
On the Impossibility of Virtual Black-Box

Obfuscation in Idealized Models

Mohammad Mahmoody∗ Ameer Mohammed† Soheil Nematihaji‡

May 24, 2016

Abstract

The celebrated work of Barak et al. (Crypto’01) ruled out the possibility of virtual black-
box (VBB) obfuscation for general circuits. The recent work of Canetti, Kalai, and Paneth
(TCC’15) extended this impossibility to the random oracle model as well assuming the existence
of trapdoor permutations (TDPs). On the other hand, the works of Barak et al. (Crypto’14)
and Brakerski-Rothblum (TCC’14) showed that general VBB obfuscation is indeed possible
in idealized graded encoding models. The recent work of Pass and Shelat (Cryptology ePrint
2015/383) complemented this result by ruling out general VBB obfuscation in idealized graded
encoding models that enable evaluation of constant-degree polynomials in finite fields.

In this work, we extend the above two impossibility results for general VBB obfuscation in
idealized models. In particular we prove the following two results both assuming the existence
of trapdoor permutations:

• There is no general VBB obfuscation in the generic group model of Shoup (Eurocrypt’97)
for any abelian group. By applying our techniques to the setting of Pass and Shelat we
extend their result to any (even non-commutative) finite ring.

• There is no general VBB obfuscation in the random trapdoor permutation oracle model.
Note that as opposed to the random oracle which is an idealized primitive for symmetric
primitives, random trapdoor permutation is an idealized public-key primitive.

Keywords: Virtual Black-Box Obfuscation, Idealized Models, Graded Encoding, Generic
Group Model.

∗University of Virginia, mohammad@cs.virginia.edu. Supported by NSF CAREER award CCF-1350939. The work
was done in part while the author was visiting the Simons Institute for the Theory of Computing, supported by the
Simons Foundation and by the DIMACS-Simons Collaboration in Cryptography through NSF grant CNS-1523467.
†University of Virginia, am8zv@virginia.edu. Supported by University of Kuwait.
‡University of Virginia, sn8fb@virginia.edu. Supported by NSF award CCF-1350939.



Contents

1 Introduction 1
1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Generic Group Model: Proving Theorem 1.1 . . . . . . . . . . . . . . . . . . 4
1.2.2 Low-Degree Graded Encoding Model: Proving Theorem 1.2 . . . . . . . . . . 5
1.2.3 Random Trapdoor Permutation Model: Proving Theorem 1.3. . . . . . . . . . 6

2 Virtual Black-Box Obfuscation 7

3 Impossibility of VBB in Generic Algebraic Models 8
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Generic Group Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 The Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Degree-O(1) Graded Encoding Model . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Proving Theorem 3.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Impossibility of VBB in the Random TDP Model 18
4.1 The Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 How to Obfuscate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 How to Execute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Completeness and Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Extension to hierarchical random TDP . . . . . . . . . . . . . . . . . . . . . . . . . . 22



1 Introduction

Obfuscating programs to make them “unintelligible” while preserving their functionality is one of
the most sought after holy grails in cryptography due to its numerous applications. The celebrated
work of Barak et al. [BGI+01] was the first to launch a formal study of this notion in its various
forms. Virtual Black-Box (VBB) obfuscation is a strong form of obfuscation in which the obfuscated
code does not reveal any secret bit about the obfuscated program unless that information could
already be obtained through a black-box access to the program. It was shown in [BGI+01] that
VBB obfuscation is not possible in general as there is a family of functions F that could not be
VBB obfuscated. Roughly speaking, F would consist of circuits C such that given any obfuscation
B = O(C) of C, by running B over B itself as input one can obtain a secret s about C that could not
be obtained through mere black-box interaction with C. This strong impossibility result, however,
did not stop the researchers from exploring the possibility of VBB obfuscation for special classes
of functions, and positive results for special cases were presented (e.g., [Can97, Wee05]) based on
believable computational assumptions.

The work of Lynn, Prabhakaran and Sahai [LPS04] showed the possibility of VBB obfuscation
for certain class of functions in the random oracle model (ROM). The work of [LPS04] left open
whether general purpose obfuscator for all circuits could be obtained in the ROM or not. Note
that when we allow the random oracle to be used during the obfuscation phase (and also let the
obfuscated code to call the random oracle) the impossibility result of [BGI+01] no longer applies,
because the proof of [BGI+01] requires the obfuscated algorithm to be a circuit in the plain model
where no oracle is accessed. In fact, despite the impossibility of general VBB obfuscation in the
plain model, a construction for VBB obfuscation in the ROM could be used as a practical heuristic
obfuscation mechanism once instantiated with a strong hash function such as SHA3. This would be
in analogy with the way ROM based constructions of other primitives are widely used in practice
despite the impossibility results of [CGH04].

On a different route, the breakthrough of Garg et al. [GGH+13b] proposed a candidate in-
distinguishability obfuscation (iO), a weaker form of obfuscation compared to VBB for which no
impossibility results were (are) known, relying on the so called “approximate multi-linear maps”
(MLM) assumption [GGH13a]. Shortly after, it was proved by Barak et al. [BGK+14] and Brakerski
and Rothblum [BR14] that the construction of [GGH+13b] could be used to get even VBB secure
obfuscation (rather than the weaker variant of iO) in an idealized form of MLMs, called the graded
encoding model. The VBB obfuscation schemes of [BGK+14, BR14] in idealized models raised new
motivations for studying the possibility of VBB obfuscation in such models including the ROM.

Canetti, Kalai, and Paneth [CKP15] proved the first impossibility result for VBB obfuscation
in a natural idealized model by ruling out the existence of general purpose VBB obfuscators in the
random oracle model, assuming the existence of trapdoor permutations. Their work resolved the
open question of [LPS04] negatively. At a technical level, [CKP15] showed how to compile any VBB
obfuscator in the ROM into an approximate VBB obfuscator in the plain model which preserves
the circuit’s functionality only for “most” of the inputs. This would rule out VBB obfuscation in
plain model (assuming TDPs) since Bitansky and Paneth [BP13] had shown that no approximate
VBB obfuscator for general circuits exist if trapdoor permutations exist.

Pass and shelat [Pas15] further studied the possibility of VBB obfuscation in idealized alge-
braic models in which the positive results of [BGK+14, BR14] were proved. [Pas15] showed that
the existence of VBB obfuscation schemes in the graded encoding model highly depends on the
degree of polynomials (allowed to be zero tested) in this model. In particular they showed that
VBB obfuscation of general circuits is impossible in the graded encoding model of constant-degree
polynomials. Their work nicely complemented the positive results of [BGK+14, BR14] that were

1



proved in a similar (graded encoding) model but using super-constant (in fact polynomial in security
parameter) polynomials.

We shall emphasize that proving limitations of VBB obfuscation or any other primitive in generic
models of computation such as the generic group model of Shoup [Sho97] are strong lower-bounds
(a la black-box separations [RTV04, IR89]) since such results show that for certain crypto tasks, as
long as one uses certain algebraic structures (e.g., an abelian group) in a black-box way as the source
of computational hardness, there will always be a generic attack that (also treats the underlying
algebraic structure in a black-box way and) breaks the constructed scheme. The fact that the
proposed attack is generic makes the lower-bound only stronger.

1.1 Our Results

In this work we extend the previous works [CKP15, Pas15] on the impossibility of VBB obfuscation
in idealized models of computation and generalize their results to more powerful idealized primitives.
We first focus on the generic group model of Shoup [Sho97] (see Definitions 3.5 and 3.6) and rule
out the existence of general VBB obfuscation in this model for any finite abelian group.

Theorem 1.1 (Informal). Assuming trapdoor permutations exist, there is no virtual black-box ob-
fuscation for general circuits in the generic group model for any finite abelian group.

The work of [Pas15] implies a similar lower bound for the case of abelian groups of prime order.
We build upon the techniques of [CKP15, Pas15] and extend the result of [Pas15] to arbitrary (even
noncyclic) finite abelian groups. See the next section for a detailed description of our techniques
for proving this theorem and the next theorems described below.

We then apply our techniques designed to prove Theorem 1.1 to the setting of graded-encoding
model studied in [Pas15] and extend their results to arbitrary finite rings (rather than fields) which
remained open after their work. Our proof even handles noncommutative rings.

Theorem 1.2 (Informal). Assuming trapdoor permutations exist, there is no virtual black-box ob-
fuscation for general circuits in ideal degree-O(1) graded encoding model for any finite ring.

Finally, we generalize the work of [CKP15] beyond random oracles by ruling out general VBB
obfuscation in random trapdoor permutations (TDP) oracle model. Our result extends to an arbi-
trary number of levels of hierarchy of trapdoors, capturing idealized version of primitives such as
hierarchical identity based encryption [HL02].

Theorem 1.3 (Informal). Assuming trapdoor permutations exist, there is no virtual black-box ob-
fuscation for general circuits in the random trapdoor permutation model, even if the oracle provides
an unbounded hierarchy of trapdoors.

Note that the difference between the power of random oracles and random TDPs in cryptography
is usually huge, as random oracle is an idealized primitive giving rise to (very efficient) symmetric
key cryptography primitives, while TDPs could be used to construct many public-key objects. Our
result indicates that when it comes to VBB obfuscation random TDPs are no more powerful than
just random oracles.

Connection to black-box complexity of iO. In a very recent follow-up work by the authors,
Rafael Pass, and abhi shelat [MMN+15] it is shown that the results of this work and those of
[Pas15] could be used to derive lower-bounds on the assumptions that can be used in a black-box
way to construct indistinguishability obfuscation. In particular, let P be a primitive implied by (i.e.

2



exist relative to) random trapdoor permutations, generic abelian group model, or the degree-O(1)
graded encoding model; this includes powerful primitives such as exponentially secure TDPs or
exponentially secure DDH-type assumptions. [MMN+15] shows that basing iO on P in a black-box
way is either impossible, or it is at least as hard as basing public-key cryptography on one-way
functions (in a non-black-box way). Whether or not public-key encryption can be based on one-way
functions has remained as one of the most fundamental open questions in cryptography.

1.2 Technical Overview

The high level structure of the proofs of our results follows the high level structure of [CKP15], so
we start by recalling this approach. The idea is to convert the VBB obfuscator OI in the idealized
model to an approximate VBB obfuscation Ô in the plain model which gives the correct answer C(x)
with high (say, 9/10) probability over the choice of random input x and randomness of obfuscator.
The final impossibility follows by applying the result of [BP13] which rules out approximate VBB
in the plain model. Following [CKP15] our approximate VBB obfuscator Ô in the plain model has
the following high level structure.

1. Obfuscation emulation. Given a circuit C emulate the execution of the obfuscator OI in
the idealized model over input C to get circuit B (running in the idealized model).1

2. Learning phase. Emulate the execution of B over m random inputs for sufficiently large m.
Output B and the view z of the m executions above as the obfuscated code B̂ = (B, z).

3. Final execution. Execute the obfuscated code B̂ = (B, z) on new random points using some
form of “lazy evaluation” of the oracle while only using the transcript z of the learning phase
(and not the transcript of obfuscator O which is kept private) as the partially fixed part of
the oracle. The exact solution here depends on the idealized model I, but they all have the
following form: if the answer to a new query could be “derived” from z then use this answer,
otherwise generate the answer from some simple distribution.

VBB property. As argued in [CKP15], the VBB property of Ô follows from the VBB property of
O and that the sequence of views z could indeed be sampled by any PPT holding B in the idealized
model (by running B on m random inputs), and so it is simulatable (see Lemma 2.2).

Approximate correctness. The main challenge is to show the approximate correctness of the
new obfuscation procedure in the plain model. The goal here is to show that if the learning phase
is run for sufficiently large number of rounds, then its transcript z has enough information for
emulating the next (actual) execution consistently with but without knowing the view of O. In the
case that I is a random oracle [CKP15] showed that it is sufficient to bound the probability of the
“bad” event E that the final execution of B̂ = (B, z) on a random input x asks any of the “private”
queries of the obfuscator O which is not discovered during the learning phase. The work of [Pas15]
studies graded encoding oracle model where the obfuscated code can perform arbitrary zero-test
queries for low degree polynomials p(·) defined over the generated labels s1, . . . , sk. The oracle will
return true if p(s1, . . . , sk) = 0 (in which case p(·) is called a zero polynomial) and returns false
otherwise. Due to the algebraic structure of the field here, it is no longer enough to learn the heavy
queries of the obfuscated code who might now ask its oracle query p(·) from some “flat” distribution
while its answer is correlated with previous answers.

1The emulation here and in next steps would require the idealized model I to have an efficient “lazy evaluation”
procedure. For example lazy evaluation for random oracles chooses a random answer (different from previous ones)
given any new query.

3



1.2.1 Generic Group Model: Proving Theorem 1.1

To describe the high level ideas of the proof of our Theorem 1.1 it is instructive to start with the
proof of [Pas15] restricted to zero testing degree-1 polynomials and adapt it to the very close model
of GGM for Zp when p is a prime, since as noted in [Pas15] when it comes to zero-testing linear
functions these two models are indeed very close.2

Case of Zp for prime p [Pas15]. When we go to the generic group model we can ask addition
and labeling queries as well. It can be shown that we do not need to generate any labels during
obfuscation and they can be emulated using addition queries. Then, by induction, all the returned
labels t1, . . . , t` for addition queries are linear combinations of s1, . . . , sk with integer coefficients3

and that is how we represent queries. Suppose we get an addition query a + b and want to know
the label of the group element determined by (the coefficients) a + b = x. Suppose for a moment
that we know s is the label for a vector of integers c, and suppose we also know that the difference
x − c evaluates to zero. In this case, similarly to [CKP15], we can confidently return the label s
as the answer to a + b. To use this idea, at any moment, let W be the space of all (zero) vectors
α− β such that we have previously discovered same labels for α and β. Now to answer a + b = x
we can go over all previously discovered labels (c 7→ s) and return s if x− c ∈ span(W ), and return
a random label otherwise. The approximate correctness follows from the following two points.

• The rank argument. First note that if x − c ∈ span(W ) then the label for the vector
a + b = x is indeed s. So we only need worry about cases where x− c 6∈ span(W ) but x− c
is still zero. The rank argument of [Pas15] shows that this does not happen too often if we
repeat the learning phase enough times. The main idea is that if this “bad” event happens,
it increases the rank of W , but this rank can increase only k times.

• Gaussian elimination. Finally note that the test x − c 6∈ span(W ) can be implemented
efficiently using Gaussian elimination when we work in Zp.

Case of general cyclic abelian groups. We first describe how to extend the above to any cyclic
abelian group Zm (for possibly non-prime m) as follows.

• Alternative notion for rank of W . Unfortunately, when we move to the ring of Zm for non-
prime m it is no longer a field and we cannot simply talk about the rank of W (or equivalently
the dimension of span(W )) anymore.4 More specifically, similarly to [Pas15], we need such
(polynomial) bound to argue that during most of the learning phases the set span(W ) does

not grow. To resolve this issue we introduce an alternative notion which here we call r̃ank(W )
that has the following three properties even when vectors w ∈W are in Zkm (1) If a ∈ span(W )

then r̃ank(W ) = r̃ank(W ∪ {a}), and (2) if a 6∈ span(W ) then r̃ank(W ) + 1 ≤ r̃ank(W ∪ {a}),
and (3) 1 ≤ r̃ank(W ) ≤ k · log |Zm| = k · logm. In particular in Lemma 3.21 we show that the

quantity r̃ank(W ) := log |span(W )| has these three properties. These properties together show
that span(W ) can only “jump up” k · logm (or fewer) times during the learning phase, and
that property is enough to be able to apply the argument of [Pas15] to show that sufficiently
large number of learning phases will bound the error probability by arbitrary 1/ poly(n).

2More formally, using the rank argument of [Pas15] it can be shown that for the purpose of obfuscation, the two
models are equivalent up to arbitrary small 1/ poly(n) completeness error.

3Even though the summation is technically defined over the group elements, for simplicity we use the addition
operation over the labels as well.

4Note that this is even the case for Zq when q is a prime power, although finite fields have prime power sizes.

4



• Solving system of linear equations over Zm. Even though m is not necessarily prime,
this can still be done using a generalized method for cyclic abelian groups [McC90].

Beyond cyclic groups. Here we show how to extend the above argument beyond cyclic groups
to arbitrary abelian groups. First note that to solve the Gaussian elimination algorithm for Zm,
we first convert the integer vectors of W into some form of finite module by trivially interpreting
the integer vectors of W as vectors in Zkm. This “mapping” was also crucially used for bounding

r̃ank(W ).

• Mapping integers to general abelian G. When we move to a general abelian group G
we again need to have a similar mapping to map W into a “finite” module. Note that we do
not know how to solve these questions using integer vectors in W efficiently. In Lemma 3.4
we show that a generalized mapping ρG(·) : Z 7→ G (generalizing the mapping ρZm(x) = (x
mod m) for Zm) exists for general abelian groups that has the same effect; namely, without
loss of generality we can first convert integer vectors in W to vectors in Gk and then work
with the new W .

• The alternative rank argument. After applying the transformation above over W (to
map it into a subset of Gk) we can again define and use the three rank-like properties of

r̃ank(·) (instead of rank(W )) described above, but here for any finite abelian group G. In

particular we use r̃ank(W ) := log |spanZ(W )| where spanZ(·) is the module spanned by W
using integer coefficients. Note that even though G is not a ring, multiplying integers with
x ∈ G is naturally defined (see Definition 3.3).

• System of linear equations over finite abelian groups. After the conversion step above,
now we need to solve a system of linear equation xW = a where elements of W,a are from
G but we are still looking for integer vector solutions x. After all, there is no multiplication
defined over elements from G. See the full version of this paper in which we give a reduction
from this problem (for general finite abelian groups) to the case of G = Zm which is solvable
in polynomial time [McC90].

1.2.2 Low-Degree Graded Encoding Model: Proving Theorem 1.2

To prove Theorem 1.3 for general finite rings, we show how to use the ideas developed for the case
of general abelian generic groups discussed above and apply them to the framework of [Pas15] for
low-degree graded encoding model as specified in Theorem 1.2. Recall that here the goal is to detect
the zero polynomials by checking their membership in the module span(W ). Since here we deal with
polynomials over a ring (or field) R the multiplication is indeed defined. Therefore, if we already
know a set of zero polynomials W and want to judge whether a is also (the vector corresponding
to) a zero polynomial, the more natural approach is to solve a system of linear equations xW = a
over ring R.

Searching for integer solutions again. Unfortunately we are not aware of a polynomial time
algorithm to solve x ·W = a in general finite rings and as we mentioned above even special cases like
R = Zm are nontrivial [McC90]. Our idea is to try to reduce the problem back to the abelian groups
by somehow eliminating the ring multiplication. Along this line, when we try to solve x ·W = a,
we again restrict ourselves only to integer solutions. In other words, we do not multiply inside R
anymore, yet we take advantage of the fact that the existence of integer solution to x ·W = a is
still sufficient to conclude a is a zero vector. As we mentioned above, we indeed know how to find

5



integer solutions to such system of linear equations in polynomial time (see [McC90] and the full
version).

Finally note that, we can again use our alternative rank notion of r̃ank(W ) to show that if we
run the learning phase of the obfuscation (in plain model) m times the number of executions in
which spanZ(W ) grows is at most poly(n) (in case of degree-O(1) polynomials). This means that
we can still apply the high level structure of the arguments of [Pas15] for the case of finite rings
without doing Gaussian elimination over rings.

1.2.3 Random Trapdoor Permutation Model: Proving Theorem 1.3.

Here we give the high-level intuition behind our result for the random TDP oracle model.

Recalling the case of Random Oracles [CKP15]. Recall the high level structure of the proof
of [CKP15] for the case of random oracles described above. As we mentioned, [CKP15] showed that
to prove approximate correctness it is sufficient to bound the probability of the event E that the
final execution of B̂ = (B, z) on a random input x asks any of the queries that is asked by emulated
obfuscation O of B (let QO denote this set) which is not discovered during the learning phase. So if
we let QE , QB, QO denote the set of queries asked, respectively, in the final execution, learning, and
obfuscation phases, the bad event would be QE ∩ (QO \QB) 6= ∅. This probability could be bound
by arbitrary small 1/ poly by running the learning phase sufficiently many times. The intuition is
that all the “heavy” queries which have a 1/ poly-chance of being asked by B̂ = (B, z) (i.e., being
in QE) on a random input x would be learned, and thus the remaining unlearned private queries
(i.e., QO \ QB) would have a sufficiently small chance of being hit by the execution of B̂ = (B, z)
on a random input x.

Warm-up: Random Permutation Oracle. We start by first describing the proof for the
simpler case of random permutation oracle. The transformation technique for the random oracle
model can be easily adapted to work in the random permutation model as follows. For starters,
assume that the random permutation is only provided on one input length k; namely R : {0, 1}k 7→
{0, 1}k. If k = O(log n) where n is the security parameter, then it means that the whole oracle can
be learned during the obfuscation and hardcoded in the obfuscated code, and so R cannot provide
any advantage over the plain model. On the other hand if k = ω(log n) it means that the range
of R is of super-polynomial size. As a result, the same exact procedure proposed in [CKP15] (that
assumes R is a random oracle and shows how to securely compile out R from the construction)
would also work if R is a random permutation oracle. The reason is that the whole transformation
process asks poly(n) number of queries to R and, if the result of the transformation does not work
when R is a random permutation, then the whole transformation gives a poly(n) = q query attack
to distinguish between whether R is a random permutation or a random function. Such an attack
cannot “succeed” with more than negligible probability when the domain of R has super-polynomial
size qω(1) in the number of queries q5.

Random TDP Model. Suppose T = (G,F, F−1) is a random trapdoor permutation oracle in
which G is a random permutation for generating the public index, F is the family of permutations
evaluated using public index, and F−1 is the inverse permutation computed using the secret key (see

5In general, when the random permutation R is available in all input lengths, we can use a mixture of the
above arguments by generating all the oracle queries of length c log(n) (for a sufficiently large constant c) during the
obfuscation (in the plain model) and representing this randomness in the obfuscated circuit. This issue also exists in
the trapdoor permutation and the generic group models and can be handled exactly the same way.

6



Definition 4.1 for formal definition and notation used). When the idealized oracle is T = (G,F, F−1),
we show that it is sufficient to apply the same learning procedure used in the random oracle case
over the normalized version of the obfuscated algorithm B to get a plain-model execution B̂(x)
that is statistically close to an execution BT (x) that uses oracle T . This, however, requires careful
analysis to prove that inconsistent queries specific to the TDP case occur with small probability.

Indeed, since the three algorithms (emulation, learning, and final execution) are correlated, there
is a possibility that the execution of B on the new random input might ask a new query that is not
in QO, and yet still be inconsistent with some query in QO\QB. For example, assume we have a
query q of the form G(sk) = pk that was asked during the obfuscation emulation phase (and thus
is in QO) but was missed in the learning phase (and thus is not in QB) and assume that a query of
the form F [pk](x) = y was asked during the learning phase (so it is in QB). Then, it is possible that
during the evaluation of the circuit B, it may ask a query q′ of the form F−1[sk](y) and since this
is a new query undetermined by previously learned queries, the plain-model circuit B̂ will answer
with some random answer y′. Note that in this case, y′ would be different from y with very high
probability, and thus even though q 6= q′, they are together inconsistent with respect to oracle T .

As we show in our case-by-case analysis of the learning heavy queries procedure for the case of
trapdoor permutation (in Section 4.2), the only bad events that we need to consider (besides hitting
unlearned QO queries, which was already shown to be unlikely) will be those whose probability of
occurring are negligible (we use the lemmas from [GKLM12] as leverage). Due to our normalization
procedure, the rest of the cases will be reduced to the case of not learning heavy queries, and this
event is already bounded.

2 Virtual Black-Box Obfuscation

Below we give a direct formal definition for approximately correct virtual black-box (VBB) obfus-
cation in idealized models. The (standard) definition of VBB is equivalent to 0-approximate VBB
in the plain model where no oracle is accessed.

Definition 2.1 (Approximate VBB in Idealized Models [BGK+13, CKP15]). For a function ε(n) ∈
[0, 1], a PPT algorithm O is called an ε-approximate general purpose VBB obfuscator in the I-ideal
model if the following is satisfied:

• Approximate Functionality: For any circuit C of size n and input size m

Pr
x←{0,1}m

[OI(C)(x) 6= C(x)] ≤ ε(n)

where the probability is over the choice of input x, the oracle I, and the internal randomness
of O.

• Virtual Black-Box: For every PPT adversary A, there exists a PPT simulator S and a negli-
gible σ(n) such that for all n ∈ N and circuits C ∈ {0, 1}n:∣∣Pr[AI(OI(C)) = 1]− Pr[SC(1n) = 1]

∣∣ ≤ σ(n)

where the probability is over I and the randomness of A, S, and O.

The following lemma is used in [CKP15], and here we state it in an abstract form considering
only the VBB security and ignoring the completeness.

7



Lemma 2.2 (Preservation of VBB Security). Let O be a PPT algorithm in the I-ideal model that
satisfies VBB security, and let U be a PPT algorithm also in the I-ideal model that given input
B = OI(C) for some circuit C ∈ {0, 1} of size n, outputs circuit B′, and suppose Ô is some plain-
model PPT algorithm that given circuit C, outputs B̂. If it holds that conditioned on any given C,
the statistical distance between B′ and B̂ are negligible, then Ô satisfies the VBB security.

3 Impossibility of VBB in Generic Algebraic Models

In this section we will formally state and prove our Theorems 1.1 and 1.2 for the generic group and
graded encoding models.

3.1 Preliminaries

We start by stating some basic group theoretic notation, facts, and definitions. By Z we refer to
the set of integers. By Zn we refer to the additive (or maybe the ring) of integers modulo n. When
G is an abelian group, we use + to denote the operation in G. A semigroup (G,�) consists of any
set G and an associative binary operation � over G.

Definition 3.1. For semi-groups (G1,�1), . . . , (Gk,�1), by the direct product semi-group (G,�) =
(G1 × · · · × Gk,�1 × · · · × �k) we refer to the group in which for g = (g1, . . . , gk) ∈ G, h =
(h1, . . . , hk) ∈ G we define g � h = (g1 �1 h1, . . . , gk �k h1). If Gi’s are groups, their direct product
is also a group.

The following is the fundamental theorem of finitely generated abelian groups restricted to case
of finite abelian groups.

Theorem 3.2 (Characterization of Finite Abelian Groups). Any finite abelian group G is isomor-
phic to some group Zpα11

× · · · ×Zpαdd in which pi’s are (not necessarily distinct) primes and Zpαii is

the additive group mod pαii .

Definition 3.3 (Integer vs in-group multiplication for abelian groups). For integer a ∈ Z and g ∈ G
where G is any finite abelian group by a · g we mean adding g by itself |a| times and negating it if
a < 0. Now let g, h ∈ G both be from abelian group G and let G = Zpα11

× · · · × Zpαdd where pi’s

are primes. If not specified otherwise, by g · h we mean the multiplication of g, h in G interpreted
as the multiplicative semigroup that is the direct product of the multiplicative semigroups of Zpαii ’s

for i ∈ [d] (where the multiplications in Zpαii are mod pαii ).

Lemma 3.4 (Mapping integers to abelian groups). Let G = Zpα11
× · · · × Zpαdd . Define ρG : Z 7→ G

as ρG(a) = (a1, . . . , ad) ∈ G where ai = a mod pαii ∈ Zpαii . Also for a = (a1, . . . , ak) ∈ Zk define

ρG(a) = (ρG(a1), . . . , ρG(ak)). Then for any a ∈ Z and g ∈ G = Zpα11
× · · · × Zpαdd it still holds that

a · g = ρG(a) · g where the first multiplication is done according to Definition 3.3, and the second
multiplication is done in G. More generally, if a = (a1, . . . , ak) ∈ Zk, and g = (g1, . . . , gk) ∈ G,
then

∑
i∈[k] aigi = 〈a,g〉 = 〈ρG(a),g〉.

3.2 Generic Group Model

We start by formally defining the generic group model.

8



Definition 3.5 (Generic Group Model [Sho97]). Let (G,�) be any group of size N and let S be
any set of size at least N . The generic group oracle I[G 7→ S] (or simply I) is as follows. At first
an injective random function σ : G 7→ S is chosen, and two type of queries are answered as follows.

• Type 1: Labeling Queries. Given g ∈ G oracle returns σ(g).

• Type 2: Addition Queries. Given y1, y2, if there exists x1, x2 such that σ(x1) = y1 and
σ(x2) = y2, it returns σ(x1 � x2). Otherwise it returns ⊥.

Definition 3.6. [Generic Algorithms in Generic Group Model] Let AI be an algorithm (or a set of
interactive algorithms A = {A1, A2, . . .}) accessing the generic group oracle I[G 7→ S]. We call AI

generic if it never asks any query (of the second type) that is answered as ⊥. Namely, only queries
are asked for which the labels are previously obtained.

Remark 3.7 (Family of Groups). A more general definition allows generic oracle access to a family
of groups {G1, G2, . . .} in which the oracle access to each group is provided separately when the
index i of Gi is also specified as part of the query and the size of the group Gi is known to the
parties. Our negative result of Section 3 directly extends to this model as well. We use the above
“single-group” definition for sake of simplicity.

Remark 3.8 (Stateful vs Stateless Oracles and the Multi-Party Setting). Note that in the above
definition we used a stateless oracle to define the generic group oracle, and we separated the generic
nature of the oracle itself from how it is used by an algorithm AI . In previous work (e.g., Shoup’s
original definition [Sho97]) a stateful oracle is used such that: it will answer addition queries only
if the two labels are already obtained before.6

Note that for “one party” settings in which AI is a single algorithm, AI “knows” the labels
that it has already obtained from the oracle I, and so w.l.o.g. AI would never ask any addition
queries unless it has previously obtained the labels itself. However, in the multi-party setting, a
party might not know the set of labels obtained by other parties. A stateful oracle in this case
might reveal some information about other parties’ oracle queries if the oracle does not answer a
query (y1, y1) (by returning ⊥) just because the labels for y1, y2 are not obtained so far.

Remark 3.9 (Equivalence of Two Models for Sparse Encodings). If the encoding of G is sparse in
the sense that |S|/|G| = nω(1) where n is the security parameter, then the probability that any party
could query a correct label before it being returned by oracle through a labeling (type 1) query is
indeed negligible. So in this case any algorithm (or set of interactive algorithms) AI would have a
behavior that is statistically close to a generic algorithm that would never ask a label in an addition
query unless that label is previously obtained from the oracle. Therefore, if |S|/|G| = nω(1), we
can consider AI to be an arbitrary algorithm (or set of interactive algorithms) in the generic group
model I. The execution of A would be statistically close to a “generic execution” in which AI never
asks any label before obtaining it.

In light of Remarks 3.8 and 3.9, for simplicity of the exposition we will always assume that the
encoding is sparse |S|/|G| = nω(1) and so all the generic group model are automatically (statistically
close to being) generic.

Theorem 3.10 (Theorem 1.1 Formalized). Let G be any abelian group of size at most 2poly(n). Let
O be an obfuscator in the generic group model I[G 7→ S] where the obfuscation of any circuit followed
by execution of the obfuscated code (jointly) form a generic algorithm. If O is an ε-approximate VBB
obfuscator in the generic group model I[G 7→ S] for poly-size circuits, then for any δ = 1/ poly(n)
there exists an (ε+ δ)-approximate VBB obfuscator Ô for poly-size circuits in the plain model.

6So the oracle might return ⊥ even if the two labels are in the range of σ(G).

9



Remark 3.11 (Size of G). Note that if a poly(n)-time algorithm accesses (the labels of the elements
of) some group G, it implicitly means that G is at most of exp(n) size so that its elements could
be names with poly(n) bit strings. We chose, however, to explicitly mention this size requirement
|G| ≤ 2poly(n) since this upper bound plays a crucial role in our proof for general abelian groups
compared to the special case of finite fields.

Remark 3.12 (Sparse Encodings). If we assume a sparse encoding i.e., |S|/|G| = nω(1) (as e.g.,
is the case in [Pas15] and almost all prior work in generic group model) in Theorem 3.10 we no
longer need to explicitly assume that the obfuscation followed by execution of obfuscated code are
in generic form; see Remark 3.9.

Since [BP13] showed that (assuming TDPs) there is no (1/2−1/poly)-approximate VBB obfus-
cator in the plain-model for general circuits, the following corollary is obtained by taking δ = ε/2.

Corollary 3.13. If TDPs exist, then there exists no (1/2− ε)-approximate VBB obfuscator O for
general circuits in the generic group model for any ε = 1/poly(n), any finite abelian group G and
any label set S of sufficiently large size |S|/|G| = nω(1). The result would hold for labeling sets S of
arbitrary size if the execution of the obfuscator O followed by the execution of the obfuscated circuit
O(C) form a generic algorithm.

Now we formally prove Theorem 3.10. We will first describe the algorithm of the obfuscator in
the plain model, and then will analyze its properties.

Notation and w.l.o.g. assumptions. Using Theorem 3.2 w.l.o.g. we assume that our abelian
group G is isomorphic to the additive direct product group Zpα11

× · · · × Zpαdd where pi’s are prime.

Let ei ∈ G be the vector that is 1 in the i’th coordinate and zero elsewhere. Note that {e1, . . . , ek}
generates G. We can always assume that the first d labels obtained by O are the labels of e1, . . . , ed
and these labels are explicitly passed to the obfuscated circuit B = O(C). Let k = poly(n) be an
upper bound on the running time of the obfuscator O for input C which in turn upper bounds the
number of labels obtained during the obfuscation (including the the d labels for e1, . . . , ed). We also
assume w.l.o.g. that the obfuscated code never asks any type one (i.e., labeling) oracle queries since
it can use the label for e1, . . . , ed to obtain labels of any arbitrary g = a1e1 + · · · + aded using a
polynomial number of addition (i.e., type two) oracle queries. For σ(g) = s, a ∈ Z, and t = σ(a · g)
we abuse the notation and denote a · s = t.

3.2.1 The Construction

Even though the output of the obfuscator is always an actual circuit, we find it easier to first
describe how the obfuscator Ô generates some “data” B̂, and then we will describe how to use B̂
to execute the new obfuscated circuit in the plain model. For simplicity we use B̂ to denote the
obfuscated circuit.

How to Obfuscate

The new obfuscator Ô. The new obfuscator Ô uses lazy evaluation to simulate the labeling σ(·)
oracle. For this goal, it holds a set Qσ of the generated labels. For any new labeling query g ∈ G if
σ(g) = s is already generated it returns s. Otherwise it chooses an unused label s from S uniformly
at random and adds the mapping (g → s) to Qσ and returns s. For an addition query (s1, s2) it
first finds g1, g2 such that σ(g1) = s1 an σ(g2) = s2 (which exist since the algorithm that calls the
oracle is in generic form) and gets g = g1 + g2. Now Ô proceeds as if g is asked as a labeling query
and returns the answer. The exact steps of Ô are as follows.

10



1. Emulating obfuscation. Ô emulates OI(C) to get circuit B.

2. Learning phase 1 (heavy queries): Set QB = ∅. For i ∈ [d] let ti = σ(ei) be the label of ei ∈ G
which is explicitly passed to B by the obfuscator O(C) and T = (t1, . . . , td) at the beginning.
The length of the sequence T would increase during the steps below but will never exceed k.
Choose m at random from ` = [d3 · k · log(|G|)/δe]. For i = 1, . . . ,m do the following:

• Choose xi as a random input for B. Emulate the execution of B on xi using the (growing)
set Qσ of partial labeling for the lazy evaluation of labels. Note that as we said above,
w.l.o.g. B only asks addition (i.e., type two) oracle queries. Suppose B (executed on xi)
needs to answer an addition query (s1, s2). If either of the labels u = s1 or u = s2 is not
already obtained during the learning phase 1 (which means it was obtained during the
initial obfuscation phase) append u to the sequence T of discovered labels by T := (T, u).
Using induction, it can be shown that for any addition query asked during learning phase
1, at the time of being asked, we would know that the answer to this query will be of the
form

∑
i∈[k] ai ·ti for integers ai. Before seeing why this is the case, let ai = (ai,1, . . . , ai,k)

be the vector of integer coefficients (of the labels t1, t2, . . . ) for the answer s that is
returned to the i’th query of learning phase 1. We add (ai → s) to QB for the returned
label. To see why such vectors exist, let (s1, s2) be an addition query asked during this
phase, and let s ∈ {s1, s2}. If the label s is obtained previously during learning phase 1,
then the linear form s =

∑
i∈[k] ai · ti is already stored in QB. On the other hand, if s is

a new label discovered during an addition (i.e., type two) oracle query which just made
T = (t1, . . . , tj−1, tj = s) have length j, then s = ai · ti for aj = 1. Finally, if the linear
forms for both of (s1, s2) in an addition oracle query are known, the linear form for the
answer s to this query would be the summation of these vectors.7

3. Learning phase 2 (zero vectors): This step does not involve executing B anymore and only
generates a set W = W (QB) ⊆ Gk of polynomial size. At the beginning of this learning phase
let W = ∅. Then for all (a1 → s1) ∈ QB and (a2 → s2) ∈ QB, if s1 = s2, let a = a1 − a2,
and add ρG(a) to W where ρG(a) is defined in Lemma 3.4.

4. The output of the obfuscation algorithm will be B̂ = (B,QB,W, T, r) where T is the current
sequence of discovered labels (t1, t2, . . . ) as described in Lemma 3.4, and r is a sufficiently
large sequence of random bits that will be used as needed when we run the obfuscated code
B̂ = (B,QB,W, T, r) in the plain model.8

How to Execute

In this section we describe how to execute B̂ on an input x using (B,QB,W, T, r).
9 Before describing

how to execute the obfuscated code, we need to define the following algebraic problem.

Definition 3.14. [Integer Solutions to Linear Equations over Abelian Groups (iLEAG)] Let G be a
finite abelian group. Suppose we are given G (e.g., by describing its decomposition factors according

7Note that although the sequence T grows as we proceed in learning phase 1, we already now that this sequence
will not have length more than d since all of these labels that are discovered while executing the obfuscated code has
to be generated by the obfuscator, due to the assumption that the sequential execution of the obfuscator followed by
the obfuscated code is in generic form. Therefore we can always consider ai to be of dimension k.

8Note that even though W (QB) could always be derived from QB , and even T could be derived from an ordered
variant of QB (in which the order in which QB has grown is preserved) we still choose to explicitly represent these

elements in the obfuscated B̂ to ease the description of the execution of B̂.
9Note that we do not have access to the set Qσ that was used for consistent lazy evaluation of σ(·).

11



to Theorem 3.2) an n×k matrix A with components from G and a vector b ∈ Gk. We want to find
an integer vector x ∈ Zn such that xA = b.

Remark 3.15 (Integer vs. Ring Solutions). Suppose instead of searching for an integer vector
solution x ∈ Zn we would ask to find x ∈ Gn and define multiplication in G according to Defini-
tion 3.3 and call this problem G-LEAG. Then any solution to iLEAG can be directly turned into
a solution for G-LEAG by mapping any integer coordinate xi of x into G by mapping ρG(xi) of
Lemma 3.4. The converse is true also for G = Zn, since any g ∈ Zn is also in Z and it holds that
ρG(g) = g ∈ G. However, the converse is not true in general for general abelian groups, since there
could be members of G that are not in the range of ρG(Z). For example let G = Zp2 ×Zp for prime
p > 2 and let g = (2, 1). Note that there is no integer a such that a mod p2 = 2 but a mod p = 1.

Executing B̂. The execution of B̂ = (B,QB,W, T, r) on x will be done identically to to the
“next” execution during the learning phase 1 of the obfuscation (as if x is the (m+ 1)’st execution
of this learning phase) and even the sets QB,W = W (QB) will grow as the execution proceeds,
with the only difference described as follows.10 Suppose we want to answer an addition (i.e., type
two) oracle query (s1, s2) where for b = {1, 2} we inductively know that sb =

∑
i∈[k] ab,i · ti. For

b = {1, 2} let ab = (ab,1, . . . , ab,k) and let a = a1 + a2.

• Do the following for all (b → s) ∈ QB. Let c = a − b and let c = ρG(c) ∈ Gk as defined in
Lemma 3.4. Let A be a matrix whose rows consists of all vectors in W . Run the polynomial
time algorithm presented in the full version of this paper (based on an algorithm of [McC90]
for G = Zn) to see if there is any integer solution v for vA = c as an instance of the iLEAG
problem defined in Definition 3.14. If an integer solution v exists, then return s as the result
(recall (b → s) ∈ QB), break the loop, and continue the execution of B̂. If the loop ended
and no such (b→ s) ∈ QB was found, choose a random label s not in QB as the answer, add
(a→ s) to QB and continue.

Completeness and the Soundness

In this section we prove the completeness and soundness of the construction of Section 3.2.1.

Size of S. In the analysis below, we will assume w.l.o.g. that the set of labels S has superpolyno-
mial size |S| = nω(1). This would immediately hold if the labeing of G is sparse, since it would mean
even |S|/|G| ≥ nω(1). Even if the labeling is not sparse, we will show that w.l.o.g. we can assume that
G itself has super-polynomial size (which means that S will be so too). That is because otherwise
all the labels in G can be obtained by the obfuscator, the obfuscated code, and the adversary and we
will be back to the plain model. More formally, for this case Theorem 3.10 could be proved through
a trivial construction in which the new obfuscator simply generates all the labels of G and plants all
of them in the obfuscated code and they will be used by the obfuscated algorithm. More precisely,
when the size of G (as a function of security parameter n) is neither of polynomial size |G| = nO(1)

nor super-polynomial size |G| = nω(1) we can still choose a sufficiently large polynomial γ(n) and
generate all labels of G when |G| < γ(n), and otherwise use the obfuscation of Section 3.2.1.

Completeness: approximate functionality. Here we prove the the following claim.

10We even allow new labels ti to be discovered during this execution to be appended to T , even though that would
indirectly lead to an abort!

12



Claim 3.16. Let B̂ = (B,QB,W, T, r) be the output of the obfuscator Ô given input circuit C
with input length α. If we run B̂ over a random input according to the algorithm described in
Section 3.2.1, then it holds that

Pr
x←{0,1}α,B̂←Ô(C)

[
B̂(x) 6= C(x)

]
≤ Pr

x←{0,1}α,B←OI[G 7→S](C)

[
BI[G 7→S](x) 6= C(x)

]
+ δ

over the randomness of I[G 7→ S], random choice of x and the randomness of the obfuscators.

Proof. As a mental experiment, suppose we let the learning phase 1 always runs for exactly `+ 1 =
1 + [d3 · k · log(|G|)/δe] rounds but only derive the components (QB,W (QB), T ) based on the first
m executions. Now, let xi be the random input used in the i’th execution and yi be the output of
the i’th emulation execution the learning phase 1. Since all the executions of the learning phase 1
are perfect simulations, for every i ∈ [`], and in particular i = m, it holds that

Pr[BI[G 7→S](x) 6= C(x)] = Pr[yi 6= C(x)]

where probability is over the choice of inputs x, xi as well as all other randomness in the system.
Thus, to prove claim 3.16 it will suffice to prove that

|Pr[yi 6= C(x)]− Pr[B̂(xi) 6= C(x)]| < δ.

We will indeed do so by bounding the statistical distance between the execution of B̂ vs the m+1’st
execution of the learning phase 1 over the same input xi. Here we will rely on the fact that m is
chosen at random from [`].

Claim 3.17. For random [`] the statistical distance between the m+ 1’st execution of the learning
phase 1 (which we call B′) and the execution of B̂ over the same input xi is ≤ 2δ/3 + negl(n).

To prove the above claim we will define three type of bad events over a joint execution of
B′ = Bm+1 and B̂ when they are done concurrently and using the same random tapes (and even the
input xi). We will then show that (1) as long as these bad events do not happen the two executions
proceed identically, and (2) the total probability of these bad events is at most 2δ/3 + negl(n).
In the following we suppose that the executions of B′ and B̂ (over the same random input) has
proceeded identically so far. Suppose we want to answer an addition (i.e., type two) oracle query
(s1, s2) where for b = {1, 2} we inductively know that sb =

∑
i∈[k] ab,i · ti. Several things could

happen:

• If the execution of B̂ finds (b → s) ∈ QB such that when we take c = a − b and let
c = ρG(c) ∈ Gk and let A be a matrix whose rows are vectors in (the current) W , there is
an integer solution v to the iLEAG instance vA = c. If this happens the execution of B̂
will use b as the answer. We claim that this is the “correct” answer as B′ would also use
the same answer. This is because by the definition of W and Lemma 3.4 for all w ∈ W it
holds that w = (w1, . . . , wk) is a “zero vector in Gk” in the sense that summing the (currently
discovered labels in) T with coefficients w1, . . . , wk (and multiplication defined according to
Definition 3.3) will be zero. As a result, vA = c which is a linear combination of vectors
in W with integer coefficients will also be a zero vector. Finally, by another application
of Lemma 3.4 it holds that (c1, . . . , ck) = c = a − b is a “zero vector in Zk in the sense
that summing the (currently discovered labels in) T with integer coefficients c1, . . . , ck (and
multiplication defined according to Definition 3.3) will also be zero. Therefore the answer to
the query defined by vector a is equal to the answer defined by vector b which is s.

13



• If the above does not happen (and no such (b→ s) ∈ QB is found) then either of the following
happens. Suppose the answer returned for (s1, s2) in execution of B′ is s′:

– Bad event E1: s′ is equal to one of the labels in QB. Note that in this case the
executions will diverge because B̂ will choose a random label.

– Bad event E2: s′ is equal to one of the labels discovered in the emulation of OI(C)
(but not present in the current QB).

– Bad event E3: s
′ is a new label, but the label chosen by B̂ is one of the labels used

in the emulation of OI(C). (Note that in this case the execution of B̂ will not use any
previously used labels in QB.

It is easy to see that as long as none of the events E1, E2, E3 happen, the execution of B′ and
B̂ proceeds statistically the same. Therefore, to prove Claim 3.17 and so Claim 3.16 it is sufficient
to bound the probability of the events E1, E2, E3 as we do below.

Claim 3.18. Pr[E3] < negl(n).

Proof. This is because (as we described at the beginning of this subsection above) the size of S is
nω(1) but the number of labels discovered in the obfuscation phase is at most k = poly(n). Therefore
the probability that a random label from S after excluding labels in QB (which is also of polynomial
size) hits one of at most k possible labels is ≤ k/(|S| − |QB|) = negl(n). Therefore, the probability
that E3 happens for any of the oracle quries in the execution of B̂ is also negl(n).

Claim 3.19. Pr[E2] < δ/(3 log |G|) < δ/3.

Proof. We will prove this claim using the randomness of m ∈ [`]. Note that every time that a label
u is discovered in learning phase 1, this label u cannot be discovered “again”, since it will be in QB
from now on. Therefore, the number of possible indexes of i ∈ [`] such that during the i’th execution
of the learning phase 1 we discover a label out of QB is at most k. Therefore, over the randomness
of m ← [`] the probability that the m + 1’st execution discovers any new labels (generated in the
obfuscation phase) is at most k/` ≤ δ/(3 log |G|).

Claim 3.20. Pr[E1] < δ/3.

Proof. Call i ∈ [`] a bad index, if event E3 happens conditioned on m = i during the execution of
B′ (which is the (m + 1)’s execution of learning phase 1). Whenever E3 happens at any moment,
it means that the vector c is not currently in W (QB), but it will be added W just after this query
is made. We will show (Lemma 3.21 below) that the size of spanZ(W ) will at least double after
this oracle query for some set spanZ(W ) that depends on W and that spanZ(W ) ⊆ Gk, and so
|spanZ(W )| ≤ |G|k. As a result the number of bad indexes i will be at most log |G|k = k log |G|.
Therefore, over the randomness of m ∈ [`] the probability that m + 1 is a bad index is at most
k log |G|/` ≤ δ/3

Lemma 3.21. Let W ⊆ Gk for some abelian group G. Let spanZ(W ) = {
∑

w∈W aww | aw ∈ Z}
be the module spanned by W using integer coefficients. If c 6∈ spanZ(W ), then it holds that

|spanZ(W ∪ {c})| ≥ 2 · |spanZ(W )|.

14



Proof. Let A = spanZ(W ) and let B = {c + w | w ∈ spanZ(W )} be A shifted by c. It holds that
|A| = |B| and A ∪ B ⊂ spanZ(W ∪ {c}). It also holds that A ∩ B = ∅, because otherwise then we
would have: ∃i, j : w + c = w′ for w,w′ ∈ spanZ(W ) which would mean c = w −w′ ∈ spanZ(W )
which is a contradiction. Therefore |spanZ(W ∪ {c})| ≥ |A|+ |B| = 2 · |spanZ(W )|

Soundness: VBB Simulatability. To derive the soundness we apply Lemma 2.2 as follows. O
will be the obfuscator in the ideal model and Ô will be our obfuscator in the plain model where
z′ = QB,W, T, r is the extra information output by Ô. The algorithm U will be a similar algorithm
to Ô but only during its learning phase 1 and 2 starting from an already obfuscated B. However,
U will continue generating z′ using the actual oracle I[G 7→ S] instead of inventing the answers
through lazy evaluation. Since the emulation of the oracle during the learning phases, and that all
of QB,W, T,R could be obtained by only having B (and no secret information about the obfuscation
phase are not needed) the algorithm U also has the properties needed for Lemma 2.2.

Remark 3.22 (General abelian vs Zn.). Note that when G = Zn is cyclic, the mapping ρG : Z 7→ G
of Lemma 3.4 will be equivalent to simply mapping every a ∈ Z to (a mod n) ∈ G. Therefore,
Definition 3.3 generalizes the notion of Zn as a ring to general abelian groups, since the multiplication
x·y mod n in Zn is the same as a multiplication in which x is interpreted from Z (as in Definition 3.3)
which is equivalent to doing the multiplication inside G according to by Lemma 3.4.

3.3 Degree-O(1) Graded Encoding Model

We adapt the following definition from [Pas15] restricted to the degree-d polynomials. For simplicity,
as in [Pas15] we also restrict ourselves to the setting in which only the obfuscator generates labels
and the obfuscated code only does zero tests, but the proof directly extends to the more general
setting of [BGK+14, BR14]. We also use only one finite ring R in the oracle (whose size could in
fact depend on the security parameter) but our impossibility result extends to any sequence of finite
rings as well.

Definition 3.23 (Degree-d Ideal Graded Encoding Model). The oracleMd
R = (enc, zero) is stateful

and is parameterized by a ring R and a degree d and works in two phases. For each l ∈ [d], the
oracle enc(·, l) is a random injective function from the ring R to the set of labels S = {0, 1}3·|R|.

1. Initialization phase: In this phase the oracle answers enc(v, l) queries and for each query it
stores (v, l, h) in a list LO.

2. Zero testing phase: Suppose p(·) is a polynomial whose coefficients are explicitly represented
in R and its monomials are represented with labels h1, . . . , hm obtained through enc(·, ·) oracle
in phase 1. Given any such query p(·) the oracle answers as follows:

(a) If any hi is not in LO (i.e., it is not obtained in phase 1) return false.

(b) If the degree of p(·) is more than d then return false.

(c) Let (vi, li, hi) ∈ LO. If p(v1, . . . , vm) = 0 return true; otherwise false.

Remark 3.24. Remarks 3.8 and 3.9 regarding the stateful vs stateless oracles and the sparsity of
the encoding in the context of generic group model apply to the graded encoding model as well.
Therefore, as long as the encoding is sparse (which is the case in the definition above whenever |R|
is of size nω(1)) the probability of obtaining any valid label h = enc(v, l) through any polynomial

15



time algorithm without it being obtained from the oracle previously (by the same party or another
party) becomes negligible, and so the model remains essentially equivalent (up to negligible error)
even if the oracle does not keep track of which labels are obtained previously through LO.

We prove the following theorem generalizing a similar result by Pass and shelat [Pas15] who
proved this for any finite field; here we prove the theorem for any finite ring.

Theorem 3.25. Let R be any ring of size at most 2poly(n). Let O be any ε-approximate VBB
obfuscator for general circuits in the ideal degree-d graded encoding model Md

R for d = O(1) where
the initialization phase of Md

R happens during the obfuscation phase. Then for any δ = 1/ poly(n)

there is an (ε+ δ)-approximate obfuscator Ô for poly-size circuits in the plain model.

See Section 3.3.1 for the proof of Theorem 3.25. As in previous sections, the following corollary
is obtained from Theorem 3.25 by taking δ = ε/2.

Corollary 3.26. If TDPs exist, then there exists no (1/2− ε)-approximate VBB obfuscator O for
general circuits in the ideal degree-d graded encoding model Md

R for any finite ring R of at most
exponential size |R| ≤ 2poly(n) and any constant degree d, assuming the initialization phase of Md

R

happens during the obfuscation phase.

[Pas15] state their theorem in a more general model where a sequence of fields of growing size
are accessed. For simplicity, we state a simplified variant for simplicity of presentation where only
one ring is accessed but we let the size of ring R to depend on the security parameter n. Our proof
follows the footsteps of [Pas15] but will deviate from their approach when R 6= Zp by using some of
the ideas employed in Section 3.

3.3.1 Proving Theorem 3.25

Here we sketch the proof assuming the reader is familiar with the proof of Theorem 3.10 from
previous section. The high level structure of the proof remains the same.

Construction. The new obfuscator Ô will have these phases:

• Emulating obfuscation. Ô emulates OM
d
R(C) to get circuit B.

• Learning heavy subspace of space of zero vectors: The learning phase here will be rather
simpler than those of Section 3.2.1 and will be just one phase. Here we repeat the learning
phase m times where m is chosen at random from ` = [dk · log(|G|)/δe]. The variables W and
T will be the same as in Section 3.2.1 with the difference that W will consist of the vector of
coefficients for all polynomials whose zero test answer is true.

• The returned obfuscated code will be B̂ = (B,W, T, r) where r is again the randomness needed
to run the obfuscated code.

• Executing B̂. To execute B̂ on input x, we answer zero test queries as follows. For any query
vector (of coefficients) a we test whether a ∈ spanZ(W ).11 If a ∈ spanZ(W ) then return true,
otherwise return false.

11Note that we do not solve a system of equations in R and rather search only integer solutions to xW = a as we
did in Section 3.2.1.

16



Completeness and Soundness.

• The completeness follows from the same argument given for the soundness of Construc-
tion 3.2.1. Namely, the execution of B̂ is identical to the execution of the m + 1’s learning
phase (as if it exists) up to a point where we return a wrong false answer to an answer that
is indeed a zero polynomial. (Note that the converse never happens). However, when such
event is about to happen, the size of spanZ(W ) will double. Since the size of spanZ(W ) is at
most |R|k, if we choose m at random from [`] the probability of the bad event (of returning a
wrong false in m+ 1’st execution) is at most k log |R|/` = δ.

• The soundness follows from Lemma 2.2 similarly to the way we proved the soundness of the
construction of Section 3.2.1.

Extension to avoid initialization. In Theorem 3.25 we have a restriction which says that the
initialization phase must happen during the obfuscation phase only. We can extend the proof of
Theorem 3.25 to the case that we don’t have this restriction. This entails allowing the obfuscator
O and the obfuscated circuit B to ask any type of query (be it initialization phase queries or
zero-testing queries) during their execution. The reason that we can avoid this restriction is that,
whenever the obfuscated circuit B asks an initialization phase query enc(v, l), we can treat it as
a polynomial containing v. enc(1, l) and using that we can find out whether we should answer this
query randomly or using one of the previous labels. This is very similar to the method that we
employed in the learning and execution phases of generic group model case.

Claim 3.27. Let R be any ring of size at most 2poly(n). Let O be any ε-approximate VBB obfuscator
for general circuits in the ideal degree-d graded encoding model Md

R for d = O(1), Then for any

δ = 1/poly(n) there is an (ε+ δ)-approximate obfuscator Ô for poly-size circuits in the plain model.

Proof. Suppose that obfuscated circuit is B, and let {hi = enc(vi, li)}n1 be the obfuscator’s queries.
We already know that n is less than the running time of obfuscator. We might learn some pair of
(hi, vi) during the learning phase.

Construction. The new ε-approximate obfuscator Ô will have these phases:

• Emulating obfuscation. same as previous case.

• Learning obfuscator’s queries and heavy subspace of space of zero vectors: We do exactly what
we did in previous learning phase. Also if obfuscated circuit asked initialization phase queries,
we memorize it.

• The returned obfuscated code will be B̂ = (B,W, T, r) where r is again the randomness needed
to run the obfuscated code.

• Executing B̂. To execute B̂ on input x, we do as follows. If we saw query enc(v, l): First
we check, if we memorized query enc(v, l) before, we answer it using memorized queries list
otherwise we answer it randomly. Also we treat enc(v, l) as a polynomial v.enc(1, l). We
answer zero test queries as follows. For any query vector (of coefficients) a we test whether
a ∈ spanZ(W ).12 If a ∈ spanZ(W ), return true, otherwise return false.

12Note that we do not solve a system of equations in R and rather search only integer solutions to xW = a as we
did in Section 3.2.1.

17



Completeness and Soundness.

• The proof of completeness is same as previous case. The only difference is that here we need
to be sure that we answer initialization phase query correctly (call it event E). Let ji be the
index such that we saw the query enc(vi, li) for the first time. E happens if we hit one of the
index ji. Since we chose m at random, we can always bound pr(E) by choosing the right l.

• The soundness is same as previous case.

Remark 3.28. Note that our proof of Theorem 3.25 does not assume any property for the mul-
tiplication (even the associativity!) other than assuming that it is distributive. Distributivity is
needed by the proof since we need to be able to conclude that the summation of the vectors of the
coefficients of two zero polynomials is also the vector of the coefficients of a zero polynomial; the
latter is implied by distributivity.

4 Impossibility of VBB in the Random TDP Model

In this section we formally prove Theorem 1.3 showing that any obfuscator O with access to a
random trapdoor permutation oracle T can be transformed into a new obfuscator Ô in the plain
model (no access to an ideal oracle) with some loss in correctness. We start by defining the random
trapdoor permutation model and TDP query tuples followed by the formalization of Theorem 1.3.

Definition 4.1 (Random Trapdoor Permutation). For any security parameter n, a random trapdoor
permutation (TDP) oracle Tn consists of three subroutines (G,F, F−1) as follows:

• G(·) is a random permutation over {0, 1}n mapping trapdoors sk to a public indexes pk.

• F [pk](x): For any fixed public index pk, F [pk](·) is a random permutation over {0, 1}n.

• F−1[sk](y): For any fixed trapdoor sk such that G(sk) = pk, F−1[sk](·) is the inverse permu-
tation of F [pk](·), namely F−1[sk](F [pk](x)) = x.

Definition 4.2 (TDP query tuple). Given a random TDP oracle Tn = (G,F, F−1), a TDP query
tuple consists of three query-answer pairs (VG, VF , VF−1) where:

• VG = (sk, pk) represents a query to G on input sk and its corresponding answer pk

• VF = ((pk, x), y) represents a query to F [pk] on input x and its corresponding answer y

• VF−1 = ((sk, y), x′) represents a query to F−1[sk] on y and its corresponding answer x′

We say that a TDP query tuple (VG, VF , VF−1) is consistent if x = x′.

Definition 4.3 (Partial TDP query tuple). A partial TDP query tuple is one where one or more
of the elements of the tuple are unknown and we denote the missing elements with a period. For
example, we say a query set Q contains a TDP query tuple (·, VF , ·) if it contains the query-answer
pair VF = ((pk, x), y) but is missing the query-answer pairs VG = (sk, pk) and VF−1 = ((sk, y), x′).

Theorem 4.4 (Theorem 1.3 formalized). Let O be an ε-approximate obfuscator for poly-size circuits
in the random TDP oracle model. Then, for any δ = 1/ poly(n), there exists an (ε+δ)-approximate
obfuscator Ô in the plain model for poly-size circuits.

18



Before proving Theorem 4.4, we state a corollary of this theorem to rule out approximate VBB
obfuscation in the ideal TDP model. Since [BP13] showed that assuming TDPs exist, (1/2−1/ poly)-
approximate VBB obfuscator does not exist for general circuits, we obtain the following corollary
by taking δ = ε/2.

Corollary 4.5. If TDPs exist, then there exists no (1/2 − ε)-approximate VBB obfuscator O for
general circuits in the ideal random TDP model for any ε = 1/ poly(n).

The proof of Theorem 4.4 now follows in the next two sections. We will first describe the
algorithm of the obfuscator in the plain model, and then will analyze its completeness and soundness.

4.1 The Construction

We first describe how the new obfuscator Ô generates some data B̂, and then we will show how
to use B̂ to run the new obfuscated circuit in the plain model. We also let lO, lB = poly(n),
respectively, be the number of queries asked by the obfuscator O and the obfuscated code B to
the random trapdoor permutation oracle T . Note that, for simplicity of exposition, we assume the
adversary only asks the oracle for queries of size n (i.e. the domain of the permutations in T are of
fixed size n). However, as mentioned in Section 1.2.3, we can easily extend the argument to handle
O(log(n))-size or ω(log(n))-size queries to T .

4.1.1 How to Obfuscate

The new obfuscator Ô in plain model. Given an ε-approximate obfuscator O in the random
TDP model, we construct a plain-model obfuscator Ô such that, given a circuit C ∈ {0, 1}n, works
as follows:

1. Emulation phase: Emulate OT (C). Let QO represent the set of queries asked by OT and their
corresponding answers. We initialize QO = ∅. For every query q asked by OT (C), we would
answer the query uniformly at random conditioned on the answers to previous queries.

2. Canonicalize B: Let the obfuscated circuit B be the output of O(C). Modify B so that,
before asking any query of the form F−1[sk](y), it would first ask G(sk) to get some answer
pk followed by F−1[sk](y) to get some answer x then finally asks F [pk](x) to get the expected
answer y.

3. Learning phase: Set QB = ∅. Let the number of iterations to run the learning phase be
m = 2lBlO/δ where lB ≤ |B| represents the number of queries asked by B and lO ≤ |O|
represents the number of queries asked by O. For i = {1, ...,m}:

• Choose xi
$←− D|C|

• Run B(xi). For every query q asked by B(xi):

– If (q, a) ∈ QO ∪QB for some answer a, answer consistently with a

– Otherwise, answer q uniformly at random and conditioned on the answers of previous
related queries in QO ∪QB

– Let a be the answer to q. If (q, a) /∈ QB, add the pair (q, a) to QB

4. The output of the obfuscation algorithm will be B̂ = (B,QB, R) where R = {r1, ..., r|B|} is a
set of (unused) oracle answers that are generated uniformly at random.

19



4.1.2 How to Execute

To execute B̂ on an input x using (B,QB, R) we simply emulate B(x). For every query q asked by
B(x), if (q, a) ∈ QB for some a then return a. Otherwise, answer randomly with one of the answers
a in R and add (q, a) to QB.

4.2 Completeness and Soundness

Completeness: Approximate functionality. Consider two separate experiments (real and
ideal) that construct the plain-model obfuscator exactly as described in section 4.1 but differ when
executing B̂. Specifically, in the real experiment, B̂ emulates B(x) on a random input x using QB
and R, whereas in the ideal experiment, we execute B̂ and answer B(x)’s queries using the actual

oracle T instead. In essence, in the real experiment, we can think of the execution as BT̂ (x) where
T̂ is the TDP oracle simulated by B̂ using QB and R as the oracle’s answers (without knowing QO,
which is part of oracle T ). We will contrast the real experiment with the ideal experiment and show
that the statistical distance between these two executions is at most δ. In order to achieve this, we

will identify the events that differentiate between the executions BT (x) and BT̂ (x), and to that end
we will make use of the following two lemmas:

Lemma 4.6 ([GKLM12]). Let B be a canonical oracle-aided algorithm that asks t queries to a TDP
oracle T . Let EG be the event that B asks a query of the form VG = (sk, pk) after asking either
query VF = ((pk, x), y) and/or VF−1 = ((sk, y), x) from the TDP query tuple (VG, VF , VF−1). Then
Pr[EG] ≤ O(t2/2n).

Lemma 4.7 ([GKLM12]). Let B be an oracle-aided algorithm that asks t queries to a TDP oracle
T and let Q be the set of queries that B have issued. Then for any new query x, the answer is
either (1) determined completely by Q or (2) is drawn from a distribution with a statistical distance
of O(t/2n) away from the uniform distribution.

Now let q be a new query that is being asked by BT̂ (x). We present a case-by-case analysis
of all possible queries to identify the cases that can cause discrepancies between the real and ideal
experiments:

• Case 1: If q is determined by the queries in QB in the real experiment then it is also
determined by QB in the ideal experiment.

• Case 2: If q is not determined by QB ∪ QO in the ideal experiment then it is also not
determined by QB in the real experiment. In the ideal experiment the query will be answered
randomly and consistently with respect to QB ∪QO whereas in the real experiment the query
will be answered randomly and consistently with respect to QB. By Lemma 4.7, the answers
will be from a distribution that is statistically close to uniform.

• Case 3: If q is not determined by QB in the real experiment then, depending on the queries
in QO, it may or may not be so the ideal experiment:

– Case 3a: The query q is in QO. In that case, in the real experiment, the answer would
be random whereas in the ideal experiment it would use the correct answer from QO.

– Case 3b: The query q is of type VG = (sk, pk) and the corresponding partial TDP query
tuple (., VF , VF−1) is in QO

– Case 3c: The query q is of type VF = ((pk, x), y) and the corresponding partial TDP
query tuple (VG, ., VF−1) is in QO

20



– Case 3d: The query q is of type VF−1 = ((sk, y), x) and the corresponding partial TDP
query tuple (VG, VF , .) is in QO

– Case 3e: The query q is of type VF = ((pk, x), y) and VG = (sk, pk) is in QB, but
VF−1 = ((sk, y), x) is in QO

– Case 3f : The query q is of type VF−1 = ((sk, y), x) and VG = (sk, pk) is in QB, but
VF = ((pk, x), y) is in QO

– Case 3g: The query q is of type VF = ((pk, x), y) and VF−1 = ((sk, y), x) is in QB, but
VG = (sk, pk) is in QO

– Case 3h: The query q is of type VF−1 = ((sk, y), x) and VF = ((pk, x), y) is in QB, but
VG = (sk, pk) is in QO

We note that the bad events that can cause any differences between the real and ideal experi-
ments are case 2 and parts of case 3. For case 2, Lemma 4.7 ensures that this event happens with
negligible probability. For case 3a, learning heavy queries would diminish the effect of this event.
For cases 3b, 3e, and 3f , Lemma 4.6 ensures that this event happens with negligible probability
since VG was issued after VF and/or VF−1 was asked. For cases 3c and 3d, the remaining query
from the tuple would have been defined in QO and is thus captured during the learning of heavy
queries. For case 3g, if VG and VF−1 were asked during the emulation or learning phases, then VF
would also be defined and thus can be learned. However, if VF−1 was asked during the execution
phase then, due the canonicalization of B, it would have to ask VG ∈ QO which reduces to case
3a. Similarly, for case 3h, due the canonicalization of B, we would have to ask VG ∈ QO and this
reduces to case 3a once again.

For any x, define Ek(x) to be the event that case k happens and let event E(x) = (E2(x) ∨
E3a(x)∨E3b(x)∨E3e(x)∨E3f (x)). Assuming that event E does not happen, the output distributions

of BT (x) and BT̂ (x) are identical. More formally, the probability of correctness for Ô is:

Pr
x

[BT̂ (x) 6= C(x)] = Pr
x

[BT̂ (x) 6= C(x) ∧ ¬E(x)] + Pr
x

[BT̂ (x) 6= C(x) ∧ E1(x)]

≤ Pr
x

[BT̂ (x) 6= C(x) ∧ ¬E(x)] + Pr
x

[E(x)]

By the approximate functionality of O, we have that:

Pr
x

[OT (C)(x) 6= C(x)] = Pr
x

[BT (x) 6= C(x)] ≤ ε(n)

Therefore,

Pr
x

[BT̂ (x) 6= C(x) ∧ ¬E(x)] = Pr
x

[BT (x) 6= C(x) ∧ ¬E(x)] ≤ ε

We are thus left to show that Pr[E(x)] ≤ δ. By Lemma 4.7, Pr[E2(x)] ≤ negl(n) and by Lemma 4.6,
Pr[E3b ∨ E3e(x) ∨ E3f (x)] ≤ negl(n) via a union bound. The probability of event E3a was already
given in [CKP15], but for the sake of completeness we show our version of the analysis here. As a
result, we get that Pr[E(x)] ≤ δ/2 + negl(n) ≤ δ.

Claim 4.8. It holds that Prx[E3a(x)] ≤ δ/2.

Proof. Let (q1, ..., qlB ) be the sequence of queries asked by BT̂ (x) where lB ≤ |B|, and let qi,j be the

jth query that is asked by BT (xi) during the ith iteration of the learning phase. We define Ej3a(x)
to be the event that the jth query of B(x) is in QO but not in QB. We also define pq,j to be the

21



probability that qj = q for any query q and j ∈ [lB]. We can then write the probability of E3a as
follows:

Pr
x

[E3a(x)] ≤ Pr
x

[E1
3a(x) ∨ ... ∨ ElB3a(x)]

=

lB∑
j=1

Pr
x

[¬E1
3a(x) ∧ ... ∧ ¬Ej−13a (x) ∧ Ej3a(x)]

≤
lB∑
j=1

∑
q∈QO

Pr
x

[qj = q ∧ (q1,j 6= q ∧ ... ∧ qm,j 6= q)]

=

lB∑
j=1

∑
q∈QO

pq,j(1− pq,j)m ≤
lB∑
j=1

∑
q∈QO

1

m
≤

lB∑
j=1

lO
m

=
lBlO
m

.

Thus, given that m = 2lBlO/δ, we get Pr[E3a(x)] ≤ δ/2.

Soundness: VBB Simulatability. To show that the security property is satisfied, it suffices to
provide a PPT algorithm UT in the ideal TDP model that takes as input OT (C) for some circuit C
and outputs a distribution that is statistically close to the output distribution of Ô. If that is the
case, we can invoke Lemma 2.2 and conclude that Ô is also VBB-secure.

The description of U is precisely the same as Steps 2-4 of the procedure detailed in Section 4.1
except that queries made by B = OT (C) are answered using oracle T instead of being randomly
simulated. If we let (B,QB, R) be the output of UT (OT (C)) then we can easily see that it is
identically distributed to the output distribution of Ô since, in both cases, QB has query-answers
with consistent and random TDP query tuples. They differ only by how these query answers are
generated (UT answers them using T , while Ô simulates them using lazy evaluation with respect
to some oracle T̂ distributed the same as T ).

4.3 Extension to hierarchical random TDP

In this section, we reason that the proof for the ideal TDP case can be extended to hierarchical
TDP oracles as well. We start by defining how the oracle for the random hierarchical trapdoor
permutation primitive changes from Definition 4.1.

Definition 4.9 (Random Hierarchical Injective Trapdoor Functions). For any security parameter
n and l = poly(n), an l-level random hierarchical injective trapdoor function (HTDF) oracle T ln
consists of 2l + 3 subroutines ({Ji}l+1

i=1, {Ki}l+1
i=0) defined as follows:

• Ki[IDi−2, idi−1](tdi): An injective function, indexed by identity vector IDi−2 = (id0, ..., idi−2)
and idi−1, that accepts as input an i-level trapdoor tdi ∈ {0, 1}m and outputs a randomly
chosen identity idi ∈ {0, 1}n where m = 10nl if i ∈ [1, l] and m = n (i.e. it is a permutation)
if i = {0, l + 1}.

• Ji[IDi−2, tdi−1](idi): An injective function, indexed by identity vector IDi−2 = (id0, ..., idi−2)
and tdi−1 that, given the identity idi ∈ {0, 1}n, outputs the corresponding trapdoor tdi ∈
{0, 1}m where m = 10nl if i ∈ [1, l] and m = n (i.e. it is a permutation) if i = {0, l + 1}.

Note that, for any fixed IDi−2, if tdi = Ji[IDi−2, tdi−1](idi) and idi−1 =
Ki−1[IDi−3, idi−2](tdi−1) then idi = Ki[IDi−2, idi−1](tdi). In other words, we can think of Ki as the
inverse of Ji only if the indices of the two functions match (that is, the trapdoor tdi−1 indexing Ji
corresponds to the identity idi−1 indexing Ki).

22



Remark 4.10. It is also crucial to note that we used (sparse) injective functions for generating the
intermediate levels of trapdoor. Such a change was made in order to obtain interesting primitives
from this oracle, such as fully-secure hierarchical identity-based encryption (HIBE). If permutations
were used instead, we would only achieve HIBE with security against adversaries that do not choose
an identity for the permutation F to attack. Furthermore, removing Ki for i ∈ [1, l] as a way to
prevent this attack’s capability hinders our ability to perform the canonicalization procedure for
the obfuscated circuit.

Remark 4.11. For the special case of 1-level HTDF (i.e. TDP), we only have three permutations:
K0,K1[id0] and J1[td0], which correspond to permutations G,F [pk], and F−1[sk], respectively in
the language of TDP that we used in Definition 4.1. Note that here, we would refer to 0-level
identities as master public keys and 0-level trapdoors as master secret keys.

We also present a variant of TDP query tuples that generalizes Definition 4.2 to work with hierar-
chical injective trapdoor functions.

Definition 4.12 (HTDF query tuple). Given a random l-level HTDF oracle T ln = ({Ji}l+1
i=1, {Ki}l+1

i=0),
an i-level HTDF query tuple consists of three (possibly) related query-answer pairs (VKi−1 , VKi , VJi)
where, for any fixed IDi−2 = (id0, ..., idi−2):

• VKi−1 = (tdi−1, idi−1) represents a query to Ki−1[IDi−3, idi−2] on input tdi−1 and its corre-
sponding answer idi−1

• VKi = ((idi−1, tdi), idi) represents a query to Ki[IDi−2, idi−1] on input tdi and its correspond-
ing answer idi

• VJi = ((tdi−1, idi), td
′
i) represents a query to Ji[IDi−2, tdi−1] on input idi and its corresponding

answer td′i

We say that an i-level HTDF query tuple is consistent if tdi = td′i.

Remark 4.13. For the purposes of comparison, we note that, for the special case of 1-level HTDF
(i.e. TDP), we only have TDP query tuples of the form (VK0 , VK1 , VJ1) = (VG, VF , V

−1
F ). Thus,

VG = (sk, pk) represents a query to G on sk = td0 and the answer pk = id0, VF = ((pk, x), y)
represents a query to Fpk on x = td1 and the answer y = id1, and VF−1 = ((sk, y), x′) represents a
query to F−1sk on y and the answer x′, which should be x if the tuple is consistent.

Extension of the proof. The extension of the impossibility result to random HTDF is straight-
forward, so we will outline the main differences between the TDP case and describe how to resolve
the issues that are related to this oracle. First, we still perform the normalisation procedure on
Ô and B where the query behaviour of these algorithms are modified such that for any query q
of the form Ji[IDi−2, tdi−1](idi), we first ask Ki−1[IDi−3, idi−2](tdi−1) to get idi−1. This allows us
to discover whether we have a query Ki[IDi−2, idi−1](tdi) whose answer is idi, in which case we
can answer q with tdi. This procedure ensures that all query tuples that contain Ji queries are
consistent.

We now turn to verifying whether the proof of approximate functionality for TDP holds in this
case as well and, in particular, focus on the event E(x) that was defined Section 4.2. The main
issue that we have to consider, which is unique to the HTDF case, is the possibility that different
consistent TDP query tuples can be related to each other, and an overlap between these queries
may cause an inconsistency in one of the tuples. Specifically, an i-level TDP query tuple of the
form (VKi−1 , ·, ·) might overlap with an (i−1)-level TDP query tuple (·, ·, VJi−1) from QO, where the

23



answer of VKi−1 is inconsistent with that of VJi−1 . However, our normalisation procedure prevents
precisely this issue as any TDP query tuple that contains VJi−1 must also have VKi−1 , which means
that the queries should not overlap otherwise event E1 occurs leading to a contradiction to our
initial assumption.

Acknowledgement. We thank Victor Shoup and Hendrik W. Lenstra for pointing us out to
the literature on solving linear equations over the ring Zn.

References

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im) possibility of obfuscating programs. In CRYPTO
2001, pages 1–18. Springer, 2001. 1

[BGK+13] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai.
Protecting obfuscation against algebraic attacks. IACR Cryptology ePrint Archive,
2013:631, 2013. 7

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sa-
hai. Protecting obfuscation against algebraic attacks. In Advances in Cryptology–
EUROCRYPT 2014, pages 221–238. Springer, 2014. 1, 15

[BP13] Nir Bitansky and Omer Paneth. On the impossibility of approximate obfuscation and
applications to resettable cryptography. In Proceedings of the Forty-fifth Annual ACM
Symposium on Theory of Computing, STOC ’13, pages 241–250, New York, NY, USA,
2013. ACM. 1, 3, 10, 19

[BR14] Zvika Brakerski and Guy N Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In Theory of Cryptography, pages 1–25. Springer, 2014.
1, 15

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In Advances in CryptologyCRYPTO’97, pages 455–469. Springer, 1997. 1

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, 2004. 1

[CKP15] Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On obfuscation with random
oracles. Cryptology ePrint Archive, Report 2015/048, 2015. http://eprint.iacr.

org/. 1, 2, 3, 4, 6, 7, 21

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Eurocrypt, volume 7881, pages 1–17. Springer, 2013. 1

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Anant Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Sym-
posium on, pages 40–49. IEEE, 2013. 1

24

http://eprint.iacr.org/
http://eprint.iacr.org/


[GKLM12] Vipul Goyal, Virendra Kumar, Satya Lokam, and Mohammad Mahmoody. On black-
box reductions between predicate encryption schemes. In Ronald Cramer, editor,
Theory of Cryptography, volume 7194 of Lecture Notes in Computer Science, pages
440–457. Springer Berlin Heidelberg, 2012. 7, 20

[HL02] Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In
LarsR. Knudsen, editor, Advances in Cryptology EUROCRYPT 2002, volume 2332 of
Lecture Notes in Computer Science, pages 466–481. Springer Berlin Heidelberg, 2002.
2

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In ACM Symposium on Theory of Computing (STOC), pages 44–61.
ACM Press, 1989. 2

[LPS04] Benjamin Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and techniques
for obfuscation. In Advances in Cryptology-EUROCRYPT 2004, pages 20–39. Springer,
2004. 1

[McC90] Kevin S. McCurley. The discrete logarithm problem. In Proc. of the AMS Symposia in
Applied Mathematics: Computational Number Theory and Cryptography, pages 49–74.
American Mathematical Society, 1990. 5, 6, 12

[MMN+15] Mohammda Mahmoody, Ameer Mohammed, Soheil Nematihaji, Rafael Pass, and abhi
shelat. Lower bounds on assumptions behind indistinguishability obfuscation. In In
Submission, 2015. 2, 3

[Pas15] Rafael Pass and abhi shelat. Impossibility of vbb obfuscation with ideal constant-
degree graded encodings. Cryptology ePrint Archive, Report 2015/383, 2015. http:

//eprint.iacr.org/. 1, 2, 3, 4, 5, 6, 10, 15, 16

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between
cryptographic primitives. In Theory of Cryptography, First Theory of Cryptography
Conference, TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages
1–20. Springer, 2004. 2

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter
Fumy, editor, Advances in Cryptology EUROCRYPT 97, volume 1233 of Lecture Notes
in Computer Science, pages 256–266. Springer Berlin Heidelberg, 1997. 2, 9

[Wee05] Hoeteck Wee. On obfuscating point functions. In Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing, pages 523–532. ACM, 2005. 1

25

http://eprint.iacr.org/
http://eprint.iacr.org/

	Introduction
	Our Results
	Technical Overview
	Generic Group Model: Proving Theorem 1.1
	Low-Degree Graded Encoding Model: Proving Theorem 1.2
	Random Trapdoor Permutation Model: Proving Theorem 1.3.


	Virtual Black-Box Obfuscation
	Impossibility of VBB in Generic Algebraic Models
	Preliminaries
	Generic Group Model
	The Construction

	Degree-O(1) Graded Encoding Model
	Proving Theorem 3.25


	Impossibility of VBB in the Random TDP Model
	The Construction
	How to Obfuscate
	How to Execute

	Completeness and Soundness
	Extension to hierarchical random TDP


