pp, sp) : It picks α $← ZN and outputs master public key mpk = (pp, e(g1, h)α) and msk = α.

Ext(msk,mpk, ID) : It first sets S = {2i − IDi|i ∈ [`]} where IDi ∈ {0, 1} is the i-th bit of ID ∈ {0, 1}`. It
then picks r, δ1, δ2

$← ZN and returns

skID =
(
K1 = hαg

r
∑
j∈S wj

1 gδ14 , K2 = g−r1 gδ24

)
.

Enc(mpk, ID,M) : It first sets S = {2i− IDi|i ∈ [`]}. Then it picks s $← ZN and outputs

CT =
(
C1 = gs1, C2 = g

s
∑
j∈S wj

1 , C3 = H
(
e(g1, h)sα

)
⊕M

)
.

Dec(skID,CT) : It parses CT → (C1, C2, C3) and computes e(C1,K1)e(C2,K2) = e(g1, h)sα. Then, it
recovers the message M by M = C3 ⊕ H(e(g1, h)sα).

REMARK. There is a slight gap from the description of the above scheme to the resulting scheme obtained by
our conversion in Section 4 to Πcc. We call the former scheme (A) and the latter scheme (B). In particular,
the description of the key extraction algorithm Ext in scheme (A) is slightly simplified compared to that of
scheme (B). We explain this. In the key extraction algorithm of scheme (B), skj defined as Equation (6) is
computed for all j ∈ S. We have

skj = (hαjg
rjwj
1 g

δj,j
4 , {grjwk1 g

δj,k
4 }k∈S\{j}, g

rj
1 g

δj,0
4)

where rj , δj,0, δj,k
$← ZN for all k ∈ S. From the Equation (12), we have that

sk
Ej
j =

(
hαjg

rjwj
1 g

δj,j
4 ·

∏
k∈S\{j}

(g
rjwk
1 g

δj,k
4), g

−rj
1 g

δj0
4

)
=

(
hαjg

∑
k∈S rjwk

1 g
∑
k∈S δj,k

4 , g
−rj
1 g

δj,0
4

)
.

Therefore, we have that skID in scheme (B) is in the form of

skID =
∏
j∈S

sk
Ej
j =

(
hαg

(
∑
j∈S rj)(

∑
k∈S wk)

1 g
∑
j∈S,k∈S δj,k

4 , g
−
∑
j∈S rj

1 g
∑
j∈S δj,0

4

)
.

The above private key corresponds to that of scheme (A) if we replace
∑

j∈S,k∈S δj,k,
∑

j∈S rj , and
∑

j∈S δj,0
with δ1, r, and δ2, respectively. It is clear that this does not change the distribution of the private key and thus
does not harm the security at all.

We note that we will apply similar simplification to the key extraction algorithms that appear in this
Appendix.

H.2 Description of IBE Scheme Φcomp
slp

Let the message space beM = {0, 1}m. We also let H be a family of pairwise independent hash functions

H : GT →M. We assume that
√
|M|
p2

= 2−Ω(κ). We set `1 and `2 be integers such that `1`2 ≥ 2`.

65

Par(1κ) : It first runs (N,G,GT , g1, g2, g3, g4, e(·)) $← Gcomp(1κ) and picks w = (u1, . . . , u`1 , v, u
′
1, . . . ,

u′`1 , v
′, w)

$← Z2`1+3
N , a $← Z∗N , H

$← H. Then it sets h := (g1g2g3g4)a and outputs pp =
(g1, g

w
1 , g4, h,H) and sp = ⊥.

Gen(pp, sp) : It picks α $← ZN and outputs mpk = (pp, e(g1, h)α) and msk = α.

Ext(msk,mpk, ID) : It first sets S = {2i − IDi|i ∈ [`]} where IDi ∈ {0, 1} is the i-th bit of ID ∈ {0, 1}`. It
then defines S̃j and Sj for j ∈ [`2] as

S̃j = S ∩ [(j − 1)`1 + 1, j`1], Sj = {j′ − (j − 1)`1 | j′ ∈ S̃j}. (33)

Finally, it picks δ1
$← ZN and ri, δ2,i, δ3,i, δ

′
3,i

$← ZN for i ∈ [`2] and outputs

skID =

K1 = hαg

∑
i∈[`2]

wri
1 gδ14 ,

K2,i = g−ri1 g
δ2,i
4 ,

K3,i = g
(v+i

∑
j∈Si

uj)ri

1 g
δ3,i
4 ,

K ′3,i = g
(v′+i

∑
j∈Si

u′j)ri
1 g

δ′3,i
4

i∈[`2]

 .

Enc(mpk, ID,M) : It first sets S = {2i − IDi|i ∈ [`]}. Then, it picks s, t1, . . . , t`2 , t
′
1, . . . , t

′
`2

$← ZN and
outputs

CT =

C1 = gs1,

C4 = H
(
e(g1, h)sα

)
⊕M,

 C2,i = g
ws+(v+i

∑
j∈Si

uj)ti+(v′+i
∑
j∈Si

u′j)t
′
i

1 ,

C3,i = gti1 , C ′3,i = g
t′i
1

i∈[`2]

 .

Dec(skID,CT) : It parses the ciphertext CT as CT→ (C1, {C2,i, C3,i, C
′
3,i}i∈[`2], C4). It then computes

e(C2,i,K2,i) · e(C3,i,K3,i) · e(C ′3,i,K ′3,i) = e(g1, g1)−wsri

Finally, it computes e(C1,K1) ·
∏
i∈S e(g1, g1)−wsri = e(g1, h)sα and recovers the message M by

M = C4 ⊕ H(e(g1, h)sα).

H.3 Description of IBE Scheme Φprime
cc

Let the message space beM = GT .

Par(1κ, `) : It first runs (p,G1,G2,GT , g, h, e(·)) $← Gprime(1
κ). Then it picks B

$← GL4(Zp), W1, . . . ,W2`
$← Z4×4

p and a random full-rank diagonal matrix D ∈ Z4×4
p with the entries (3, 3) and (4, 4) being 1.

Finally, it sets Z = B−>D and outputs

pp =

(
g, gπ1(B), gπ1(W1B), . . . , gπ1(W2`B)

h, hπ1(Z), hπ1(W>
1 Z), . . . , hπ1(W>

2`Z)

)
and sp = ⊥.

Gen(pp, sp) : It picks α $← Z4×1
p and outputs mpk = (pp, e(g, h)α

>π1(B)) and msk = α.

Ext(msk,mpk, ID) : It first sets S = {2i − IDi|i ∈ [`]} where IDi ∈ {0, 1} is the i-th bit of ID ∈ {0, 1}`.
Then it picks random r

$← Z2×1
p and returns

skID =
(
K1 = hα+

∑
i∈S π1(W>

i Z)r, K2 = h−π1(Z)r
)
.

66

Enc(mpk, ID,M) : It first sets S = {2i− IDi|i ∈ [`]}. Then it picks random s
$← Z2×1

p and returns

CT =
(
C1 = gπ1(B)s, C2 = g

∑
i∈S π1(WiB)s, C3 = e(g, h)α

>π1(B)s ·M
)
.

Dec(skID,CT) : It parses the ciphertext CT as CT→ (C1, C2, C3). It then computes

e(C1,K1)e(C2,K2) = e(gπ1(B)s, hα+
∑
i∈S π1(W>

i Z)r) · e(g
∑
i∈S π1(WiB)s, h−π1(Z)r)

= e(g, h)s
>π1(B)>(α+

∑
i∈S π1(W>

i Z)r)−s>π1(B)>(
∑
i∈S π1(W>

i Z)r)

= e(g, h)α
>π1(B)s

Finally, it recovers the message by C3/e(g, h)α
>π1(B)s = M.

H.4 Description of IBE Scheme Φprime
slp

Let the message space beM = GT . We also let `1 and `2 be integers such that `1`2 ≥ 2`.

Par(1κ, `) : It first runs (p,G1,G2,GT , g, h, e(·)) $← Gprime(1
κ). Then it picks B

$← GL4(Zp), U1, . . . ,U`1 ,

V,U′1, . . . ,U
′
`1
,V′,W

$← Z4×4
p and a random full-rank diagonal matrix D ∈ Z4×4

p with the entries
(3, 3) and (4, 4) being 1. Finally, it sets Z = B−>D and outputs

pp =

g, gπ1(B), gπ1(U1B), . . . , gπ1(U`1

B), gπ1(VB), gπ1(WB)

gπ1(U′1B), . . . , g
π1(U′`1

B)
, gπ1(V′B),

h, hπ1(Z), hπ1(U>1 Z), . . . , h
π1(U>`1

Z)
hπ1(V>Z), hπ1(W>Z)

hπ1(U′>1 Z), . . . , hπ1(U′>`1Z) hπ1(V′>Z)

 and sp = ⊥.

Gen(pp, sp) : It picks α $← Z4×1
p outputs mpk = (pp, e(g, h)α

>π1(B)) and msk = α.

Ext(msk,mpk, ID) : It first sets S = {2i − IDi|i ∈ [`]} where IDi ∈ {0, 1} is the i-th bit of ID ∈ {0, 1}`. It
then defines Sj for j ∈ [`2] as Equation (33). Finally, it picks r1, . . . , r`2

$← Z2×1
p and outputs skID =K1 = h

α+
∑
i∈[`2]

π1(W>Z)ri ,

K2,i = h−π1(Z)ri ,
K3,i = h

π1(V>Z+i
∑
j∈Si

U>j Z)ri

K ′3,i = h
π1(V′>Z+i

∑
j∈Si

U′>j Z)ri

i∈[`2]

 .

Enc(mpk, ID,M) : It first sets Sj for j ∈ [n2] as above. Then, it picks s, t1, . . . , t`2 , t
′
1, . . . , t

′
`2

$← Z2×1
p and

outputs CT =C1 = gπ1(B)s,

C4 = e(g, h)α
>π1(B)s ·M,

{
C2,i = g

π1(WB)s+π1(VB+i
∑
j∈Si

UjB)ti+π1(V′B+i
∑
j∈Si

U′jB)t′i

C3,i = gπ1(B)ti , C ′3,i = gπ1(B)t′i

}
i∈[`2]

 .

Dec(skID,CT) : It parses the ciphertext CT as CT→ (C1, {C2,i, C3,i, C
′
3,i}i∈[`2], C4). Observe that

e(C2,i,K2,i) · e(C3,i,K3,i) · e(C ′3,i,K ′3,i)

= e(g
π1(WB)s+π1(VB+i

∑
j∈Si

UjB)ti+π1(V′B+i
∑
j∈Si

U′jB)t′i , h−π1(Z)ri)

e(gπ1(B)ti , h
π1(V>Z+i

∑
j∈Si

U>j Z)ri) · e(gπ1(B)t′i , h
π1(V′>Z+i

∑
j∈Si

U′>j Z)ri)

67

= e(g, h)−s
>π1(WB)>π1(Z)ri = e(g, h)−s

>π1(B)>π1(W>Z)ri

for i ∈ [`2]. It computes

e(C1,K1)
∏
i∈[`2]

(
e(C2,i,K2,i) · e(C3,i,K3,i) · e(C ′3,i,K ′3,i)

)
= e(gπ1(B)s, h

α+
∑
i∈[`2]

π1(W>Z)ri) ·
∏
i∈[`2]

e(g, h)−s
>π1(B)>π1(W>Z)ri

= e(g, h)α
>π1(B)s.

Finally, it recovers the message by C4/e(g, h)α
>π1(B)s = M.

68

Contents

1 Introduction 1
1.1 Backgrounds . 1
1.2 Our Results . 2
1.3 Our Techniques . 3
1.4 Related Works . 7

2 Preliminaries 7
2.1 Identity-based Encryption . 7
2.2 Composite-Order Bilinear Groups . 8

3 Broadcast Encoding: Definitions and Reductions 9
3.1 Broadcast Encoding: Syntax . 10
3.2 Broadcast Encoding: Security . 11
3.3 Multi-Master-Key Hiding Security in Composite Order Groups 12
3.4 Reduction from MMH security to CMH security . 13

4 Almost Tight IBE from Broadcast Encoding in Composite-Order Groups 15

5 Framework for Constructions in Prime-Order Groups 17
5.1 Decisional Linear Assumption and Intermediate Problems 17
5.2 Computational-Master-Key Hiding Security on Prime Order Groups 18
5.3 Preparation . 19
5.4 Multi-Master-Key Hiding Security in Prime-Order Groups 20
5.5 Almost Tightly Secure IBE from Broadcast Encoding in Prime Order Groups 22

6 Construction of Broadcast Encoding Schemes 23
6.1 Broadcast Encoding with Constant-Size Ciphertexts . 24
6.2 Encoding with Sub-linear Parameters . 24
6.3 Implications . 25

7 Anonymous IBE with Tight Security Reduction. 25

8 Application to CCA Secure Public Key Encryption 26

References 27

A Proof of Lemma 1 29

B Security Proof for Our Scheme in Section 4 29

C Random Self-Rducibility of the Intermediate Problems and Reductions from the DLIN Assump-
tion 38
C.1 Reductions from DLIN . 38
C.2 Random Self-Reducibility of the Intermediate Problems . 41

69

D Omitted Proofs from Section 5 42
D.1 Proof of Lemma 4 . 42
D.2 Proof of Lemma 5 . 42
D.3 Proof of Theorem 3 . 43
D.4 Security Proof for Our Scheme in Section 5.5 . 47

E CMH-Security of Πslp 56

F Proof of Theorem 5 57

G Omitted Details from Section 8 61
G.1 Definitions . 61
G.2 CCA Secure PKE from IBE . 62

H Concrete Descriptions of Our Schemes 64
H.1 Description of IBE Scheme Φcomp

cc . 64
H.2 Description of IBE Scheme Φcomp

slp . 65

H.3 Description of IBE Scheme Φprime
cc . 66

H.4 Description of IBE Scheme Φprime
slp . 67

70

	Introduction
	Backgrounds
	Our Results
	Our Techniques
	Related Works

	Preliminaries
	Identity-based Encryption
	Composite-Order Bilinear Groups

	Broadcast Encoding: Definitions and Reductions
	Broadcast Encoding: Syntax
	Broadcast Encoding: Security
	Multi-Master-Key Hiding Security in Composite Order Groups
	Reduction from MMH security to CMH security

	Almost Tight IBE from Broadcast Encoding in Composite-Order Groups
	Framework for Constructions in Prime-Order Groups
	Decisional Linear Assumption and Intermediate Problems
	Computational-Master-Key Hiding Security on Prime Order Groups
	Preparation
	Multi-Master-Key Hiding Security in Prime-Order Groups
	Almost Tightly Secure IBE from Broadcast Encoding in Prime Order Groups

	Construction of Broadcast Encoding Schemes
	Broadcast Encoding with Constant-Size Ciphertexts
	Encoding with Sub-linear Parameters
	Implications

	Anonymous IBE with Tight Security Reduction.
	Application to CCA Secure Public Key Encryption
	References
	Proof of Lemma 1
	Security Proof for Our Scheme in Section 4
	Random Self-Rducibility of the Intermediate Problems and Reductions from the DLIN Assumption
	Reductions from DLIN
	Random Self-Reducibility of the Intermediate Problems

	Omitted Proofs from Section 5
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Theorem 3
	Security Proof for Our Scheme in Section 5.5

	CMH-Security of slp
	Proof of Theorem 5
	Omitted Details from Section 8
	Definitions
	CCA Secure PKE from IBE

	Concrete Descriptions of Our Schemes
	Description of IBE Scheme compcc
	Description of IBE Scheme compslp
	Description of IBE Scheme primecc
	Description of IBE Scheme primeslp

