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Abstract

Modular exponentiation is core to today’s main stream public key cryptographic systems. In this
article, we generalize the classical fractional wNAF method for modular exponentiation – the classical
method uses a digit set of the form {1, 3, . . . ,m} which is extended here to any set of odd integers
of the form {1, d2, . . . , dn}. We give a formula for the average density of non-zero terms in this new
representation and discuss its asymptotic behavior when those digits are randomly chosen from a given
set. We also propose a specific method for the precomputation phase of the exponentiation algorithm.

1 Introduction

Let k = (kt−1 . . . k0)2 be an integer and G a group. For g ∈ G, one can always compute gk with at most
2 log(k) = 2t group operations using the classical square-and-multiply algorithm (or double-and-add in
its additive form). There are various methods to speed up the exponentiation process, most of them are based
on the initial idea from Brauer [1] that uses the 2w-ary representation of k and performs the exponentiation

accordingly. Generally speaking, those methods consider a recoding of k of the form
∑t−1

i=0 ki2
i with ki in

some digit set D and performs the exponentiation with an adapted version of the square-and-multiply

algorithm. Many improvements have been proposed over the years, from signed digits to sliding and fractional
windows [17, 14]; see [2, 7] for a general overview. Common to those improvements is the use of digit sets
containing odd integers lower than some fixed bound. In the present work we propose to generalize those
approaches to any set of digits. We propose a general recoding algorithm using any digit set containing 1
and give a general formulae to compute the average density of non-zero terms of the recoding. All these
lead to a new randomized exponentiation scheme that can be used as a countermeasure to power analysis.
It has the advantages of providing more randomness than classical randomization techniques and being at
the same time almost as asymptotically efficient as standard exponentiation methods.

The rest of this paper is organized as follows: Section 2 is a brief review of the standard fractional window
exponentiation method, in Section 3 we describe our new recoding algorithm and give a formulae to compute
its average density of non-zero terms for any set of digits, in Section 4 we describe our new randomized
exponentiation scheme, study its average density and propose a specific method for the precomputation
phase of the exponentiation and in Section 5 we discuss the security provided by that new scheme and
propose some comparisons with previous related works.

2 Preliminaries

2.1 Fast exponentiation

Let k, g and G be as defined above. Most standard fast exponentiation schemes fall into a general framework.
First find a recoding of k = (kl−1 . . . k0)2 with ki ∈ D∪{0}, for some set D. Then compute gk using Algorithm
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1. From this perspective, successive improvements of the square-and-multiply algorithm can be viewed as
a new recoding scheme using larger and larger sets of digits and providing sparser and sparser recoding, that
is with as few non-zero terms as possible. All put together, the various improvements give the fractional
windows or frac w-NAF proposed by Möller [14]. In that case, D = Bm = {±1,±3, . . . ,±m}. Möller proved
that the average density of non-zero terms of this representation is 1

a+1 , where a = Wn + 1+m
2Wn−2 − 2 and

Wn = blog2 kc+ 2. In this work we generalize this approach to any set D containing 1.

Algorithm 1 Computation of gk

Require: An integer k = (kl−1 . . . k0)2, an element g and a set of integers D
Ensure: gk

1: h← 1
2: for d ∈ D do
3: Gd ← gd

4: end for
5: for i = l − 1 . . . 0 do
6: h← h2

7: if ki 6= 0 then
8: h← h×Gki

9: end if
10: end for
11: return h

Remark 1. In certain contexts, it has been proven to be more efficient to consider recoding using a different
base than 2. For instance, fast cubing can lead to consider ternary or hybrid binary/ternary representations
[3] and fast group endomorphism have been used in producing complex representations such as the τNAF on
Koblitz curves [12].

3 Random digit representation

Let D = {±d1, . . . ,±dl} be a set of odd integers. We call D-representation of k any recoding of the form
k =

∑
ki2

i with ki ∈ D ∪ {0}. We define N (D) as the set of all integers for which there exists a D-
representation. It is clear that any integer in N (D) is a multiple of the gcd of D. Thus, in order to have
N (D) = Z we must have gcd(D) = 1. However the reverse does not hold. Indeed, with D = {±5,±13},
1 does not have a D-representation. On the other hand, as long as 1 belongs to D we are guaranteed that
N (D) = Z since its binary representation is a D-representation for any k. In the rest of the paper, we will
only consider sets on the form {±1,±d2, . . . ,±dn}.

3.1 The recoding algorithm

Let us start with a few notations. Let w > 0 be an integer. For any integer x we define pw(x) := x mod 2w.
We then set Dw = pw(D) and Dw = Dw ∪ {2w − d : d ∈ Dw}. Finally, we define wn = blog2(maxi(di))c+ 1
and Wn = wn + 1.

In order to define the recoding map, we first need to define, for all integer k, wmax(k) as the largest
integer w ≤Wn such that there exists a digit di ∈ D satisfying the following two conditions:

1. di < k,

2. pw(k) = pw(di) or 2w − pw(k) = pw(di).

Finally, let the mapping digitD : N→ D ∪ {0} be defined as follows:

• set Wmax = wmax(k)
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• if k is even, digitD(k) = 0,

• if pWmax(k) ∈ DWmax , digitD(k) = d with any integer d < k such that pw(k) = pw(d)

• if 2Wmax − (k mod 2Wmax) ∈ DWmax , digitD(k) = −d with any integer d < k such that 2w − pw(k) =
pw(di).

It is important to remark that the map is well defined, that is to say that digitD(k) exists for all k.
Indeed 1 ∈ Dw for any w. The following algorithm uses the digitD map to compute the D-representation of
any given k.

Algorithm 2 Random Digit Representation of integer k

Require: An integer k and a set D = {±1,±d2, . . . ,±dn}
Ensure: k = (ktkt−1 . . . k1k0)2 ∈ N (D)

1: i = 0
2: while k! = 0 do
3: ki = digitD(k)
4: k = k−ki

2
5: i = i+ 1
6: end while
7: return (ki−1 . . . k0)

Remark 2. If D = {±1, . . . ,±m} we obtain exactly the fractional windows recoding.

Example 1. Let k = 31415 and D = {1, 3, 23, 27}. We have D2 = {1, 3}, D3 = {1, 3, 7}, D4 = {1, 3, 7, 11}
and D5 = D6 = D. Algorithm 2 applied to k gives:

1. k is odd, k mod 26 ≡ 55 ≡ −19 and k mod 25 ≡ 23, so wmax = 5 and digitD(k) = 23,

2. k0 = 23 and k = k−23
2 = 15696.

3. k1 = k2 = k3 = k4 = 0 and k = k
24 = 981.

4. k is odd, k mod 26 ≡ 21 ≡ −43, k mod 25 ≡ 21 ≡ −11 and k mod 24 ≡ 5 ≡ −11 thus wmax ≡ 4 and
digitD(k) = −p−15 (11) = −27

5. k5 = −27 and k = k+27
2 = 504,

6. k6 = k7 = k8 = 0 and k = k/8 = 63,

7. k mod 26 ≡ −1 so wmax = 6 and k9 = −1

8. k10 = k11 = k12 = k13 = k14 = 0, k = k+1
26

9. k = k15 = 1.

Finally we obtain k = (1, 0, 0, 0, 0, 0,−1, 0, 0, 0,−27, 0, 0, 0, 0, 23)2.

3.2 Average density

Theorem 1. Let k be an integer and D = {1, d2, . . . , dn} a set of digits. Then the asymptotic average
density of non-zero terms achieved by the random digit is 1

a+1 , where

a = 2D(Wn) +D(Wn − 1) +D(Wn − 2) + · · ·+D(2)

and D(w) = #Dw

2w−1 .
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Proof. Let k be an odd integer greater than dn and d = digitD(k). We first want to evaluate the probability
P (w) that wmax(k) = w for every w ≤ Wn. Let D(w) be the probability that the residue of a given odd
integer modulo 2w lies in Dw. By construction we have that P (Wn) = D(Wn). Moreover, it is clear that
d ∈ Dw ⇒ Dw−1 which implies that, for w < Wn, P (w) = D(w)−D(w + 1).

Now, from the definition of wmax(k), we have (k− d) ≡ 0 mod 2wmax . In other words, k can be written
in the form

k = (k′t′ . . . k
′
wmax

0 . . . 0d)2, ki ∈ 0, 1.

If wmax < Wn, still by definition, k′wmax
6= 0. However, if wmax = Wn it is necessary to estimate the

average number of consecutive zeros starting from k′wmax
. Classically, for an arbitrary long sequence of

random bits, this number is 1. As a consequence, we can finally write the value of a, the average number of
zeros following a non-zero digit in the RDR of an integer in terms of D(w):

a = (Wn)P (Wn) + (Wn − 2)P (Wn − 1) + · · ·+ 2P (3) + P (2)

= (Wn)D(Wn) + (Wn − 2)(D(Wn − 1)−D(Wn)) + · · ·+D(2)−D(3)

= 2D(Wn) +D(Wn − 1) + · · ·+D(3) +D(2)

Example 2. For set Bm = {1, 3, . . . ,m} we have wn = blog2(m)c and Wn = wn + 1. It is easy to see that,
on one hand D(wn) = D(wn − 1) = · · · = D(2) = 1 and on the other hand D(Wn) = (m+ 1)/2wn , so that

a = Wn − 2 +
m+ 1

2wn−1
,

which corresponds to the standard result on the average density of the frac-wNAF representation.

Example 3. With D = {1, 3, 23, 27}, we have D2 = {1, 3}, D3 = {1, 3, 5, 7}, D4 = {1, 3, 5, 7, 9, 11, 13, 15},
D5 = {1, 3, 5, 9, 23, 27, 29, 31}. From Theorem 1 we obtain that

a = 2× 1

4
+

1

2
+ 1 + 1 + 1 = 4.

In this case the RDR has a density of 1
5 , the same as the 4-NAF representation, where D = {1, 3, 5, 7}. In

other words, we see that we can achieve the same density with different sets of digits of the same cardinal.

4 Randomized exponentiation scheme

Algorithm 2 allows us to compute the RDR of an integer k using any set of digits D as long as 1 belongs to
it. We can now integrate this algorithm into a general randomized exponentiation scheme. Let g be a group
element, k an exponent and m and t two integers satisfying t ≤ m. One can compute gk using the following
scheme:

1. randomly choose t− 1 odd integers {d2, . . . , dt} among {3, . . . ,m},

2. compute RDR of k using Algorithm 2 and set D = {1, d2, . . . , dt},

3. compute gk using Algorithm 1.

One obvious advantage of such a scheme is that it is naturally resistant to differential power analysis.
Indeed, from one exponentiation to the other, it ensures that the operation flow will be completely different.
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4.1 Average case and the urn problem

From Theorem 1 we can compute the asymptotic density of the RDR for a given set of digits D. One natural
question is what is the average behavior of this density when the digits are chosen randomly. Let m be a
parameter and let us consider Bm = {1, 3, . . . ,m}. We want to evaluate the average density of the RDR
when we randomly choose l integers from Bm. To apply our theorem we need to compute the value of D(w)
for all needed w and thus the cardinal of Dw.

First we note that by definition all d ∈ D are smaller than 2Wn−1, which implies that (2Wn − d) 6= d and
thus DWn

= 2l. Evaluating D(w) for smaller value of w becomes a harder problem. If an integer d is in D,
then all integer of the form d + i2w and i2w − (d mod 2w) do not add up anything to the cardinal of Dw.
In short, we need to evaluate the number of equivalence classes of the set D with respect to the relation Rw

define for all w ≤Wn by:

xRwy ⇔ x ≡ y mod 2w, or x ≡ −y mod 2w.

An easy way to consider this problem is to see it as an urn problem. Let us consider N = m+1
2 balls

corresponding to our initial integer set Bm. For a given w, define Cw = 2w−2 as the number of equivalence
classes with respect to Rw. For instance, with w = Wn − 1, there exist 2Wn−2 possible classes (that is odd
integer lower than 2Wn−1), each pair (i mod 2Wn , 2Wn − (i mod 2Wn)) for i in {1, 3, . . . , 2Wn−2} being one
of them. Finally, define Ei

w = as the number of elements of class i. Our problem consists in drawing l balls
(without replacement) in an urn containing N balls of Cw different colors and evaluate the average number
of different colors obtained. Let M(l, c,N) be the number of different drawings, without replacement, of l
balls among N having exactly c different colors. Then the probability that we obtain exactly c colors is

P [X = c] =
M(l, c,N)(

N
l

) ,

where X is a random variable corresponding to the number of drawn colors. A theorem from Walton [20]
shows that M(l, c,N) can be computed by developing the polynomial

Fw(X,Y ) =

Cw∏
c=1

(
Y {(1 +X)E

i
w − 1}+ 1

)
.

Indeed, he proves that

Fw(X,Y ) =
∑
c

∑
l

M(l, c,N)X lY c.

It is then possible to compute D(w) for practical values of w and finally obtain the density of the RDR
representation for a given number of drawings. In this work we have computed it for w ≤W ≤ 10 . Results
are summarized in Table 4.2. In order to maximize the number of possible digit sets, we fix t =

⌊
1+m
4

⌋
as the

number of drawn balls. The wNAF column corresponds to the (optimal) density of the wNAF representation
using as many digits as the RDR. We observe that the difference between the two methods is relatively small.
The general loss in terms of density is less than half a bit.

4.2 Precomputation scheme

The first step of our exponentiation scheme consists of computing g±di for di ∈ D. Finding an efficient way
to perform this computation is somehow equivalent to finding a short addition chain computing the set D.
The problem is trivial when D = Bm as the chain (1, 2, 3, 5, 7, 9, . . . ,m) is the shortest possible. However
when the di’s are randomly chosen it is harder to find an optimal chain. The naive approach consists of
using the previous chain and only keep the needed elements. It requires the computation of m/2 integers
when only m/4 could be needed in the best case. Here we propose a method to find shorter addition chains
than the naive approach, inspired by Pippinger algorithm [16]. It is a very general algorithm that allows
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m RDR wNAF
7 3.833 4
15 4.771 5
31 5.728 6
63 6.706 7
127 7.695 8
255 8.689 9
511 9.686 10
1023 10.69 11

Figure 1: Inverses of the density of the RDR and wNAF using
⌊
m+1
4

⌋
digits

the computation of multiple powers of a group element. Our case however does not require such a general
method. In particular, we know that

• we need to compute the gdi ’s for small values of di,

• all di’s are odd,

• the cardinal of D is fixed to bm+1
4 c.

Thus we can use a more simple method described next. Let 0 < b < W be a parameter and define
q = bm

2b
c:

1. compute X = {g, g2, g3, g5, g7, . . . , g2b−1},

2. compute Y = {g2b , g2·2b , , g3·2b , . . . , gq·2b},

3. for all di /∈ X, compute gdi = xy, (x, y) ∈ X × Y .

The computation cost is 2b−1 group operations to compute X, q group operations to compute Y and at
most #D group operations to obtain the gdi ’s. The total cost is thus bounded by 2b−1 + bm

2b
c+ #D group

operations. In the end, we save many operations in the later stage depending on parameter b. Indeed, the

proportion of integer di in X is given by 2b

m+1 . So for instance, with m+1
4 randomly chosen numbers, our

method saves on average 2b−2 group operations.

5 Side-channel Security

The main interest of randomizing the exponentiation process is to provide resistance to side-channel attacks
via algorithmic countermeasures. In this section we discuss the security of our method against differential
and simple side channel attacks.

5.1 Differential attacks

Differential side-channel attacks aim at finding the secret key by analyzing power traces of several executions
of the same computation, depending on that secret. Recent works have proven to be able to defeat various
randomization methods such as the Binary Signed Digit randomization [4] or Liardet-Smart randomized
algorithm [18] for instance. The main weakness of those methods is little randomness they actually provide
despite the apparent variety of recoding they provide. In particular, Fouque et al. stress that such random-
ization techniques fail because they do not provide a sufficiently large number of possible local internal states
and transitions from that states, making them vulnerable to collision attacks. Another important remark is
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that those attacks use the facts that the set of digits is known in advance. For instance, the hidden Markov
model cryptanalysis used against the Oswald-Aigner randomized exponentiation makes a direct use of the
knowledge of the three possible digits 0, 1 and −1 to produce the probabilistic state machines used in the
cryptanalysis [11].

From that perspective, our method is the first to provide two levels of protection against those attacks.
First, the fact that the digit set is randomly chosen prevents a traditional attackers to mount any attack
previously mentioned as they directly use the fact that the digit set is know in advance. In order to mount
an attack, all possible digit sets must be considered and dealt with in parallel. For that matter, the size
of the set can be seen as a security parameter. For instance, using an eight digit recoding (seven of them
randomly chosen from {3, . . . , 31}), we obtain a total of 6435 possible digit sets and more than 3 × 108 for
a sixteen digit recoding. On top of that, the recoding algorithm itself provides randomness as when several
digits satisfy the appropriate congruence one is chosen at random. It means that for a given digit set, any
integer can have many different recodings.

5.2 Simple side-channel attacks

Simple side-channel attacks aim at obtaining information on the secret key using a single trace. Typically,
being able to distinguish squarings from multiplications allows an adversary to recover the secret exponent
of any exponentiation using the square-and-multiply algorithm. From that perspective, a randomization
process does not, by itself, provide any protection. To ensure that an algorithm is secure against such attacks,
the standard way is to make the computation as regular as possible. It can be done at the algorithm level,
using the Montgomery ladder for instance, or at the group algorithmic level, for example by using unified
formulae in the context of elliptic curve cryptography or using block atomicity.

Our algorithm clearly will not have a regular behavior, however that does not signifies that it is vulnera-
ble to simple attacks. Indeed, one obviously implements it using one of the previously mentioned arithmetic
level countermeasures, but even without them, being able to distinguish between squaring and multiplication
does not provide much information on the secret key. Even if the sequence of multiplications and squarings
performed by the algorithm is given, one still has to guess which digit has been used at each step. For
instance, for a 128-bit security, and therefor a 256-bit exponent, and an eight digit recoding (that is with
parameter m = 31 in Table 1), there will be on average 44.6 non-zero digits in the recoding corresponding
to so many multiplications in the trace. As there are 8 possible choices for each of these multiplications the
total number of combinations is roughly 844.6 ∼ 2133.8. This has to be multiplied by the number of possible
digits sets (6435). Trying to recover the original key from an exhaustive search would be more difficult than
attacking the system itself.

Remark 3. All previous claims are only based on general considerations. It would be presumptuous to
consider our scheme secure and great care must be taken for that matter. Many previous schemes have been
claimed to be side-channel resistant and have been broken little time after that. However, because of an extra
degree of randomization our approach can potentially provide more protection than those previous methods
and can be combined with others in order to, at least, make attackers job harder, for very little computational
overhead.

5.3 Related works

Randomization is a standard way to provide security against differential side-channel attacks. In particular,
several randomized exponentiation algorithms have been proposed [6, 15, 10, 19, 8] but the security offered by
those methods remains in general uncertain. For example, randomized recodings proposed by Ha and Moon
[6] or Oswald and Aigner [15] have been defeated due to little local variation of the data. It was exploited
through collision detection [4] or more generally using the hidden Markov model cryptanalysis [11]. In a
similar way, some randomization techniques focus on the management of the window in sliding window
algorithm [9, 13] and successful attacks have been mounted against some of them [18]. More generally, the
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hidden Markov model attack seems to be a threat to all of them. Finally, very recently Guérini, Imbert and
Winterhalter proposed a new recoding method based on exact covering systems of congruences [5]. In some
way it is the closest approach to ours as it provides several possible digits, however fixed in advance, at every
step of the recoding and seem to provide more randomness and security than the previous approaches. It
is also interesting to remark that both methods can be combined as they rely on different aspects of the
exponent recoding.

6 Conclusions

In this work we have proposed a generalization of the traditional fractional wNAF recoding. Our algorithm
allows the computation of the representation of an integer using a set of any digits that has 1 in it. We also
have given a general formulae to compute the average density of non-zero terms of such representations. We
also studied the average density obtained when digits are chosen at random in a given set and suggested a
randomized schemes that could be used to provide some additional protection against differential side-channel
attacks. It has the advantage of being flexible, as the number of digits and thus the security provided can
be chosen at will, and is also efficient as the average density is close to that of the fractional wNAF using
the same number of digits.

The main question that arises is that of the possibility to generalize such recoding even further. In other
words, is it possible to eliminate the necessity of having 1 in the digit set? We know that not all numbers
can be represented using any digit set, so given a digit set D, is there a condition under which any integer
can have a D-representation?
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