TriviA: A Fast and Secure Authenticated
Encryption Scheme *

Avik Chakraborti', Anupam Chattopadhyay?, Muhammad Hassan?, and
Mridul Nandi'

! Indian Statistical Institute, Kolkata, India
avikchkrbrti@gmail.com, mridul .nandi@gmail.com
2 School of Computer Engineering, NTU, Singapore

anupam@ntu.edu.sg
3 RWTH Aachen University, Germany
muhammad . hassan@rwth-aachen.de

Abstract. In this paper, we propose a new hardware friendly authen-
ticated encryption (AE) scheme TriviA based on (i) a stream cipher for
generating keys for the ciphertext and the tag, and (ii) a pairwise in-
dependent hash to compute the tag. We have adopted one of the ISO-
standardized stream ciphers for lightweight cryptography, namely Triv-
ium, to obtain our underlying stream cipher. This new stream cipher has
a state that is a little larger than the state of Trivium to accommodate
a 128-bit secret key and IV. Our pairwise independent hash is also an
adaptation of the EHC or “Encode-Hash-Combine” hash, that requires
the optimum number of field multiplications and hence requires small
hardware footprint. We have implemented the design in synthesizable
RTL. Pre-layout synthesis, using 65 nm standard cell technology under
typical operating conditions, reveals that TriviA is able to achieve a high
throughput of 91.2 Gbps for an area of 24.4 KGE. We prove that our
construction has at least 128-bit security for privacy and 124-bit security
of authenticity under the assumption that the underlying stream cipher
produces a pseudorandom bit stream.

Keywords: Trivium, stream cipher, authenticated encryption, pairwise
independent, EHC, TriviA.

1 Introduction

The emergence of Internet-of-Things (IoT) has made security an extremely im-
portant design goal. A huge number of embedded devices are online and this
online presence opens myriads of possibilities to a third party intruder to alter
the communication between two devices. Hence, a critical information trans-
fer requires a secure channel. Symmetric-key encryption provides privacy by
securing the channel, whereas message authentication codes (MACs) are used
to provide integrity and authenticity assurances. Using an appropriate, efficient

* This is the full version of the paper. The original version of the paper will appear in
the proceedings of CHES-2015.

2 Avik Chakraborti et al.

combination of symmetric key encryption and MAC, also called authenticated
encryption [10, 25], one can achieve both privacy and authenticity. An interest
in new efficient and secure solutions of authenticated encryption is manifested
in the recently launched competition called CAESAR [3].

Authenticated encryption can be achieved using either a stream cipher or a
block cipher or both. The general opinion seems to be that stream ciphers can be
designed to offer high throughput/ area ratios, a desired performance metric for
embedded devices. Trivium [16], Grain [23], Mickey [9] etc. are prominent exam-
ples of implementation-friendly stream ciphers from the eSTREAM project [4].
Trivium has been specified as an International Standard under ISO/IEC 29192-3
for the lightweight cryptography category [5].

AUTHENTICATED ENCRYPTION BASED ON STREAM CIPHER. A method of us-
ing stream cipher for the construction of authenticated encryption scheme is de-
scribed by Bernstein in [12]. The authenticated encryption scheme HELIX [19]
and later PHELIX [35] are designed based on a stream cipher. Both were later
attacked [31, 36]. Grain has been modified to Grain-128 [24] to support an in-
tegrated authentication mechanism. To the best of our knowledge, in the ETSI
specification [1], combining the stream cipher SNOW-3G [2] with polynomial
hash, and later in [33] by Sarkar, a definitive study on constructions of authen-
ticated encryptions using stream cipher and AU hash have been made. Integrat-
ing universal hash with other cryptographic primitives has also been studied by
Bernstein [11].

Our Contribution. In this paper, we propose a new stream cipher TriviA-SC
which is a modification of Trivium [16], a well-studied and efficient (both in
terms of software and hardware) stream cipher. Moreover, our new stream cipher
has a key and a initial value of 128 bits. We introduce non-linearity in the
output stream which helps to resist some known approaches of finding the key
for Trivium. We also study a A-Universal hash EHC [32], parametrized by a
parameter d, which requires a minimum number of field multiplications and can
be implemented with small hardware footprint. In the paper by Nandi [32], the
AU property (a close variant of pair-wise independent property) of EHC is shown
for d < 4. Here we extend their result and show that the same hash function is
a AU hash for d = 5. This choice of d helps us to make a higher security claim.

Finally, we describe an efficient integration of these primitives to construct
a new authenticated encryption scheme-TriviA constructed as a variant of the
stream cipher based modes described by Sarkar [33]. We would like to point out
that EHC requires a variable key to incorporate variable length messages and the
security of it relies on the assumption that all the keys are chosen independently.
However, when we use it in an authenticated encryption mode, we have to leak
the key through ciphertext and the independence assumption is no longer true.
We have shown that TriviA achieves 128-bit security for privacy and 124-bit
security for authenticity, assuming that the underlying stream cipher Trivia-SC
produces pseudorandom bit stream. We would like to remark that our scheme
provides no less security than most of the authenticated encryption schemes.

TriviA: A Fast and Secure Authenticated Encryption Scheme 3

We also report the hardware performance of TriviA on both FPGA and ASIC
platforms and make a comparative study with other authenticated encryption
schemes implemented in a similar platform. We have observed that, TriviA is
very efficient in terms of throughput, cycles per byte and area-efficiency. For
area-efficiency metric TriviA is at least 3.8 times better than the closest candidate
Ascon from our list.

2 Preliminaries

Notation. We represent a tuple (X,, -, Xp) by X[a---b], when the X,’s are
bit strings, we also identify the tuple as the concatenation X,|| - - - || X. For a set
S, let ST = uUx, S S<" = U S" and S* = ST U {)\} where)\ is the empty
string. The usual choice of S is {0,1}. For Vo = x; ...z, € {0,1}*, denote n by
|z|. The string with one followed by n zeroes is denoted by 10™. Let the number
of n-bit blocks in a Boolean string « be denoted by ¢ = |z|/n.

Finite Field. Let Fon denote the finite field over {0,1}", for a positive integer
n. In this paper, we consider the primitive polynomials [18, 29] psa(z) = 232 +
222 + 22 4+ 2+ 1 and pea(x) = 2% + 2* + 23 + 2 + 1 to represent the fields
Fos2 and Faoea respectively. We denote the corresponding primitive elements by
«a and B which are binary representations of 2. The field addition or bit-wise
addition is denoted as “xor” @. We note that multiplication by powers of a, 5 are
much simpler than multiplication between two arbitrary elements. For example,
multiplication between an arbitrary element a := (ag, ...,as1) € {0,1}32 and «
isa-a = (bg,...,bs31) where by = asy, by = ag®asy, by = a1 ®azy, byo = a1 Basz;
and for all other i, b; = a;_1. Similarly, one can express the multiplication of
other powers of primitive elements by some simple linear combinations of the
bits a;’s. This representation is useful when we implement power of o and S
multipliers in hardware.

2.1 Authenticated Encryption and Its Security Definitions

An authenticated encryption F is an integrated scheme that provides both
privacy of a plaintext M € {0,1}* and authenticity or data integrity of the
plaintext M as well as the associate data D € {0,1}*. Thus, on the input of a
public variable nonce N (it can be considered as an arbitrary number distinct
for every encryption), associate data D € {0,1}* and a plaintext M € {0,1}*,
Fg produces a tagged-ciphertext (C,T) where |C| = |M| and |T| = t (tag-
size, usually 128). Its inverse or decryption algorithm F gl returns L for all
those (N, D,C,T) for which no such M exists, otherwise it returns M for which
(C,T) is the tagged-ciphertext.

Privacy. A distinguishing advantage of A against two oracles O; and Os is
defined as A4 (O7;O0s) = |Pr[A®t = 1] — Pr[A®2 = 1]|. Given a nonce-respecting
adversary A (nonces for every encryption are distinct) we define the privacy or

4 Avik Chakraborti et al.

PRF-advantage of A against F' as Adv‘lff(A) := Aa(Fk; $) where $ returns
a random string of appropriate size. The PRF-advantage of F' is defined as

AdvP(q,0,t) = max AdvP(4),

where the maximum is taken over all adversaries running in time ¢ and making
q encryption queries with total bit-size of all responses at most o.

Authenticity. We say that an adversary A forges an authenticated encryption
F if A outputs a fresh (not obtained before through an F-query) (N, D,C,T)
where Flzl(N, D,C,T) # L. Note that in the forging attempt N can repeat. In
general, a forger can make ¢; attempts to forge. We denote the forging advan-
tages as

Adv}Uth(A) := Pr[AF forges], Adv%uth(q,qf, o,t) = max Adv%uth(A) ,

where the maximum is taken over all adversaries running in time ¢ making ¢
encryption queries and ¢y forging attempts with total bit-size of all responses at
most o.

2.2 Examples of Universal Hash Functions

A keyed hash function h(K;-) over D is called an e-AU (universal) hash
function if for all d, the §-differential probability

Prih(K;x) — h(K;2') =6 <eforallz #2" € D .

In this paper, we conventionally assume the hash keys are uniformly chosen
from the key-space. A hash function h is called e-universal (or ¢U) if the 0-
differential probability (or collision probability) is at most € for all x # z'. We
call h e-balanced if for all a,b, Pr[h(K;a) =b] <e.

Examples. The Multi-linear hash ML(kq; z1) := k; -2 and Pseudo-dot-product
(or PDP) hash PDP(k;x) := (z1 ® k1) - (2 @ k2), with k = kq||k2 and =z =
x1||x2 are two popular examples of 2732_ AU hash where x1, 22, k1, ky € Fos2 and
k,z € Fass. One can check that the AU property of a hash using independent
keys is closed under summation. This is a useful technique to define a hash for
larger domain, e.g. we can add the invidual PDP values corresponding to the
message and key blocks to obtain a AU hash @Zl(kgi_l @ x9i—1) - (k2i ® x9;)
for ¢ = (21, ,xom) and k = (k1, - kom).

3 EHC Hash

This section describes a A-Universal hash EHC or Encode- H ash-Combine hash,
which is constructed using an error correcting code ECCode, of distance d. We
first describe a Vandermonde matrix of size d x £, denoted V,y(d)7 ~ as a primitive

TriviA: A Fast and Secure Authenticated Encryption Scheme 5

element of Fyn is defined below. For n = 32 and 64 the matrices are denoted by
Vcsd) and Vﬂ(d) respectively.

1 e 1 1 1
'ye_l e 72 /y 1
V’)gd) _ A20=1) L 421

AE=D@=1) L 2(d-1) d-1 g

We have observed that, whenever 1,7,...,7‘"! are distinct, any s < d
columns of V are linearly independent. We next describe the VMult algorithm
for multiplying V(,Sd) to a vector h = (hy,...,hy) € IE"g2 in an online manner

using Horner’s rule without requiring any additional memory.

Algorithm VMult, g
Input: z := (z1,22,...,7¢) € Fgw

Output: y := (y1,¥2, .- .,ya) € Flsz such that y = VD g

1 y1:4..:yd:032
2 fori=1to/ _
3 forj=1tod: y; <o/ ' -y;®x;; * VHorner module *\
4 return (y1,...Yd);
Algorithm 1: VMult,, ¢ multiplies an /-dimensional column vector x = (x1, ..., z¢) by

a Vandermonde matrix V.? to output a d-dimensional vector y := 7ASS Similarly we
define VMultg 4 for 64-bit field elements. Note that, o and 3 are the primitive elements
of Fy32 and Fye4, respectively described in Sect. 2. When we implement this algorithm
in hardware we only need to implement VHorner.

3.1 ECCode

We next describe the efficient instantiation of an error correcting code ECCodey
with systematic form over {0, 1}%4.

ECCodey(1,. .. 20) = (L1, s oy Tog1y -y Totd—1) (1)
where (l‘g.H, L. ,xg+d_1) = VMU|tB’(d,1)($1, ce ,.Tg).

Example 1. Let (z1,72,23) € ({0,1}5%)® be the input to ECCodey. The out-
put is ECCodey(z1, x2,23) = (21,22, X3, T4, T5,Tg) Where, T4 = x1 + T2 + 3,
x5 = B2x1 + Bro + 23 and 6 = Bz + BPxs + 3.

6 Avik Chakraborti et al.

In [32], it has been shown that for d = 4, the above code has minimum
distance 4. We next extend their result for d = 5 and show that it has minimum
distance 5 for all £ < 230, The result is described in Proposition 1 below.

Proposition 1. ECCodes has minimum distance 5 over {0,1}%% for any fized
<23,

Proof. ECCode;s is a linear code with systematic form in which the expansion
is determined by the matrix V := V3. So it suffices to show that V3 is an MDS
matrix, i.e., all square submatrices are non-singular. Clearly, any square subma-
trix of size 1 or 4 is a Vandermonde matrix and hence non-singular. Each of the
submatrices of size 2 can be converted to a Vandermonde matrix by elementary
column operations (multiplying the columns with non-zero constants).

We now consider the submatrices of size 3. If we consider the submatrices
corresponding to the 1%, 2" and the 3"¢ row or the 2"¢, 3" and the 4*" row, then
these submatrices can be transformed to a Vandermonde matrix by elementary
column operations (by non-zero constant multiplications). If we consider the
submatrices corresponding to the 15,274 and the 4*" row or the 1%¢,37% and the
4*" yow then the matrices have the form

1 1 1 1 1 1

Bi 6j Bk or ﬂQi ,sz ﬂQk

631‘ ng B3k BSi ﬁSj Bsk
One can check that the submatrix corresponding to the 15t 2"% and the 4"
row is non-singular if and only if 1 + (=7 + =3 =£ 0, by computing the
determinant. We have experimentally verified that the above condition holds for
all i < j < k <230, This completes the proof. 0

3.2 EHC Hash
EHC hash [32] is a 27128 AU hash which requires fewer multiplications than the
Toeplitz hash [26] to process a message block. For a fixed length ¢ < 230 the
definition of EHC(4? is given in the Algorithm 2 for all d < 5. PDP hash used
in this construction is described in Sect. 2.

The variable length hash EHCY defined over all messages of sizes 64¢, 1 <
£ < 239 is computed as follows:

EHCYW (K, (V1,V2)); @) = EHC) (K 2) @ by - Vi @ b - Va,

where z € %% K € {0,1}54+4=1) v, V, € {0,1}%2¢ and (by, b2) € {0,1}? is
the binary representation of £ mod 4.
Example 1 (continued). We have already seen how ECCodey(x1,x2,23) =
(z1, %2, 73,74, T5,26) has been defined. Let k = (kq,...,ke) € ({0,1}54)¢ be
the corresponding key. For 1 < i < 6, denote, x; = x;1||zi2 and k; = ki||kio
with x“,xig,kil,kig S {071}32. For 1 S) S 6, denote g, = PDP(I‘Z,]CZ) =
(i1 + ki1)(zi2 + Ki2). Thus, EHC(4’3)(k;x1,ac2,m3) = (01,02, 03,04) Where,

e o01=g1+...+05+ 3, 03 = a’g1 + ...+ ags + ge,

° 03=0ag +...+a%gs+gs o4 =a'gi+...+a’gs +ge

TriviA: A Fast and Secure Authenticated Encryption Scheme 7

Algorithm EHC(®9
Input: (ki,. .., kera—1) € {0,1}%40F4=D 4 € {0,1}54

1 (z1,...,%e4d-1) < ECCodeq(z);
2 fori=1tol+d—1: g;=PDP(ki,z;);
3 return VMulte,a(g91, 92, - - -, getd—1);

Algorithm 2: EHC(%? [32] hash for a fixed length message.

3.3 Discussions

ECCode; and ECCodes are MDS codes for £ < 232 and ¢ < 230 respectively
(see [32] and Proposition 1). To incorporate arbitrary length messages, we define
ECCode]; as follows. It first parses « € Fjss as (X1,...,Xm) such that all X;’s,
possibly excluding the last one, are 23°-block elements. We call these X;’s chunk.
The last one is possibly an incomplete chunk. Next, apply ECCode, to all of these
chunks individually. More formally,

ECCode};(z) = (ECCode4(X1),...,ECCodey(X,m—1), ECCodey(X,)). (2)

We next extend the definition of EHC(d’Z), denoted as xEHC(d’Z)7 which works
the same as EHC™® except it runs ECCode]; instead of ECCodey (line 1 of
Algorithm 2), i.e., the first step is executed as (x1,...,2p14-1) + ECCode}(z).

Table 1. # 32-bit field multiplications needed for EHC-Hash, Toeplitz-Hash and Poly-
Hash (with d = 4) to process a 64/-bit message, £ < 23°. In case of Poly-Hash we need
to apply 40-bit field multiplications for a 160-bit hash.

Tag Size| d # DMultiplications |# Multiplications |# Multiplications
EHC Hash Toeplitz-PDP Hash Poly-Hash
128 4 {4+ 3 40 4.5¢
160 5 {+4 5¢ 4.5¢ [40]

Comparison with EHC® for arbitrary length and other hashes. We
have chosen EHC hash as it requires much less multiplications than others (see
Table 1). We have modified the processing of EHC for variable length messages.
EHC uses a fixed length dependent key to deal with variable length messages, and
the key needs to be stored, but we generate all the keys in run-time through the
stream cipher so we do not need to store it. To achieve authenticity, one needs
to apply a pairwise independent hash. By adding a length dependent key to the
output of a Universal hash we can construct a A-Universal hash. Construction of

8 Avik Chakraborti et al.

a pairwise independent hash can be achieved by masking one more independent
key to the output of a A-Universal hash. However, as we generate keys on the fly,
our hash becomes pairwise independent and this further saves more storage. We
provide a detailed discussion of hardware implementation along with the block
diagram in Sect. 6.

4 TriviA Authenticated Encryption

We first propose a stream cipher TriviA-SC* which has a similar design as the
popular stream cipher Trivium [16]. Trivium is well studied and efficient both in
terms of hardware and software. It uses an 80-bit secret key, an 80-bit nonce and
a 288-bit internal state and provides 80-bit security. We aim to provide higher
security while maintaining the simplicity and without increasing the state size
much. In particular, we have made the following modifications:

1. We keep the size of state S to be 384 bits and increase the size of key K and
nonce N to 128 bits.
2. We introduce a non-linear effect in the key stream computation.

Fig. 4.1. TriviA-SC Stream Cipher

4 Our authenticated encryption TriviA (a shorthand notation for Trivium-
Authenticated Encryption) is based on the stream cipher TriviA-SC.

TriviA: A Fast and Secure Authenticated Encryption Scheme 9

Modules of TriviA-SC: The state S := (S1,S2,...,S53s4) € {0, 1}384 is represented
by A= (51, ey 5132)7 B = (5133, ey 5237) and C = (52387 sy 3384)-

Load (K,N) / * Key and IV Loading * /
A=K|1*, B=1'"% C=N|1";

=

Update(S) / * Update a Single Round * /
t1 < Ags @ A132 @ (A1so A A1s1) @ Bos;
ta < Bsg @ Bios ® (B1os A Bioa) ® Clao;
tz Co ® Cra7 B (Cras A Cras) ® Ars;
(Al, AQ,A3, ...,A132) < (tg, Al, AQ, ey A131);
(Bl, Bg, B3, vy B105) < (tl, Bl, Bg, . B104);
((117 CQ, Cg, cey 0147) < (tg, 01, CQ, ceny 0146);

N O Uk WwN

Algorithm 3: Modules of TriviA-SC: Note that, the update and key-extract module
has parallelism and so we can run KeyExt and Update 64 times in one clock-cycle which
would be denoted as KeyExt64 and Update64 described in Algorithm 4.

Algorithm 3 describes all the basic modules used for the stream cipher TriviA-
SC (see Fig. 4.1). A proper integration of these modules need to be defined to
obtain a stream cipher or an authenticated encryption. For example, when we
want to use it in stream cipher mode, we first run Load(K, IV) for an initial
value IV, then Update for some reasonable rounds (to make the state random)
and finally, both KeyExt and Update to obtain the key stream. However, in case
of authenticated encryption we additionally need to process the associate data
and need to produce a tag.

Trivia-SC is also parallelizable up to 64 bits, i.e., the stream cipher can pro-
duce upto 64 output bits at a single clock cycle (described in KeyExt64). Simi-
larly, the 64 round updates of Trivia-SC can also be computed in a single clock
cycle (described in Update64) due to the parallelism. KeyExt64 and Update64 are
described in Algorithm 4.

4.1 Specification of TriviA

Algorithm 5 describes our authenticated encryption algorithm TriviA.

Sarkar in [33] has proposed several generic methods of combining AU hash
and a stream cipher SCk. Formally, a stream cipher supporting an n-bit initial
value IV is a keyed function SCk : {0,1}"* xN — {0,1}T such that SCk(N;¢) €
{0,1}*. Whenever understood, we simply skip ¢ as an input for the sake of
notational simplicity. We mention a scheme which is close to our design paradigm
and state its security guarantee (in a revised and simplified form appropriate to
our notation).

Theorem [33] Suppose H; is an e-AU n-bit hash function and SC is a stream
cipher. Let AE be an authenticated encryption scheme defined as

AEk(N,D,M)=(C:=M& Z, T:=H.(M)&R),

10 Avik Chakraborti et al.

KeyExt64 / x Extract 64 Bit Key Stream * /
1 t= A..66 D Ag..132) © Bis...69) D Baz-..105) D C[3...66] D Clga...147) D
Alsg...102) A Bs...¢6] ;
Output t ;

N

Update64 / * Update 64 Rounds x /
t1 As...6) D Afso-..132) D (Afe7.--130] A Afgs.-.131]) D Bizs...96] ;
ta < Bs...60] © Blaz...105] D (Bao.--103) A Bpa1.-.104)) ® Cls7...120] 5
tz < Cis...66) D Clsa...147] @ (Cls2...145) A Clss...146]) ® Ap2...75] 5
(Al,AQ,A3, ...,A132) < (t3,A1,A27 ...,Asg) ;
(Bl,Bg,Bg, ...,B105) < (tl,Bl,Bg, ...,B41) s
(01,02703, ...,0147) — (tz,cl,CQ, ...,Agg) ;

® N O Utk W

Algorithm 4: 64-bit modules of Trivia-SC. Here A denotes “bitwise-and” of two
64-bit variables.

Algorithm TriviA
Input: (K, (N, D, M)) € {0,1}*2® x ({0,1}'?8 x {0,1}* x {0,1}*), £ar, p < 23°.

1 Processing N : Load(K, N), Update64 18 times;

2 Processing D : (z,SK) < KeyGen({p +4) ;

3 T = EHC(5’ZD>(SK 75) @ (2ep+2(|2ep+3ll2ep+4[1..32]) 5
4 S[1..160] = S[1..160] & T’, Update64 18 times;

5 Processing M : (z,SK) < KeyGen({a + 3);

6 if 64 divides |M| then V = z¢,, ||ze,,+2 ;

7 else V = z¢y 41|26 +35

8 C=M@&z T=EHC**M (SK :M)aV ;

9 return (C,T) ;

Module KeyGen(¢):
10 fori=1to £: z = KeyExt64, SK; = A[1..64], Update64 ;
11 return (zi| -z, SK1|--- SK¢) ;

Algorithm 5: TriviA Authenticated Encryption Scheme: Given a binary string x, we
define Z := z||10% where d is the smallest non-negative number such that |z| + d + 1
is a multiple of 64 and we write ¢, = |Z|/64. The nonce N is chosen unique for each
encryption. Here C = M & z means that we xor M with the first |M| bits of z.

TriviA: A Fast and Secure Authenticated Encryption Scheme 11

where (R, Z) = SCx(H.(N,A), |M|+n). Then, we have

1. Advzré(q, o, t) < Advgré(q, o, t') + q¢%c and
2. Adviih(q, qf, o, t) < Adv‘s’g(q—i—l, o, ')+ (14 ¢?)e.

Where t' =~ t +tg and ty is the total time required for hashing all queries.

How OUR CONSTRUCTION DIFFERS FROM AE . The above construction re-
quires two keys K and 7. In our construction, we generate the key 7 from the
stream cipher and hence we require only one key K. As the stream cipher gen-
erates run time output bit stream, we can apply those universal hash functions
requiring variable length keys, which are more efficient than those hash func-
tions based on a single small key. For example, Poly-Hash [14, 15, 34] is not as
hardware efficient as EHC and provides a weaker security bound.

4.2 Discussions

Authenticated Encryption for larger message/associate data. We can
further extend TriviA for computing the intermediate data and the tag for arbi-
trary length message and associated data. A brief description of the extended
version of TriviA is given as follows. The extended algorithm of TriviA for han-
dling larger messages is functionally almost the same as TriviA, except that it
uses xEHC®) to compute the intermediate data (line 3 of Algorithm 5) and the
tag, and the KeyGen algorithm will generate keystream according to the length
of the codeword computed by ECCode;. The algorithm also selects the part of
the key z that appears in the same clock cycles with the message blocks so that
we do not need to hold the key. This part of z is xored with the message to
produce the ciphertext as before.

Nonce Misuse Scenario. We generalize the EHC hash to incorporate 160 bits
hash for processing associate data. This would allow some room for repetition of
the nonce (but no repetition of nonce, associated data pair) without degrading
the security (see the privacy and authenticity bound for TriviA in Sect. 5).

5 Security Analysis

5.1 Security Against Known Attacks

Cube-Attack and Polynomial Density: The Cube Attack [17] is the best
known algebraic attack on reduced round versions of Trivium [16]. Note that
the output bits from the stream cipher can be described by a polynomial over
the key and the nonce bits. The cube attack tries to analyze the polynomial
P(ki,--- ,kn;ivy, - - -, ivp) corresponding to the first output bit, where k1, --- , ky,
are the secret key bits and 4vy,-- - ,iv, are the public nonce bits. Given a subset
S = {ivy,, -+ ,ivy, } of the set of all public nonce bits, P can be written as
P =iv,, - -ivy, Ps + Pr, where no monomial of Pg is divisible by iv,, - - - iv,,,.
Pg is called the superpoly yielded by S and iv,, - - - iv,, is called the maxterm if

12 Avik Chakraborti et al.

Table 2. The estimation of monomial densities of TriviA-SC with 1152, 960, 896 and
832 Rounds.

Monomial Size| 25 | 26 | 27 | 28 | 29
1152 0.49]0.49| 0.5 |10.52| 0.4

960 0.5]0.5]0.5(0.51{0.36
896 0.5(0.49| 0.5 |0.47| 0.5
832 0.43]0.36(0.29/0.14]0.03

Pg is linear. The TriviA-SC with the recommended 1152-rounds initialization has
no maxterm of size less than or equal to 29. Moreover, for the 896 and 832-round
initialization version we have not found any maxterm of size 29 or less. But for
the 768-round initialization version we have found some linear superpoly with
cube size 20. This justifies our recommendation of the 1152-round initialization
for TriviA-SC. We have also applied the Moebious Transform technique described
by Fouque et al. [20] to estimate the polynomial density of the output boolean
function. We restrict polynomial to 30 IV variables and the density of the mono-
mials of degree less than 30 in the restricted polynomial has been calculated. The
result is given in Table 2. For a random Boolean function, we expect 50% den-
sity. The statistical tests on TriviA-SC have been performed by observing the
output bit stream using the NIST Test Suite [6] and no weeknesses were found.
We have also performed the same tests on a version of TriviA-SC where the key
is a random 384-bit string and no weaknesses were found.

Resistance against guess-then-find attack [27]: The attack presented by
Maximov et al. [27] works in two phases. The first phase guesses some internal
state and makes linear approximations of some of the nonlinear state updation.
This would help to produce a set of linear equations (and also several second
degree equations) on the unguessed state bit using the observed output stream.
In the second phase we simply solve all state bits provided we have sufficient
number of equations. This idea is applicable for both reduced round versions of
Trivium and Trivia-SC.

One possible approach of the first phase for the Trivium is an exhaustive
guess on one-third of the state (96 bits with the indices that are a multiple of

3 stored in a set ’Tét) out of 288 bits). As the output bits are linear in the state
bits, it is sufficient to guess 72 state bits and the remaining 32 state bits can
be recovered easily. This actually happens, as indices of the bits in the output
polynomial are multiple of 3 as well as the lifetime of a state bit in the internal
state is at least 66 rounds before it is mixed with other bits. Using this guesses,
we can obtain n; = 100 linear equations and ne = 61, 2-degree equations on the
remaining internal state bits by observing the output stream. So the complexity
for the second phase, denoted ¢, would be costly as we do not have sufficient
linear equations.

There is an optimized version of the first phase which further makes linear
approximation of the nonlinear terms in the state update functions to construct

TriviA: A Fast and Secure Authenticated Encryption Scheme 13
several other linear equations on the state bits in T(gt). The complexity of the
first phase for this version of the attack is 2835 and it forms n; = 192 linear
equations. Thus, the complexity in the second phase would be small.

Unlike Trivium, TriviA-SC has a nonlinear function in the output stream so
to obtain n; = r linear equations one has to approximate r nonlinear equations
(“AND” gate). In fact, as long as r < 96, the indices involved in these linear
approximations are completely disjoint. Thus, the probability that all of these
linear approximations hold is (3/4)". Now if we follow a similar approach men-
tioned above, we first make a guess of one-third of the internal state (128 bits out
of 384). However, one can simply guess 106 state bits and the remaining 22 bits
can be recovered from the output stream. As the output is nonlinear, we have
to make a linear approximation for 22 round outputs. So the complexity of the
first phase would be about 2128722 x (4/3)22. Now if we want to obtain n; = 32
linear equations for the second phase (which is in fact much less than sufficient
linear equations to recover all unguessed state bits), the total complexity for the
first phase becomes 206 x (4/3)?2 x (4/3)3? > 2128, So we can not perform the
above guess-then-find attack strategy in our stream cipher.

5.2 Privacy of TriviA

An adversary is called nonce-respecting if it makes encryption queries with all
distinct nonce. A relaxed nonce-respecting adversary makes queries such that
the pairs (N, D) are distinct over all ¢ encryption queries. In the following two
theorems we assume that the stream cipher Trivia-SC generates a pseudorandom
bit stream.

Theorem 1. Let A be a relaxed nonce-respecting adversary which makes at most
q encryption queries. Moreover we assume that A can make at most 232 queries

. priv q
with a same nonce. Then, Adv'y . ,(A) < 5.

Proof. Suppose A makes ¢ queries (N1, Dy, M),...,(Ng, Dg, My) such that
(N;, D;)’s are distinct and let Z; and (C;,T;) be the respective key stream (in-
cluding the state bit extraction) and final responses. Moreover let T/ denote
the intermediate tag obtained from the associated data which are inserted in
the state after processing associated data. Let N' = {N : 3 N = N;} denote
the set of all distinct nonces. We denote m = |[N|. For each N € N, we write
In ={j : N; = N} and |Zn| = qn. Note that, gv < 232 for all nonces N and
ENGN qn = q. By our assumption on the stream cipher output, the key stream
Z;’s would be independently distributed whenever we have distinct nonces. Thus,
we define an event coll: there exists i # j such that N; = N; and 7] = T7. If
the coll event does not hold, then by using the ideal assumption of the stream
cipher, all key streams Z;’s (even with same nonce) are independent and uni-
formly distributed. As (C;, T;)’s are injective functions of the key-stream Z;, the
distribution of (C;, T;)’s are independent and uniform. So the privacy advantage
is bounded by the probability of the event coll. In Proposition 2 below, we show
that the collision probability is bounded above by 55 and hence the result fol-
lows. a

14 Avik Chakraborti et al.

Proposition 2. Pricoll] < 55 .

Proof. Fix a nonce N € N. The probability that there exists i # j with
N; = N; = N such that 7] = T} is bounded by (%) x 2767, This actually
holds as this collision implies that EHC®(D;) = EHC®(D,) and EHC® is a 2190-
AU hash (the underlying code ECCodes is MDS as shown in Proposition 1).
Summing up the probability for all choices of nonce N, we have

Pricoll] = Y g% /20 <252 3" gy /2190 = /212
NeN Ne~N

5.3 Authenticity of TriviA
Now we show the authenticity of TriviA.

Theorem 2. Let A be a relaxed nonce-respecting adversary which makes at most
q queries such that nonce can repeat up to 232 times. In addition, A is making
at most qy forging attempt. If the stream cipher Trivia-SC is perfectly secure then

auth q q
Adviiia(4) < o1 T 217]204 :

Proof. As before, let the ¢ queries be (D;, N;, M;) and the corresponding re-
sponses be (C;, T;) with intermediate tags T}, 1 < i < ¢q. We also denote the key
stream for the ith query be Z;. By applying the privacy bound, which is q/229,
we may assume that the all ¢ key streams Zi,...,Z, are uniformly and ran-
domly distributed. Now we consider two cases depending on a forging attempt
(N*,D*,C*,T*).

Case A. The adversary makes a forging attempt (N*, D*, C*,T*) with a fresh
(N*,D*). In this case, let Z = {i : N; = N*}. By the restriction, |Z| < 232. Note
that for all j € Z, the Z;’s are independent from Z* the key-stream for the forging
attempt. For all ¢ € Z, the Z,’s also would be independent from Z* provide that
the intermediate tag T’s do not collide with the intermediate tag T™* for the
forging attempt. This can happen with probability at most 232 /2160 = 2128,
Whenever Z* behaves like a random string, the forging probability will be 27128
(as the tag size is 128). So the total forging probability, in this case, will be at
most 27128 4 9-128 _ 9127

Case B. Suppose the adversary makes a forging attempt with (N*, D*) =
(N, D;) for some i. Note that one of the key-streams Z; and Z* would be a
prefix of the other (depending on the length of the ciphertext). Note that for all
other Z;’s, j # i would be independent of Z* and so we can ignore the responses
of the other queries. So the forging probability is the same as

p = Pr[(N;, D;, C*,T") is valid | (C;,T;) is response of (N;, D;, M;)]. (3)

Claim p < 2714,

TriviA: A Fast and Secure Authenticated Encryption Scheme 15

We postpone the proof of the claim. Assuming this claim, any forging at-
tempt is successful with probability at most 27124 (as the Case-A has lower
success probability). Since A makes at most ¢y attempts and adding the pri-
vacy advantage the forging probability would be bounded by s + %. This
completes the proof.

Proof of the Claim. Let M* be the message corresponding to C*. We prove it
by considering different cases based on ¢ := ¢, and ¢* := {p;~. For simplicity,
we assume that both M; and M™* are complete block messages. The proof for
incomplete message blocks is similar. We also write Z into a pair (SK, z) where
SK denotes the state key and z denotes the output stream. Note that, the z-
values can be leaked through the ciphertext and some of the z-values may be also
used to compute the tag. We mainly need to handle different cases depending
on how the z-values are leaked.

Case 1: £* = £ In this case, the conditional forging event can simply be
written as EHCY(SK; M;) @ EHCH (SK*; M*) = 6 := Ty & T*. As, * =/, thus
SK = SK*. By using the known fact that EHC is a 27128- AU hash [32] we have
D S 2—128'

For the case 2 and 3, we denote, EHC*(z; M;) = (Hi, H) and similarly
EHC* (2*; M*) = (H}, H}) where H; and H?s are 64-bit strings. We similarly
parse T and T* as (T1,T) and (T7,T%).

Case 2: £* = £ 4+ 1 In this case, all of the variable keys z are distinct and are
not leaked through the ciphertext C;. So the forging probability is equivalently
written as

p= F)I’[]{ik D zp41 = T1*7H5 D zpy3 = T2* | H @z =T1,Hy ® zp40 = TQ].

Thus, by using the entropy of 2y, z¢+1, 2¢+2 and zy43, we get the bound.

Case 3: £* > £+ 1 Except the case £* = £ + 2, this case is same as before
as all variable keys z are distinct and are not leaked through the ciphertext C;.
When ¢* = £+ 2 we have three variable keys zy, z¢42 and zp44 which are masked
to define the tags. So the forging probability is equivalently written as

p=PriH] ® zppo =T, Hy ® 2p4a =T5 | HH ® z¢ = T1, Hy ® 2442 = To].
The independence of the z values implies,
p=Pr[H; ® zp44 = T3] x Pr[H{ & Hy =Ty & Ty := §]
=27 X PrlH} © Hy =T} © Ty := 0.

Now the effect of the state keys SKyi4,SKyy5 is not present in Hf but they
influence Hy. By using 27 3'-balancedness of the pseudo-dot-product hash, we
conclude that Pr[H} & Hy := 6] < 2% and so p < 27126,

16 Avik Chakraborti et al.

Case 4: £* < £ — 2 In this case, the variable keys are different for both
computations. Since one set of variable keys are leaked through the ciphertext
and the other has full entropy we use the fact that EHC is 27'24-balanced. Using
this one can show that p < 9124

Case 5: £* = £ — 1 Again, all four variable keys are distinct and one of
them is leaked. So we can apply the argument (using balancedness of one 64-bit
equation) to show that p < 27126,

Case 6: £* = £ — 2 Again, by simplifying the forging event with the notation
described in case 3 we have

p=PrlH =20 o ®Ty , Hy &2z, =T5 | H ® 2o =T1,Hs & zp42 = Ts).

Here note that, unlike in case 2, the value of z,_o is leaked in the ciphertext.
The above probability is the same as Pr[H; = ¢1, Hy & Hy1 = ¢3] for some 64-bit
constants ¢; and co. Based on the balanced property of H; (based on the state
key SKi,...,S5Ky+1) and the balanced property of H; (based on the state key
SKy.9,SKy3) we can conclude that p < 27124,

By considering all the above cases, we prove that p < 27124 which concludes

the proof of the claim. a

6 Hardware Implementation of TriviA-ck

6.1 Cycles Per Byte (cpb) Analysis

The TriviA design targets high speed implementation and requires 47 clock cycles
to authenticate and encrypt one message block of 64 bits. 18 cycles are required
for the initialization phase where the state register is updated in every cycle
along with Z, the associated data AD is loaded and processed in 1 cycle, and
during the checksum phase instead of loading the block, the checksum computed
in an earlier stage is used as the input. The overall computation requires 4 cycles
and an additional cycle is required to update the tag and the state register during
the processing of AD. For message (msg) encryption, again, the same number of
cycles are required but AD is replaced by msg. The rest of the process is the same
with one minor difference, now the checksum is calculated only 3 times instead
of 4 before the tag update. Analytically, the cycle count can be represented in
the following manner

adlen — msglen
8 8

where init_count is 18 in TriviA, adlen and msglen are in bytes instead of bits.
The corresponding c¢pb can be calculated using the following formula

cycle count = (init_count % 2) + +4+14+34+1, (4

epb — cycle count (5)
msglen

TriviA: A Fast and Secure Authenticated Encryption Scheme 17

Pipelining: So far, our analysis is done based on a design without any pipeline.
Pipelining is a well-known technique to improve the throughput for a digital
design. A three-stage pipelined design is employed for TriviA, which is explained
later in this section. Pipelining affects latency adversely. In our case, the cycle
count to authenticate and encrypt one message block of 64 bits increases to 49.
Two additional clock cycles are required to flush the pipeline registers. The rest
of the data processing flow remains the same. Similarly the cycle count for a
pipelined design can be represented in the following manner.

adlen msglen
8 8

cycle count = (init_count x 2) + + 9+ (pipe_stages — 1), (6)
where pipe_stages is equal to 3 in our case. As the number of pipe_stages in-
creases, the corresponding cycle count will increase accordingly. The ¢pb can be
calculated using Eq. (5).

6.2 Hardware Architectures

We have implemented two different architectures of TriviA: a base implementa-
tion without any pipelining, and a three-stage pipelined implementation. The
implementation is performed in a modular manner, which offers excellent scal-
ability. Due to the similarity in the operations for processing AD, and msg,
the same hardware modules are used to process both kinds of data. A single
bit switch is used to distinguish between the type of input data. Following the
different operations in TriviA algorithm, the TriviA architecture consists of the
following modules:

1. State Registers: The state registers are used to store the intermediate states
after each iteration. The state registers are used for 384-bit State_Update,
256-bit Z register, 64-bit block, 160-bit tag, and 256-bit checksum.

2. State_Update: The State_Update module is nothing but a combination of Up-
dated64, KeyExt64 which are used to update the current state of the stream
cipher and generate key-stream. This module is used in each iteration during
initialization, encryption, and finalization. It takes 128-bit key, 128-bit nonce
(which is further divided into two 64-bit parts, namely pub and param) and
384-bit stream cipher state register as inputs and updates the stream cipher
state.

3. Field Multiplication: The Field multiplication module takes two 32-bit inputs,
calculates the pseudo dot product on the input, and produces a 32-bi