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Abstract. Let P be chosen uniformly from the set P := Perm(S), the set of all permutations over a
set S of size N . In Crypto 2015, Minaud and Seurin proved that for any unbounded time adversary A,
making at most q queries, the distinguishing advantage between Pr (after sampling P, compose it for
r times) and P, denoted ∆A(Pr ; P), is at most (2r + 1)q/N . In this paper we provide an alternative
simple proof of this result for an upper bound 2q(r+1)2/N by using well known coefficient H-technique.
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1 Introduction

Let S be a set of size N > 0. Let P := Perm(S) denote the set of all permutations over the set
S. For any finite set X, we denote the uniform random variable over X as X. In this notation, P,
called uniform random permutation, is the uniform random variable chosen from the set of
all permutations over S. Let Pr := P ◦ · · · ◦ P (r times) define the transformed random variable
which is obtained by composing P for r times. It is also known as iterated random permutation.
Similarly, P−1 is the random variable applying inverse after we sample P.

Given a block cipher E over the plaintext space S, the cascade encryption of length r encrypts
a message x as Ekr ◦ · · · ◦ Ek1(x). It has been extensively studied in the setting where the keys
k1, . . . , kr are chosen uniformly and independently. However, before [1, 2], virtually nothing is known
regarding the security of cascade encryption when the keys are identical. Analyzing iterated random
permutation is relevant for the cascaded (or multiple) encryption schemes under same key. In Crypto
2015, Minaud and Seurin [2] proved that for any unbounded time adversary A, making at most q
forward an inverse queries, the distinguishing advantage between Pr and P, denoted ∆A(Pr ; P),
is at most (2r + 1)q/N . By using the standard reduction, one can claim that Erk(·) is strong
pseudorandom permutation as long as q = o(N/r) and E is also a strong pseudorandom permutation
with the same number of queries. The main result of [2] is to show that ∆A(Pr ; P) ≤ (2r+1)q/N .

1.1 Proof Ideas

We first describe the proof idea of [1]. Minaud and Seurin use the game playing technique as a
language of the proof. In between the games corresponding to the oracles P and Pr, they considered
intermediate games C and Cr where C is a permutation chosen uniformly from the set C of all
cycles over S. The result will follow by bounding the two terms (1) ∆A(P ; C) and (2) ∆A(C ; Cr).
The bound of the first term follows from the observation that the response of C (and P) on the
ith query is uniformly distributed from a set of size N − i (and N − i + 1 respectively). The Cr

is nothing but union of d cycles of same size where d = (N, r) (g.c.d. of N and r). To bound the



second term, the authors showed that Cr and C are identical except for queries belong to a secretly
chosen set of size r.

In our proof, we chose the intermediate game in a way so that we do not need to consider the
second term. In particular, we consider an intermediate oracle C`,1, a permutation chosen uniformly
from the set of all permutations union of ` self loops and a cycle. If we choose ` such that (`, r) = 1
then Cr

`,1 = C`,1. So we do not need to bound the second term. The bounding first term, however,
would be similar.

2 Preliminaries

We quickly recall the basic definition, notation and known results which would be used in the paper.

2.1 Partial functions and Associated Graphs

Any set of pairs v ⊆ S2 such that (x, y1), (x, y2) ∈ F ⇒ y1 = y2 is called partial function relation.
Given such a set v we associate a partial function, abusing notation, v : S → S such that (x, y) ∈ v
if and only if v(x) = y. In this paper the partial function and the partial function relation will
be identified. We write Dom(v) = {x ∈ S : ∃y ∈ S, (x, y) ∈ v}. Given any partial function v,
we associate a directed graph Gv := (S,Ev) where Ev = {(a, v(a)) : a ∈ Dom(v)}. In this paper,
unless mentioned otherwise, we assume only injective partial functions (subset of a permutation
relation). Some simple observations are as follows.

1. The graph Gπ for a permutation π is union of cycles (allowing self-loops, cycles of size 1).
2. For any partial (injective) function v with domain size q, the graph Gv is a union of a ≥ 1

straight line graphs and b cycles (removing the isolated nodes) with total number of nodes
q + a.

2.2 Coefficient H-technique to bound Distinguishing Advantage

Interpolation Probability. Patarin’s coefficient-H technique [3] (see also [4]) is a tool for showing
an upper bound for the distinguishing advantage. It mainly requires to compute interpolation
probabilities as defined below.

Definition 1. For any P ′ ⊆ P , and a partial injective function v = {(x1, y1), . . . , (xq, yq)} with
(domain) size q, the interpolation probability is defined as

IP ′(v) = Pr[P′(x1) = y1, . . . ,P
′(xq) = yq] =

#{π ∈ P ′ : π(xi) = yi, 1 ≤ i ≤ q}
#P ′

.

If π(xi) = yi for all 1 ≤ i ≤ q then we also say that π is an extension of v. In this case, v ⊆ π
(viewing as a function relation) and Gv is a subgraph of Gπ. For any partial injective function v of
size q, the number of permutations extending v is exactly (N−q)! as we can only choose a bijection
function over a set of size (N − q) freely. This proves the following lemma for the interpolation
probability of the uniform random permutation.

Lemma 1. For any partial injective function v with domain size q ≤ N , IP ′(v) = 1/P (N, q) where
P (a, b) = a(a− 1) · · · (a− b+ 1), 1 ≤ b ≤ a.



Let C1 = Cycl(S), the set of all cycles over S. We fix an element x0 ∈ S. A cycle can map x0 to
any element x1 from S \ {x0}. Similarly, image of x1 can be any element from S \ {x0, x1} and so
on. So |C1| = (N − 1)!. Now given a partial injective function v of size q < N with no cycle present
in Gv (if there is a cycle of size smaller than N then clearly we can not extend it) then we now
show that the number of cycles extending v is exactly (N − q − 1)!.

Lemma 2. Let v = {(x1, y1), . . . , (xq, yq)} be a partial injective function of size q < N with no
cycle. Then,

#{π ∈ C1 : π(x1) = y1, . . . , π(xq) = yq} = (N − q − 1)!.

Proof. Suppose Gv is decomposed into a straight line graphs L0, L1, . . . , La−1. We denote si and
ti to represent the staring and end node of Li, 0 ≤ i ≤ a. Let π ∈ C1 be any extension of v and
so Gv is a subgraph of the cyclic graph Gπ. So these a straight lines actually produce a gaps in
the cycle Gπ. Now, the Li’s can be in any order and there are (a− 1)! such orders. For each fixed
order, we can choose a non-negative integers x1, . . . xa, representing the number of nodes present
in the gap. Note that the number of non-isolated nodes in Gv is exactly q+ a. Thus, we can choose
any non-negative xi’s such that x1 + · · ·+ xa = N ′ := N − q− a. We know that there are

(
N ′+a−1
a−1

)
such solutions. If we fix any such solution, the N ′ isolated nodes in Gv can appear in any order in
Gπ. So we can order them in N ′! ways. Thus, the number of cycles extending v is exactly

(a− 1)!×N ′!×
(
N ′ + a− 1

a− 1

)
= (N − q − 1)!. ut

Corollary 1. For any partial injective function v with domain size q ≤ N and no cycle, IC1(v) =
1/P (N − 1, q).

Another interesting class of permutations is C`,1 which is union of exactly ` self-loops and a cycle

with the rest of the nodes. Here we assume that 0 ≤ ` ≤ N − 2. Clearly, |C`,1| =
(
N
`

)
× (N − `− 1)!.

Now given a partial injective function q of size q with no cycle, the number of permutations from
C`,1 extending v is at least

(
N−2q
`

)
× (N − `− q − 1)!. This is because, we first choose a set A of `

nodes from the isolated nodes of Gv and then we construct a cycle in S \A extending v. So

IC`,1
(v) ≥

(
N−2q
`

)
× (N − `− q − 1)!(

N
`

)
× (N − `− 1)!

.

The right hand side of the above equation further can be lower bounded by (1− q`
N−q−`)×

1
P (N,q) .

So we have the following result.

Lemma 3. For any partial injective function v with domain size q ≤ N and no cycle,

IC`,1
(v) ≥ (1− q`

N − q − `
)× 1

P (N, q)
= (1− q`

N − q − `
)× IP (v).

Distinguishing Advantage. Let P1, P2 ⊆ P and A be an oracle algorithm which makes at most
q queries (both forward and backward or inverse). We define

∆±A(P1 ; P2) := |Pr[AP1,P
−1
1 = 1]− Pr[AP1,P

−1
1 = 1]|.



Let ∆±q (P1 ; P2) := maxA∆
±
A(P1 ; P2) where maximum is taken over all adversaries making at

most q forward and backward queries. It is easy to see that ∆A and ∆q satisfy the triangle inequality.
Now we state a known result which can be proved by using standard reduction argument.

Fact 1. ∆±q (Pr
1 ; Pr

2) ≤ ∆±rq(P1 ; P2).

Now we describe the Coefficient H-technique (expressed in our notation) which would be used
to prove the main result. Let Fq denote the set of all injective partial functions of size q.

Theorem 1 (Patarin [4]). Let O1 and O2 be two oracle algorithms over S. Suppose there exist
a set of partial functions Vbad ⊆ Fq and ε > 0 such that the following conditions hold:

1. For all {(x1, y1), . . . , (xq, yq)} 6∈ Vbad,

Pr[O1(x1) = y1, . . . ,O1(xq) = yq] ≥ (1− ε) Pr[O2(x1) = y1, . . . ,O2(xq) = yq]

(the above probabilities are defined as interpolation probabilities).
2. For all A making at most q queries to O2, Pr[Trans(AO2) ∈ Vbad] ≤ δ where Trans(AO2) =
{(x1, y1), . . . , (xq, yq)} ∈ Fq, xi and yi denote the ith query and response of A to O2.

Then,
∆q(O1 ; O2) ≤ ε+ δ.

The above result can be applied for more than one oracle, in particular a permutation and its
inverse chosen uniformly from a subset P ′ of P . If we have an oracle O and its inverse O−1 then the
interpolation probability for both O and O−1 can be simply expressed through the interpolation
probability of O only. For example, if an adversary makes a query y to O−1 and obtains the
response x, we can write O(x) = y. Therefore, under the conditions of Theorem 1 we also have
∆±q (O;O′) ≤ ε+ δ.

3 Iterated Random Permutation is SPRP Indistinguishable

Theorem 2 (Minaud and Seurin [2]). For any positive integers q, r ≤ N ,

∆±q (Pr,P) ≤ q(2r + 1)

N
.

In this paper we provide a simpler proof for a little bit larger bound in terms of the order of r.
However, when r is trated as constant the both bound matched in order which is Θ(q/N).

Theorem 3. For any positive integers q, r ≤ N ,

∆±q (Pr,P) ≤ 2q(r + 1)2

N
.

Proof. There exists 0 ≤ ` < r such that (N − `, r) = 1. In fact, if rk < N ≤ (k + 1)N for some
integer k then we define N − ` = rk + 1 and clearly, (rk + 1, rk) = 1. So we take ` = N − rk − 1.
Now for all π ∈ C`,1, πr = π. In other words, Cr

`,1 = C`,1 as a random variable. Let

Vbad = {v : Gv has a loop for a partial functionv over S}.



We have already seen that for all injective v ∈ Fq \ Vbad with |Dom(v)| = q,

IC`,1
(v) ≥ (1− `q/(N − q − `))× IP (v).

Now we show the following claim.

Claim 1. For all A making at most q queries Pr[Trans(AP,P−1
) ∈ Vbad] ≤ q/(N − q + 1).

Proof of the Claim. Suppose the cycle occurs first time on ith query. Let vi−1 denote the transcript
up to i − 1 queries. Let us assume that the ith query be xi which is a P-query. Then it can make
a cycle only if the response takes the value x where x = xi if xi is isolated in Gvi−1 , else it is
the starting node of the straight line graph for which xi is the end node. So this can happen with
probability exactly 1/(N − i+ 1) ≤ 1/(N − q + 1). Summing over all i, the claim is proved. ut

Using coefficient H-technique as described in Sect. 2, we have

∆q(C`,1 ; P) ≤ q`

N − q − `
+

q

N − q + 1
≤ 2q(r + 1)

N
.

Here we assume that q + r ≤ N/2. Now, ∆q(P
r ; P) ≤ ∆q(P

r ; Cr
`,1) + ∆q(C`,1 ; P) ≤

∆rq(P ; C`,1) + ∆q(C`,1 ; P). Using the above bound (replacing q by rq for bounding the first
term) we have

∆q(P
r,P) ≤ 2q(r + 1)2

N
. ut
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